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Abstract
Parameter-efficient fine-tuning (PEFT) techniques
such as low-rank adaptation (LoRA) can effec-
tively adapt large pre-trained foundation models
to downstream tasks using only a small fraction
(0.1%-10%) of the original trainable weights. An
under-explored question of PEFT is in extend-
ing the pre-training phase without supervised la-
bels; that is, can we adapt a pre-trained founda-
tion model to a new domain via efficient self-
supervised pre-training on this domain? In this
work, we introduce ExPLoRA, a highly effec-
tive technique to improve transfer learning of pre-
trained vision transformers (ViTs) under domain
shifts. Initializing a ViT with pre-trained weights
on large, natural-image datasets such as from Di-
noV2 or MAE, ExPLoRA continues the unsu-
pervised pre-training objective on a new domain,
unfreezing 1-2 pre-trained ViT blocks and tuning
all other layers with LoRA. We then fine-tune the
resulting model only with LoRA on this new do-
main for supervised learning. Our experiments
demonstrate state-of-the-art results on satellite im-
agery, even outperforming fully pre-training and
fine-tuning ViTs. Using the DinoV2 training ob-
jective, we demonstrate up to 8% improvement
in linear probing top-1 accuracy on downstream
tasks while using <10% of the number of param-
eters that are used in prior fully-tuned state-of-
the art approaches. Our ablation studies confirm
the efficacy of our approach over other baselines
such as PEFT. Code is available at: https://
samar-khanna.github.io/ExPLoRA/

1. Introduction
Pre-training foundation models (Bommasani et al., 2021)
for natural language (Brown et al., 2020; Chowdhery et al.,
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Figure 1: Consider two different image domains, S and T . Above:
the traditional paradigm of pre-training from scratch on each do-
main S, T to yield WS , WT , and then fine-tuning on target datasets
i to yield ∆

(i)
s ,∆

(i)
t . Below: our approach, which is to initial-

ize with pre-trained weights from S and then learn unsupervised
weights ∆T for T in a parameter-efficient manner.

2023; Touvron et al., 2023) and natural images (He et al.,
2022; Rombach et al., 2022; Oquab et al., 2024) has histori-
cally been computationally intensive, often limited to organi-
zations with substantial resources. However, recent advance-
ments in parameter-efficient fine-tuning (PEFT) techniques
including low-rank adaptation (LoRA) and others (Hu et al.,
2022; Jia et al., 2022; Qiu et al., 2023) have sparked signifi-
cant interest. These methods aim to adapt foundation mod-
els to downstream supervised-learning tasks using a small
fraction (0.1%-10%) of the model’s trainable weights, with
many based on the hypothesis that the required weight up-
dates to the pre-trained model have a “low intrinsic rank" (Li
et al., 2018; Aghajanyan et al., 2020).

In this paper, we focus on visual foundation models (VFMs)
such as MAE or DinoV2 (He et al., 2022; Oquab et al.,
2024) that were trained on a large amount of natural images.
Despite the big investments in developing VFMs for natural
images, they underperform when applied to other domains
with visual data (e.g. medical or satellite images). For ex-
ample, fine-tuning a model pre-trained on natural images on
satellite image classification tasks is not as effective as fine-
tuning one that was pre-trained on satellite images (Ayush
et al., 2021; Cong et al., 2022). To bridge this gap, prevail-
ing approaches invest similarly large levels of compute to
pre-train VFMs on new domains, inspired by techniques
developed for natural images (Cong et al., 2022; Zhou et al.,
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2023; Moutakanni et al., 2024; Khanna et al., 2024).

In this work, we challenge this paradigm (fig. 1), asking
whether pre-training from scratch on each new domain is
strictly necessary, since doing so is expensive (in compute
and time) and precludes knowledge transfer from natu-
ral images. Instead, we wish to more efficiently leverage
the rich semantic information encoded in natural-image
VFMs to adapt them to new domains. Our proposed so-
lution addresses these concerns using parameter-efficient
self-supervised learning methods for transfer learning.

We introduce ExPLoRA, which generalizes vision founda-
tion models to new domains by extending the pre-training
phase with parameter-efficient techniques. We initialize
a vision transformer (ViT) (Dosovitskiy et al., 2021) with
weights pre-trained from natural-image datasets such as
MAE or DinoV2. Selectively unfreezing 1-2 transformer
blocks, we tune remaining weights with LoRA and continue
unsupervised pre-training on the new domain. Subsequently
fine-tuning with linear probing or LoRA on this new domain
for supervised learning outperforms prior state-of-the-art
(SoTA) approaches while training under 5-10% of the orig-
inal weights. On satellite imagery, we demonstrate an 8%
improvement in linear probing top-1 accuracy, and even an
improvement over prior SoTA fully pre-trained and fine-
tuned techniques that required up to 16x more trainable pa-
rameters and 8x more compute (GPU hours). We conduct an
extensive study on RGB, temporal, and multi-spectral satel-
lite images, either matching or outperforming prior methods
that fully pre-train from scratch. ExPLoRA also outper-
forms previous work on different domains such as wildlife,
medical, and agricultural imagery on the WILDS (Koh et al.,
2021) benchmark. Our contributions include:

1. Introducing ExPLoRA, a novel parameter-efficient
method that extends unsupervised pre-training on tar-
get domains, achieving state-of-the-art supervised-
learning performance using a fraction of the original
ViT weights (section 5).

2. Conducting a comprehensive case study on satellite
imagery, outperforming existing techniques on datasets
like fMoW and showcasing improvements in linear
probing accuracy. We also demonstrate generalization
to multiple other domains within WILDS (section 6).

3. Demonstrating ExPLoRA’s efficacy via ablation stud-
ies and by analyzing improvements in local (positional)
and global (class) information encoded in the patch rep-
resentations output by each ViT block (section 7).

2. Related Work
VFMs VFMs such as DinoV2 or masked autoencoders
(MAE) that pre-train with self-supervised learning (SSL)
have demonstrated remarkable performance across down-

stream tasks such as classification or semantic segmenta-
tion (Grill et al., 2020; Chen et al., 2020; He et al., 2022;
Oquab et al., 2024). However, there has also been a rise in
domain-specific VFMs (Cong et al., 2022; Man et al., 2023;
Zhang et al., 2023b; Ma et al., 2024; Moutakanni et al.,
2024). For instance, SatMAE handles temporal or multi-
spectral satellite image inputs. Since these models contain
hundreds of millions of parameters, efficient adaptation to
downstream tasks has become a key research focus.

PEFT PEFT methods have gained widespread adoption
for efficiently adapting large models by updating only a
fraction of parameters, mitigating the prohibitive costs of
full model tuning. LoRA learns low-rank weight updates to
frozen weights, while other methods modify the frequency
or number of trainable parameters per layer (Hu et al., 2022;
Zhang et al., 2023c; Chavan et al., 2023; Pu et al., 2023).
Others use multiplicative orthogonal updates (Qiu et al.,
2023; Liu et al., 2024) or inject adapter modules (Chen et al.,
2022; Lian et al., 2022; Yin et al., 2023; 2024; Steitz & Roth,
2024), effectively retaining pre-training knowledge in frozen
weights. Visual prompt tuning (VPT) methods concatenate
learnable prompt tokens to image patch sequences, trading
improved fine-tuning performance with increased inference
costs (Jia et al., 2022; Yoo et al., 2023; Han et al., 2023; Nie
et al., 2023; Tsai et al., 2023; Pei et al., 2024). ExPLoRA
aims to supplement rather than replace these methods, and
thus can be configured with any existing or future PEFT
method for ViT fine-tuning.

Domain Adaptation Domain adaptation enables models
trained on a source domain to perform well on a different
but related target domain. Traditional transformer-based
methods address this via domain alignment, discriminative
feature learning, cross-attention with pseudo-labels (Sun
et al., 2022; Chuan-Xian et al., 2022; Zhu et al., 2023), or
adversarial learning with self-refinement (Xu et al., 2021;
Yang et al., 2023), typically requiring labeled target data or
source domain labels. Test-time adaptation methods (Wang
et al., 2021; Gao et al., 2022; Zhang et al., 2023a) adapt mod-
els without target domain labels, but assume a shared label
space between domains and thus require models trained with
supervised learning on the source domain. While Reed et al.
(2022) showed that sequential self-supervised pre-training
on source and target datasets improves convergence for su-
pervised tasks, their study was limited to ResNet-50 with
MoCo and required full model training. Recent work adapts
ViTs through different means: e.g., continual pre-training
via masked image modeling (Mendieta et al., 2023) and
scaled LoRA adapters (Scheibenreif et al., 2024) for satel-
lite imagery. ExPLoRA builds on this direction, enabling
parameter-efficient SSL directly on the target domain.

Further comparisons with related work are in appendix A.
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3. Background
MAE The masked-autoencoder (MAE) (He et al., 2022)
is a SSL technique that uses an asymmetric encoder-decoder
architecture on images x ∈ RC×H×W , where patches are
masked before being processed by the ViT encoder fθ, with
parameters θ and layers L. The masked patches are then
reconstructed by a smaller decoder gψ with weights ψ and
layers LD. ψ, θ are jointly trained using mean-squared error
on the reconstructed visible pixels (gψ ◦ fθ)(x). While
effective across domains (Cong et al., 2022; Bachmann
et al., 2022), MAEs typically require full fine-tuning for
downstream tasks, making them computationally expensive.

DinoV2 DinoV2 (Oquab et al., 2024) is a robust SSL
method for ViTs. Unlike MAE, DinoV2 features fθ(x)
have demonstrated strong zero-shot performance, enabling
adaptation to downstream tasks even with a frozen ViT back-
bone. During pre-training, DinoV2 maintains two copies of
a ViT encoder: the student fθ (trainable) and the teacher fθ′ ,
where θ′ is updated using an exponential-moving average
of the student’s parameters θ. The training objective incor-
porates a global, image-level loss from Dino (Caron et al.,
2021), a patch-based loss from iBOT (Zhou et al., 2021), and
regularizers including KoLeo (Delattre & Fournier, 2017)
and Sinkhorn-Knopp centering (Caron et al., 2020).

LoRA Low-rank adaptation (LoRA) (Hu et al., 2022) as-
sumes that the weight update to change a set of unsupervised
pre-trained weights to supervised fine-tuned weights lives
in a low-rank subspace,

W ≈W0 +∆W =W0 +BA (1)

where W ∈ Rk2×k1 are the final, task-specific fine-tuned
weights, W0 ∈ Rk2×k1 are the pre-trained weights, ∆W ∈
Rk2×k1 is the weight update required to translate the pre-
trained weights W0 to the fine-tuned weights W . The key is
that ∆W = BA, where B ∈ Rk2×r and A ∈ Rr×k1 form a
low-rank factorization of ∆W , with r ≪ min(k1, k2).

4. Problem Setup
Consider a set of image domains D = {1, 2, . . . }, where
each domain d ∈ D is associated with a data distribution
pd(x), and images x ∈ RCd×Hd×Wd have domain-specific
channel, height, and width. Let S ∈ D represent a source
domain (e.g., internet-scale natural image data) and T ∈ D
represent a target domain (e.g., satellite imagery). The data
from the source domain follow a distribution pS(x), and the
target domain data come from pT (x). For the target domain,
the joint distributions p(τ)T (x,y) describe images x with
associated supervised labels y used for each downstream
task τ . We then assume access to the following:

(i) WS , pre-trained weights obtained via unsupervised
pre-training on images from pS(x)

(ii) XT = {xi}Ni=1 ∼ pT (x), an unlabeled dataset of N
images from new domain T

(iii) Y(τ)
T = {xj ,yj}M

(τ)

j=1 ∼ p
(τ)
T (x,y), labeled datasets

of M (τ) images for each task τ in domain T

Our objective is to learn optimal weights W (τ)
T for each

supervised-learning dataset Y(τ)
T in a parameter-efficient

manner while leveraging the knowledge stored in WS .

Traditionally, the approach (fig. 1) has been to begin pre-
training from scratch on data XT from the new domain of
interest, and then fine-tune for each dataset Y(τ)

T , given as:

W
(τ)
T ≈WT +∆(τ) (2)

where WT represents the weights learned from unsuper-
vised pre-training on XT , and ∆(τ) are the weights learned
from supervised fine-tuning on Y(τ)

T . However, this method
is computationally expensive: fully pre-training WT from
scratch for every new target domain requires prohibitively
large amounts of additional compute.

LoRA, however, addresses this inefficiency as follows:

W
(τ)
T ≈WS +∆(τ) =WS +B(τ)A(τ) (3)

The LoRA hypothesis is that the update ∆(τ) resides in a
low-rank subspace when adapting pre-trained weights WS

to fine-tuned weights W (τ)
T . This hypothesis holds well

when pre-training and fine-tuning distributions are similar.
However, when there is significant domain shift, such as
between natural images and multi-spectral satellite data, the
low-rank assumption often breaks down (see section 6.1.3).

Our goal is to learn W (τ)
T efficiently while using the knowl-

edge encoded in WS to bridge the large domain shift to T .
We propose the following partition of W (τ)

T :

W
(τ)
T ≈WS +∆T +∆(τ) (4)

where ∆T ∈ Rk2×k1 is an additional structured update
matrix learned from unsupervised pre-training on XT . Cru-
cially, ∆T requires only a fraction of the k1k2 parameters
of WS , making it significantly more efficient than full-rank
pre-training. The resulting model, W ∗

T =WS+∆T ≈WT ,
retains the benefits of unsupervised pre-trained VFMs, in-
cluding strong feature extraction, effective linear probing,
KNN classification, and generalization to downstream tasks.

5. Method
To learn ∆T , we propose ExPLoRA (i.e. Extended Pre-
training with LoRA), a method that efficiently adapts a
pre-trained ViT to a new target domain T , in algorithm 1.

3



ExPLoRA

…

Norm Attention Norm MLP

Norm Attention Norm MLP

Q K V

LoRA

1 2 L-1 L

ViT Encoder Blocks Initialized 

with Pre-Trained Weights

Patch Embedding

MAE or 

DinoV2

Decoders
Embedding 

Sequence

Embedding 

Sequence

ExPLoRA ViT Block- LoRA Tuning

ExPLoRA ViT Block- Unfrozen Full-Rank Tuning

LoRA Tuning Unfrozen

𝒰ℒ ∖ 𝒰

Figure 2: An overview of ExPLoRA. The set L of L ViT blocks is partitioned into two sets: U (red), which denotes blocks whose
parameters are completely unfrozen, and L \ U (blue) which denotes blocks that undergo LoRA tuning (only on the Q,V attention
matrices). Note that the normalization layers are always unfrozen across all blocks.

Algorithm 1 ExPLoRA

1: Input: WS := pre-trained ViT with L layers L =
{1, . . . ,L}; XT := unlabeled dataset

2: Initialize a frozen ViT with WS from source domain S
(e.g., DinoV2 or MAE weights).

3: Unfreeze all parameters of a subset of blocks U ⊂ L.
(e.g., U = {L} or U = {1,L}).

4: Apply LoRA (with rank r) on Q and V weights in
attention layers of frozen blocks in L \ U and unfreeze
normalization layers in these blocks.

5: Train all unfrozen parameters ∆T on the unlabeled
dataset XT using the same unsupervised objective as
what was used for WS (e.g., DinoV2 or MAE).

6: Output: A new pre-trained model W ∗
T = WS + ∆T

for target domain T .

Concretely, we learn ∆T as follows:

∆T = argmin
θ∈Θ(U,r)

(
min
ψ

∑
x∈XT

CS (gψ (fθ(x;WS)) ,x)

)
(5)

where fθ(·;WS) is a ViT feature encoder parameterized
by θ with initialization WS , gψ is a learnable decoder pa-
rameterized by ψ (e.g., MAE/DinoV2 decoder), CS is the
unsupervised loss that was used forWS (e.g., reconstruction
loss), and Θ(U , r) restricts the trainable parameter space to
full-rank updates for blocks in U and LoRA rank-r updates
in L \ U . Similar to Goyal et al. (2023), we find that us-
ing the same unsupervised loss CS as was used for WS is
beneficial. As we show in section 6, ExPLoRA can even
outperform full pre-training on new domains from scratch.

In terms of notation, D-[L]-r64 refers to a ViT initialized
with DinoV2 weights, where U = {L}, and LoRA rank 64
is applied to the Q,V matrices of attention layers in L \ U .

Thus, ∆T comprises of all weights in U , LoRA matrices in
L \ U , and layer normalization parameters of all blocks.

For DinoV2, we initialize a ViT-L with WS from DinoV2’s
ViT encoder, without registers (Darcet et al., 2024). Since
DinoV2 pre-trained checkpoints don’t include Dino or iBOT
linear heads, we initialize a shared head gψ from scratch,
which is fully trained during extended pre-training.

For MAE, we initialize a ViT-L with WS from the MAE
ViT-L encoder and use provided weights to initialize de-
coder gψ (He et al., 2022). During extended pre-training,
beyond the ExPLoRA recipe in algorithm 1, we apply LoRA
with rank r′ on the Q,V matrices of each attention layer in
gψ. The LoRA rank r′ may differ from rank r used in the
ViT encoder fθ (appendix B.4). All other decoder weights
except layer-normalization are frozen, with no block fully
unfrozen in gψ to minimize trainable parameters.

For the multi-spectral ViT introduced by SatMAE we need
to additionally unfreeze the positional encoding and patch
embedding weights for each group of channels, as part of
Θ(U , r) in eq. (5). These cannot be initialized from WS , as
WS is trained on RGB inputs, whereas multi-spectral inputs
can have more or different channels.

Fine-Tuning post-ExPLoRA After running ExPLoRA,
we receive a new unsupervised model W ∗

T =WS +∆T for
the target domain T that functions as any other pre-trained
ViT WT . gψ (e.g., the Dino/MAE decoder) is discarded as
it is not part of the ViT encoder f . Only ∆T , consisting
of 1-2 unfrozen ViT blocks, LoRA matrices, and layer-
normalization weights, are stored for each T– all of which
can be merged into the original ViT, thus preserving architec-
ture. Like LoRA, ExPLoRA significantly reduces additional
storage requirements compared to fully pre-training WT .

4



ExPLoRA

Finally, solving for ∆(τ) on each labeled dataset Y(τ)
T :

∆(τ) = argmin
ϕ

θ∈Θ(r)

∑
(x,y)∈Y(τ)

T

C′
(
h
(τ)
ϕ (fθ(x;W

∗
T )) ,y

)
(6)

where the ViT fθ is now initialized with W ∗
T , h(τ)ϕ (·) is a

task-specific ViT decoding head with parameters ϕ, and C′

represents a supervised-learning loss function.

For any PEFT method, we allow θ ∈ Θ(r), where r restricts
the trainable parameter space Θ of L (e.g., LoRA only on
attention Q,V matrices). For linear probing, Θ(0) = ∅, so
(h

(τ)
ϕ ◦fθ)(x;W ∗

T ) = ϕ⊤f(x;W ∗
T ). For general fine-tuning,

we optimize both θ ∈ Θ and ϕ unrestricted, modifying h(τ)

as per the task (e.g., a decoder head for segmentation). With
∆(τ), eq. (4) gives us our final model weights W (τ)

T , which
can be used for classification, segmentation, detection etc.

6. Experiments
Our experimental results consist of a case study on satellite
imagery (section 6.1), with an ablation study in section 6.1.2.
We evaluate on multiple downstream tasks in sections 6.1.3,
6.1.4 and 6.2. Additional experiments and ablations are
provided in appendix B and training hyperparameter and
compute configurations are mentioned in appendix C.

We report both performance metrics and computational re-
quirements for our experiments. As a pre-training technique,
ExPLoRA offers an efficient alternative to full domain-
specific pre-training. Thus, unlike task-specific fine-tuning,
its compute costs are amortized across all downstream appli-
cations of the resulting model including feature extraction,
linear probing, and various supervised tasks.

Our results achieve a new SoTA top 1 accuracy of 79.3%
(↑1.5%) on the competitive fMoW-RGB benchmark, outper-
forming fully pre-trained and fine-tuned models while using
6% of the ViT encoder parameters and requiring only 100
GPU hours compared to 960+ hours for full pre-training.
We also achieve a ↑8.2% improvement in linear probing
accuracy on the same dataset. Across other satellite datasets,
ExPLoRA matches or exceeds fully-pretrained prior state-
of-the-art methods while requiring 8x-10x less compute and
16x fewer trainable parameters and demonstrates competi-
tive performance on WiLDS benchmark datasets as well.

6.1. Case Study: Satellite Imagery

We examine satellite images given their importance towards
societal applications (section 8) and since they represent
a significant domain shift from natural images. There is a
large and growing body of research on developing founda-
tion models for satellite imagery from scratch (Cong et al.,
2022; Reed et al., 2023; Tang et al., 2024), thus presenting
a good benchmark for ExPLoRA.

6.1.1. RGB SATELLITE IMAGES

Dataset We first consider the functional map of the world
(fMoW) dataset of high-resolution satellite images, each
paired with one of 62 classification labels (Christie et al.,
2018). fMoW is used as a benchmark for satellite-image
foundation models (Cong et al., 2022; Reed et al., 2023).

We compare our results in table 1 against both prior fully
pre-trained SoTA foundation models as well as PEFT tech-
niques applied on ViTs pre-trained with MAE and/or Di-
noV2 weights. Our results demonstrate that D-ExPLoRA-
[L]-r64 is SoTA in terms of fMoW-RGB average accuracy
at 79.28%. ExPLoRA outperforms techniques that require
fully and/or continually pre-training ViTs on fMoW while
using 6% of the original ViT encoder parameters and 8x less
compute. Further experiments with MAE are in B.6.

ExPLoRA-initializations with LoRA fine-tuning outper-
form other unsupervised initializations paired with PEFT
techniques by 1-3%, including SoTA matrix-adaptation
methods like AdaLoRA (Zhang et al., 2023c), BOFT (Liu
et al., 2024), VPT approaches such as GVPT (Yoo et al.,
2023), SA2VP (Pei et al., 2024), and adapter methods
like Adapter+ (Steitz & Roth, 2024). We also outper-
form satellite image continual pre-training methods such as
GFM (Mendieta et al., 2023) and GDA (Scheibenreif et al.,
2024) by 6%. Additionally, applying SA2VP to ExPLoRA-
initialized ViTs improves performance over DinoV2 by 1%
(rows 16 vs 17), showcasing ExPLoRA’s compatibility with
other PEFT methods and its versatility as an initialization
for new domains.

Using our strongest performing variant (i.e. ExPLoRA
with DinoV2), we investigate linear-probing performance
on fMoW-RGB compared with prior SoTA methods in ta-
ble 2. Linear-probing represents freezing the backbone and
then training a linear head on the features extracted from
the frozen backbone, serving as a desirable metric of the
quality of extracted embeddings. Our results demonstrate
an improvement of over ↑8.2% in top 1 average accuracy
over prior SoTA methods, demonstrating that ExPLoRA
learns robust unsupervised representations for its target do-
main without requiring expensive from-scratch pre-training.
Importantly, ExPLoRA outperforms domain-specific prior
SoTA solutions (rows 1-4), as well as DinoV2, which sug-
gests successful transfer learning on the target domain by
leveraging knowledge from pre-training on natural images.

6.1.2. ABLATION STUDY

We perform an ablation study (table 3) on linear-probing
performance for fMoW-RGB to determine whether our pro-
posed configuration performs optimally.

A natural question is whether the improvement in perfor-
mance stems primarily from unfreezing blocks, or from
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Model PEFT Pre-Train
Params

Fine-Tune
Params

Pre-Train
GPU hours

Fine-Tune
GPU hours Top 1 Acc.

1 ScaleMAE [56] Full 303.3M 303.3M 960 610 77.80
2 SatMAE [17] Full 303.3M 303.3M 960 610 77.78

3 SatMAE [17] LoRA-r8 [30] 303.3M 0.8M 960 220 76.10
4 ScaleMAE [56] LoRA-r8 [30] 303.3M 0.8M 960 220 78.01
5 GFM [45] LoRA-r8 [30] 303.3M 0.8M 900 220 73.03
6 GDA [58] GDA-r16 [58] 8.5M 8.5M 310 310 71.88
7 MAE [28] LoRA-r8 [30] – 0.8M – 220 76.21
8 M-[L]-r64 LoRA-r8 [30] 18.7M 0.8M 80 220 76.55
9 DinoV2 [48] LoRA-r8 [30] – 0.8M – 220 78.08
10 DinoV2 [48] BOFT-b2m8 [41] – 0.9M – 230 72.40
11 DinoV2 [48] Mona [73] – 7.1M - 220 72.80
12 DinoV2 [48] VPT-100 [31] – 0.4M – 500 77.29
13 DinoV2 [48] GVPT-100 [74] – 0.4M – 500 76.22
14 DinoV2 [48] AdaLoRA-r8 [77] – 1.2M – 220 78.87
15 DinoV2 [48] Adapter+ [61] – 1.4M – 220 78.16
16 DinoV2 [48] SA2VP [50] – 1.1M – 410 77.53
17 D-[L]-r64 SA2VP [50] 18.7M 1.1M 100 410 78.51
18 D-[L]-r64 LoRA-r8 [30] 18.7M 0.8M 100 220 79.28

Table 1: Results on the fMoW-RGB validation dataset. "Pre-train / Fine-tune Params" refer to trainable parameters of the ViT-L encoder
required on the new domain, i.e. satellite images. M-[L]-r64 and D-[L]-r64 refer to ExPLoRA models initialized with MAE and
DinoV2 weights, respectively (section 5). Our measurements for GPU hours use standardized hardware platforms for fair comparison.

Method Arch. Top 1 Acc.

1 GASSL [2] ResNet 68.32
2 SatMAE [17] ViT-L 65.94
3 ScaleMAE [56] ViT-B 67.30
4 CrossScaleMAE [63] ViT-B 69.20
5 DinoV2 [48] ViT-L 67.60
6 DinoV2† [48] ViT-L 69.00
7 D-[L]-r64 ViT-L 76.86
8 D-[L]-r64† ViT-L 77.48

Table 2: Linear-probing on fMoW-RGB. The first four rows fully
pre-train on the dataset. † denotes concatenating features from the
last 4 ViT blocks. All other rows use features of the last ViT block.

LoRA-tuning the rest of the ViT. We investigate this by
unfreezing blocks {L,L-1} (with no LoRA) in row 4, and
comparing that with ExPLoRA-L-r8 in row 13. As seen, un-
freezing an extra block consumes almost double the number
of parameters, but fails to yield the same improvement in
performance ↓ 0.34%. Thus, simply increasing the number
of unfrozen blocks will likely improve performance, but
will not do so as effectively as ExPLoRA, and will also
significantly and sharply decrease the parameter-efficiency.

Next, we investigate whether applying high-rank LoRA to
all matrices (including MLP) outperforms targeting only
attention Q,V matrices. Surprisingly, LoRA-r128 on all
matrices (row 6) or only on MLP matrices (row 7) signifi-
cantly harms performance compared to LoRA-r256 on just
Q,V matrices (row 5). However, both rows 5 and 6 are much
less parameter-efficient than ExPLoRA (rows 13-15).

The choice of U matters as well. As seen in rows 8-10, and
15, for the DinoV2 objective, U = {1} or U = {9} are not

Blocks
Unfrozen

LoRA
Rank

Norm
Unfrozen

LoRA
Layers

Num.
Params

GPU
hours

Top 1
Acc.

1 – – – – – – 69.00
2 All N/A Yes [] 303.3M 1200 54.29

3 [L] 0 ✓ [] 12.7M 90 74.83
4 [L-1,L] 0 ✓ [] 25.3M 130 75.97
5 [] 256 ✓ [Q,V] 25.9M 180 75.51
6 [] 128 ✓ All 33.1M 220 55.03
7 [L] 64 ✓ Mlp 16.5M 140 48.55
8 [1] 64 ✓ [Q,V] 18.7M 100 75.97
9 [9] 64 ✓ [Q,V] 18.7M 100 75.45
10 [L-1] 64 ✓ [Q,V] 18.7M 100 77.40
11 [L] 0 ✓ VPT-100 12.8M 430 70.14
12 [L] 64 ✗ [Q,V] 18.6M 100 76.78
13 [L] 8 ✓ [Q,V] 13.4M 90 76.31
14 [L] 32 ✓ [Q,V] 15.7M 100 76.40
15 [L] 64 ✓ [Q,V] 18.7M 100 77.48

16 [L-1,L] 64 ✓ [Q,V] 31.1M 140 77.76
17[1,L-1,L] 64 ✓ [Q,V] 43.4M 180 78.04

Table 3: Ablation study using DinoV2-ExPLoRA, measuring
linear-probing accuracy on fMoW-RGB. The second row performs
full pre-training from scratch. All results are obtained by using
concatenated features from the last 4 ViT blocks.

as effective as U = {L-1} or U = {L}, ceteris paribus. To
understand this result further, see section 7. We also notice
a slight drop in accuracy from leaving the normalization
layers across the ViT frozen, seen in row 12.

Lastly, we investigate the impact of LoRA rank and in-
creasing the set of unfrozen blocks U on ExPLoRA, ef-
fectively varying the parameter budget Θ(U , r). As seen
in table 3, changing the rank from 8 to 32 yields a mod-
est improvement (↑ 0.09%, rows 13 vs 14), but increasing
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from 32 to 64 brings about a much larger gain (↑ 1.08%,
rows 14 vs 15), with an equivalent 3M parameter increase.
Meanwhile, expanding the set of unfrozen blocks from
U = {L} to U = {L-1, L} (rows 15 vs 16) and further
to U = {1, L-1, L} (rows 16 vs 17) yield consistent
improvements of ↑ 0.28%.

These results indicate that strategically constraining the pa-
rameter space via Θ(U , r) in ExPLoRA yields better per-
formance more efficiently than either uniform high-rank
updates across all layers (row 5) or simply unfreezing more
blocks without LoRA (row 4). This balance between full-
rank updates in key transformer blocks and low-rank up-
dates elsewhere more effectively captures domain-specific
knowledge during pre-training.

Notably, full pre-training from scratch (row 2) achieves only
54.29% accuracy despite using 1200 GPU hours, suggest-
ing that significantly more compute might be needed for a
performant from-scratch DinoV2 checkpoint. In contrast,
our standard configuration for ExPLoRA in row 15 achieves
77.48% accuracy with just 100 GPU hours (a 12× reduction
in compute) while using only 18.7M parameters (6% of the
full model). While rows 16-17 show further performance
improvements with additional unfrozen blocks, row 15 rep-
resents our preferred trade-off between performance and
efficiency for most applications. Further ablations on com-
pute efficiency (B.2), data efficiency (B.3), MAE decoder
rank (B.4), and ViT backbone size (B.5) are in appendix B.

6.1.3. MULTI-SPECTRAL SATELLITE IMAGES

Dataset Next, we consider the fMoW-Sentinel dataset, a
large dataset of Sentinel-2 images introduced by Cong et al.
(2022). Each image consists of 13 spectral bands and is
paired with one of 62 classes.

With fMoW-Sentinel, we evaluate transfer from natural im-
ages to multi-spectral, low-resolution satellite images- a
domain with significant distribution shift from RGB images
due to the absence of non-RGB bands in S. We use the
group-channel ViT-L from Cong et al. (2022), initialized
with MAE. During ExPLoRA, we additionally unfreeze only
the patch embedding layers due to architectural differences.

Table 4 highlights the challenge: direct fine-tuning of MAE
weights on this domain results in a substantial 9% perfor-
mance gap compared to SatMAE (rows 1 vs 2). LoRA tun-
ing from MAE performs worse (row 3), and unfreezing four
transformer blocks (row 7) fails to help. ExPLoRA bridges
this gap effectively while requiring just 320 GPU hours
and <10% trainable parameters for pre-training compared
to 1150 hours for SatMAE. This demonstrates ExPLoRA’s
ability to efficiently adapt to domains with substantial distri-
bution shifts from natural images, preserving performance
while dramatically reducing computational requirements.

Method PEFT PT / FT
Params

PT / FT
GPU hours

Top 1
Acc.

1 MAE [28] Full – / 303.3M – / 770 51.61
2 SatMAE [17] Full 303.3M / 303.3M 1150 / 770 61.48

3 MAE [28] LoRA-r8 – / 0.8M – / 290 46.97
4 SatMAE [17] LoRA-r8 303.3M / 0.8M 1150 / 290 59.48
5 GFM [45] LoRA-r8 303.3M / 0.8M 960 / 290 57.55
6 GDA [58] GDA-r16 7.3M / 7.3M 560 / 410 55.23
7 MAE∗ LoRA-r8 51.5M / 0.8M 380 / 290 54.12
8 M-[L]-r32 LoRA-r8 16.2M / 0.8M 290 / 290 51.84
9 M-[1,L]-r32 LoRA-r8 29.7M / 0.8M 320 / 290 60.15

Table 4: Results on fMoW-Sentinel (validation), with ViT-L.
“PT” and “FT” refer to pre-training and fine-tuning, respectively.
“Params” refers to trainable parameters required on the new do-
main, i.e. multi-spectral satellite images. “MAE∗” refers to initial-
izing a SatMAE model with MAE weights and then pre-training
with blocks 1,2,23,24 unfrozen. ExPLoRA achieves competitive
performance while requiring significantly less compute than full
domain-specific pre-training.

Method PEFT PT / FT
Params

PT / FT
GPU hours

Top 1
Acc.

1 GASSL [2] Full 23.5M / 23.5M 380 / 220 74.11
2 SatMAE [17] Full 303.3M / 303.3M 1120 / 610 79.69

3 MAE [28] LoRA-r8 – / 0.8M – / 250 69.30
4 SatMAE [17] LoRA-r8 303.3M / 0.8M 1120 / 250 75.27
5 M-[L]-r32 LoRA-r8 18.7M / 0.8M 100 / 250 75.98

Table 5: Classification results on the validation set of fMoW-
Temporal. “PT” and “FT” refer to pre-training and fine-tuning,
respectively. All MAE/SatMAE experiments use ViT-L, while
GASSL uses a ResNet. ExPLoRA (M-[L]-r32) achieves the best
PEFT performance while using only a fraction of the compute
required for full pre-training.

6.1.4. ADDITIONAL SATELLITE DATASETS

We perform extensive experiments on downstream satellite
datasets, with further results in B.1.

fMoW-Temporal Each input is a sequence of up to 3
fMoW-RGB (Christie et al., 2018) images of a location,
distributed temporally, and paired with one of 62 classes.
Since the inputs are now temporal sequences, we initialize
the temporal MAE architecture from Cong et al. (2022) with
MAE weights, and pre-train on XT with U = [L] and LoRA
rank 32. ExPLoRA then outperforms temporal SatMAE for
PEFT (table 5), demonstrating successful transfer learning
at a fraction of the pre-training parameters and compute.

SpaceNet-v1 This dataset contains high resolution satel-
lite images, each paired with a segmentation mask for build-
ings (Van Etten et al., 2018). The training and test sets
consist of 5000 and 1940 images, respectively. For Ex-
PLoRA, we pre-train on the training set. However, many
images in the dataset contain extensive blacked-out regions,
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Method PEFT SpaceNet
mIoU

Resisc45
Acc.

1 SatMAE [17] Full 78.07 94.80
2 ScaleMAE [56] Full 78.90 95.70

3 DinoV2 [48] LoRA-r8 76.69 97.60
4 D-[L]-r64 LoRA-r8 76.69 97.65

5 SatMAE [17] Lin. Probe 50.89 88.30
6 ScaleMAE [56] Lin. Probe 47.17 89.60
7 DinoV2 [48] Lin. Probe 76.21 96.34
8 D-[L]-r64 Lin. Probe 76.34 97.32

Table 6: Results on the validation sets of SpaceNet-v1, a segmen-
tation task, and Resisc-45, a classification task. The D-[L]-r64
ExPLoRA model from the final row of Table 1 achieves state-
of-the-art performance on Resisc-45 and competitive results on
SpaceNet-v1 without requiring pre-training.

indicating limits of the visible region. Considering this
limitation and the small dataset size, it is not clear whether
additional pre-training is effective. We find that, despite this,
ExPLoRA remains on par with the LoRA-tuned DinoV2
model and remains competitive with the fully pre-trained
and fully fine-tuned domain-specific models (table 6).

RESISC-45 The RESISC-45 (Cheng et al., 2017) bench-
mark dataset consists of 31,500 satellite images of varying
resolution (0.2m-30m GSD), with 45 classes. The data is
split into 25,200 training and 6,300 validation images, as
per Reed et al. (2023). In table 6, our D-ExPLoRA pre-
trained on only high-resolution fMoW-RGB images (last
row of table 1) achieves SoTA results of 97.32% on multi-
resolution RESISC-45 images, with just linear-probing. We
demonstrate successful transfer learning from ExPLoRA
pre-training, without requiring any additional modifications
for scale-aware representation learning (Reed et al., 2023).

6.2. WiLDS Datasets

We test ExPLoRA on the WILDS (Koh et al., 2021) bench-
mark, specifically on Camelyon17 (Bandi et al., 2018),
iWildcam (Beery et al., 2020) and GlobalWheat (David
et al., 2020; 2021) datasets, representing domain transfers
to medical, wildlife, and agricultural imagery, respectively.

Camelyon17 The WILDS Camelyon17 dataset consists
of images of cancerous and non-cancerous cell tissue. We
use the “train-unlabeled" split for pre-training ExPLoRA,
and either use LoRA fine-tuning or linear probing on the
training set of the labeled split. We report accuracy on the
binary classification problem and compare with entries on
the WILDS leaderboard which use unlabeled data. Our
results in table 7 demonstrate improved performance over
domain-specific methods as well as DinoV2, once again
successfully bridging the domain gap.

Method PEFT Pre-Train/Fine-tune
GPU hours Top 1 Acc.

1 CLater [54] Full – 93.90
2 ICON Full – 90.10

3 MAE [28] LoRA-r8 – / 120 92.13
4 M-[L]-r32 LoRA-r8 90 / 120 92.24
5 DinoV2 [48] Lin. Probe – / 10 93.27
6 DinoV2 [48] LoRA-r8 – / 120 92.97
7 D-[L]-r32 Lin. Probe 90 / 10 94.41
8 D-[L]-r32 LoRA-r8 90 / 120 94.21

Table 7: Classification results on the validation set of Camelyon17.
ExPLoRA models achieve the best performance in both linear
probing and LoRA-based fine-tuning configurations.

Method PEFT Pre-Train/Fine-tune
GPU hours Top 1 Acc.

1 MAE [28] LoRA-r8 – / 90 60.07
2 M-[L]-r32 LoRA-r8 70 / 90 61.86
3 DinoV2 [48] Lin. Probe – / 10 66.04
4 DinoV2 [48] LoRA-r8 – / 90 67.10
5 D-[L]-r32 Lin. Probe 70 / 10 62.95
6 D-[L]-r32 LoRA-r8 70 / 90 68.07

Table 8: Classification results on the validation set of iWildcam.

Method Pre-Train/Fine-tune
GPU hours

Top 1
Acc.

AP@
0.5:0.95

AR@
0.5:0.95

1 ICON [35] – 68.9 – –
2 MAE [28] – / 190 82.5 53.8 58.7
3 M-[L]-r64 30 / 190 79.3 51.6 56.6
4 DinoV2 [48] – / 190 82.3 52.1 57.1
5 D-[L]-r64 30 / 190 82.7 54.5 59.2

Table 9: Object detection results on the validation set of Global-
Wheat. AP and AR stand for average precision and average recall.
ExPLoRA outperforms the baseline methods across all metrics.

iWildcam iWildcam classification requires identifying
one of 182 animal species given an image. We pre-train on
the training set, finding that this outperforms pre-training on
the extra-unlabeled set. In table 8, we find an improvement
over DinoV2 using LoRA-r8 PEFT. Surprisingly, the linear
probing performance of the ExPLoRA suffers in comparison
with DinoV2, suggesting possible overfitting due to a small
domain gap. This is likely because natural image datasets
such as ImageNet (Deng et al., 2009) used for pre-training
DinoV2 already contain many images of animals.

GlobalWheat The GlobalWheat dataset consists of an ob-
ject detection task, where images of wheat fields are associ-
ated with bounding boxes on the visible wheat heads (David
et al., 2020; 2021). ExPLoRA extends pre-training on the
training set, and then we fine-tune using Detectron2 code for
object-detection with ViTs (Wu et al., 2019). ExPLoRA out-
performs both fully pre-trained baselines from the WILDS
leaderboard and strong VFMs DinoV2 and MAE on top 1
accuracy, average precision, and average recall.
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7. Further Analysis
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Figure 3: The mean of the eigen-
values of the feature map out-
putted by each ViT block.
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Figure 4: The variance of the
eigenvalues of the feature map
outputted by each ViT block.
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Figure 5: Linear probing patches
for position (local information),
across all ViT blocks.
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Figure 6: Linear probing patches
for classification (global infor-
mation), across all ViT blocks.

The key design choice of ExPLoRA is to constrain the
trainable parameter space during pre-training via Θ(U , r)
in eq. (5), where U ⊂ L layers of the ViT undergo full-rank
training while the remaining frozen layers L \ U receive
low-rank updates. For parameter-efficiency, we wish to keep
|U| ≪ |L| and make an informed choice of which layers to
unfreeze based on their potential to improve representation
learning during extended pre-training.

We conduct an investigation on 5 models using a sample
of XDT

. These models are DinoV2, D-ExPLoRA-[L]-
r64, SatMAE, MAE, and M-ExPLoRA-[L]-r64. We do
the following analyses: (i) PCA to measure the mean and
variance of eigenvalues of patch feature vectors for each
ViT block, in figs. 3 and 4 (ii) linear probing for local or
global information (Darcet et al., 2024) by training logistic
regression classifiers on each block’s patch feature vectors,
to predict either patch position (fig. 5) or image class (fig. 6).

Findings and Unfreezing Strategy for DinoV2: Our anal-
ysis reveals that the spectral properties of a block’s feature
map (fig. 3) and the ability to retrieve local information
from its output patch tokens (fig. 5) are correlated. The
classification accuracy for position and the mean and vari-
ance of the principal eigenvalues peak in the middle-layers
of the model, suggesting that the middle blocks capture
fine-grained local properties of patches (e.g., texture, rela-
tive position). Meanwhile, deeper blocks focus on global
semantic understanding, as shown by increased classifica-
tion accuracy for image class prediction in fig. 6 and lower
variance in feature map eigenvalues in fig. 4. Combined,
these results suggest that unfreezing deeper layers, such as
U = {L}, allows the model to better capture global features
without overfitting to local details of images of T . This is

empirically confirmed in table 3, where linear probing accu-
racy correlates inversely with the mean eigenvalue of each
block (i.e., block 23 > block 22 > block 0 > block 9). The
attention maps in fig. 9 further support this, showing that
deeper layers focus more clearly on central objects, while
earlier layers (e.g., blocks 9, 10) exhibit diffuse attention
patterns spread around the border.

Findings and Unfreezing Strategy for MAE: For MAE,
we see a similar, but less pronounced trend. However, MAE
is only trained for reconstruction, and so retains more local
information across the ViT’s layers. This is reflected by its
lower patch-wise eigenvalues, higher localization accuracy,
and lower global accuracies than Dino.

ExPLoRA’s Impact: D-ExPLoRA preserves local infor-
mation in the middle layers but also improves localization
accuracy in the last few layers. Importantly, it also enhances
the global information contained in the patches for deeper
model layers. This indicates a better understanding of the
target domain, as seen in B.8, where ExPLoRA’s attention
highlights the central object more clearly.

Thus, our analysis provides guidelines for practitioners to
select which blocks to unfreeze based on the eigenvalue
properties and classification accuracy patterns of different
ViT layers, offering a systematic approach to constraining
Θ(U , r) when pre-training with ExPLoRA (eq. (5)).

8. Conclusion and Discussion
In this paper, we introduce ExPLoRA, a novel pre-training
strategy to adapt pre-trained ViT foundation models for nat-
ural images to additional visual domains such as satellite im-
agery or medical data. We challenge the common paradigm
of expensive pre-training from scratch for each new visual
domain by offering a solution to transfer knowledge from
foundation models that matches or outperforms domain-
specific foundation models. ExPLoRA makes powerful
foundation models accessible to researchers with limited
computational resources while using 8-10x less compute
and 16x fewer parameters. Our hope is that ExPLoRA en-
ables further use of VFMs on domains other than natural
images without requiring vast computational resources for
pre-training.

While effective, many aspects of ExPLoRA deserve fur-
ther study. The strategy of fully training a small budget of
weights combines well with PEFT techniques like LoRA–
understanding this further would be valuable. Future work
might explore whether other parameter-efficient techniques
could improve ExPLoRA during pre-training more effec-
tively than unfreezing blocks. Lastly, an investigation of
ExPLoRA on large language models would be valuable.
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Impact Statement
As the scale of models and datasets grows exponentially,
access to the computing power necessary to develop and use
foundation models is increasingly restricted to the hands
of a few organizations. This leaves many researchers in
academia or smaller companies reliant on the resources of
such organizations for ML research and applications. Tech-
niques such as PEFT can alleviate this dependence and
enable those with fewer computational resources to adapt,
investigate, and customize models for their own needs. We
hope that ExPLoRA furthers this goal, allowing ML practi-
tioners to tailor foundation models with minimal compute,
thus broadening access to powerful ML tools for critical
fields like sustainability and medicine.

For example, automated analysis of satellite imagery can
inform social, economic, and environmental policies, but
manual curation is expensive, and pre-training models on
such data has significant costs, both environmental and oth-
erwise (appendix D). ExPLoRA offers a more efficient way
to create new foundation models for different visual do-
mains via distilling knowledge from existing foundation
models trained on natural images. This can sharply reduce
costs, aid researchers and policymakers, and enable flexible
downstream applications.
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Appendix
We include supplementary material in the following sections. We provide additional contextualization and comparison with
recent related work in appendix A, additional experimental results and ablations in appendix B, training and hyperparameter
details in appendix C, and an overview of the environmental impact of our work in appendix D.

A. Further Contextualization with Related Work
Here, we expand upon ExPLoRA’s differences with recent related work.

A.1. Comparison with Geospatial Domain Adaptation

Recent work has explored both continual pre-training (GFM) (Mendieta et al., 2023) and parameter-efficient domain
adaptation (GDA) (Scheibenreif et al., 2024) for satellite imagery. We compare these approaches with ExPLoRA in table 10.

GFM GDA ExPLoRA
[45] [58] (Ours)

Parameter-efficient ✗ ✓ ✓
Training objective MAE MAE Any
Arch. preservation ✓ ✗ ✓
Fine-tuning Any PEFT Only LoRA Any PEFT

Table 10: Differences between prior geospatial domain adaptation
methods and ExPLoRA

ExPLoRA differs from these approaches in several key
aspects. Unlike GFM which trains the full backbone,
ExPLoRA achieves superior performance with only a
fraction of trainable parameters. While GDA is also
parameter-efficient, it requires non-mergeable scaling vec-
tors that induce inference latency and modify the ViT,
whereas ExPLoRA’s LoRA adapters can be merged into
the ViT’s weights. Additionally, ExPLoRA extends be-
yond MAE architectures (supporting DinoV2 and others)
and allows flexible configurations between pre-training
and fine-tuning, including varying LoRA ranks or using
different PEFT methods, which GDA doesn’t support out-of-the-box.

We also demonstrate ExPLoRA’s broader applicability through experiments on larger datasets (fMoW-RGB, fMoW-Sentinel,
which have 400k-800k images vs 90k images in FireRisk (Shen et al., 2023), the largest dataset used in GDA) and domains
beyond remote sensing (i.e. WiLDS). Our analysis in section 7 provides insights into block-wise information encoding,
offering practitioners a systematic approach for block selection during extended pre-training– a unique feature not present in
prior work.

A.2. Comparison with Unsupervised Domain Adaptation

UDA ExPLoRA

Source data Labeled None
Source knowledge Data Weights
Target data Unlabeled Unlabeled
Label constraints YT ⊆ YS None

Table 11: Differences between UDA and ExPLoRA

Unsupervised domain adaptation (UDA) enables models to generalize
to unseen domains (Kang et al., 2019; Oren et al., 2019; Singhal et al.,
2023; Khanna et al., 2023). Traditional UDA assumes:

(i) YS = {xi,yi}N
′

i=1 ∼ pS(x,y), a labeled source domain dataset

(ii) XT = {xi}Ni=1 ∼ pT (x), an unlabeled target domain dataset

(iii) YT ⊆ YS , constraining the label-set of T with respect to S

Common UDA benchmarks like Office-Home (Venkateswara et al.,
2017) and VisDA-2017 (Peng et al., 2017) follow this setup (Xu et al.,
2021; Sun et al., 2022; Yang et al., 2023; Zhu et al., 2023).

ExPLoRA’s setting in section 4 is different: we only require weights WS from unsupervised pre-training on pS(x),
without source data access or label set restrictions. This enables adaptation across wider domain shifts (e.g., ImageNet to
multi-spectral satellite imagery, section 6.1.3). Thus, rather than competing with UDA methods, ExPLoRA can complement
them by providing a better initialization than standard natural-image pre-training (as seen empirically in appendix B.7).

B. Additional Experimental Results
Below, we include further experimental results as a continuation of section 6.
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B.1. Results on Additional Downstream Datasets

Method PEFT Top 1 Acc.
1 GASSL [2] Full 57.63
2 SatMAE [17] Full 71.77
3 SatMAE [17] LoRA-r8 69.45
4 MAE [28] LoRA-r8 70.36
5 DinoV2 [48] LoRA-r8 70.40
6 D-[L]-r32 LoRA-r8 70.40

Table 12: NAIP validation set results

NAIP We consider a land-cover classification dataset used in (Ayush
et al., 2021), where each of 244,471 training and 55,529 validation
images are paired with one of 66 land cover classes obtained by the
USDA’s National Agricultural Imagery Program. In table 12, we
first demonstrate similar performance between both natural-image
backbones (rows 4 and 5), which surprisingly outperform SatMAE,
which is pre-trained on fMoW-RGB. We use ExPLoRA to pre-train
from DinoV2 to the training set of this dataset (without labels). Our
results (row 6) demonstrate comparable performance, suggesting that
for this dataset, domain-specific knowledge may not be highly relevant
to successfully solve the task.

Method PEFT Top 1 Acc.
1 SeCo [44] Full 93.14
2 SatMAE [17] Full 98.98
3 SatMAE [17] LoRA-r8 98.73
4 DinoV2 [48] BOFT-b8m2 96.60
5 M-[1,L]-r64 LoRA-r8 98.54

Table 13: EuroSAT validation set results

EuroSAT The dataset contains 27,000 13-band satellite images
of 10 classes (Helber et al., 2019), sourced from Sentinel-2. For
ExPLoRA, we don’t pre-train on this dataset’s training set, and instead
use LoRA fine-tuning starting with the pre-trained weights learned in
the last row of table 4. We demonstrate improved performance over
DinoV2, and match the performance achieved by the domain-specific
SatMAE which was fully pre-trained on fMoW-Sentinel, and fully
fine-tuned on EuroSAT (table 13). This demonstrates the successful
use of our extended pre-trained model on further downstream datasets.

B.2. The Importance of Extended Pre-training
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Figure 7: Fine-tuning accuracy versus total compute
(measured in GPU-hours). Total compute includes
both pre-training (if applicable) and fine-tuning phases.
Along with the label for each method in the legend, we
include (#pre-training params, #fine-tuning params).

To evaluate ExPLoRA’s effectiveness, we analyze how its performance
scales with computational resources. Specifically, we investigate two
key questions: first, given a fixed compute budget, what is the optimal
allocation between extended pre-training and fine-tuning? Second,
for a fixed parameter budget, does investing compute in extended pre-
training provide advantages over standard fine-tuning approaches?

We address these questions in fig. 7, focusing on DinoV2 models
running on NVIDIA-A4000 GPUs. We evaluate D-ExPLoRA-[L]-r64
for different lengths of pre-training (50k, 100k, 150k, and 200k iter-
ations), corresponding to 24, 48, 72, and 96 GPU-hours of extended
pre-training respectively. Each checkpoint undergoes LoRA-r8 fine-
tuning. We compare against three baselines: (i) Direct LoRA-r8
fine-tuning on DinoV2 weights (ii) Fine-tuning DinoV2 with block
24 unfrozen and LoRA-r64 (matching ExPLoRA’s parameter bud-
get) (iii) Fine-tuning DinoV2 with blocks 0, 1, 23, 24 unfrozen and
LoRA-r64 (55.8M parameters vs ExPLoRA’s 18.7M).

Results in fig. 7 demonstrate that ExPLoRA’s extended pre-training achieves a ↑ 1.0% improvement in maximum fine-tuning
accuracy within the same total compute budget (320 GPU hours). Notably, even increasing the parameter budget during
fine-tuning fails to match this performance. While additional pre-training iterations beyond 100k improve initial fine-tuning
accuracy, they have minimal impact on the final accuracy ceiling, highlighting ExPLoRA’s computational efficiency.
Importantly, the total amount of compute invested in pre-training and fine-tuning ExPLoRA is still dwarfed by the compute
spent for full pre-training from scratch, e.g., 960 GPU hours for SatMAE (table 1).

Lastly, we re-iterate that the benefits of extended pre-training become more pronounced as the domain gap increases. While
fig. 7 demonstrates a 1% improvement on RGB satellite images, table 4 highlights a 8% improvement when using ExPLoRA
+ PEFT (row 8) over full fine-tuning MAE (row 1) on multi-spectral satellite images– a domain with substantial shift
from natural images. ExPLoRA still requires less total compute (610 vs 770 GPU hours), demonstrating that its efficiency
advantages scale with domain difficulty.
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B.3. Convergence and Data Efficiency
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Figure 8: Lin. probe accuracy vs. number
of training iterations.

Another important question is on ExPLoRA’s data efficiency- i.e. can ExPLoRA
achieve good representations on the target domain without requiring many training
iterations?

In fig. 8, we plot the linear-probing accuracy against the number of extended pre-
training iterations for ExPLoRA (in blue). ExPLoRA improves quickly, requiring
between 100-150k extended pre-training iterations to reach optimal performance.
As discussed in section 6.1.2, unfreezing additional transformer blocks (in red)
fails to achieve the same level of performance while requiring more parameters.

One hypothesis for the effectiveness of pairing unfreezing blocks with LoRA is
that low-rank updates to the ViT backbone “nudge" the sequence of embedded
visual tokens from S to those representing T , which then enables the unfrozen ViT
block to efficiently compress global information from the new domain.

B.4. Impact of MAE Decoder Rank

Decoder
Rank r′

Top 1 Acc.

1 8 59.75
2 16 59.77
3 32 60.15
4 64 59.21

Table 14: Ablation on M-[1, L]-
r64 on the validation set of
fMoW-Sentinel. Here, the LoRA
rank used for the ViT-L encoder
is fixed at r = 64, while the rank
r′ for MAE decoder is varied.

As outlined in section 5, we initialize the MAE decoder gψ (with its LD transformer
layers) with pre-trained weights WS from He et al. (2022), keeping all decoder weights
(except layer norm) frozen during extended pre-training on XT . We apply LoRA with
rank r′ to the Q,V weights of the attention layers in the decoder LD, while unfreezing
1-2 blocks U in the ViT encoder L and applying LoRA with rank r to the remaining layers
L \ U (algorithm 1).

We evaluate ExPLoRA with M-[1, L]-r64 on fMoW-Sentinel, using a fixed encoder LoRA
rank r = 64, unfreezing blocks U = {1, L}, and varying the decoder rank r′. We then
fine-tune the resulting model with LoRA r = 8 and measure the highest top 1 accuracy on
the validation set of fMoW-Sentinel. Table 14 shows that increasing r′ up to 32 improves
fine-tuning performance, which then declines by ↓ 0.94% for r′ = 64. This suggests that
balancing the unfrozen parameters between the ViT encoder fθ (used for fine-tuning) and
the MAE decoder gψ (discarded post pre-training) is crucial. Larger r′ may improve the
decoder’s ability without benefiting the learned representations of f . This issue doesn’t
arise in DinoV2, as the Dino-iBOT shared head is fully trained since it isn’t provided by Oquab et al. (2024).

B.5. Impact of ViT backbone size

Method Arch. Top 1 Acc.
Last 1/Last 4

1 DinoV2 [48] ViT-B 63.62/65.90
2 DinoV2 [48] ViT-L 67.60/69.00
3 DinoV2 [48] ViT-G 70.07/70.36
4 D-[12]-r64 ViT-B 74.72/75.11
5 D-[24]-r64 ViT-L 76.86/77.48
6 D-[32]-r32 ViT-G 77.29/77.79

Table 15: Linear probing results on fMoW-RGB
(validation), where we vary the size of the ViT
encoder L from ViT-B, ViT-L, and ViT-G. “Last
1/Last 4” refers to using the output representa-
tion from just the last 1 or the last 4 ViT layers.

We also test the impact of the ViT backbone for ExPLoRA, varying the
architecture for DinoV2 from ViT-B (86M, L = 12 layers, embedding
dimension 768), ViT-L (303M parameters, L = 24 layers, embedding
dimension 1024), and ViT-G (1100M parameters, L = 40 layers, embedding
dimension 1280) for extended pre-training on fMoW-RGB. The ExPLoRA
models we compare against are D-[12]-r64 for ViT-B, D-[24]-r64 for
ViT-L, and D-[32]-r32 for ViT-G. We unfreeze the 12th, 24th, and 32nd
layers for each of ViT-B, ViT-L, and ViT-G, picking these layers by extending
the analysis from section 7 to ViT-B and ViT-G. We find that the 12th
(last layer) for ViT-B and the 32nd (out of 40) layer for ViT-G output
representations with low mean eigenvalues compared to other layers, thus
presenting good candidates for unfreezing.

In table 15, we see that as expected, ViT-G performs the best, but is only
↑ 0.31% better in top 1 accuracy compared to ViT-L, while using many
more parameters. On the other hand, we see the highest impact for ExPLoRA on ViT-B, where the top 1 accuracy improves
by ↑ 9.21% over the original DinoV2 ViT-B. These results further demonstrate the effectiveness and efficiency of ExPLoRA
as a powerful technique to create unsupervised foundation models for new visual domains.
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B.6. Additional PEFT baselines for MAE

As a continuation of table 1, we include PEFT methods used on MAE weights, which generally underperform compared
with DinoV2. For completeness, these results are in table 16.

Model Arch. PEFT Pre-Train
Params

Fine-Tune
Params

Pre-Train
GPU hours

Fine-Tune
GPU hours Top 1 Acc.

1 SatMAE [17] ViT-L LoRA-r8 [30] 303.3M 0.8M 960 220 76.10
2 MAE [28] ViT-L LoRA-r8 [30] – 0.8M – 220 76.21
3 MAE [28] ViT-L DVPT-10 [31] – 0.4M – 500 72.35
4 MAE [28] ViT-L GVPT-100 [74] – 0.4M – 500 70.86
5 MAE [28] ViT-L SA2VP [50] – 1.1M – 410 73.55
6 MAE [28] ViT-L AdaLoRA-r8 [77] – 1.2M – 220 75.25
7 MAE [28] ViT-L Adapter+ [61] – 1.4M – 220 74.10
8 MAE [28] ViT-L Mona [73] – 7.1M – 220 74.76
9 M-[L]-r64 ViT-L LoRA-r8 [30] 18.7M 0.8M 80 220 76.55

Table 16: MAE+PEFT results on fMoW-RGB validation split (table 1, contd.). “Pre-train Params" and “Fine-tune Params" refer to
trainable parameters of the ViT encoder required on the new domain (satellite images).

Pre-training ExPLoRA with MAE is slightly more efficient than with DinoV2 (i.e. 80 vs 100 GPU hours) due to two factors:
the MAE encoder only operates on visible image patches, and unlike DinoV2, it does not require maintaining a separate
"teacher" model copy.

B.7. Results on UDA Benchmarks

As discussed in appendix A.2, while ExPLoRA is not a traditional unsupervised domain adaptation (UDA) method, it can
serve as an initialization for ViT-based UDA approaches. We demonstrate this compatibility below.

Method Arch. Init. plane bcycl bus car horse knife mcycl person plant sktbrd train truck Mean

1 CDTrans [70] DEiT IN 97.1 90.5 82.4 77.5 96.6 96.1 93.6 88.6 97.9 86.9 90.3 62.8 88.4
2 PMTrans [80] ViT-B IN-21k 98.9 93.7 84.5 73.3 99.0 98.0 96.2 67.8 94.2 98.4 96.6 49.0 87.5
3 TVT [71] ViT-B IN-21k 97.1 92.9 85.3 66.4 97.1 97.1 89.3 75.5 95.0 94.7 94.5 55.1 86.7
4 TVT* [71] ViT-B IN-21k 95.8 85.8 81.9 68.4 95.9 96.2 91.9 70.3 93.8 93.7 92.9 48.5 84.6
5 TVT [71] ViT-B DinoV2 98.9 88.7 90.3 64.2 99.3 74.5 95.3 66.0 85.3 94.6 97.9 54.6 84.1
6 TVT [71] ViT-B Ours 97.0 89.9 89.4 73.8 98.0 88.9 94.4 85.9 93.8 94.5 97.7 54.3 88.2
7 SSRT [62] ViT-B IN-21k 98.9 87.6 89.1 84.8 98.3 98.7 96.3 81.1 94.9 97.9 94.5 43.1 88.8
8 SSRT [62] ViT-B DinoV2 99.2 88.1 89.9 85.4 98.4 98.9 97.6 84.8 96.2 97.1 95.4 48.3 89.9
9 SSRT [62] ViT-B Ours 99.4 88.6 91.4 87.9 98.3 99.1 97.1 88.0 95.9 98.1 96.0 51.2 90.9

Table 17: Classification accuracy (%) on VisDA-2017 (validation). Results marked with * use our reproduced results. Using ExPLoRA
initialization improves UDA performance compared to standard ImageNet initialization.

VisDA2017 The VisDA2017 dataset (Peng et al., 2017) contains 152,297 training and 55,388 validation images across 12
object classes. The dataset represents a synthetic-to-real domain shift: training images are synthetically rendered 3D models
under various lighting conditions, while validation images are sourced from MS-COCO (Lin et al., 2014).

Table 17 shows ExPLoRA’s effectiveness when combined with TVT (Yang et al., 2023) and SSRT (Sun et al., 2022), two
state-of-the-art UDA methods. Using ExPLoRA D-[12]-r64 (DinoV2-initialized ViT-B with last layer unfrozen and
LoRA-r64 elsewhere) pre-trained on both synthetic and real domains, we outperform traditional ImageNet-21k (Deng et al.,
2009) initialization by 1-3% while achieving more balanced per-class accuracy. Most notably, when using SSRT, we achieve
a new SoTA accuracy of 90.9%, surpassing both ImageNet and DinoV2 initialization by substantial margins (↑2.1% and
↑1.0% respectively). These results are particularly significant as they show ExPLoRA’s unsupervised initialization can
outperform methods that rely on supervised ImageNet-21k pre-training. The benefits of ExPLoRA initialization are also
clear with TVT, where performance rises to 88.2% to match recent SoTA methods (Xu et al., 2021; Zhu et al., 2023)– a
marked improvement over both its original results (↑2.1%) and DinoV2 initialization (↑4.1%). These results demonstrate
that ExPLoRA serves as a powerful initialization strategy for UDA, effectively bridging domain gaps while remaining
computationally efficient.
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B.8. Attention Map Visualizations

To aid our analysis in section 7, we visualize attention scores for different ViT blocks across multiple models, including
DinoV2, D-[L]-r64 (i.e. the last row of table 3), the second and third rows of table 3, MAE, SatMAE, and M-[L]-r64.
These visualizations are shown in fig. 9 for 3 different images from the validation set of fMoW-RGB. Since our models are
trained without registers, we truncate attention scores more than 5 standard deviations away from the mean, thus removing
artifact attention scores with unusually high values on background patches (Darcet et al., 2024).
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Figure 9: Attention maps visualized from the validation set of fMoW-RGB. The models considered, from left to right, are: DinoV2,
D-ExPLoRA-[L]-r64, Dino with blocks 22,23 unfrozen during extended pretraining, Dino with LoRA-r256 during extended pre-training,
MAE, SatMAE, and M-ExPLoRA-[L]-r64. We visualize the attention maps at the beginning, middle, and end blocks of the ViT-L.

The visualizations in fig. 9 further support the analysis in section 7. For the Dino models, the attention scores of block 9-10
are diffuse and spread around the central object of the image, with quite a few border pixels highlighted. Conversely, the
attention scores of the final layers are concentrated more towards the central object. These visualizations further suggest that
the middle layers focus on capturing local properties of the images such as texture, while the final layers capture global
semantic information such as object-ness. Interestingly, the initial blocks for the Dino models display sparse attention
patterns with spikes on seemingly random patches. This might suggest a form of caching to aid the computation of deeper
layers that will extract local or global information.

For the MAE models, we see that the original MAE (pre-trained on natural images) seem to highlight more border pixels in
the final layers of the ViT. Post extended pre-training with ExPLoRA, the final layers concentrate attention scores on the
central object, more closely resembling the patterns of SatMAE (which was fully pre-trained on satellite images). ExPLoRA
is thus able to successfully transfer knowledge from its initialized source-domain weights WS to serve as a foundation
model W ∗

T on the new target domain T .

C. Training Details
In this section, we describe hyperparameters and hardware configurations used for our models. We also include details on
datasets used for our experiments.

C.1. Pre-Training

We use the ViT-Large architecture for all experiments. Since raw image sizes vary, the shorter image size is resized to
224 while preserving aspect ratio, and then a center crop is taken to yield images of size 3× 224× 224, representing the
channels, height, and width. All pre-training is done on a single NVIDA-RTX 6000 Ada GPU, or 4 NVIDIA-RTX A4000
GPUs on an academic GPU cluster.

ExPLoRA with MAE Most of the hyperparameters we use for M-ExPLoRA pre-training follow those in He et al. (2022);
Cong et al. (2022). We use an effective batch size of 1024 (through gradient accumulation), a base learning rate of 4.5×10−4,
no weight decay, and a warmup and decaying cosine scheduler, with a warmup of 1 epoch, and a total training time of 200
epochs. We use a masking ratio of 0.75 and we use the norm_pix_loss flag for the MSE loss.
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ExPLoRA with DinoV2 Most of the hyperparameters for D-ExPLoRA follow the defaults set by Oquab et al. (2024).
That is, local (small) crops are between 5%-32% of the original image and are resized to 98x98 pixels, and global (large)
crops are greater than 32% of the image and resized to 224x224 pixels. We share the parameters of the Dino-iBOT linear
head (3 layers), with a bottleneck dimension of 256, a hidden dimension of 2048, and an output dimension of 65536,
initialized from scratch. For Dino, we use Sinkhorn-Knopp (Caron et al., 2020) centering and Koleo (Delattre & Fournier,
2017) regularization with a weight of 0.1. For iBOT, we use masking ratios between 0.1 and 0.5 to mask half of the samples
in the batch. The teacher model uses an initial EMA rate of 0.994, with a cosine warmup to 1.000 by the end of training.
The teacher warmup and final temperatures are 0.04 and 0.07. The linear Dino-iBOT head is frozen for the first 3k training
iterations. We train with the AdamW optimizer (no weight decay), with a base learning rate of 2× 10−3 that is varied with a
linear warmup and cosine decay schedule. Training is completed within 200,000 iterations, with a batch size of 32 and with
32 gradient accumulation steps (equalling an effective batch size of 1024), and with an epoch length set to 1000.

C.2. PEFT Fine-Tuning

We fine-tune using 4 NVIDIA-RTX A4000 GPUs. We use a base learning rate of 10−3, a cosine scheduler with warmup for
1 epoch, and train for 120 epochs. We use an effective batch size of 256, making use of gradient accumulation if the GPU
cannot fit the full batch size in memory.

For data augmentations, we only use the drop-path augmentation (Larsson et al., 2016) at a rate of 0.2, with no dropout,
mixup, or cutmix. We note that the original LoRA configuration outperforms other PEFT techniques when paired with the
drop-path regularization technique. For example, we find that BOFT does not pair well with drop-path, instead performing
most effectively with a custom multiplicative dropout technique (Liu et al., 2024). We include the result with the best
hyperparameter configuration for each row in table 1.

C.3. Linear Probing

We use a single NVIDIA-RTX A4000 GPU for linear probing. We adapt the code provided by Oquab
et al. (2024) for linear probing, with a batch size of 256 and a collection of different learning rates:[
1× 10−4, 1× 10−3, 5× 10−3, 1× 10−2, 2× 10−2, 5× 10−2, 1× 10−1

]
. We evaluate both probing on average pooled

features as well as on the [CLS] token, and also use output features from just the last block, or the last 4 blocks. All numbers
reported represent the best validation set accuracy from the best performing configuration.

C.4. Multi-Spectral Images

We use the group-channel ViT-L architecture introduced in (Cong et al., 2022). We don’t use DinoV2 since there is no such
architecture for DinoV2 pre-training. Input images are 13× 98× 98, representing 13 multi-spectral bands. We follow the
configuration in Cong et al. (2022) of dropping bands B1, B9, B10, and use the same grouping strategy. When loading MAE
weights to the ViT-L encoder, the patch embeddings do not match and so the patch embedding and group channel encodings
are trained from scratch. All other configuration details are the same as for M-ExPLoRA in appendix C.1, except that we
use a base learning rate of 4.5× 10−4 for pre-training and train for 50 epochs (given the larger dataset size) on 4 NVIDIA
RTX A4000 GPUs for 80 hours.

Fine-tuning details are the same as in C.2.

C.5. Dataset Information

We include detailed information about the datasets used in our experiments. Table 18 shows the number of samples in the
train and validation splits for all datasets used in this work.

Hyperparameter and training configuration details are the same as in appendix C.1 if the images are RGB, and the same as
in appendix C.4 if the images have more channels or are temporal.

Since each dataset contains a varying number of training images, the number of ExPLoRA pre-training iterations should be
adjusted accordingly. We include the recommended number of ExPLoRA pre-training iterations in table 18. Note, however,
that this number can be varied depending on other hyperparameters such as batch size, learning rate, LoRA rank, and number
of unfrozen blocks.
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Dataset #Train #Validation ExPLoRA Iters Domain

fMoW-RGB 363.6k 53.0k 200k Remote Sensing
fMoW-Sentinel 712.9k 84.9k 80k Remote Sensing (Multi-spectral)

fMoW-Temporal 83.4k 14.2k 80k Remote Sensing (Temporal)
SpaceNet V1 6.0k 1.5k 10k Remote Sensing

Resisc-45 18.9k 6.3k – Remote Sensing
NAIP 244.4k 55.5k 200k Remote Sensing

EuroSAT 16.2k 5.4k – Remote Sensing (Multi-spectral)
Camelyon17 302.4k 33.6k 200k Medical Imaging

iWildcam 129.8k 7.3k 150k Wildlife
GlobalWheat 2.9k 0.4k 80k Agricultural
VisDA2017 152.3k 55.4k 200k Synthetic-to-Real

Table 18: Dataset splits and sizes used in our experiments, as well as suggested number of ExPLoRA pre-training iterations.

In general, we find that ExPLoRA demonstrates the largest performance gains on larger datasets where sufficient diversity
prevents overfitting during extended pre-training. For datasets with fewer than 50k training samples (e.g., SpaceNet V1,
GlobalWheat), the improvements from ExPLoRA are more modest, as the limited data diversity can lead to overfitting
with extensive pre-training. Conversely, ExPLoRA works exceptionally well on larger datasets such as fMoW-(RGB,
Sentinel, Temporal), Camelyon17, and VisDA2017, where 100k-200k pre-training iterations provide substantial performance
improvements while maintaining computational efficiency compared to full domain-specific pre-training.

The licenses for all datasets are included in the footnotes: fMoW1, Sentinel-22, EuroSAT3, SpaceNet4, Camelyon175,
iWildCam6, GlobalWheat7.

D. Environmental Impact
Following (Cong et al., 2022), we compare the carbon footprint of pre-training using ExPLoRA with domain-specific
solutions such as SatMAE. We use the carbon footprint calculator proposed by Lacoste et al. (2019). Our results are in
table 198

Method fMoW-RGB fMoW-Sentinel fMoW-Temporal
GPU hours kg CO2 eq. GPU hours kg CO2 eq GPU hours kg CO2 eq.

SatMAE 768 109.44 576 82.08 768 109.44
ExPLoRA 96 12.44 320 19.35 100 12.96

Table 19: The estimated carbon footprint of pre-training on these datasets

Since we initialize with pre-trained weights on natural image domains, ExPLoRA is much less environmentally impactful
while achieving similar or higher levels of performance. We achieve a 4x-8x reduction in total carbon emitted for each of
the large pre-training satellite image datasets considered in table 19.

1fMoW license: https://github.com/fMoW/dataset/raw/master/LICENSE
2Sentinel-2 license: https://scihub.copernicus.eu/twiki/pub/SciHubWebPortal/TermsConditions/

Sentinel_Data_Terms_and_Conditions.pdf
3EuroSAT license: https://creativecommons.org/licenses/by/4.0/
4SpaceNet v1 license: http://creativecommons.org/licenses/by-sa/4.0/
5Camelyon17 license:https://creativecommons.org/publicdomain/zero/1.0/
6iWildCam license:https://cdla.dev/permissive-1-0/
7GlobalWheat license:https://opensource.org/licenses/MIT
8Note: while the SatMAE paper reported 768 GPU hours for pre-training on fMoW-RGB and 576 GPU hours on fMoW-Sentinel, our

measurements in Tables 1-5 of the main text have a revised number to ensure consistency of hardware platforms across comparisons.
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