
A Nested Bi-level Optimization Framework for
Robust Few Shot Learning

Krishnateja Killamsetty∗
The University of Texas at Dallas

krishnateja.killamsetty@utdallas.edu

Changbin Li*
The University of Texas at Dallas
changbin.li@utdallas.edu

Chen Zhao, Feng Chen, Rishabh Iyer
The University of Texas at Dallas

{chen.zhao, feng.chen, rishabh.iyer}@utdallas.edu

Abstract

Model-Agnostic Meta-Learning (MAML), a popular gradient-based meta-learning
framework, assumes that the contribution of each task or instance to the meta-
learner is equal. Hence, it fails to address the domain shift between base and novel
classes in few-shot learning. In this work, we propose a novel robust meta-learning
algorithm, NESTEDMAML, which learns to assign weights to training tasks or
instances. We consider weights as hyper-parameters and iteratively optimize
them using a small set of validation tasks set in a nested bi-level optimization
approach (in contrast to the standard bi-level optimization in MAML). We then
apply NESTEDMAML in the meta-training stage, which involves (1) several tasks
sampled from a distribution different from the meta-test task distribution, or (2)
some data samples with noisy labels. Extensive experiments on synthetic and
real-world datasets demonstrate that NESTEDMAML efficiently mitigates the
effects of "unwanted" tasks or instances, leading to significant improvement over
the state-of-the-art robust meta-learning methods.

1 Introduction

Meta-learning [26, 17, 25, 30, 7] can achieve quick adaption for UNSEEN tasks by identifying
common structures among various SEEN tasks, enabling faster learning of a new task with as little
data as possible. However, existing meta-learning techniques (e.g., MAML [7]) often fail to generalize
well when the test tasks belong to a different distribution from the training tasks distribution [4]. For
example, MAML assumes equal weights to all samples and tasks during meta-training. This task
homogeneity assumption of MAML often limits its ability to work in real-world applications.

We motivate the importance of robust meta-learning when meta-training tasks have OOD tasks using
the following examples. For example, consider the task of detecting vehicles at night under different
weather conditions. In this case, the meta-test tasks only consist of images of vehicles at night. Since
the procurement vehicles driving data at night, covering all critical scenarios is difficult, we need
a model that can quickly adapt to rare driving conditions. Hence, we consider meta-training tasks
to consist of images of the vehicles in multiple lighting scenarios. In this case, some of the tasks in
meta-training may degrade the meta-test performance. So, it is vital to have a meta-learning model
that is robust to OODs.

Another example is rare lung cancer detection from medical x-ray images. Since the procurement of
rare lung cancer images is both problematic and expensive, it is beneficial to use prior knowledge
∗Equal contribution.

5th Workshop on Meta-Learning at NeurIPS 2021, held virtually.

of cancer images. Specifically, the meta-test tasks contain images of rare lung cancer, whereas
meta-training tasks consist of general cancer x-ray images. In the examples given above, meta-test
tasks belong to specialized slices where the data availability is meager compared to meta-training
tasks. The meta-training task distribution is biased compared to that in the meta-test. To keep the
whole meta-training tasks for generalization and reduce the adverse impact of the biased distribution
in meta-training, we propose a novel robust few-shot learning algorithm in the presence of outliers
in meta-training time, which is similar to the corruptions in training time in the traditional robust
learning [27]. This is different from the existing robust few-shot learning papers [35, 15, 10] which
consider the corruption only happens in meta-test time.

T1

a) OOD Task Level b) Noisy Instance Level

T2

T3

Meta-Training Tasks

Support Set Support SetQuery Set Query Set
dog

dog noisy sample with
corrupted labelOOD task

jellyfishrock beauty

T1

T2

T3

Figure 1: We consider corrupted training set for few-shot
learning: a) OOD task level and b) noisy instance level. T2 in
a) is an OOD task that is sampled from a different distribution.
b) contains some noisy samples which are mislabeled. For
example, the actual label of the first sample in T1 should be
“Arctic fox” which is labeled as “dog”; The labels of two noisy
samples in T3 are flipped wrongly. The first one should be
“rock beauty”, and the other one should be “jellyfish”.

To simulate the corruptions in meta-
training, two levels of outliers (Figure 1)
are considered: a) Out-Of-Distribution
(OOD) task, where the meta-training has
tasks that are out of distribution to the meta-
test tasks (i.e., the meta-test dataset is a spe-
cialized slice of meta-train) and b) noisy
instance level, where some labels might be
noisy (due to human labeling errors or in-
herent ambiguity of certain classification
problems) for meta-training samples.

A natural way of dealing with corrupted
data in meta-training is by assigning
weights to either tasks or individual in-
stances. For example, assigning zero
weight to OOD or noisy tasks/instances
in the meta-train set improves the meta-
learning algorithm’s performance. Inspired
by [23], in this work, we propose an end-to-
end robust meta-learning framework called

NESTEDMAML that can achieve the reweighting schema along with learning good model initializa-
tion parameters in the few-shot learning scenario.

NESTEDMAML considers the weights as hyper-parameters and uses a small set of meta-validation
tasks representing the meta-test tasks to find the optimal hyper-parameters by minimizing the meta-
loss on the validation tasks in a nested bi-level manner. An overview of NESTEDMAML is given
in Figure 2. In practice, the size of the meta-validation tasks set required by NESTEDMAML is
tiny compared to the meta-training dataset. Hence, creating a small and clean meta-validation set is
neither expensive nor unrealistic, even for rare specialized use cases of a real-life scenario. A similar
strategy has been applied in [23, 28, 13]. However, they focus on traditional supervised learning,
and we generalize this to task- and instance-level in a meta-learning setting. Since NESTEDMAML
uses an online framework to perform a joint optimization of the weight hyper-parameters and model
parameters for the weighted MAML model, the computational time of ours is comparable to MAML.

Contributions of our work are summarized as follows: 1) We study the general form of the task
and instance weighted meta-learning, where we learn the optimal weights and model initialization
parameters by optimizing a nested bi-level objective function. To the best of our knowledge, ours is
the first work that studies the nested bi-level optimization problem, which comes naturally in such
a new setting. 2) We introduce a novel algorithmic framework NESTEDMAML that uses a small
set of validation tasks to enable robust meta-learning. We solve the nested bi-level optimization
problem efficiently through a series of practical approximations and provide a theoretical convergence
analysis for NESTEDMAML. In particular, we show that NESTEDMAML converges in O(1/ε2)
iterations under reasonable assumptions and contrast this with existing bounds of MAML. 3) We
provide comprehensive synthetic and real-world data experiments demonstrating that NESTEDMAML
achieves state-of-the-art results in two scenarios (OOD tasks and noisy instance labels).

2 Related Work

There are several lines of meta-learning algorithms: nearest neighbors-based methods [30], recurrent
network-based methods [22], and gradient-based methods. As the representative of gradient-based

2

Meta-Validation StageMeta-Training Stage

Outer Level Optimization
(meta parameters update)

Outer Level Optimization
（weights update）

Inner Level Optimization
(model parameters adaption)

Inner Level Optimization
（model parameters adaption）

update

update

the t-th iteration
Nested Bi-Level Optimization

: framework input : framework output

: input at iterate t : output at iterate t

: meta-parameter : weight parameter

Figure 2: Overview of our NESTEDMAML framework that solves a nested bi-level optimization problem. (a)
In the meta-training stage, model parameters φi of each task are adapted from meta-parameter θ through the
inner level optimization; (b) In the outer-level of the meta-training stage, we update the meta-parameters using
the weights W from the previous iterate; (c) Weights are further updated in the meta-validation stage using the
gradient of the meta-losses with respect to current W .

meta-learning algorithms, MAML [7] and its variants [8, 19, 24, 21, 2, 20, 36, 37] learn a shared
initialization of model parameters across a variety of tasks during the meta-training phase that can
adapt to new tasks using a few gradient steps. Cai et al. [3] proposes a simple weighted meta-learning
approach only for the basis regression problem that selects weights by minimizing a data-dependent
bound involving an empirical integral probability metric between the weighted sources and target
risks. However, this approach cannot be easily extended to complex scenarios with arbitrary loss
functions.

There are few meta-learning papers discussing learning with OOD tasks. Jeong and Kim [12]
propose an OOD detection framework in meta-learning through generating fake samples which
resemble in-distribution samples and combine them with real samples. However, they assume the
outlier instances exist in the query set, which is different from ours. The most relevant field is from
the perspective of task heterogeneity [31, 29, 34]. Vuorio et al. [31] proposed MMAML to deal
with multimodal task distribution with disjoint and far apart modes and generates a set of separate
meta-learned prior parameters to deal with each mode of a multimodal distribution. If we view that
all the OOD tasks belong to a single mode, this is relevant to our setting. To tackle the distribution
drift from meta-training to meta-test, B-TAML [14] learn to relocate the initial parameters to a new
start point based on the arriving unseen tasks in the meta-test. The setting considered in our work
and B-TAML work can be viewed as similar if we assume some of the datasets considered in the
multi-dataset classification setting of B-TAML as OOD datasets.

To tackle samples with corrupted labels, some researches [16, 11, 32] introduce noise-robust mod-
els. Ren et al. [23] and Shu et al. [28] propose a noisy data filtering strategy using an instance
reweighting strategy where the weights are learned automatically. However, the effect of noisy labels
on few-shot learning requires more attention. Although Yin et al. [35], Lu et al. [15], Goldblum
et al. [10] proposes robust meta-learning or few-shot learning, they assume a presence of outliers
containing in meta-test, which is different from ours.

3 Preliminaries

3.1 Notations

In the setting of meta-learning for few-shot learning, there is a set of meta-training tasks {Ti}Mi=1
sampled from the probability distribution ptr(T). Each few-shot learning task Ti has an associated
dataset Di containing two disjoint sets {DSi ,D

Q
i }, where the superscripts S and Q denote support

set and query set respectively. The query sets take the form DQi = {xki , yki }Kk=1 and similarly for DSi .
Meta-validation tasks are denoted in a similar manner: {T Vj = {VSj ,V

Q
j }}Nj=1 Let the loss function

3

be denoted as L(φ,D) with φ denoting model parameters and D denoting the dataset, and `(θ, d)
with model parameters θ on the data-point d. For example, L(φ,DQi) denotes the loss of the ith

training task query set DQi for given model parameters φ ∈ Φ ≡ Rd, where φ := Alg(θ,DS) and
θ ∈ Θ ≡ Rd is the meta-parameter. Alg(·) corresponds to a learning algorithm.

For notation convenience, we write Li(φ) := L(φ,DQi); LVj
(φ) := L(φ,VQj); L̂Vj

(φ) :=

L(φ,VSj). We denote scalars by lower case italic letters, vectors by lower case boldface letters,
and matrices by capital italic letters throughout the paper. A table of notations with corresponding
explanations is given in Appendix A.

3.2 Model-Agnostic Meta-Learning

The goal of MAML [7] is to obtain the optimal initial parameters that minimize the meta-training
objective:

outer−level︷ ︸︸ ︷
θ∗ML = argmin

θ∈Θ
F(θ) where, F(θ) = 1

M

∑M

i=1
L(

inner−level︷ ︸︸ ︷
Alg(θ,DSi),DQi)

(1)

This is a bi-level optimization problem, where we construe that Alg(θ,DSi) explicitly or implicitly
optimizes the inner-level task-specific adaptation. The outer-level corresponds to the meta-training
objective of generalizing well (i.e. low test error) on the query set of each task after adaptation.

Since Alg(θ,DSi) corresponds to single or multiple gradient descent steps. In case of a single
gradient descent, Alg(θ,DSi) can be perceived as follwing:

Alg(θ,DSi) = θ − α∇θL(θ,DSi) (2)

where α is a learning rate. As shown above, the meta-training objective assumes equal weights to
each task for generalization, which may not be ideal in the case of adversaries in the training tasks.

4 Methodology

4.1 Problem Formulation

This section discusses a more generalized meta-learning framework, where we weigh all the data
instances in the query set of a task. One of the significant purposes for considering weighted
meta-learning is to make it more robust to adversaries during training.

In meta-learning, the support and query datasets {DSi ,D
Q
i } for each task Ti are usually sampled from

an underlying datasetD. In instance-level weighting, we associate each data instance {DQik | k ∈ [K]}
in the query set of task Ti with a particular weightwik, whereK is the number of datapoints (instances)
in the query set DQi . The problem can be formulated as follows:

θ∗ML = argmin
θ∈Θ

Fw(θ) (3)

where Fw(θ) =
1

M

∑M

i=1

∑K

k=1
wik`(Alg(θ,DSi),DQik) =

1

M

∑M

i=1
wiLi(Alg(θ,DSi)) (4)

In the expression above,

Li(Alg(θ,DSi)) =
[
`(Alg(θ,DSi),DQi1), . . . , `(Alg(θ,D

S
i),DQik), . . . , `(Alg(θ,D

S
i),DQiK)

]T
and wi = [wi1, . . . , wiK] is the weight vector corresponding to the query set of task Ti. The instance-
level weighting is useful in the scenarios where our underlying dataset D is prone to noisy labeled
instances where an appropriate instance-level weighting can be used to distinguish the noisy samples
with corrupted labels in the task. An ideal weight assignment is assigning large weight values to
clean samples and small weight values to noisy samples in a task.

Likewise, we discuss a special case of the instance weighting scheme called task-level weighting,
where we assign equal weights to every instance in the query set of a single task. Task-level weighting
is applied in scenarios where every instance in a task’s query set is from an OOD task distribution or
an In-Distribution (ID) task. In this case, the optimal weight assignment assigns small weight values
to an OOD task and large weight values to an ID task.

4

4.2 NESTED BI-LEVEL Optimization

Since we do not know the optimal weight assignment for real-world datasets, we need to learn the
weights before training the instance-level weighting model using the bi-level optimization problem
defined in Eq.(3).

NESTEDMAML solves for optimal weight assignments by posing them as hyper-parameters using
the optimization problem defined in Eq.(5). As seen in the optimization equation, NESTEDMAML
uses a clean held-out meta-validation task set {T Vj = {VSj ,V

Q
j }}Nj=1 that is assumed to be relevant

to test task distribution for generalization performance. In practice, the meta-validation task set’s size
is small compared to that of the meta-training tasks set (N �M). Hence, NESTEDMAML tries to
select the weight hyper-parameters minimizing the model’s meta-validation loss after taking a few
gradient steps from the initial model parameters set using the instance-level weighting scheme.

The weight optimization objective for the instance-weighted MAML schema is as follows:

W ∗ = argmin
w

1

N

∑N

j=1
L(Alg(θ∗W ,VSj),VQj)

where θ∗W = argmin
θ∈Θ

1

M

∑M

i=1
w∗iL(Alg(θ,DSi),DQi)

(5)

and W = [w1, . . . ,wM]ᵀ. Since the optimization problem for θ∗W is a standard bi-level optimization
problem (i.e. MAML), the complete optimization problem (Eq.(5)) turns out to be a nested bi-level
optimization problem. It involves solving a standard bi-level optimization problem for every weight
configuration, and hence naively solving this nested bi-level optimization problem is intractable.
Hence, we adopt an online and one-step meta-gradient based approach to solve the optimization
problem more efficiently.

4.3 The NESTEDMAML Algorithm

To reduce the optimization problem’s (Eq.(5)) computation complexity, we solve the optimization
problem in an iterative manner where we optimize the model parameters and weight hyperparameter
by taking a single gradient step. This process is repeated until we reach convergence. Hence, we
approximate the solution to the model parameters optimization in Eq.(5) first by adapting to each
task using a single gradient step towards the inner task adaptation objective’s descent direction and
then taking a single gradient step towards the meta objective’s descent direction.

Assuming that at every iterate t of training, a mini-batch of training tasks {Ti | 1 ≤ i ≤ m} is
sampled, where m is the mini-batch size and m�M , the optimal model parameters update of the
above problem is as follows:

θ
(t)
W = θ(t) − η 1

m

∑m

i=1
w

(t)
i ∇θLi(Alg(θ,DSi))|θ(t) (6)

where η is meta objective’s step-size and α is the inner objective’s step-size. After this, the optimal
weight optimization problem will be as follows:

W ∗ = argmin
W

1

N

∑N

j=1
LVj (Alg(θ

(t)
W ,VSj)) (7)

Similarly, we optimize the weight hyperparameters by taking a single gradient step towards the
meta-validation loss descent. We want to evaluate the impact of training a model on the weighted
MAML objective against the meta-objective of sampled validation tasks {T Vj | 1 ≤ j ≤ n} where, n
is the mini-batch size and n� N . The weight update equation for the instance weighting scheme is
as follows:

W (t+1) =W (t) − γ

n

∑n

j=1
∇WLVj (Alg(θ

(t)
W ,VSj)) (8)

where γ is the weight update’s step size. The Lemma below provides the gradient of the meta-
validation loss 1

n

∑n
j=1∇WLVj

(Alg(θ(t)W ,VSj)) w.r.t. the weight vector wi, therefore giving the full
update equation.
Lemma 1. The weight update for an individual weight vector wi of the task Ti from time step t to
t+ 1 is as follows:

w
(t+1)
i = w

(t)
i +

ηγ

mn

∑n

j=1
∇φj
LVj

(
∇θLi(Alg(θ,DSi))ᵀ

− α∇2L̂Vj
|
θ
(t)
W

∇θLi(Alg(θ,DSi))ᵀ
)

(9)

5

where φj = Alg(θ,VSj).

The proof is in Appendix B. Once the optimal weights w(t+1) at t + 1 are achieved, we train the
model using the new weights:

θ(t+1) = θ(t) − η

m

∑m

i=1
w

(t+1)
i ∇θLi(Alg(θ(t),DSi)) (10)

We repeat the steps given in the equation (6) from t = 1 until convergence. See Algorithm 1 for the
full pseudo-code of NESTEDMAML.

First-Order Approximation (NESTEDMAML-FO). To show a faster way to solve the nested bi-
level weight optimization problem, we use the approximated weight update takes the following form:

w
(t+1)
i = w

(t)
i +

ηγ

mn

∑n

j=1
∇φjLVj∇θLi(Alg(θ,DSi))ᵀ (11)

This approximation is similar to the first-order approximation given in [7] where the second and
higher-order terms are neglected. Details are shown in Appendix E.3.

Algorithm 1 NESTEDMAML
Require: ptr, pval distribution over training, validation tasks
Require: m,n (batch sizes) and α, η, γ (learning rates)
1: Randomly initialize θ and W
2: while not done do
3: Sample mini-batch of tasks {DSi ,DQi }

m
i=1 ∼ ptr

4: Sample mini-batch of tasks {VSj ,VQj }
n
j=1 ∼ pval

5: for each task Ti, ∀i ∈ [1,m] do
6: Compute adapted parameters Alg(θ,DSi) with gradient

descent by Eq. (2)
7: Compute the gradient∇θLi(Alg(θ,DSi)) using DQi
8: Formulate the θ as a function of weights θ(t)

W by Eq. (6)
9: Update w

(t)
i by Eq.(9) using {VSj ,VQj }

n
j=1

10: end for
11: Update θ(t+1) by Eq. (10) using {DQi }

m
i=1

12: end while

Weights Sharing. The number
of weight hyper-parameters in the
instance-level weighting scheme cor-
relates to the number of data instances
in the query sets of the meta-training
tasks. We need to determine a signif-
icant amount of hyper-parameters if
the number of training tasks or data
instances is enormous, which in turn
affects the hyper-parameter optimiza-
tion algorithm, leading to instabili-
ties during training. Accordingly, we
seek to evaluate a smaller number
of hyper-parameters by sharing the
weights among instances. The task-
weighting scheme is an occurrence
of weight sharing where we share the
same weight among all the instances

in the query set. Apart from the task-level weighting scheme, we try to cluster tasks based on some
similarity criteria to share the same weight among all the data instances in a cluster’s query sets. We
likewise present a sensitive analysis in the experiment section illustrating how the number of clusters
in the training tasks or instances affects the NESTEDMAML algorithm’s performance.

Convergence of NESTEDMAML Algorithm. In this work, we show that NESTEDMAML
achieves a convergence rate of O(1/ε2) in the case of convex losses, as long as the inner learn-
ing rate is not too high. Detailed discussions are shown in Appendix C.

5 Experiments

In order to corroborate NESTEDMAML, we aim to study two questions: Q1: Can NESTEDMAML
be successfully applied to problems where task distribution in the training domain is partially
shifted from the task distribution in the testing domain? Q2: Instead of learning task weights, can
NESTEDMAML deal with problems where data instances with noisy labels are used during the
meta-training stage by learning weights in an instance-level scheme?

To answer these questions, we conduct the following experiments: (1) Mix OOD tasks with the
meta-training tasks to evaluate the task-level weighting scheme of NESTEDMAML and (2) corrupt the
labels of some training samples to evaluate the instance-level weighting scheme of NESTEDMAML.
We follow the classification experiments in [7] to do few-shot learning to evaluate both the task-
level and the instance-level weighting schemes. In addition, a synthetic regression experiment
is conducted for the task-level weighting scheme as well. Due to the space limitation, we list
synthetic regression experiments and instance-level weighting scheme for noisy labels experiments
in Appendix E. We performed all the experiments using PyTorch, and the code is available at
https://github.com/Hugo101/NestedMAML.

6

https://github.com/Hugo101/NestedMAML

Table 1: Few-shot classification accuracies for the OOD experiment on various evaluation setups.
mini-Imagenet is used as an in-distribution dataset (Din) for all experiments.

5-way 3-shot
Dout SVHN FashionMNIST

OOD Ratio 30% 60% 90% 30% 60% 90%
MAML-OOD-RM(Skyline) 57.73±0.76 55.29±0.78 54.38±0.12 56.78±0.75 55.29±0.78 53.43±0.51

MAML 55.41±0.75 53.93±0.76 44.10±0.68 54.65±0.77 54.52±0.76 41.52±0.74

MMAML 51.04±0.87 50.28±0.97 41.56±0.96 50.32±0.93 47.54±1.05 42.09±0.97

B-TAML 53.87±0.18 49.84±0.23 42.00±0.21 51.14±0.23 46.59±0.20 36.69±0.21

L2R 47.13±0.13 40.69±0.62 47.26±0.72 33.14±0.60 44.03±0.70 33.06±0.60

Transductive Fine-tuning 55.36±0.73 54.08±0.47 45.21±0.54 55.34±0.45 51.12±0.65 47.42±0.82

NESTEDMAML-FO(ours) 54.76±1.19 45.86±1.19 43.55±1.20 57.00±1.20 55.18±1.16 48.52±1.21

NESTEDMAML (ours) 57.12±0.81 55.66±0.78 52.16±0.76 56.66±0.78 56.04±0.79 49.71±0.78

5-way 5-shot
Dout SVHN FashionMNIST

OOD Ratio 30% 60% 90% 30% 60% 90%
MAML-OOD-RM(Skyline) 61.89±0.69 61.31±0.75 57.79±0.69 59.83±0.76 61.31±0.75 59.61±0.75

MAML 58.90±0.71 58.66±0.75 49.94±0.69 59.06±0.68 59.25±0.73 49.84±0.69

MMAML 52.45±1.00 52.17±1.05 46.51±1.09 51.46±0.91 54.13±0.93 50.27±1.00

B-TAML 58.34±0.20 56.07±0.21 49.84±0.20 55.19±0.20 52.10±0.19 40.02±0.19

L2R 47.11±0.51 48.01±0.70 51.53±0.71 46.03±0.30 49.15±0.68 55.03±0.46

Transductive Fine-tuning 59.16±0.76 57.84±0.58 53.64±0.42 56.54±0.87 56.23±0.70 54.28±0.32

NESTEDMAML-FO(ours) 57.96±0.94 53.66±0.95 47.58±0.96 60.59±0.99 60.55±0.95 49.23±0.98

NESTEDMAML (ours) 60.76±0.70 60.53±0.71 57.88±0.70 60.41±0.72 60.54±0.72 57.95±0.71

Datasets. We use mini-ImageNet [22], SVHN [18], FashionMNIST [33] datasets in our experiments.
For the task-level weighting scheme, mini-ImageNet is considered as the ID tasks source (Din). Both
the SVHN and the FashionMNIST datasets are used as OOD tasks source (Dout) for mini-ImageNet.
For instance-level weighting, mini-ImageNet is considered with corrupted labels. Additional details
about datasets are given in Appendix E.4.

5.1 Task-level Weighting for OOD Tasks

Settings. We implement image classification experiments in 5-way, 3-shot (5-shot) settings. And
we use a model with similar backbone architecture given in [30, 7] for all baselines. We consider
a total of 20,000 training tasks containing both ID and OOD tasks where the split of ID and OOD
tasks is determined by OOD ratio(0.3, 0.6, and 0.9 in this setting). At each iteration, ID tasks and
OOD tasks will be sampled according to the OOD ratio. We sample the ID tasks (meta-training,
meta-validation, and meta-test) from the mini-ImageNet dataset and sample OOD tasks from the
SVHN or the FashionMNIST dataset. We process all images to be of size 84×84×3. As mentioned
before, in the task-level weighting, all the data instances in a task share the same weight, reducing the
weight hyper-parameters count. To further reduce them, we use the K-means clustering method to
cluster the tasks and assign a single weight value to all the same cluster tasks.

Baselines. In addition to MAML, we have MAML-OOD-RM which basically removes the OOD
tasks during meta-training and hence is a skyline to our model. MMAML [31] leverages the strengths
of meta-learners by identifying the mode of the task distribution and modulating the meta-learned
prior in the parameter space. B-TAML [14] uses relocated initial parameters for new arriving tasks
to handle OOD tasks. We adapted L2R [23] to assign weights for different tasks and optimize
these weights through stochastic gradient descent. We consider Transductive Fine-tuning [5] as a
baseline where we finetune the parameters of the model that is obtained by adding a new classifier on
top of a pre-trained deep network, which is pre-trained on support and query sets of the meta-training
set, using the meta-test set’s support and unlabeled query set.

Results. Results in Table 1 show that NESTEDMAML significantly outperforms all baseline tech-
niques and achieves performance competitive to the skyline method (MAML-OOD-RM) in the
experiment of SVHN as OOD. For FashionMNIST OOD, NESTEDMAML still outperforms all
baseline techniques for 60% and 90% ratio. For 30% ratio, the first-order approximation, NESTED-
MAML-FO, has the best accuracy, and NESTEDMAML’s accuracy is also comparable. Besides, the
variance of NESTEDMAML is smaller than NESTEDMAML-FO, which means NESTEDMAML is

7

0 1 2 3 4 5 6 7
Weights

0

20

40

60

80

100

120

Nu
m

be
rs

ID-weight
OOD-weight

(a) 5-way 3-shot

0 1 2 3 4 5 6 7
Weights

0

20

40

60

80

100

Nu
m

be
rs

ID-weight
OOD-weight

(b) 5-way 5-shot

0 100 200 300
Iteration*100

0

1

2

3

4

5

W
ei

gh
t

ID-weight
OOD-weight

(c) 5-way 3-shot

0 100 200 300
Iteration*100

0

1

2

3

4

5

W
ei

gh
t

ID-weight
OOD-weight

(d) 5-way 5-shot

Figure 3: (a) and (b) show task weight distribution under 90% ratio (SVHN). (c) and (d) show weights
trend as the iterations progress under 30% ratio (SVHN).

more stable than NESTEDMAML-FO and NESTEDMAML still has the best performance overall.
From the perspective of training time, we observed that NESTEDMAML takes 1.7× and NEST-
EDMAML-FO takes 1.4× the time taken by MAML for training. Figure 3 (a)(b) show weight
distribution for OOD and ID tasks under 90% ratio when SVHN is viewed as the OOD dataset for
5-way 3-shot (5-shot) settings after the meta-training phase. Both settings show that OOD tasks have
much smaller weights than ID tasks: the weights belonging to OOD tasks approximately range from
0 to 1; however, the assigned weights for ID tasks are from 2 to 5, sometimes going up to 7.

To showcase the weights adaptation process during the training phase, we plot the weights trend as
the iterations progress under the 30% OOD ratio (SVHN) in Figure 3(c)(d). The Blue (Red) curve
denotes the mean weights for ID (OOD) tasks. The shade reflects the variance. Results show that
the mean weight assigned to ID tasks would increase as the iterations progress, whereas the weights
assigned to OOD tasks remain close to zero, which validates the effectiveness of the NESTEDMAML.

5.2 Sensitivity Analysis

50 200 1000 5000 10000
Cluster Count

50
51
52
53
54
55
56

Te
st

 A
cc

ur
ac

y
(%

)

56.54
57.95

56.85

54.51 54.23

(a) FashionMNIST (90%)

200 1000 2000
Size of Meta-Valid Tasks Set

50
51
52
53
54
55
56
57
58

Te
st

 A
cc

ur
ac

y
(%

)

54.91 55.1
57.12

60.58 61.07 60.76

3-shot
5-shot

(b) SVHN (30%)

Figure 4: (a) shows accuracies under 90% FashionMNIST
OOD level with different cluster values, (b) shows accuracies
under 30% SVHN OOD level with different sizes of meta-
validation tasks set.

We perform an ablation study to de-
termine how the number of hyper-
parameters and meta-validation sets’
size can affect the NESTEDMAML
algorithm’s performance. To that ex-
tent, we evaluate the NESTEDMAML
algorithm’s performance using a dif-
ferent number of clusters in a 5-way
5-shot 90% FashionMNIST OOD set-
ting. Figure (4a) shows test accura-
cies versus different numbers of clus-
ters. We observed the best perfor-
mance when the cluster count is 200.
It is evident that the test accuracy de-
creases with an increase in the number
of clusters that need to be determined.
Contrarily, using a tiny number of clusters will also decrease the performance due to decreased
clustering efficiency. We used 200 clusters for all our experiments. We also evaluate NESTEDMAML
algorithm’s performance using different sizes of the meta-validation set in 5-way 3-shot (5-shot) 30%
SVHN OOD setting. Figure (4b) shows that NESTEDMAML algorithm performs well even when
the meta-validation set size is tiny(i.e., 1% of meta-training set).

6 Conclusion

We propose a novel robust meta-learning algorithm for reweighting tasks/instances of corrupted
data in the meta-training phase. Our method is model-agnostic, can be directly applied to any deep
learning architecture in an end-to-end manner. To the best of our knowledge, NESTEDMAML
is the first algorithm to solve a nested bi-level optimization problem in an online manner with a
convergence result. Finally, empirical evaluation results in OOD task and noisy label scenarios show
that NESTEDMAML outperforms state-of-the-art meta-learning methods by efficiently mitigating
the effects of unwanted instances or tasks.

8

References

[1] Maria-Florina Balcan, Mikhail Khodak, and Ameet Talwalkar. Provable guarantees for gradient-
based meta-learning. In International Conference on Machine Learning, pages 424–433. PMLR,
2019.

[2] Harkirat Singh Behl, Atılım Güneş Baydin, and Philip HS Torr. Alpha maml: Adaptive
model-agnostic meta-learning. arXiv preprint arXiv:1905.07435, 2019.

[3] Diana Cai, Rishit Sheth, Lester Mackey, and Nicolo Fusi. Weighted meta-learning. arXiv
preprint arXiv:2003.09465, 2020.

[4] Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank Wang, and Jia-Bin Huang. A closer
look at few-shot classification. International Conference on Learning Representations (ICLR),
2019.

[5] Guneet S Dhillon, Pratik Chaudhari, Avinash Ravichandran, and Stefano Soatto. A baseline for
few-shot image classification. arXiv preprint arXiv:1909.02729, 2019.

[6] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. On the convergence theory of gradient-
based model-agnostic meta-learning algorithms. In International Conference on Artificial
Intelligence and Statistics, pages 1082–1092. PMLR, 2020.

[7] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adap-
tation of deep networks. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 1126–1135. JMLR. org, 2017.

[8] Chelsea Finn, Kelvin Xu, and Sergey Levine. Probabilistic model-agnostic meta-learning. In
Advances in Neural Information Processing Systems, pages 9516–9527, 2018.

[9] Chelsea Finn, Aravind Rajeswaran, Sham Kakade, and Sergey Levine. Online meta-learning.
In International Conference on Machine Learning, pages 1920–1930, 2019.

[10] Micah Goldblum, Liam Fowl, and Tom Goldstein. Adversarially robust few-shot learning: A
meta-learning approach. Advances in Neural Information Processing Systems, 33, 2020.

[11] Ajil Jalal, Andrew Ilyas, Constantinos Daskalakis, and Alexandros G Dimakis. The robust man-
ifold defense: Adversarial training using generative models. arXiv preprint arXiv:1712.09196,
2017.

[12] Taewon Jeong and Heeyoung Kim. Ood-maml: Meta-learning for few-shot out-of-distribution
detection and classification. Advances in Neural Information Processing Systems, 33, 2020.

[13] Krishnateja Killamsetty, Durga Sivasubramanian, Ganesh Ramakrishnan, and Rishabh Iyer.
Glister: Generalization based data subset selection for efficient and robust learning. arXiv
preprint arXiv:2012.10630, 2020.

[14] Hae Beom Lee, Hayeon Lee, Donghyun Na, Saehoon Kim, Minseop Park, Eunho Yang, and
Sung Ju Hwang. Learning to balance: Bayesian meta-learning for imbalanced and out-of-
distribution tasks. In ICLR, 2020.

[15] Jiang Lu, Sheng Jin, Jian Liang, and Changshui Zhang. Robust few-shot learning for user-
provided data. IEEE Transactions on Neural Networks and Learning Systems, 2020.

[16] Yan Luo, Xavier Boix, Gemma Roig, Tomaso Poggio, and Qi Zhao. Foveation-based mecha-
nisms alleviate adversarial examples. arXiv preprint arXiv:1511.06292, 2015.

[17] Devang K. Naik and R. Mammone. Meta-neural networks that learn by learning. [Proceedings
1992] IJCNN International Joint Conference on Neural Networks, 1:437–442 vol.1, 1992.

[18] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng.
Reading digits in natural images with unsupervised feature learning. NIPS Workshop on Deep
Learning and Unsupervised Feature Learning, 2011.

9

[19] Alex Nichol, Joshua Achiam, and John Schulman. On first-order meta-learning algorithms.
arXiv preprint arXiv:1803.02999, 2018.

[20] Aniruddh Raghu, Maithra Raghu, Samy Bengio, and Oriol Vinyals. Rapid learning or feature
reuse? towards understanding the effectiveness of maml. arXiv preprint arXiv:1909.09157,
2019.

[21] Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and Sergey Levine. Meta-learning with
implicit gradients. In Advances in Neural Information Processing Systems, pages 113–124,
2019.

[22] Sachin Ravi and Hugo Larochelle. Optimization as a model for few-shot learning. ICLR, 2016.

[23] Mengye Ren, Wenyuan Zeng, Bin Yang, and Raquel Urtasun. Learning to reweight examples
for robust deep learning. In International Conference on Machine Learning, pages 4334–4343.
PMLR, 2018.

[24] Andrei A Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu, Simon
Osindero, and Raia Hadsell. Meta-learning with latent embedding optimization. arXiv preprint
arXiv:1807.05960, 2018.

[25] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap.
Meta-learning with memory-augmented neural networks. In International conference on
machine learning, pages 1842–1850, 2016.

[26] Jurgen Schmidhuber. Evolutionary principles in self-referential learning. on learning now to
learn: The meta-meta-meta...-hook. Diploma thesis, Technische Universitat Munchen, Germany,
14 May 1987. URL http://www.idsia.ch/~juergen/diploma.html.

[27] Steffen Schneider, Evgenia Rusak, Luisa Eck, Oliver Bringmann, Wieland Brendel, and Matthias
Bethge. Improving robustness against common corruptions by covariate shift adaptation.
Advances in Neural Information Processing Systems, 33, 2020.

[28] Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou, Zongben Xu, and Deyu Meng. Meta-
weight-net: Learning an explicit mapping for sample weighting. In Advances in Neural
Information Processing Systems, pages 1919–1930, 2019.

[29] Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Utku Evci, Kelvin Xu, Ross
Goroshin, Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, et al. Meta-dataset: A
dataset of datasets for learning to learn from few examples. ICLR, 2020.

[30] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks
for one shot learning. In Advances in neural information processing systems, pages 3630–3638,
2016.

[31] Risto Vuorio, Shao-Hua Sun, Hexiang Hu, and Joseph J Lim. Multimodal model-agnostic meta-
learning via task-aware modulation. In Advances in Neural Information Processing Systems,
pages 1–12, 2019.

[32] Huaxia Wang and Chun-Nam Yu. A direct approach to robust deep learning using adversarial
networks. arXiv preprint arXiv:1905.09591, 2019.

[33] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

[34] Huaxiu Yao, Xian Wu, Zhiqiang Tao, Yaliang Li, Bolin Ding, Ruirui Li, and Zhenhui Li.
Automated relational meta-learning. ICLR, 2020.

[35] Chengxiang Yin, Jian Tang, Zhiyuan Xu, and Yanzhi Wang. Adversarial meta-learning. arXiv
preprint arXiv:1806.03316, 2018.

[36] Chen Zhao, Changbin Li, Jincheng Li, and Feng Chen. Fair meta-learning for few-shot
classification. In 2020 IEEE International Conference on Knowledge Graph (ICKG), pages
275–282. IEEE, 2020.

10

http://www.idsia.ch/~juergen/diploma.html

[37] Allan Zhou, Tom Knowles, and Chelsea Finn. Meta-learning symmetries by reparameterization.
In International Conference on Learning Representations, 2021.

11

Supplementary Material
A Notations

For clear interpretation, we list the notations used in this paper and their corresponding explanation,
as shown in Table 2.

Notation Description

ptr(T) probability distribution of meta-training tasks
pval(T) probability distribution of meta-validation tasks
M,N the number of meta-training, meta-validation tasks, respectively
m,n batch size for M,N , respectively
Ti i-th meta-training task
T Vj j-th meta-validation task
{DSi , DQi } support set and query set of meta-training task Ti
{VSj , VQj } support set and query set of meta-validation task T Vj
{xki , yki }Kk=1 K samples in the query set DQi of meta-training task Ti
θ initial parameters of base learner
φi task-specific parameters for task Ti
θ∗W optimal initial parameters of base learner as a function of W
W weight matrix for all query set samples of all meta-training tasks
wi weight vector for query set samples of task Ti
wik weight for query sample k for task Ti
W ∗ optimal weights matrix
L(φ,D) loss function on dataset D characterized by model parameter φ
`(θ, d) loss function on the query data point d characterized by model parameter θ
Alg(θ,D) one or multiple steps of gradient descent initialized at θ on dataset D
α, β, γ step sizes

Table 2: Important Notations and Descriptions

• W = [w1,w2, . . . ,wM]ᵀ is a matrix: M ×K
• wi = [wi1, wi2, . . . , wik, . . . , wiK] is a vector: 1×K, weights for task Ti

In addtion to the notations above, for notation convenience, we usually use the following notation
simplicity:

Li(φ) := L(φ,DQi), L̂i(φ) := L(φ,D
S
i)

LVj
(φ) := L(φ,VQj), L̂Vj

(φ) := L(φ,VSj)

B Weight Update of Instance-level and Task-level Weighting Scheme

B.1 Proof of Lemma 1

In this section, We restate the Lemma: 1 and present the detailed proof of Lemma: 1 below:
Lemma. The weight update for an individual weight vector wi of the task Ti from time step t to t+1
is as follows:

w
(t+1)
i = w

(t)
i +

ηγ

mn

n∑
j=1

∇φjLVj

(
∇θLi(Alg(θ,DSi))ᵀ − α∇2L̂Vj |θ(t)

W

∇θLi(Alg(θ,DSi))ᵀ
)

where φj = Alg(θ,VSj).

12

Proof. Our goal is to find the optimal weights by using the set of meta-validation tasks. The weight
optimization objective function is as follows:

W ∗ = argmin
w

1

N

N∑
j=1

L(Alg(θ∗W ,VSj),V
Q
j)

where θ∗W = argmin
θ∈Θ

1

M

M∑
i=1

w∗iL(Alg(θ,DSi),D
Q
i)

Remark:

wi = [wi1, . . . , wiK], Li(Alg(θ,DSi),D
Q
i) =


`(Alg(θ,DSi),D

Q
i1)

. . .

`(Alg(θ,DSi),D
Q
ik)

. . .

`(Alg(θ,DSi),D
Q
iK)


Let

F (W,θ) =
1

M

M∑
i=1

wiL(Alg(θ,DSi),D
Q
i) =

1

M

M∑
i=1

wiLi(Alg(θ,DSi)) (12)

G(W,θ) =
1

N

N∑
j=1

L(Alg(θ∗W ,VSj),V
Q
j) =

1

N

N∑
j=1

LVj
(Alg(θ∗W ,VSj)) (13)

We only consider one-step gradient update:

Ŵ =W − γ ∂G(W,θ)
∂W

=W − γ 1

N

N∑
j=1

∇WLVj
(Alg(θ∗W ,VSj)) (14)

θ̂W = θ − η ∂F (W,θ)
∂θ

= θ − η 1

M

M∑
i=1

wi∇θLi(Alg(θ,DSi)) (15)

∇wi
LVj

(Alg(θ∗w,VSj)) =
∂LVj

∂Alg(θ∗W ,VSj)
∂Alg(θ∗W ,VSj)

∂θW

dθW
dwi

= ∇φjLVj (φj)
∂(θ∗W − α∇L̂Vj

(θW))

∂θW
(−η 1

M
)∇θLi(Alg(θ,DSi))ᵀ

= ∇φj
LVj

(φj) ·
(
I − α∇2L̂Vj

)
(−η 1

M
)∇θLi(Alg(θ,DSi))ᵀ

= (− η

M
)∇φj

LVj
(φj) ·

(
I − α∇2L̂Vj

)
∇θLi(Alg(θ,DSi))ᵀ

= − η

M
∇φj
LVj

(φj) ·
(
∇θLi(Alg(θ,DSi))ᵀ − α∇2L̂Vj

· ∇θLi(Alg(θ,DSi))ᵀ
)

(16)

Thus the weight update for task Ti can be:

w
(t+1)
i = w

(t)
i − γ

1

n

n∑
j=1

∇wi
LVj

(Alg(θ∗W ,VSj))

= w
(t)
i +

ηγ

mn

n∑
j=1

∇φj
LVj

(φj)
(
∇θLi(Alg(θ,DSi))ᵀ − α∇2L̂Vj

|
θ
(t)
W

∇θLi(Alg(θ,DSi))ᵀ
)

(17)

≈ w
(t)
i +

ηγ

mn

n∑
j=1

∇φjLVj (φj) · ∇θLi(Alg(θ,DSi))ᵀ (18)

Eq. (17) is the exact update, namely, lemma 1. Eq. (18) is the approximation update.

13

B.2 Weight Update in Task-level Weighting Scheme

As mentioned in the paper, task weighting scheme is a special case of instance weighting scheme. In
instance weighting scheme, each task Ti has a vector weight wi. In task weighting scheme, all query
samples have the same weight. In other words, each task Ti has a scalar weight wi. And the loss of
training tasks used for the update of θ would be the average loss for all query samples in task Ti:

Li(Alg(θ,DSi)) =
1

K

K∑
k=1

`(Alg((θ,DSi),D
Q
ik)

The weight update follows the same strategy in Lemma 1.

C Convergence of NESTEDMAML Algorithm

Table 3: Convergence Rates of MAML and NESTEDMAML
Algorithm Strongly Convex Loss Non-Convex Loss

MAML O(1/ε) O(1/ε2)
NESTEDMAML O(1/ε2) Open

Although the MAML algorithm’s convergence rate is studied [1, 6, 9], those results do not directly hold
in our case since we have a nested bi-level optimization objective instead of standard bi-level objective
of the MAML. Recall that in the case of strongly convex losses, MAML admits a convergence rate
of O(1/ε) [1, 9]. In contrast, for the non-convex case, [6] show a weaker convergence rate of
O(1/ε2) to a first order stationary point. In this work, we show that NESTEDMAML achieves a
convergence rate of O(1/ε2) in the case of convex losses, as long as the inner learning rate is not too
high. Furthermore, we show that NESTEDMAML converges to a critical point of meta-validation
loss and not the meta-training loss since we are optimizing the meta-validation loss in the nested
bi-level setting. Table 3 shows the convergence rates of MAML and NESTEDMAML algorithms for
strongly convex and non-convex loss functions.
Theorem 1. Suppose the loss function L(·) is Lipschitz smooth with constant L, µ-strongly convex,
and is a twice differential function with a ρ-bounded gradient and B-Lipschitz Hessian. Denote σ as
the variance of drawing uniformly mini-batch sample at random. Assume that the learning rate ηt
satisfies ηt = min (1, k/T) for some k > 0 such that k/T < 1 and γt, 1 ≤ t ≤ T , is a monotone
descent sequence. Let γt = min (1

L ,
C

σ
√
T
) for some C > 0 such that σ

√
T

C ≥ L and
∑∞
t=0 γt ≤ ∞,∑∞

t=0 γ
2
t ≤ ∞. Then, NESTEDMAML satisfies: E

∥∥∥ 1
N

∑N
j=1∇WL(Alg(θ

(t)
W ,VSj),VQj)

∥∥∥2] ≤ ε in

O(1
ε2) steps. More specifically,

min
0≤t≤T

E

[∥∥∥∥ 1

N

∑N

j=1
∇WL(Alg(θ(t)W ,VSj),V

Q
j)

∥∥∥∥2
]
≤ O(1√

T
)

Proof is given in Appendix D. The difference in convergence rates between MAML and NESTED-
MAML is due to the additional complexity involved in solving a nested bi-level optimization problem.
The convergence analysis of NESTEDMAML for non-convex functions is challenging and currently
unknown. Even though most deep learning problems have a non-convex landscape, the algorithms
initially developed for convex cases have shown promising empirical results in non-convex cases.
Under this assumption, we provide an implementation that can be generalized to any deep learning
architecture in Algorithm 1.

D Detailed Convergence Analysis

In this section, we present the detailed proof of convergence. Before that, we first give two assump-
tions and several lemmas which could help for the proof of convergence.

14

The meta validation loss is as follows:

LmetaV (θ
(t)
W) =

1

n

n∑
j=1

LVj (Alg(θ
(t)
W ,VSj))

Assuming that the whole weight matrix W is flattened to a column matrix, the weighted meta-training
loss can be written as follows:

LmetaW (θ,W) =W ᵀLmetaT (θ)

where LmetaT (θ) =
1

m
[L1(Alg(θ,DS1)) . . .Lm(Alg(θ,DSm))]ᵀ

The weight update equation at time step t can be written as follows:

W (t+1) =W (t) − γ∇WLmetaV (θ
(t)
W)

where θ
(t)
W = θ(t) − η∇θLmetaW (θ(t),W (t))

(19)

Assumption 1. (C2-smoothness) Suppose that L(·):

• is twice differentiable

• is ρ-Lipschitz in function value, i.e., ‖∇L(θ)‖ ≤ ρ

• is L-smooth, or has L-Lipschitz gradients, i.e., ‖∇L(θ)−∇L(φ)‖ ≤ L ‖θ − φ‖ ∀θ,φ

• has B-Lipschitz hessian, i.e.,
∥∥∇2L(θ)−∇2L(φ)

∥∥ ≤ B ‖θ − φ‖ ∀θ,φ
Assumption 2. (Strong convexity) Suppose that L(·) is convex. Further, µ-strongly convex. i.e.,
‖∇L(θ)−∇L(φ)‖ ≥ µ ‖θ − φ‖ ∀θ,φ

Lemma 2. [9] Suppose L and L̂ : Rd −→ R satisfy assumptions 1 and 2. Let L̃ be the function
evaluated after a one step gradient update procedure, i.e.

L̃(θ) := L(θ − α∇L̂(θ))

If the step size is selected as α ≤ min { 1
2L ,

µ
8ρB}, then L̃ is convex. Furthermore, it is also L̃ = 9L/8

smooth and µ̃ = µ/8 strongly convex.

Lemma 3. Suppose the loss function L is Lipschitz smooth with constant L, then the meta-validation
loss LmetaV is Lipschitz smooth with constant 9L

8 .

Proof. Since we know that,

LmetaV (θ) =
1

n

n∑
j=1

LVj
(Alg(θ,VSj))

=
1

n

n∑
j=1

L(Alg(θ,VSj),V
Q
j) (20)

From Lemma: 2, we can say that ∀j ∈ [1, n], L(Alg(θ,VSj),V
Q
j) is also lipschitz smooth with a

constant of 9L
8 .

15

∥∥∇LmetaV (θ)−∇LmetaV (φ)
∥∥ =

∥∥∥∥∥∥ 1n
n∑
j=1

(
∇L(Alg(θ,VSj),V

Q
j)−∇L(Alg(φ,VSj),V

Q
j)

)∥∥∥∥∥∥
≤ 1

n

n∑
j=1

∥∥∥∥(∇L(Alg(θ,VSj),VQj)−∇L(Alg(φ,VSj),V
Q
j)

)∥∥∥∥
≤ 1

n

n∑
j=1

9L

8
‖θ − φ‖

=
9L

8
‖θ − φ‖ (21)

Therefore the meta-validation loss function LmetaV is also lipschitz smooth with constant 9L
8 .

Lemma 4. Suppose the loss function L satisfies assumption 1 and 2, then the query set loss
LVj (Alg(θ,VSj)) and Li(Alg(θ,DSi)) are ρ(1 + αL)-gradient bounded functions.

Proof. Since we know that,

Li(Alg(θ,DSi)) = Li(θ − αL(θ,DSi)))
= L(θ − αL(θ,DSi),D

Q
i) (22)

Suppose:

φ = θ − α∇L(θ,DSi)

∥∥∇Li(Alg(θ,DSi))∥∥ =

∥∥∥∥∥∂φ∂θ ∂L(φ,DQi)∂φ

∥∥∥∥∥
=

∥∥∥(1− α∇2L(θ,DSi))∇L(φ,D
Q
i)
∥∥∥

≤
∥∥(1− α∇2L(θ,DSi))

∥∥∥∥∥∇L(φ,DQi)∥∥∥
≤ (1 +

∥∥(α∇2L(θ,DSi))
∥∥)∥∥∥∇L(φ,DQi)∥∥∥

≤ ρ(1 + αL) (23)

Similarly for LVj
(Alg(θ,VSj)).

Lemma 5. Suppose the loss function L is ρ-gradient bounded, then the meta-validation loss LmetaV
, the meta-training loss LmetaT and the weighted meta-training loss LmetaW are ρ(1 + αL)-gradient
bounded functions.

Proof. Since we know that,

LmetaV (θ) =
1

n

n∑
j=1

LVj
(Alg(θ,VSj))

=
1

n

n∑
j=1

L(Alg(θ,VSj),V
Q
j)

16

∥∥∇LmetaV (θ)
∥∥ =

∥∥∥∥∥∥ 1n
n∑
j=1

∇L(Alg(θ,VSj),V
Q
j)

∥∥∥∥∥∥
≤ 1

n

n∑
j=1

∥∥∥∇L(Alg(θ,VSj),VQj)
∥∥∥

≤ 1

n

n∑
j=1

ρ(1 + αL) (From Lemma: 4)

= ρ(1 + αL) (24)

Similarly,

LmetaT (θ) =
1

m
[L1(Alg(θ,DS1)), . . . ,Lm(Alg(θ,DSm))]ᵀ

=
1

m
[L(Alg(θ,DS1),DS1), . . . ,Lm(Alg(θ,DSm),DQm)]ᵀ (25)

∥∥∇LmetaT (θ)
∥∥ =

∥∥∥∥ 1

m
∇[L(Alg(θ,DS1),DS1), . . . ,Lm(Alg(θ,DSm),DQm)]ᵀ

∥∥∥∥
≤ 1

m

m∑
j=1

∥∥∥∇L(Alg(θ,DSj),DQj)∥∥∥
≤ 1

m

m∑
j=1

ρ(1 + αL) (From Lemma: 4)

= ρ(1 + αL) (26)

The weighted meta-training loss is as follows:

LmetaW (θ) = [w1 . . .wm] · 1
m
[L1(Alg(θ,DS1)) . . .Lm(Alg(θ,DSm))]ᵀ

=
1

m

m∑
i=1

wT
i Li(Alg(θ,DSi)) (27)

Since, wi weight vector is normalized at every iteration such that ‖wi‖ = 1, we have :∥∥∇LmetaW (θ)
∥∥ =

∥∥∥∥∥ 1

m

m∑
i=1

wT
i Li(Alg(θ,DSi))

∥∥∥∥∥
≤ 1

m

m∑
j=1

∥∥wT
i ∇Li(Alg(θ,DSj))

∥∥
≤ 1

m

m∑
j=1

‖wi‖
∥∥∇Li(Alg(θ,DSj))∥∥

≤ 1

m

m∑
j=1

∥∥∇Li(Alg(θ,DSj))∥∥
≤ 1

m

m∑
j=1

ρ(1 + αL) (From Lemma: 4)

= ρ(1 + αL) (28)

Therefore the meta-validation loss function LmetaV , meta-training loss function LmetaT and weighted
meta-training loss LmetaW are ρ(1 + αL)-gradient bounded functions.

17

Lemma 6. Suppose the meta validation loss function LmetaV is Lipschitz smooth with constant L, and
the meta training loss function LmetaT have ρ-bounded gradients with respect to training/validation
data. Then the gradient of meta validation loss with respect to W is Lipschitz continuous.

Proof. For meta approximation method, then the gradient of meta-validation loss with respect to W
can be written as follows:

∇WLmetaV (θW) =
∂LmetaV (θW)

∂θW
· ∂θW
∂W

=
∂LmetaV (θW)

∂θW
·
∂
(
θ − η ∂L

meta
W (θ)
∂θ

)
∂W

= −η ∂L
meta
V (θW)

∂θW
· ∂L

meta
T (θ)

∂θ
(29)

Taking gradient with respect to W on both sides of Eq (29), we have:

‖∇2
WLmetaV (θW)‖ = η

∥∥∥ ∂

∂W

(∂LmetaV (θW)

∂θW
· ∂L

meta
T (θ)

∂θ

)∥∥∥
= η

∥∥∥∂θW
∂W

(∂2LmetaV (θW)

∂θW∂θW

)
· ∂L

meta
T (θ)

∂θ

∥∥∥
= η

∥∥∥− η ∂LmetaT (θ)

∂θ

(∂2LmetaV (θW)

∂θW∂θW

)
· ∂L

meta
T (θ)

∂θ

∥∥∥
= η2

∥∥∥∂2LmetaV (θW)

∂θW∂θW

∂LmetaT (θ)

∂θ
· ∂L

meta
T (θ)

∂θ

∥∥∥
≤ 9Lη2ρ2(1 + αL)

2

8
(From Lemma: 3 and Lemma: 5)

(30)

Since ‖∂
2Lmeta

V (θW)

∂θW ∂θW
‖≤ 9L

8 , ‖
Lmeta

T (θ)
∂θ

‖≤ ρ(1 + αL). Define L̃ = 9η2ρ2(1+αL)2L
8 , based on La-

grange mean value theorem, we have,

‖∇WLmetaV (θWi
)−∇WLmetaV (θWj

)‖≤ L̃‖Wi −Wj‖, for all Wi,Wj (31)

where ∇WLmetaV (θ
(t)
Wi

) = 1
n

∑n
j=1∇WLVj

(Alg(θ(t) − η∇θLmetaW (θ(t),Wi),VSj))

We restate the Theorem: 1 and present the detailed proof of Theorem: 1 below:
Theorem. Suppose the loss function L is Lipschitz smooth with constant L and is a differential func-
tion with a ρ-bounded gradient, twice differential and B-lipschitz hessian. Assume that the learning
rate ηt satisfies ηt = min (1, k/T) for some k > 0, such that k/T < 1 and γt, 1 ≤ t ≤ T is a mono-
tone descent sequence, γt = min (1

L ,
C

σ
√
T
) for some C > 0, such that σ

√
T

C ≥ L and
∑∞
t=0 γt ≤ ∞,∑∞

t=0 γ
2
t ≤ ∞. Then NESTEDMAML satisfies: E

[∥∥∥ 1
N

∑N
j=1∇WL(Alg(θ

(t)
W ,VSj),V

Q
j)
∥∥∥2] ≤ ε

in O(1/ε2) steps. More specifically,

min
0≤t≤T

E

[∥∥∥∥∥∥ 1

N

N∑
j=1

∇WL(Alg(θ(t)W ,VSj),V
Q
j)

∥∥∥∥∥∥
2]
≤ O(1√

T
) (32)

where C is some constant independent of the convergence process, σ is the variance of drawing
uniformly mini-batch sample at random.

Proof. We rewrite the weight update equation at time step t (Eq. 19) as follows:

W (t+1) =W (t) − γ∇WLmetaV (θ
(t)
W)

where θ
(t)
W = θ(t) − η∇θLmetaW (θ(t),W (t))

18

Based on the update equations we can write,

LmetaV (θ(t+1))− LmetaV (θ(t)) = LmetaV (θ(t) − η∇θLmetaW (θ(t),W (t)))− LmetaV (θ(t−1) − η∇θLmetaW (θ(t−1),W (t−1)))

=

(
LmetaV (θ(t) − η∇θLmetaW (θ(t),W (t)))− LmetaV (θ(t−1) − η∇θLmetaW (θ(t),W (t)))︸ ︷︷ ︸

(a)

)
+

(
LmetaV (θ(t−1) − η∇θLmetaW (θ(t),W (t)))− LmetaV (θ(t−1) − η∇θLmetaW (θ(t−1),W (t−1)))︸ ︷︷ ︸

(b)

)

From lemma 3, the functions LmetaV (θ) and LmetaW (θ) are lipschitz smooth with lipschitz constant L
provided the loss function L(θ) is lipschitz smooth with lipschitz constant L.

For term(a) using the lipschitz smoothness property, we have:

LmetaV (θ(t) − η∇θLmetaW (θ(t),W (t)))− LmetaV (θ(t−1) − η∇θLmetaW (θ(t),W (t)))

≤ (θ(t) − θ(t−1))T (∇θLmetaV (θ(t−1) − η∇θLmetaW (θ(t),W (t)))) +
L

2

∥∥∥θ(t) − θ(t−1)∥∥∥2 (33)

Since, θ(t)−θ(t−1) = −η∇θLW (θ(t−1),W (t)),∇θLmetaW (θ,W) ≤ ρ(1+αL) and∇θLmetaV (θ) ≤
ρ(1 + αL). We have:

LmetaV (θ(t) − η∇θLmetaW (θ(t),W (t)))− LmetaV (θ(t−1) − η∇θLmetaW (θ(t),W (t))) (34)

≤ (−η∇θLW (θ(t−1),W t))T (∇θLmetaV (θ(t−1) − η∇θLmetaW (θ(t),W (t)))) +
L

2

∥∥∥−η∇θLW (θ(t−1),W (t))
∥∥∥2

(35)

≤ ηρ2(1 + αL)
2
(1 +

ηL

2
) (36)

For term(b) using the lipschitz smoothness property, we have:

LmetaV (θ(t−1) − η∇θLmetaW (θ(t),W (t)))− LmetaV (θ(t−1) − η∇θLmetaW (θ(t−1),W (t−1)))

(37)

= LmetaV (θ
(t)
W)− LmetaV (θ

(t−1)
W) (38)

≤ (W (t) −W (t−1))
T
∇WLmetaV (θ

(t−1)
W) +

L̃

2

∥∥∥W (t) −W (t−1)
∥∥∥2 (From Lemma: 6)

= −γ∇WLmetaV (θ
(t−1)
W)

T
∇WLmetaV (θ

(t−1)
W) +

L̃

2

∥∥∥−γ∇WLmetaV (θ
(t−1)
W)

∥∥∥2 (39)

= (
L̃γ2

2
− γ)

∥∥∥∇WLmetaV (θ
(t−1)
W)

∥∥∥2 (40)

Combining both the inequalities for form(a) and form(b), we have:

LmetaV (θt+1)− LmetaV (θt) ≤ ηρ2(1 + αL)
2
(1 +

ηL

2
) + (

L̃γ2

2
− γ)

∥∥∥∇WLmetaV (θ
(t−1)
W)

∥∥∥2 (41)

Summing up the above inequality from t = 1 to t = T − 1 and rearranging the terms, we can obtain

T−1∑
t=1

(γ − L̃γ2

2
)‖∇WLmetaV (θ

(t)
W)‖22 ≤ LmetaV (θ(1))− LmetaV (θ(T)) + ηρ2(1 + αL)

2
(
ηL(T − 1)

2
+ T − 1)

≤ LmetaV (θ(1)) + ηρ2(1 + αL)
2
(
ηLT

2
+ T) (42)

19

Furthermore, we can deduce that,

min
t

E[‖∇WLmetaV (θ
(t)
W)‖22] ≤

∑T−1
t=1 (γ − L̃γ2

2)‖∇WLmetaV (θ
(t)
W)‖22∑T

t=1(γ −
L̃
2 γ

2)

=

∑T−1
t=1 (γ − L̃

2 γ
2)‖∇WLmetaV (θ

(t)
W)‖22∑T−1

t=1 (γ − L̃
2 γ

2)

≤

[
2LmetaV (θ

(1)
W) + ηρ2(1 + αL)

2
(ηLT + 2T)

]
∑T
t=1(2γ − L̃γ2)

≤
2LmetaV (θ

(1)
W) + ηρ2(1 + αL)

2
(ηLT + 2T)∑T

t=1 γ

≤
2LmetaV (θ

(1)
W)

γT
+
ηρ2(1 + αL)

2
(L+ 2)

γ
(η = min{1, k

T
} and η ≤ 1)

=
2LmetaV (θ

(1)
W)

T
max{L,

√
T

C
}+min{1, k

T
}max{L,

√
T

C
}ρ2(1 + αL)

2
(L+ 2)

=
2LmetaV (θ

(1)
W)

C
√
T

+
kρ2(1 + αL)

2
(L+ 2)

C
√
T

= O(1√
T
) (43)

The third inequality holds for
∑T
t=1 γ ≤

∑T
t=1(2γ − L̃γ2) which made us choose a functional form

of γ to be γt = min (1
L ,

C
σ
√
T
) .

We know that,

LmetaV (θ
(t)
W) =

1

n

n∑
j=1

LVj
(Alg(θ(t)W ,VSj)) (44)

=
1

n

n∑
j=1

L(Alg(θ(t)W ,VSj),V
Q
j) (45)

Therefore, we can conclude that our algorithm achieves
min

0≤t≤T
E[‖ 1n

∑n
j=1∇WL(Alg(θ

(t)
W ,VSj),V

Q
j)‖22] ≤ O(1√

T
) in T steps.

E Additional Experiments

E.1 Synthetic Regression

Regression Setting. To show our proposed model’s robustness in the OOD task scenario, we start
with a simple regression problem with outliers in the synthetic dataset. Specifically, during the
meta-training time, each task involves K samples as input and a sine wave as output, where the
amplitude and phase of each sine wave are varied between tasks. More concretely, the amplitude
varies within [0.1, 5.0] and the phase varies within [0, π]. Datapoints from sine waves are sampled
uniformly from [−5.0, 5.0]. In addition to in-distribution data (i.e. data points sampled from sine
waves), outliers or data points out of sine distributions (i.e. OOD) are added into meta-training
stage. To generate OOD data, we set outputs that are linear to the corresponding inputs. It is notable
that, during meta-val and meta-test stages, all tasks are without any outliers. Our proposed model’s
intuition behind such a setting learns weights based on validation tasks and will assign higher weights
to sinusoid tasks in meta-training, which could have better results. Instead, MAML uses equal weights
for each meta-training task, which may not generalize good performance to unseen tasks when OOD
is mixed during training. The loss function of Mean Squared Error (MSE) between prediction and
the true value is applied for optimization. During meta-validation/test time, all tasks are without any
outliers. Intuition: our model could learn weights based on validation tasks (sine wave) and assign
higher weights to sinusoid tasks in meta-training tasks, resulting in better results. Instead, MAML
uses the same weights for each task in meta-training tasks, which will not have good generalization
results.

20

4 2 0 2 4

4

2

0

2

4

Sine K=5, r=0.3

ground truth
MAML

MAML-OOD-RM(skyline)
L2R

NestedMAML(ours)
samples

4 2 0 2 4

4

2

0

2

4
Sine K=5, r=0.5

0 100 200 300 400 500

0.2

0.4

0.6

0.8

lo
ss

Test Losses, K=5, r=0.3

MAML
MAML-OOD-RM(skyline)

L2R
NestedMAML(ours)

0 100 200 300 400 500

0.2

0.4

0.6

0.8

1.0

Test Losses, K=5, r=0.5

4 2 0 2 4

4

2

0

2

4

Sine K=5, r=0.8

4 2 0 2 4

4

2

0

2

4

Sine K=5, r=0.9

0 100 200 300 400 500

0.2

0.4

0.6

0.8

1.0

1.2

1.4

lo
ss

Test Losses, K=5, r=0.8

0 100 200 300 400 500

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Test Losses, K=5, r=0.9

4 2 0 2 4

4

2

0

2

4

6

Sine K=10, r=0.3

4 2 0 2 4

4

2

0

2

4

6
Sine K=10, r=0.5

0 100 200 300 400 500

0.1

0.2

0.3

0.4

lo
ss

Test Losses, K=10, r=0.3

0 100 200 300 400 500

0.1

0.2

0.3

0.4

0.5

Test Losses, K=10, r=0.5

4 2 0 2 4

4

2

0

2

4

6

Sine K=10, r=0.8

4 2 0 2 4
4

2

0

2

4

6
Sine K=10, r=0.9

0 100 200 300 400 500

0.1

0.2

0.3

0.4

0.5

0.6

lo
ss

Test Losses, K=10, r=0.8

0 100 200 300 400 500

0.1

0.2

0.3

0.4

0.5

0.6

Test Losses, K=10, r=0.9

4 2 0 2 4

4

2

0

2

4

6
Sine K=20, r=0.3

4 2 0 2 4

4

2

0

2

4

Sine K=20, r=0.5

0 100 200 300 400 5000.00

0.05

0.10

0.15

0.20

lo
ss

Test Losses, K=20, r=0.3

0 100 200 300 400 500
0.00

0.05

0.10

0.15

0.20

Test Losses, K=20, r=0.5

4 2 0 2 4

4

2

0

2

4

6
Sine K=20, r=0.8

4 2 0 2 4
6

4

2

0

2

4

Sine K=20, r=0.9

0 100 200 300 400 500
iteration

0.00

0.05

0.10

0.15

0.20

0.25

lo
ss

Test Losses, K=20, r=0.8

0 100 200 300 400 500
iteration

0.00

0.05

0.10

0.15

0.20

0.25

Test Losses, K=20, r=0.9

Figure 5: Results of few-shot (K=5, 10, 20) for the simple sinusoid regression task including the loss
curves with respect to the number of iterations. Plotted by different levels of OOD Tasks (r = 0.3, 0.5,
0.8, 0.9).

21

Figure 5 shows the results of the NESTEDMAML and other baselines: MAML [7] and L2R [23].
The baseline MAML-OOD-RM corresponds to a MAML model trained just on In-Distribution
(ID) tasks and will act as skyline. Table 4 shows the MSE loss for the OOD experiment on various
evaluation setups. From Figure 5 and Table 4, it is evident that NESTEDMAML algorithm performs
better than other baseline methods and achieved low MSE error values.

Table 4: MSE loss for the OOD experiment on various evaluation setups. sinusoid is used as an
in-distribution dataset (Din) for all experiments.

Shots K Methods r=0.3 r=0.5 r=0.8 r=0.9

5

MAML-OOD-RM(skyline) 0.1357 0.1460 0.1457 0.1830
MAML 0.2448 0.2658 0.5200 0.5807
L2R 0.2228 0.2225 0.2137 0.3361
NESTEDMAML (ours) 0.1548 0.1725 0.1761 0.1971

10

MAML-OOD-RM(skyline) 0.0430 0.0425 0.0466 0.0485
MAML 0.1015 0.0865 0.1397 0.1831
L2R 0.0723 0.0888 0.1022 0.0978
NESTEDMAML (ours) 0.0552 0.0458 0.0653 0.0743

20

MAML-OOD-RM(skyline) 0.0102 0.0120 0.0131 0.0150
MAML 0.0228 0.0278 0.0432 0.0553
L2R 0.0169 0.0314 0.0219 0.0289
NESTEDMAML (ours) 0.0152 0.0153 0.0221 0.0231

E.2 Instance-level Weighting For Noisy Labels

Implementation Settings. Similar to OOD experiments, we implement 5-way 3-shot (5-shot)
experiments to evaluate the instance-level weighting scheme. We conduct experiments on noisy
labels generated by randomly corrupting the original labels in mini-ImageNet. Specifically, different
percentages (20%,30%, 50%) of training samples are selected randomly to flip their labels to simulate
the noisy corrupted samples. Intuitively, a deep model robust to noise tries to ignore the data with noisy
labels. Note that data containing noisy labels only exist in the meta-training stage. Hyper-parameters
are shown in Appendix E.

Baselines. We compare our NESTEDMAML with the following baselines: (1) MAML-Noise-RM
serves as a skyline. It is simply modified from MAML, and we manually fix zero weights to instances
with noisy labels. (2) MAML.

Results. From the results shown in Table 5, we can conclude that NESTEDMAML performs better
than MAML with high accuracies. Furthermore, to circumvent overfitting and reduce computational
complexity due to the weight matrix’s high dimension, we group instance weights with 200 clusters
by K-means, where instances in each cluster share the same weight initialized at 0.005.

Table 5: Test accuracies on mini-Imagenet with 20%, 30%, and 50% flipped noisy labels during the
meta-training phase.

5-way 3-shot 5-way 5-shot
Noise Ratio 20% 30% 50% 20% 30% 50%

MAML-Noise-RM 60.2±0.02 59.35±0.01 58.21±0.71 61.2±0.21 60.3±0.32 59.1±0.68

MAML 54.8±0.64 53.9±1.10 51.8±0.12 59.2±0.28 57.6±0.36 53.5±0.48

NESTEDMAML (ours) 55.24±0.72 54.7±1.20 53.68±0.21 59.6±0.54 58.16±0.87 55.61±1.32

E.3 First-Order Approximation (NESTEDMAML-FO)

Even after the one step gradient approximation, the weight gradient calculation involves calculating
multiple Hessian vector products, which is expensive. Since the coefficient of the Hessian vector-
product term in the weight update (Eq. (9)) involves the product of three learning rate terms ηαγ,
we can make an approximation that the term involving the Hessian vector-product term is close to 0,
given that the above learning rates are small. The approximated weight update takes the following

22

form (Eq.(11)):
w

(t+1)
i = w

(t)
i +

ηγ

mn

∑n

j=1
∇φjLVj∇θLi(Alg(θ,DSi))ᵀ

This approximation is similar to the first-order approximation given in [7] where the second and
higher-order terms are neglected. We want to show a faster way to solve the nested bi-level weight
optimization problem with a tradeoff in performance. Our experimental results show that we achieve
state-of-the-art performance using NESTEDMAML. Our results also show that NESTEDMAML-FO
leads to a loss in performance with a commensurate gain in speed compared to the unmodified
NESTEDMAML version.

E.4 More Experimental Details

Datasets. Mini-ImageNet [22] contains 60,000 images of size 84× 84× 3 from 100 classes. We
use the split proposed in [22]: 64 classes for training, 12 classes for validation and 24 classes for
testing. SVHN [18], a street view house numbers dataset, contains 26,032 images of size 32× 32× 3
from 10 digits classes. FashionMNIST [33], a fashion dataset(i.e. clothes, shoes, etc), contains
60,000 grayscale images of size 28× 28 pixels from 10 classes.

Details of Settings for Task-level Weighting. As aforementioned, our backbone follows the same
architecture as the embedding function used by [7]. Specially, the backbone structure consists of 4
modules, each of which contains a 3× 3 convolutions and 64 filters, followed by batch normalization,
a ReLU, and a 2 × 2 max-pooling with stride 2. To reduce overfitting, 32 filters per layer are
considered. We use the same model for OOD and ID tasks during the meta-training stage, so it’s
necessary to make sure the image sizes are consistent. We resize the image size of SVHN and
FashionMNIST to 84×84×3 which is consistent with mini-ImageNet when evaluating the task-level
weighting scheme. We also use the same backbone when evaluating the instance-level weighting
scheme. Cross entropy loss function is used for these two schemes.

Parameter Tuning for Task-level Scheme in Section 5.1. All baseline approaches fol-
low the original implementation including hyper-parameters. For our NESTEDMAML al-
gorithm, all step sizes (α, η, γ) are chosen from {0.0001, 0.001, 0.01, 0.1}. Batch size
(m,n) are chose from {4, 10, 20, 25, 32}. The number of iterations are chosen from
{10, 000, 20, 000, 30, 000, 40, 000, 60, 000}. The number of clusters used in K-means is chosen
from {50, 200, 1, 000, 5, 000, 10, 000}. The selected best ones are: Fast model parameters step
size α = 0.01, meta parameters step size η = 0.001, weight update step size γ = 0.1; mini-batch
size m = n = 10; the number of iterations in 30%, 60% are 30, 000, 90% is 60, 000 respectively.
The number of clusters is 200.

Parameter Tuning for Instance-level Scheme in Section E.2. Tuning hyper-parameters follows
the same aforementioned strategy. The selected best ones are: Fast model parameters step size
α = 0.01, meta parameters step size η = 0.001, weight update step size γ = 0.01; mini-batch size
m = n = 10; the number of iterations in 20%, 30%, 50% are 20, 000. The number of clusters is 200.

Other related hyperparameters are kept the same with MAML. For example, 5 gradient steps are used
when training the backbone in these two schemes, and 10 gradient steps during the meta-test stage.
The number of instances in the query set of each task is 15.

23

	Introduction
	Related Work
	Preliminaries
	Notations
	Model-Agnostic Meta-Learning

	Methodology
	Problem Formulation
	nested bi-level Optimization
	The NestedMAML Algorithm

	Experiments
	Task-level Weighting for OOD Tasks
	Sensitivity Analysis

	Conclusion
	Notations
	Weight Update of Instance-level and Task-level Weighting Scheme
	Proof of Lemma 1
	Weight Update in Task-level Weighting Scheme

	Convergence of NestedMAML Algorithm
	Detailed Convergence Analysis
	Additional Experiments
	Synthetic Regression
	Instance-level Weighting For Noisy Labels
	First-Order Approximation (NestedMAML-FO)
	More Experimental Details

