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Abstract

Reasoning has emerged as a core technique for improving large language model
(LLM) performance across various tasks by using additional inference-time com-
pute. However, as LLMs scale in both size and usage, inference costs are becoming
increasingly burdensome. How, then, might we optimize the cost-performance
tradeoff of reasoning? This work introduces a novel approach based on compu-
tational models of metareasoning used in cognitive science, training LLMs to
selectively use intermediate reasoning steps only when necessary. We first develop
a reward function that incorporates the Value of Computation by penalizing un-
necessary reasoning, then use this reward function with Expert Iteration to train
the LLM. Compared to few-shot chain-of-thought prompting, our approach signifi-
cantly reduces inference costs (38% fewer tokens generated on average) without
sacrificing task performance across diverse datasets.

1 Introduction

Large language models (LLMs) rely on substantial computational power to handle complex problems
[1, 2, 3]. While initial studies mostly focused on the cost of training [4], LLMs’ widespread
deployment has made inference-time costs an increasingly important factor. Model compression
techniques such as quantization, pruning, and knowledge distillation can lower post-training costs [5].
However, there is a fundamental tension between inference cost and task performance: while many of
these methods reduce costs at the expense of performance, others, such as chain-of-thought reasoning
(CoT) [6, 7], do the opposite, raising inference costs to enhance task performance. Crucially, however,
none of the previous approaches are adaptive: model compression modifications and existing CoT
methods raise or lower the inference cost on all queries, regardless of task complexity.

In stark contrast to this static tradeoff, humans are able to adaptively allocate computational resources
based on task difficulty [8, 9, 10]. In this work, we draw inspiration from rational metareasoning –
literally, reasoning about reasoning – a concept originally from the artificial intelligence literature that
has been used to explain how humans adaptively manage computational resources [10, 11, 12, 13].
Building on this, we develop a novel reward function based on the Value of Computation (VOC,
[11]), which formalizes the trade-off between inference cost and task performance. We adopt an
iterative reinforcement learning process inspired by the Expert Iteration algorithm [14]. In each
iteration, we generate multiple rationales for each question. These rationales are ranked using the
reward function, and the dataset is filtered to retain only the best rationale for each question. The
model is then fine-tuned using this filtered dataset. This method was strongly inspired by STaR [15],
which bootstraps reasoning ability through a self-improvement loop. However, unlike STaR, which
filters generated examples based solely on whether their final answer matches the target, our method
evaluates reasoning not just on the correctness of the final answer, but also considers the cost and
utility of the reasoning process itself. We evaluated the effectiveness of our solution across a diverse
set of tasks, from science knowledge (ARC [16]) to commonsense reasoning (CommonsenseQA [17]),
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mathematical problem solving (GSM8K [18]), and logical deductive reasoning (ProofWriter [19]).
Additionally, we assess the out-of-domain generalization on MMLU [20], a multitask benchmark.
Our approach achieves a substantial reduction in generated tokens (38% compared to few-shot
prompting and 22% compared to STaR [15]) while retaining comparable performance. Related works
[21, 22, 23, 24, 15, 25, 26] have expanded upon CoT, further enhancing performance across various
scenarios. However, these approaches do not improve efficiency – in fact, they often generate even
longer sequences. Finally, adaptive computation methods often involve training multiple models or
altering architectures [27, 28, 29, 30, 31], whereas our approach modifies only the fine-tuning process
of pretrained LLMs.

2 Rational Metareasoning

Humans have limited time and cognitive resources [32, 33]. We face diverse challenges requiring
different approaches: avoiding a sudden obstacle while driving needs quick, intuitive thinking,
while selecting a retirement investment strategy requires slow, deliberate reasoning [8]. Rational
metareasoning [11] suggests agents should adapt their reasoning based on the problem at hand.
Intuitively, while reasoning solves a problem, metareasoning solves the problem of how to solve a
problem: deciding which computations to perform while problem-solving. In formal terms, rational
metareasoning can be distilled into the problem of calculating the value of computation (VOC) [11]
for each potential computation (c). The VOC balances the benefit of computation c (characterized by
the expected increase in utility) against its cost (usually time or energy).

To formalize this, agents are assumed to have some internal belief state b ∈ B, which determines
their expectation about the value of each action a ∈ A: E[U(a)|b]. A rational agent would simply
choose the highest-value action: a∗ = argmaxa∈A [U(a)|b]. In contrast, a meta-rational agent can
perform computation to change their belief state before choosing an action. Each computation c ∈ C
has an associated cost (cost(c)), but updates the agent belief to b′ with probability P (b′|c). This, in
turn, affects their beliefs about the value of actions. Formally, then, the VOC quantifies the value of
performing computation c given a starting belief state b,

V OC(c, b) = EP (b′|c)[max
a′

E[U(a′)|b′]−max
a

E[U(a)|b]]− cost(c). (1)

Thus, a meta-rational agent should pursue the computation c∗ with the highest VOC: c∗ =
argmaxc∈C V OC(c, b). If no computation has positive VOC, the agent should stop thinking and
instead act in the world. Rational meta-reasoning has been used to explain how humans allocate
cognitive resources in various tasks [10, 12].

3 Introducing Rational Metareasoning into Large Language Models

To achieve an optimal balance between performance and efficiency, our approach introduces a new
VOC-inspired reward function (Eq. 3) into an Expert Iteration training loop [14, 15], fine-tuning a
LLM to produce rationales adaptively depending on task difficulty.

Reward modeling We define the reward of a chain of thought as the difference between its utility
and its cost,

Rπ(x, y, z) = Uπ(z|x, y)− C(z) Uπ(z|x, y) = log πθ(y|z, x)− log πθ(y|x) (2)
where x denotes the input for the task, z represents the intermediate chain of thought, and y is the
target solution. The utility of the chain of thought is represented by Uπ(z|x, y), and the cost of the
intermediate computations is denoted by C(z). In the context of LLMs, utility quantifies the increase
in the likelihood of generating the target sequence y when the chain of thought z is added to the
input x, under the policy π. Specifically, πθ(y|z, x) indicates the probability of generating the target
sequence y given both the chain of thought z and the input x, while πθ(y|x) denotes the probability
of generating y with only the input x. The cost, on the other hand, is directly proportional to the
number of tokens in the chain of thought l(z): C(z) = γ · log l(z). The hyperparameter γ scales the
cost and utility to the same magnitude. A key benefit of this reward function is that it is parameterized
by the same weights θ as the generative policy πθ, eliminating the need for an external reward model.
This allows direct estimation of a rationale’s utility using the policy itself.

Rationale Generation. We start with a pretrained language model πθ and an initial dataset D =
{(xi, yi)}Di=1 of problems x and their correct answers y. To train the model to generate rationales,
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we adopt a few-shot prompting method by prepending a small set of examples P , each containing
intermediate rationales z, to each x in D. For each task τi = (xi, yi), we produce K rationales:
τ̂i = {(xi, zk,i, yi)}Kk=1. If none of the K rationales for τi is correct, we discard all samples for that
task. To reduce the likelihood of incorrect rationales, we use the rationalization method from STaR
[15], where a new rationale is generated using the correct answer if the initial attempts fail. Each
rationale is then evaluated using the Rational Metareasoning reward function.

Metareasoning Training. We demonstrate the effectiveness of our reward using a variation of the
Expert Iteration (EI) algorithm [14]. EI is known for its sample efficiency and strong performance
on reasoning tasks [34, 15]. As an example of an online reinforcement learning (RL) algorithm, EI
involves both exploration and policy improvement phases, with the policy πθ being updated using
data from the exploration phase. The training process is described in Algorithm 1.

Algorithm 1 Rational Metareasoning Training
Input π: a pretrained LLM; dataset D = {(xi, yi)}Di=1

1: for n in 1...N do ▷ Iterations
2: Dn ←D ▷ Sample batch from dataset
3: for k in 1...K do ▷ Perform rationale generation
4: (zi,k, yi,k)← πn−1(xi) ∀i ∈ [1, Di]
5: (zi,k, yi,k)← πn−1(add_hint(xi)) ∀i ∈ [1, Di] ∧ yi,k ̸= yi ▷ Compute rationalization
6: end for
7: ri,k ← R(xi, yi, zi,k) ∀i, k(i ∈ [1, Di] ∧ yi,k = yi) ▷ Compute reward for each rationale
8: ẑi ← argmaxk{Rπ(x, zk, y)}Kk=1 ▷ Select best rationale for each task i
9: D∗

n ← {(xi, ẑi, yi) ∈ [1, Di]} ▷ Create the optimal dataset
10: πn ← train(π,D∗

n) ▷ Finetune the original model on the optimal solutions
11: end for

Initially, in the exploration phase, we approximate the optimal policy π̂∗ by using rejection sampling
on our student policy πθ. After generating K intermediate rationales z1, . . . , zK for a given question
x, we evaluate them using our reward function Rπ (the rationale generation process described
in 3). We then construct D∗

1 = {(xi, zi, yi)}Ni=1 by selecting the best rationale for each task i:
zi = argmaxk{Rπ(x, zk, y)}Kk=1. These rollouts are then distilled into a policy π1 using standard
cross-entropy loss. This process can be iteratively repeated to refine the policy πn on the dataset D∗

n.

Instead of using the entire training dataset at each iteration, as standard EI algorithms do [14, 35],
we start with a batch of T steps at the first iteration and increase the number of fine-tuning training
steps by T at each subsequent iteration (similar to STaR [15]). This approach allows the model to
encounter new examples gradually, resulting in slower training initially, which ultimately enhances
model performance.

4 Experiments

Datasets. We constructed our training set by combining the training sets from these datasets into
one dataset D and then evaluated the model on all corresponding test sets T . We used the following
datasets: ARC [16], which includes natural science questions to assess scientific understanding;
CommonsenseQA [17], focused on everyday reasoning; GSM8K [18], with diverse math word
problems for arithmetic skills; and ProofWriter [19], which tests logical deductive reasoning by
evaluating conclusions from given premises. To balance the datasets and manage costs, we randomly
sampled 1,024 entries from each training set. We conducted further testing using the first 100 samples
from each of the 57 subjects in the MMLU benchmark[20], which includes multiple-choice questions
on various topics, to evaluate the model’s generalization ability.

Baselines. We illustrate the advantages of our model by comparing its performance to two types of
prompting strategies: direct, where the model is required to provide an immediate answer, and Chain
of Thought (CoT), where the model is encouraged to reason through the problem step-by-step before
arriving at a solution. Since we are using pretrained models (which are not specifically trained for
instruction following), we provide five few-shot examples for each task. These examples are carefully
chosen to ensure that the length of the rationale matches the perceived difficulty of the question. In
addition to these prompting methods, we adopt a finetuning baseline, comparing our method to STaR
(Self-Taught Reasoner [15]), which also uses the Expert Iteration algorithm.
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Training Details. For our experiments, we use Meta Llama-3-8B [36] as the pretrained base model.
To generate rationales, we sample K = 5 sequences for each question, using a temperature t of
0.5 and a topp value of 0.9. For the reward, we set γ = 0.1 to balance utility and cost on the same
scale. For each iteration n, we sample a dataset Dn of size 512 from the union of four training
datasets D described in 4. In the self-supervised fine-tuning step, we use a batch size of 16 and a
learning rate of 1e-6. Finally, we evaluate all models using greedy decoding to ensure consistent and
deterministic output generation. We use pattern matching techniques to extract the answers; an exact
match between the generated answer and the ground truth is considered correct.

Results. As shown in Figure 1, even in datasets where the Chain of Thought method yields marginal
performance gains, the length of the generated rationales remains substantial. Conversely, with our
method, not only is the overall length reduced, but the difference in the average rationale length
between the two dataset groups becomes more pronounced. This indicates that the model has learned
to more effectively distinguish when detailed reasoning is necessary and when a shorter response is
sufficient. Our training method shows that the LLM maintains accuracy comparable to traditional
few-shot prompting, with only minor variations depending on the dataset, while achieving significant
efficiency gains. Specifically, our approach reduces input tokens by an average of 94% and output
tokens by 38%, without compromising performance. Compared to the STaR method, our approach
achieves similar performance levels while generating 22% fewer tokens on average.

Method Accuracy (%) ↑ Input Length ↓ Output Length ↓
Direct Few-Shot 56.9 (± 1.2) 531.7 (± 10.1) 0.0 (± 0.0)
CoT Few-Shot 62.7 (± 1.3) 1190.5 (± 13.2) 143.0 (± 2.6)
STaR 62.3 (± 1.2) 76.6 (± 1.3) 110.8 (± 1.7)
Metareasoning 62.4 (± 1.3) 76.6 (± 1.3) 86.2 (± 2.0)

Table 1: Comparison of different methods based on accuracy and length metrics, averaged across
datasets, (means with 95% confidence intervals). The overall performance remains comparable,
despite the decreased number of generated tokens.

Figure 1: Length and accuracy On the left, the distribution of input and output lengths across
various modalities is shown, organized by dataset. Our method (Metareasoning) eliminates the need
for few-shot prompting, resulting in fewer input tokens and a lower output token count.

5 Conclusion

We have used rational metareasoning — the adaptive use of cognitive resources — to optimize
reasoning in large language models (LLMs). Empirically, this approach reduces computational
costs while maintaining comparable performance. However, we note some limitations and future
directions. First, we focus on efficiency rather than task performance, and it remains to be seen
whether our approach can be extended to improve task performance. Notably, our work demonstrates
how cognitively inspired reward functions can equip LLMs with desirable inference-time properties.
The flexibility of this method suggests it could be integrated with instruction tuning to further
enhance efficiency. Additionally, by customizing the utility measure in the reward function, this
strategy can guide models toward achieving specific, measurable improvements while still conserving
computational resources.
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