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Abstract

In several real-world applications, a learner has access to multiple environment
simulators, each with a different precision (e.g., simulation accuracy) and cost
(e.g., computational time). In such a scenario, the learner faces the trade-off
between selecting expensive accurate simulators or preferring cheap imprecise
ones. We formalize this setting as a multi-fidelity variant of the stochastic best-
arm identification problem, where querying the original arm is expensive, but
multiple and biased approximations (i.e., fidelities) are available at lower costs.
The learner’s goal, in this setting, is to sequentially choose which simulator to
query in order to minimize the total cost, while guaranteeing to identify the optimal
arm with high probability. We first derive a lower bound on the identification cost,
assuming that the maximum bias of each fidelity is known to the learner. Then,
we propose a novel algorithm, Iterative Imprecise Successive Elimination (IISE),
which provably reduces the total cost w.r.t. algorithms that ignore the multi-fidelity
structure and whose cost complexity upper bound mimics the structure of the lower
bound. Furthermore, we show that the cost complexity of IISE can be further
reduced when the agent has access to a more fine-grained knowledge of the error
introduced by the approximators. Finally, we numerically validate IISE, showing
the benefits of our method in simulated domains.

1 Introduction

In the multi-armed bandit setting [26], the agent selects, at each interaction round, an arm and
observes a sample drawn from its reward distribution. Unlike the regret minimization setting [26],
where the agent tries to maximize the cumulative return, in best-arm identification (BAI) problems
[10, 6, 2], the evaluation index relates exclusively to the quality of the arm recommended at the
end of the exploration phase. More specifically, in the fixed-confidence setting [17], the agent aims
at identifying, with probability 1− δ, the arm with the largest mean reward, while minimizing the
sample complexity, i.e., the number of collected samples necessary to make the final decision. Due
to its generality, the BAI framework encompasses a wide spectrum of applications, ranging from
medical trials [38], to hyper-parameter optimization [27], crowdsourcing [47], recommender systems
[25], simulation-based studies in physics [43], and A/B testing [14].

However, in practical cases, querying an arm to obtain a sample from its reward distribution might
be expensive. For instance, in the context of physics simulation studies, where pulling an arm
corresponds to the evaluation of a complex model under some given arm parameters, intensive use
of computing power is required to obtain the reward we are interested in. Nevertheless, simpler
and, consequently, cheaper and biased, models might be available to the agent. Another example is
stochastic planning, where the agent needs to compute the best action (i.e., arm) that maximizes the
future sum of rewards over a maximum horizon H . However, while in principle it is possible to plan
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considering the entire horizon, cheaper and biased estimates can be obtained by cutting the depth of
the search to h<H . For these scenarios, the multi-fidelity (MF) framework [9, 21, 22] that exploits
this additional opportunity has recently gained attention in the literature. The main rationale behind
these methodologies is to exploit less expensive approximations in specific regions of the arm space to
limit the resources allocated to distinguish options that are far from optimal, and do not require high
accuracy. So far, most of the multi-fidelity literature has focussed on black-box function optimization,
with the goal of optimizing a target function f when multiple approximations of f are available
[15, 33, 22, 34, 39, 40, 19, 28, 11]. Among these works, the ones more related to the bandit literature
are [22, 19, 39, 40, 11]; under different smoothness assumptions, these authors aimed at designing
strategies that explore the arm space to minimize the simple regret, i.e., the difference between the
true optimal value of f and the best unbiased query made to f during the optimization process. Other
works studied cumulative regret analysis [21, 20], active learning [46, 32], reinforcement learning
[9, 30, 41], and applied approaches [36, 44, 31].

In this paper, on the other hand, we focus on the understudied multi-fidelity fixed-confidence BAI
setting. More specifically, we study the minimization of the cost complexity, a novel metric that we
introduce by extending the notion of sample complexity to the multi-fidelity setting, by weighting each
sample with the related cost. The goal of the agent is to output the optimal arm with probability 1− δ,
while minimizing the total cost. To this purpose, as commonly done in the literature [9, 21, 20, 39, 11],
we assume that the agent has some knowledge of the quality of the approximator, which is usually
expressed in terms of upper bounds on the maximum bias that the fidelities introduce on the arm set.
This term corresponds to the maximum distance between the mean of the desired (but expensive) arm
distributions and their approximations.

Contributions. In this paper, we introduce the notion of cost complexity for the multi-fidelity BAI
setting (Section 2). We derive a lower bound for this novel index, under the standard assumption
that the agent is equipped with knowledge of the maximum bias that each fidelity has w.r.t. the
original, expensive and unbiased bandit model (Section 3). As we shall show, our result highlights
several properties of the problem along with its challenges. Furthermore, we propose the Iterative
Imprecise Successive Elimination (IISE) algorithm (Section 4), for which, we derive cost complexity
upper bounds that, under certain assumptions, mimic the structure of the lower bound, and that is
provably robust w.r.t. BAI algorithms that ignore the multi-fidelity structure. We also show that the
performance of IISE can be further improved when a more fine-grained knowledge of the behavior of
the approximations is available to the agent (Section 5). After revising the literature (Section 6), we
propose numerical experiments on simulated domains that empirically verify our claims (Section 7).

2 Setting

In the classical fixed-confidence BAI setting [17], the agent interacts with a bandit model ν :=
(ν1, . . . , νK), where K ∈N is the number of arms and νi denotes the reward distribution associated
with arm i∈ [K] := {1, . . . ,K}. Denote with µi the expectation of νi and, assume, that the K
arms are ordered such that µ1>µ2≥ · · ·≥µK . We assume that the reward distributions νi are
subgaussian with known scale parameter σ2. At each interaction round t∈N, the agent selects an
arm It ∈ [K] and receives a reward Rt sampled from νIt . Let Ti(t) be the total number of pulls
of arm i∈ [K] up to time t∈N. Given a confidence level δ ∈ (0, 1), the goal of the agent is to
recommend an arm Î(τ)∈ [K] that corresponds to the optimal arm 1 with probability at least 1− δ,
while minimizing the sample complexity ρ(τ) :=

∑
i∈[K] E [Ti(τ)], where τ is the stopping time of

the agent. Any algorithm that recommends the best arm with probability 1− δ is said δ-correct. For
every sub-optimal arm i> 1, we define its gap w.r.t. the optimal arm as ∆i :=µ1−µi.
In this paper, we differ from this classical setting as, for each arm i∈ [K], we assume the agent has
access to M − 1∈N fidelity distributions νi,1, νi,2, . . . , νi,M−1, each σ2-subgaussian, with means
µi,1, µi,2, . . . , µi,M−1. We unify the notation introducing a maximum fidelity M to encode the true
arm distributions the agent is interested in, i.e., νi,M := νi with mean µi,M :=µi. As in previous works
[9, 21, 20, 39, 11], we assume that there is a relation encoding how much information distributions of
fidelity m<M contain w.r.t. to the true arm distribution. More specifically, for each fidelity m∈ [M ],
it is always possible to write µi,m :=µi,M + ξi,m for some appropriate ξi,m ∈R. Then, we assume
that the agent has access to ξm≥maxi∈[K] |ξi,m|, from which follows that |µi,m−µi,M | ≤ ξm.
We notice that ξm represents an upper-bound on the maximum bias of fidelity m∈ [M ]. At each
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interaction round t∈N, the agent selects an arm It ∈ [K], a fidelity mt ∈ [M ], and observes a reward
Rt, drawn from νIt,mt . The cost of gathering samples at fidelity m is known and specified by λm> 0.
We make the standard assumption that λ1<λ2< · · ·<λM and ξ1>ξ2> · · ·>ξM := 0.1 At this
point, let Ti,m(t) be the number of pulls to arm i∈ [K] at fidelity m∈ [M ] up to time t∈N; we
define the cost complexity as:

c(τ) :=
∑
i∈[K]

∑
m∈[M ]

λmE [Ti,m(τ)] , (1)

where τ is the stopping time at which the agent will output the optimal arm 1 with probability 1− δ.

3 Cost Complexity Lower Bound

In this section, we discuss the intrinsic complexity of the multi-fidelity BAI problem, by providing
and analyzing a lower bound on the cost complexity (proof in Appendix B).

Theorem 1. Consider a multi-fidelity bandit model ν with Gaussian distributions νi,m =N (µi,m, σ
2)

such that |µi,m−µi,M | ≤ ξm for every i∈ [K] and m∈ [M ]. Then, for any δ-correct algorithm and
δ≤ 0.15, it holds that:

E [c(τ)]≥
[

min
m∈M1

λm
KL(ν1,m, ν2,m)

+

K∑
i=2

min
m∈Mi

λm
KL(νi,m, ν1,m)

]
log

(
1

2.4δ

)
,

where KL(p, q) is the Kullback-Leibler divergence between distributions p and q, ν2,m =N (µ2,M +
ξm, σ

2), ν1,m =N (µ1,M − ξm, σ2),M1 := {m∈ [M ] :µ1,m>Ex∼ν2,m
[x]} andMi := {m∈ [M ] :

Ex∼ν1,m [x]>µi,m} for i> 1.

This bound reveals several properties of the multi-fidelity fixed-confidence BAI problem. A single
term λmKL−1(νi,m, ν1,m) with i 6= 1 can be interpreted as a lower bound on the minimum cost
that any δ-correct algorithm needs to pay to conclude that arm i is sub-optimal. Suppose, for the
moment, thatMi contains any fidelity m∈ [M ]. Then, once we fix m∈Mi, its related component
λmKL−1(νi,m, ν1,m) is the cost-based multi-fidelity counterpart of the usual KL−1(νi, ν1) which
appears in the standard BAI lower bound [24]. This can be seen as a lower bound on the cost to
discard arm i using samples gathered at fidelity m. Notice that, in this sense, the term ν1,m replaces
the usual ν1 to take the bias of fidelity m into account. The minimum, consequently, encodes a lower
bound on the cost of the most convenient fidelity with which we can discard i. The reason why we
have a minimum overMi instead of [M ] is that, given a fidelity m∈ [M ], m might not be useful to
discard i, since ∆i might be too small for the bias that m introduces. This concept is further clarified
in the following remark:

Remark 1. Consider the following problem instance: for each m∈ [M ], let µ1,m =µ1,M − ξm and
µi,m =µi,M + ξm for i 6= 1. Then, Theroem 1 reduces to:

Ω̃

(
K∑
i=2

min
m∈[M ] : ∆i>2ξm

λmσ
2

(∆i− 2ξm)2

)
. (2)

As we can see, if ∆i< 2ξm for some m, its related component is not present in the lower bound.
Furthermore, it is interesting to note that the setting of Remark 1 represents a worst-case fidelity-
dependent scenario. Indeed, each fidelity m∈ [M − 1] underestimates the reward of the optimal arm
and overestimates the ones of sub-optimal arms.

Finally, we show how Theorem 1 highlights the main challenge of our setting. For each value of ξm,
there exists a multi-fidelity bandit model ν for which the lower bound is given by Ω̃(

∑K
i=2

λMσ
2

∆2
i

)

(given Remark 1, it is sufficient to consider ∆i such that the only fidelity in the minimization set is
M ). It is clear that this cost complexity can be matched (up to log factors) by many BAI algorithms
available in the literature (e.g., [10]) that ignore the multi-fidelity structure of the problem. The main

1Cases in which λi=λi+1 or ξi= ξi+1 hold can easily be ruled out. Indeed, with the same cost one could
gather a more precise sample using another fidelity, or, equivalently, one could gather a sample of the same
precision, using a cheaper fidelity; i.e., we can remove these dominated fidelity prior to running any method.
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Figure 1: A visualization of how IISE works: at the beginning IISE pulls arms at the cheapest fidelity
in a Successive Elimination fashion. Using samples from these biased distributions, it tries to discard
sub-optimal i arms whose ∆i is sufficiently large. Once a given number of samples determined by
αm has been reached, IISE moves to the sub-sequent fidelity. This process goes on until the optimal
arm is identified in high-probability.

issue, in this sense, is the fact that the agent does not know, a priori, the values of ∆i. To build an
algorithm that achieves robustness (i.e., not being worse than these uninformed strategies), then,
we need to control how much we spend to explore the arm distributions at fidelity m<M . More
generally, this reasoning also extends to building algorithms that match the lower bound. In this
sense, we observe, even for the fixed-confidence BAI setting, the adversarial behavior that fidelity
might have, as previously reported in [21] for the finite-armed bandit regret minimization setting.

4 Imprecise and Iterative Successive Elimination

In this section, we present our algorithm, Imprecise and Iterative Successive Elimination (IISE,
Algorithm ??), to solve multi-fidelity fixed-confidence BAI problems. In particular, while developing
our method, we pursue the following two objectives. First, we want to guarantee robustness w.r.t.
uninformed strategies that blindly use only the highest fidelity M to identify the best arm. Indeed,
we expect a good agent to be able to reduce the total cost by exploiting the peculiar multi-fidelity
structure of the problem. Second, we aim at providing a strategy whose upper-bound structure
resembles, as close as possible, the one of the lower bound presented in Section 3.

Our solution (pseudo-code in Algorithm 1 and visual representation in Figure 1) builds on the
Successive Elimination algorithm [10]. More specifically, we proceed by epochs, one for each fidelity
m∈ [M ], considered in increasing order. In each phase m∈ [M ], we query all the active arms, i.e.,
those that have not been discarded yet, through their approximated distributions νi,m at fidelity m.
We denote the set of active arms with S⊆ [K]. IISE keeps usual empirical mean estimates µ̂i,m,t of
the mean µi,m of reward distributions νi,m for each i∈S, and discards all the arms i for which the
following applies:

∃j ∈S : µ̂j,m,t−U
(
t,

δ

KM
, ξm

)
≥ µ̂i,m,t +U

(
t,

δ

KM
, ξm

)
, (3)

where U (t, δ, ξ) is a symmetric bound on the empirical means (defined below). Condition (3)
aims at eliminating all the active arms i whose estimated empirical mean upper bound falls below
the empirical mean lower bound of another active arm j. More specifically, we set U (t, δ, ξ) :=

B (t, δ) + ξ=

√
2σ2 log 4t2

δ

t + ξ. As we can see, U (t, δ, ξ) is composed of the usual concentration
term B (t, δ) plus the fidelity bias ξ. As our proof highlights, this additional term is required to
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Algorithm 1 Iterative Imprecise Successive Elimination (IISE).
Require: Multi-fidelity bandit model ν, confidence δ, thresholds {αm}Mm=1, bounds {ξm}Mm=1

1: S← [K]
2: m← 1 and t← 0
3: while |S|> 1 do
4: if αm≥ 4B

(
t, δ
KM

)
then

5: m←m+1 and t← 0
6: end if
7: Pull all arms in S at fidelity m and t← t+1
8: Update µ̂j,m,t for all j ∈ [S]
9: S←S \

{
i∈S : ∃j ∈S : µ̂j,m,t−U

(
t, δ
KM

, ξm
)
≥ µ̂i,m,t+U

(
t, δ
KM

, ξm
)}

10: end while
11: return S

ensure that the optimal arm remains, with high probability, in the active set S until termination.2 The
duration of each epoch (i.e., how much IISE tries to exploit fidelity m) is determined by a threshold
parameter αm (to be defined later). At each round, the value of B

(
t, δ
KM

)
decreases and as soon

as 4B
(
t, δ
KM

)
drops below αm, IISE switches to the next fidelity m+ 1. Notice that, to achieve

δ-correctness, it is required to set αM to 0, so that the last phase is guaranteed to identify the optimal
arm, and αm> 0 for m<M , so that each phase is assured to terminate in a finite number of rounds.
Then, keeping generic thresholds αm that satisfy the previous conditions, we can show that IISE is
δ-correct and its cost complexity is upper bounded by the following theorem (proof in AppendixC).

Theorem 2. If αm> 0 for every m∈ [M − 1] and αM = 0, then, with probability at least 1− δ, IISE
returns the optimal arm 1 with cost complexity c(τ) upper bounded by:

c(τ)≤O
(

K∑
i=2

λmiσ
2

(∆i− 4ξmi)
2

log

(
σ2MK

(∆i− 4ξmi)
2δ

)
+
∑
m<mi

λmσ
2

α2
m

log

(
σ2MK

α2
mδ

))
,

where mi is the smallest m∈ [M ] for which ∆i≥ 4ξm +αm holds.

We notice that the cost required by IISE to discard i 6= 1 is composed of two terms. The first one is
the cost of discarding arm i using samples at fidelity mi, while the second one is the cost of trying to
discard arm at lower fidelity m<mi. As our proof reveals, mi is the smallest fidelity m for which
IISE ensures that arm i will be discarded.

4.1 On the Choice of the Thresholds αm

In this section, we highlight one of the main challenges of the MF setting, as mentioned in Section 3.
Since we are unaware of the suboptimality gaps ∆i, we may attempt to choose αm so as to minimize
the cost complexity of Theorem 2 w.r.t. the worst-case choice of suboptimality gaps ∆i, that is:

min
α

max
∆

K∑
i=2

λmiσ
2

(∆i− 4ξmi)
2

log

(
σ2MK

(∆i− 4ξmi)
2δ

)
+
∑
m<mi

λmσ
2

α2
m

log

(
σ2MK

α2
mδ

)
, (4)

where α= (α1, . . . , αM ) and ∆= (∆2, . . . ,∆K) are the threshold and gap vectors. However, it
is easy to verify that Equation (4) is minimized for αm = +∞ for all m<M and αM = 0, i.e., an
algorithm that exploits the highest fidelity M only. As we can see, IISE reflects the peculiar issue
of the MF-BAI lower bound. In the worst case, any fidelity m<M is not useful to reduce the
identification cost since it introduces too much bias w.r.t. ∆i, regardless its cost. For this reason, as
done in previous works [21], we restrict the class of problems with some assumptions whose goal is
making the fidelity structure provably convenient. More specifically:

Assumption 1 (Costs and Biases Relationship). For every fidelity m∈ [M − 1], it holds that:∑
m<m

min
k>m

(
√
λk −

√
λm)2

(ξm− ξk)2
≤min
k>m

(
√
λk −

√
λm)2

(ξm− ξk)2
(5)

2Omitting ξ in the elimination rule might wrongly eliminate the optimal arm just because, at low fidelity, its
approximated distribution has a negative bias.
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Assumption 1 deserves some comments. First of all, it directly encodes a relationship between costs
and biases. To provide an interpretation, we notice that the assumption is always satisfied for: (i) costs
that grow at least linearly 3 and (ii) ξ’s that satisfy the following decay rate:

∑
m<m

1
(ξm−ξm+1)2 ≤ 1

ξ2m
.

The intuition behind the cost increase rate (i) is that, with sub-linear growth, attempting to discard
arms with a cheaper fidelity is too inconvenient w.r.t. gathering more accurate samples for a slightly
higher cost. For what concerns the ξ’s decay rate, instead, condition (ii) limits the adversarial behavior
that fidelity might have. If two subsequent ξ’s are very close together, little can be inferred from
switching from the first fidelity to the second one. This sort of problem was already highlighted in
[21]. We remark that Assumption 1, compared to Assumption 1 of [21]

∑
m<m

1
(ξm)2 ≤ 1

ξ2m
, involves

both costs and biases, which is something we expect since the main challenge of the setting is to
trade-off between them. Indeed, depending on the values of λ’s it is possible to tolerate ξ’s that decay
linearly; vice-versa, if ξ’s decay fast enough, it is possible to tolerate costs that increase sub-linearly.

Although Equation (5) might appear abstract, we show that it holds for a large class problems.
Consider a Markov Decision Process (MDP) [35] (Y,A, p, r, η), where Y is the state space, A is the
action space, p= {ph}h≥1 a set of transitions kernels, r= {rh}h≥1 a set of reward functions, and
η ∈ [0, 1] is a discount factor. When an agent takes action a in state y at step h it transitions to y′ with
probability ph(y′|y, a), and receives a deterministic reward rh(y, a)∈ [0, 1]. Given a state y ∈Y , our
goal is to find the action that maximizes the cumulative discounted reward over the next H steps4

Given an initial action, a way to compute a sample from its future cumulative discounted reward is
to apply a Monte Carlo search algorithm (e.g., depth first search) truncating the planning depth at
h<H to obtain a cheaper but biased estimate of the cumulative discounted reward. In this sense,
this scenario fits the fixed-confidence MF-BAI setting. Let M be the maximum depth, then, for each
depth m∈ [M ], we set as λm the number of generated nodes, that, assuming a constant branch factor
Λ, is exponential in m (i.e., λm = Λm). Instead, for ξm it is easy to obtain the following upper bounds
on the maximum bias ξm = (ηm+1− ηM+1)/(1− η). Now, it is possible to show that Assumption 1
holds (proof in Appendix C).

Proposition 1. Consider Λ≥ 2. If λm = Λm and ξm = (ηm+1− ηM+1)/(1− η) for all m∈ [M ],
then Assumption 1 holds.

4.2 Most Convenient Fidelity Thresholds

Given the structure of Theorem 1 and its interpretation, during a phase m∈ [M ], we expect a good
choice of thresholds α to let IISE discard all the arms i 6= 1 that should (and can) be discarded at m.
Therefore, during m, we aim at concluding that a given arm is suboptimal only if there is no other
fidelity m>m in which gathering samples at m is more convenient, in term of identification cost,
w.r.t. m. We formalize the previous concept in the following definition.

Definition 1 (Fidelity Convenience). Consider a sub-optimal arm i 6= 1 and a fidelity m<M such
that ∆i> 4ξm. We say that fidelity m is convenient for arm i if:

λm
(∆i− 4ξm)2

≤ min
m>m

λm
(∆i− 4ξm)2

. (6)

In Equation (6), we are comparing the cost of discarding i gathering samples at phase m only with
the cost of discarding i using a more precise fidelity m>m. Therefore, solving it for ∆i, we identify
the gaps of the arms that can be conveniently discarded at fidelity m rather than at m:

∆i≥ max
M≥m>m

4(ξm
√
λm− ξm

√
λm)√

λm−
√
λm

= max
M≥m>m

4ξm +
4(ξm− ξm)

√
λm√

λm−
√
λm

. (7)

To discard all i that satisfy Equation (7), it is sufficient to set thresholds αm for m<M as follows:

αm := max
M≥m>m

4(ξm− ξm)
√
λm√

λm−
√
λm

. (8)

At this point, under Assumption 1, it is possible to prove that, with this peculiar threshold choice, the
cost complexity of IISE can be rewritten in the following way (proof in Appendix C).

3More formally, (
√
λi+1−

√
λi)

2≤ (
√
λj+1−

√
λj)

2 for i, j ∈ [M − 1] and j > i.
4In the discounted setting, this is equivalent to search for an ε-optimal action.
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Theorem 3. Under Assumption 1, selecting the thresholds αm as in Equation (8), with probability
at least 1− δ, IISE returns the optimal arm with cost complexity c(τ) upper bounder by:

c(τ)≤ Õ
(

K∑
i=2

min
m∈[M ]:∆i>4ξm

λmσ
2

(∆i− 4ξm)2

)
≤ Õ

(
K∑
i=2

λMσ
2

∆2
i

)

As we can appreciate, this result comes with two desired properties. First of all, IISE is provably
robust w.r.t. algorithms that ignore the multi-fidelity structure of the problem. We remark that to
have this nice property, Assumption 1 does not need to hold for each m∈ [M ]. It is always possible
to pre-select a subset of fidelity for which the assumption holds. Secondly, the bound in Theorem
3 closely mimics the behavior of the lower bound (Equation 2). The only difference stands in the
fact that 2ξm is now replaced with 4ξm. We leave this gap to be filled in for future work. Notice,
again, that the similarity also holds for the case in which we select a subset of fidelity for which the
assumption holds. In this case, however, our minimization will be on a restricted fidelity set w.r.t. the
original one.

4.3 Nearly-Optimal Identification

As for the Successive Elimination algorithm, one can easily modify IISE so that it returns an ε-optimal
arm. In this case, we can show that the identification cost is upper bounded by (proof in Appendix C):

c(τ)≤ Õ

∑
i/∈Kε

min
m:∆i>4ξm

λmσ
2

(∆i− 4ξm)2
+
∑
i∈Kε

min
m:ε>4ξm

λmσ
2

(ε− 4ξm)2

 ,

whereKε := {i∈ [K] :µi>µ1− ε}. As usual, for arms that are not ε-optimal we pay the original cost
of Theorem 3. For the ones in Kε, instead, their cost is actually clipped by ε. In multi-fidelity, this
has the further implication that, depending on the values of biases, costs and required accuracy, we
might never query the most expensive unbiased fidelity M . In particular, let us focus on a two-armed
bandit problem with two fidelity values, and consider ∆2<ε. Then, we will never query M if:

ε≥ 4ξm +
4ξm
√
λm√

λM −
√
λm

.

The first term guarantees that IISE can discard i using m, the second one, instead encodes the
convenience of m w.r.t. to M in terms of costs. As λM increases, this term shrinks to zero. When
λM→+∞, the condition reduces to ε> 4ξm. This means that if fidelity m is precise enough for the
desired accuracy ε, we completely neglect fidelity M .

5 Breaking the Cost Barrier

We now show that (a slightly modified version of) IISE can further reduce the cost complexity when
more fine-grained knowledge on the type of error that approximators introduce is available. The main
intuition behind the following reasoning is that what matters when exploiting fidelity m<M is not
the bias they introduce, but whether the arms do not preserve the order w.r.t. the mean of the true
reward distributions νi,M . Indeed suppose to have access to a fidelity with a very large bias but which
fully preserves the order on the means of the arms. In this scenario, it is possible to run a standard
BAI technique on this fidelity only and still obtain the optimal arm. We now formalize how much a
certain fidelity m preserves the order with the novel concept of maximum bias variation γm:

γm := max
i,j∈[K]

{|ξi,m− ξj,m|}.

Under the assumption that γ1≥ γ2≥ · · ·≥ γM := 0 are available to the learner, IISE can be conve-
niently modified to obtain the following bound on the cost complexity (proofs, pseudocode, and
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formal statement in Appendix D):5

c(τ)≤ Õ
(

K∑
i=2

min
m∈[M ]:∆i>2γm

λmσ
2

(∆i− 2γm)2

)
. (9)

To obtain such a result, the only required modifications stand in the elimination condition, which now
becomes µ̂j,m,t−B

(
t, δ
KM

)
≥ µ̂i,m,t +B

(
t, δ
KM

)
+ γm, and in the definition of the thresholds

αm, in which 4ξ’s are swapped with 2γ’s. We will refer to this modified algorithm with IISE-γ. As
our proofs show, IISE-γ can also exploit upper bounds φm on the true maximum bias variation (i.e.,
φm≥ γm); the complexity is as in Equation (9), but γm is replaced with φm.

We remark that, by definition, γm≤ 2ξm, which provably demonstrates the benefits of exploiting
order-aware knowledge in the MF-BAI setting. Interestingly, we also notice that in the worst-case
scenario (i.e., γm = 2ξm), Equation (9) implicitly recovers the cost complexity of Theorem 3.

Practical Relevance of Maximum Bias Variation. Finally, we highlight that the knowledge about
upper bounds φm is available in a large class of problems. In particular, consider settings in which
means of fidelity m<M are underestimations of the ones of fidelity M , i.e., µi,M −µi,m≥ 0 for all
i∈ [K] and m∈ [M ]. This is the case, for instance, of the stochastic planning application of Section
4, but it also common in other settings such as training models with less iterations. In these problems,
it always holds that γm≤ ξm (proof in Appendix D). Therefore, we can set φm = ξm in IISE-γ to
obtain the improved cost complexity of Equation (9), where 2γm is replaced with 2ξm.

6 Related Works

In this section, we revise the literature with particular attention to best-arm identification and the
multi-fidelity setting.

Best-Arm Identification. The BAI setting has aroused the interest of the research community for
a long time [10, 6, 2]. In particular, [10] proposed the Successive Elimination algorithm, together
with the first gap-dependent upper bound on the sample complexity: O(

∑K
i=2 ∆−2

i (log (δ−1) +

log (K) + log (∆−2
i )). This algorithm is known to match the lower bound up to logarithmic factors.

Indeed, [29, 24] showed that, for all possible instances, every δ-correct algorithm requires at least
Ω(
∑K
i=2 ∆−2

i log(δ−1)) samples to output the optimal arm with probability 1− δ. To overcome the
logarithmic mismatch, several works have proposed both tighter upper [12, 23, 16, 7, 13, 8] and
lower bounds [16, 13, 8]. Concerning the BAI literature, we leverage on the change of distributions
arguments presented in [24] to build lower bounds for our novel cost complexity metric. As for the
upper bound, instead, to favor the simplicity of exposition and intuition, we build on the Successive
Elimination algorithm. Clearly, our proofs can straightforwardly incorporate the techniques from the
more refined analysis [e.g., 23] to tighten the logarithmic dependencies.

Multiple Fidelity. The use of multiple fidelity has gathered particular attention from the Bayesian
Optimization (BO) [5] field, with a large variety of algorithms that operate under different assumptions
and with different goals [15, 33, 34, 28]. In particular, a recent line of works [22, 19] has focused
on minimizing the simple regret suffered when a certain budget has been spent to optimize a target
function under smoothness conditions guaranteed by Gaussian processes [37]. The study of the simple
regret has also been extended to black-box function optimization [39, 40, 11] under hierarchical
partition assumptions on the target function. However, all previous work differs significantly from the
study we present in this paper. Indeed, they optimize different goals w.r.t. our novel cost complexity
notion and make structured assumptions about the target function (i.e., the arm space). With most
of them [21, 20, 39, 11], we share the assumption on the knowledge of the upper bound on the
maximum bias ξm for each fidelity. Of particular interest w.r.t. our work, is the one of [11]. In
particular, the authors highlighted the concept that what matters when exploiting fidelity m<M is
how much they preserve the order rather than the bias they have. However, their assumption about
order preservation is expressed in a general form; with the maximum bias variation γm, instead, we

5The cost complexity bound is obtained under an assumption equivalent to Assumption 1 in which all ξ’s are
replaced with γ’s.
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Table 1: Cost complexity results (mean and 95% confidence interval of 100 runs).

Algorithm Synthetic A Synthetic B Yahtzee

MFE 212.43± 3.89 3330.27± 62.59 342.75± 0.69
IISE 11.47± 0.31 27.06± 0.77 0.53± 0.01
IISE-γ 2.53± 0.06 6.39± 0.17 0.001± 0.01

propose a closed-form expression for this concept, and we quantitatively show its impact in terms of
benefits with respect to the upper bound on the maximum bias. We also showed that upper bounds
φm on this metric are known and available in a large class of problems, and that our algorithm can
successfully exploit this knowledge to reduce identification cost.

The work most closely related to ours is [21]. The authors consider the finite arm setting with known
upper bounds on the maximum bias for each fidelity. However, while we take into account the
identification cost, in [21], the authors analyze a pseudo-regret notion that sets as an optimal strategy
the one that invests the whole budget in querying the optimal arm. Interestingly, we got similar
results, in terms of structure, for what concerns the lower bound, although we remark that the proof
techniques are different since we deal with a different performance metric. As for the proposed
algorithm and the upper bounds, our proofs rely on novel concepts such as the fidelity convenience
(i.e., Definition 1), which are tailored to the identification cost we have analyzed. In addition, as we
have seen in Section 4, we make a different assumption w.r.t. [21]: our assumption directly states a
relationship between costs and biases, which is more reasonable since the goal of the multi-fidelity
setting is to trade-off between the two. Finally, w.r.t. [21], we analyze the effect of more fine-grained
knowledge on different fidelity, which provably leads to performance improvements.

To conclude, some works [9, 30, 41] have also investigated the use of multi-fidelity simulators in
Reinforcement Learning (RL) [42] domains. Among these works, [9] develops fixed confidence
algorithms (up to a desired precision ε> 0) both for the RL setting and for the bandit one. However,
their setting is significantly different from ours as they do not consider each fidelity to be related to a
given cost. Instead, they simply aim at minimizing the number of sub-optimal steps at fidelity M ,
while controlling the number of samples taken in fidelity m<M to ensure they are polynomial.

7 Numerical Validation

In this section, we provide a numerical validation of our theoretical claims in both synthetic and
simulated domains. To prove that IISE is successful at exploiting fidelity, we compare it with: (i)
Successive Elimination (SE) [10], which exploits only maximum fidelity, and with a version of IISE
that chooses the thresholds αm so as to exploit every fidelity as much as possible (i.e., αm close to 0).
We call this modified version Maximum Fidelity Exploit (MFE) algorithm. Table 1 reports all the
results in terms of the percentage of cost complexity of a given algorithm w.r.t. the one of Successive
Elimination. The value 100 corresponds to the relative cost complexity of SE.

Synthetic bandits. We start presenting some experiments on two synthetic bandits (Synthetic A
and Synthetic B) with randomly generated arms. These experiments aim at validating our robustness
results along with the benefit of the order-aware knowledge. Synthetic A setting parameters are K =
2000, M = 4, λ= [1, 10, 100, 1000], ξ= [1.15, 0.225, 0.015, 0], γ= [0.3, 0.05, 0.001, 0]; for Syn-
thetic B, instead, K = 1000, M = 5, λ= [16, 64, 256, 1024, 4096], ξ= [1.15, 0.45, 0.105, 0.0105, 0],
γ= [0.3, 0.1, 0.01, 0.001, 0]. To make the γ and ξ settings directly comparable, we generated the arms
such that the fidelity index m is left unchanged (i.e., it simultaneously holds that λ1>λ2> · · ·>λM ,
ξ1>ξ2> · · ·>ξM , and γ1>γ2> · · ·>γM ). Further details on this generation process can be found
in Appendix E. As we can appreciate from Table 1, IISE substantially reduces the cost complexity
w.r.t. SE, and, its order-aware version IISE-γ, obtains further improvements. Table 1 also highlights
the importance of choosing a good threshold αm. Indeed, MFE insists in exploiting a given fidelity,
even when there is no convenience in doing so, thus obtaining significantly worse results than SE.

Yahtzee. We now apply our algorithm to the problem of choosing the first action in the stochastic
planning domain introduced in Section 4. More specifically, we consider the Yahtzee game [3].
Yahtzee is a sequential dice game in which a player rolls 5 dice up to 3 times and then chooses a
particular move that assigns a score to the final dice combination. For instance, typical moves are:
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“Sixes” with a score given by the sum of dice with the number 6, and “Yahtzee”, that assigns 50 points
if all the dice show the same number, and 0 otherwise. The total number of these possible moves is
14 (i.e., our branching factor Λ). The game proceeds in 13 rounds. During each round t, the player
selects a move and obtains the corresponding points. We consider the variant of Yathzee in which,
if the player has already selected a certain move at t< t, then, at t, that move will lead to reward 0.
Furthermore, during each round, the player will roll the 5 dice only once, after which a move has to
be selected. Further details are provided in Appendix E. Table 1 shows that our method significantly
reduces the total number of generated nodes, thus lowering successfully the total cost of identifying
the best action, and, that exploiting the upper bounds on the maximum bias variation instead of ξ’s is
beneficial in terms of total cost. Finally, MFE overexploits fidelity and underperforms SE.

8 Conclusions and Discussion

In this work, we have studied, for the first time, the variant of the fixed-confidence BAI scenario in
which the agent has access to multiple approximations with different costs and biases of the original
bandit model. We proposed the novel notion of cost complexity to evaluate the performance that a
given algorithm obtains in these situations. We derived a lower bound on this index, which shows
several interesting properties of the problem, along with its main challenges. We also presented
a novel algorithm, IISE, which provably reduces the cost complexity compared to algorithms that
ignore the availability of multiple fidelity. More specifically, IISE discards a sub-optimal arm i
with the most convenient, in terms of cost and fidelity, thus closely mimicking the shape of the
lower bound. Furthermore, we also showed that the maximum bias is not what actually matters
in identifying the best arm. Indeed, better guarantees can be obtained with the knowledge of the
maximum bias variation, an original concept that we introduce to encode how much a given fidelity
preserves order.

To close the problem from a theoretical perspective, it is reasonable to assume that both upper and
lower bounds could be improved in settings that do not fall under Assumption 1. More specifically,
the lower bound of Theorem 1, that considers the minimum over the entire fidelity set, seems currently
optimistic since it does not encode the cost that is needed to explore at other fidelities. To tackle this
issue, proof techniques that rely on the characteristic time function [13] might lead to tighter lower
bounds. Consequently, adapting to the MF setting their well-known “Track and Stop" strategy [13]
might provide upper bounds that asymptotically match the lower bound in its characteristic time form.
However, results obtainable from these approaches usually come at the cost of lower interpretability
(and, depending on the nature of the resulting characteristic function, computational complexity). On
the other hand, Theorem 1 provides several intuitions behind the challenges of the Multi-Fidelity BAI
setting, and IISE is computationally efficient.

Furthermore, whenever Assumption 1 does not hold, the cost of “exploring" lower fidelities becomes
more and more relevant. Indeed, Assumption 1 guarantees that there is a large enough “fidelity gap"
(i.e., fidelity differs in terms of the joint costs-biases relationship specified by the assumption). The
main issue in settings, where this gap is small, roots down to the chicken-egg problem of MF-BAI.
On one side, we would like to exploit these approximators to discard sub-optimal arms; on the
other side, we do not know if these approximators will be useful (i.e., in the worst case, we pay an
exploration cost). In the case, where the “fidelity-gap" is small, this problem is repeated over and
over for all these fidelities close to one another (i.e., the cumulative sum of the exploration costs
becomes non-negligible). In this sense, tighter lower bounds (such as the ones previously suggested)
might shed light on whether such assumptions are necessary or not, or if tighter assumptions are
possible/necessary. This represents an exciting line for future research.

To conclude, we note that previous studies [45, 18, 1] highlighted the strong connections between
fixed-confidence BAI and learning near-optimal RL policies while minimizing the number of samples
gathered in the environment. In this sense, our ideas pave the way for future work that aims at
learning these policies when multiple simulators are available. Indeed, previous efforts in MF-RL
[9, 30, 41] do not directly take the challenging cost-precision trade-off into account.
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