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Abstract

As deep learning models are increasingly de-
ployed in high-risk applications, robust defenses
against adversarial attacks and reliable perfor-
mance guarantees become paramount. Moreover,
accuracy alone does not provide sufficient assur-
ance or reliable uncertainty estimates for these
models. This study advances adversarial train-
ing by leveraging principles from Conformal Pre-
diction. Specifically, we develop an adversarial
attack method, termed OPSA (OPtimal Size At-
tack), designed to reduce the efficiency of con-
formal prediction at any significance level by
maximizing model uncertainty without requiring
coverage guarantees. Correspondingly, we intro-
duce OPSA-AT (Adversarial Training), a defense
strategy that integrates OPSA within a novel con-
formal training paradigm. Experimental evalua-
tions demonstrate that our OPSA attack method
induces greater uncertainty compared to baseline
approaches for various defenses. Conversely, our
OPSA-AT defensive model significantly enhances
robustness not only against OPSA but also other
adversarial attacks, and maintains reliable pre-
diction. Our findings highlight the effectiveness
of this integrated approach for developing trust-
worthy and resilient deep learning models for
safety-critical domains. Our code is available
at https://github.com/bjbbbb/Enha
ncing-Adversarial-Robustness-wit
h-Conformal-Prediction.
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1. Introduction
Recent advancements in Deep Neural Networks (DNNs)
have demonstrated remarkable efficacy across diverse do-
mains (He et al., 2016b; Gupta & Verma, 2023b;a). Despite
their success, a critical challenge remains in the precise
quantification of predictive uncertainty during real-world
deployment. Addressing this challenge, Conformal Pre-
diction (CP) (Vovk et al., 2005) has emerged as a promis-
ing paradigm, distinguished by its distribution-free proper-
ties and robust uncertainty quantification capabilities. This
data-driven methodology excels in both regression (Luo &
Zhou, 2025a) and classification (Luo & Zhou, 2024) tasks
by providing statistically rigorous confidence intervals and
well-calibrated probability estimates. Consequently, CP
effectively characterizes inherent data uncertainty while
maintaining controlled classification error rates. Moreover,
through the implementation of defensive mechanisms, CP
substantially enhances model robustness against adversarial
perturbations (Li et al., 2024), highlighting its significant
potential for deployment in safety-critical applications such
as autonomous driving (Doula et al., 2024) and medical
diagnosis (Luo et al., 2024).

In the context of CP, current research efforts in adver-
sarial robustness model primarily focus on adjusting non-
consistent scoring functions to mitigate the impact of ad-
versarial attacks on test or calibration data (Gendler et al.,
2021; Einbinder et al., 2022; Ghosh et al., 2023; Yan et al.,
2024; Cauchois et al., 2024). However, these approaches
present significant limitations. Firstly, ensuring comprehen-
sive coverage often requires substantially increasing the size
of the prediction set, which inevitably reduces the practi-
cal value and accuracy of the prediction results. Secondly,
these methods are typically optimized for specific types
of adversarial attacks (Croce et al., 2021), rendering their
robustness vulnerable when faced with unknown or novel
attack vectors. Additionally, existing techniques exhibit
notable deficiencies in computational efficiency and gen-
eralization ability, significantly hindering their widespread
adoption and practical application.

Some CP methods enhance adversarial robustness even fur-
ther by integrating adversarial training (AT) algorithms. In
these algorithms, adversarial training is conceptualized as a
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two-player zero-sum game, where a defender and an adver-
sary strive to minimize and maximize classification errors,
respectively (Nouiehed et al., 2019). However, the inherent
discontinuity of classification errors poses challenges for
first-order optimization algorithms, making the practical
implementation of this zero-sum framework difficult. Re-
cently, (Robey et al., 2024) redefined adversarial training
as a non-zero-sum game by pursuing distinct objectives,
thereby advancing the training process.

Despite these advancements, the application of Conformal
Prediction (CP) within adversarial settings presents unique
challenges (Gendler et al., 2021). Specifically, within the
CP framework, the primary objective is to minimize the
size of the prediction set while ensuring statistical coverage.
Achieving this balance is crucial, as overly large prediction
sets can reduce the practical utility and interpretability of
the model’s outputs. However, there is a scarcity of research
that directly addresses the optimization of prediction set size
within CP, especially in adversarial contexts. Most existing
studies focus on maintaining coverage under adversarial per-
turbations, often at the expense of significantly enlarging the
prediction sets (Ghosh et al., 2023). Notably, (Stutz et al.,
2021) introduced conformal training methods aimed at more
effectively minimizing the prediction set size without com-
promising coverage guarantees. This approach represents a
promising direction for future work, as it seeks to enhance
the practical applicability of CP by ensuring that the gen-
erated prediction sets are both accurate and manageable in
size.

To address the aforementioned challenges, we propose an
adversarial training algorithm within the Conformal Predic-
tion framework, aimed at minimizing the prediction set size
while ensuring coverage. Specifically, our contributions are
as follows:

• We design a differentiable and smooth attack function
based on negative gradients. This attack method max-
imizes the size of the prediction set by introducing
imperceptible perturbations.

• We develop a CP defense model leveraging adversarial
attacks with theoretical guarantees. By partitioning the
training set into two subsets—one dedicated to ensur-
ing coverage and the other to minimize the prediction
set size—we address this as a bi-objective optimization
problem.

• Through experiments CIFAR-10, CIFAR-100 and mini-
ImageNet datasets, we demonstrate that our attack
method generates the largest prediction set sizes com-
pared to existing attack techniques, thereby increas-
ing model uncertainty. Additionally, our adversarially
trained model effectively minimizes model uncertainty
and enhances robustness relative to other methods.

2. Related Work
Conformal prediction (CP) (Vovk et al., 2005) is a method-
ology designed to generate prediction regions for variables
of interest, thereby enabling the estimation of model un-
certainty by substituting point predictions with prediction
regions. This methodology has been widely applied in
both classification (Luo & Zhou, 2024; Luo & Colombo,
2024; Luo & Zhou, 2025b) and regression tasks (Luo &
Zhou, 2025e;f). Furthermore, CP can be adapted to diverse
real-world scenarios, including segmentation (Luo & Zhou,
2025c), time-series forecasting (Su et al., 2024), and graph-
based applications (Luo et al., 2023; Tang et al., 2025; Luo
& Zhou, 2025d; Wang et al., 2025; Luo & Colombo, 2025;
Zhang et al., 2025).

Adversarial Attack against Conformal Prediction The
emergence of adversarial phenomena (Goodfellow et al.,
2014; Zhang et al., 2022) has raised significant security con-
cerns in machine learning. Uncertainty estimation plays a
vital role in ensuring the robustness of deep learning mod-
els. Conformal Prediction (CP) (Vovk et al., 2005), offers
distribution-free coverage guarantees but encounters difficul-
ties when subjected to data poisoning and adversarial attacks.
Studies such as Liu et al. (2024) demonstrate that standard
adversarial attack techniques, including PGD (Madry et al.,
2017), can effectively compromise the robustness of con-
formal prediction. Kumar et al. (2024) provide a survey
and comparative analysis of robust conformal prediction
methods, highlighting their strengths and limitations.

Adversarially Robust Conformal Prediction To miti-
gate the adversarial impact on CP, a series of studies have at-
tempted to address this issue without involving training. Ad-
versarially Robust Conformal Prediction (ARCP) (Gendler
et al., 2021) combines conformal prediction with random-
ized smoothing to ensure finite-sample coverage guaran-
tees under L2-norm-bounded adversarial noise. It leverages
Gaussian noise to bound the Lipschitz constant of the non-
conformity score, addressing unknown adversarial perturba-
tions without training. Probabilistically Robust Conformal
Prediction (PRCP) (Ghosh et al., 2023) adapts to pertur-
bations using a quantile-of-quantile design, determining
thresholds for both data samples and perturbations. It uses
adversarial attacks to calculate empirical robust quantiles,
independent of model training. Yan et al. (2024) propose
Post-Training Transformation (PTT) and Robust Conformal
Training (RCT) to improve the efficiency of robust confor-
mal prediction. They modify RSCP into RSCP+ for certified
guarantees and embed it into the training process. Zargar-
bashi et al. (2024) derive robust prediction sets by bounding
worst-case changes in conformity scores for adversarial eva-
sion and poisoning attacks. They use CDF-based bounds
to compute conservative prediction sets and thresholds for
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these scenarios. Jeary et al. (2024) introduce Verifiable
Robust Conformal Prediction (VRCP), leveraging neural
network verification to maintain coverage guarantees under
adversarial attacks. VRCP supports arbitrary norm-bounded
perturbations and extends to regression tasks. These meth-
ods partially mitigate the adversarial impact; however, they
either compromise the compactness of the prediction set or
fail to maintain robustness against different types of attacks
and perturbation sizes.

Adversarial Training for Conformal Prediction To fur-
ther enhance adversarial robustness, a natural approach is
to incorporate adversarial training into CP. Liu et al. (2024)
propose Uncertainty-Reducing Adversarial Training (AT-
UR) to improve CP efficiency and adversarial robustness
by minimizing predictive entropy and using a weighted loss
based on True Class Probability Ranking. They integrate
AT-UR with AT (Madry et al., 2017), FAT (Zhang et al.,
2020), and TRADES (Zhang et al., 2019), using adversarial
examples generated by PGD (Kurakin et al., 2016). Luo
et al. (2024) propose training specialized defensive models
tailored to specific attack types and utilizing maximum and
minimum classifiers to effectively combine these defenses.
However, existing adversarial training methods for CP are
limited to specific attacks due to the challenge of solving the
max-min optimization in this context. To address this, we
reformulate it as a bi-level optimization, making our method
attack-agnostic.

3. Method
Consider a classifier network f : X → RK that maps an
input image x ∈ X to a logit vector f(x) ∈ RK . Here,
X = [0, 1]d represents the image space, where pixel values
are normalized and d denotes the image dimension. The
integer K signifies the total number of classes, and y ∈
[K] := {1, . . . ,K} denotes the ground truth label for the
input x.

3.1. Conformal Prediction

For a given classifier f and an input x, a prediction set can
be formed by selecting all classes k whose corresponding
logit fk(x) exceeds a certain threshold τ . This prediction
set is defined as:

Γ(x; f, τ) = {k ∈ [K] : fk(x) ≥ τ}. (1)

The THR method for conformal prediction (Sadinle et al.,
2019) determines this threshold τ as the (1− α)-quantile,
denoted q1−α, of conformity scores computed on a separate
calibration set. To be more precise, if {(xi, yi)} for i ∈ Ical

is the calibration set, then

q1−α = ⌈(1 + |Ical|)(1− α)⌉-th largest value in
{fyi

(xi) : i ∈ Ical}.

The resulting prediction set, Γ(x; f, q1−α), then guarantees
marginal coverage:

P (y ∈ Γ(x; f, q1−α)) ≥ 1− α. (2)

This means that, under the assumption of exchangeability
between calibration and test data, the prediction set includes
the true label y with a probability of at least 1− α.
Remark 1 (Choice of Non-conformity Score). In the pre-
ceding discussion and our proposed framework, we pri-
marily adopt the specific non-conformity score s(x, k) =
1 − fk(x) as utilized in the Threshold Response (THR)
method (Sadinle et al., 2019). It is important to note that
our methodology is not inherently limited to this particular
score. A variety of other non-conformity score functions
exist, such as those proposed in (Romano et al., 2020; Luo
& Zhou, 2024; 2025b). The core principles of our attack
and defense strategies can be readily extended to accommo-
date alternative score functions sf (x, y), provided that these
functions are differentiable (or at least sub-differentiable)
with respect to the model f ’s outputs (or more precisely,
with respect to the values fk(x) upon which sf depends).
Our choice of the THR score function is primarily moti-
vated by its potential to yield efficient prediction sets under
standard conditions. Furthermore, the resulting score for
the true class, s(x, y) = 1− fy(x), simplifies the notation
and derivation within our framework.

3.2. Adversarial Training as a Min-Max Problem.

Adversarial training is often conceptualized as a min-max
optimization problem, aiming to find model parameters θ
that minimize the loss on adversarially perturbed inputs.
This saddle-point problem can be formulated as (Madry
et al., 2017):

min
θ

E(x,y)∼D

[
max

∥ϵ∥p≤r
ℓ(θ,x+ ϵ, y)

]
. (3)

Here, (x, y) represents a data point sampled from the dis-
tribution D, consisting of an input x and its true label y.
The term ϵ denotes an adversarial perturbation, constrained
within a specific norm-ball (e.g., ∥ϵ∥p ≤ r, where p could
be ∞ or 2, and r is the perturbation budget). The func-
tion ℓ(θ,x + ϵ, y) is the loss incurred by the model with
parameters θ on the perturbed input x + ϵ with respect to
the true label y. The choice of the loss function ℓ can vary
depending on the specific task. In this paper, we will adopt
a loss function for conformal prediction task.
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3.3. Adversarial Attack against Conformal Prediction

An adversarial perturbation ϵ against conformal prediction
aims to disrupt the prediction set Γ(f(x+ ϵ), τ) of classifier
f while remaining imperceptible. The adversarial attack
seeks to achieve the following objectives:

• Maximize uncertainty: Increase the expected size
of the conformal prediction set E [|Γ (f(x+ ϵ), τ) |]
to reduce the informativeness of predictions at any
threshold τ . τ is unknown since the attacker do not
know the significance level of the defender.

• Maintain imperceptibility: Ensure the perturbation
satisfies the constraint ∥ϵ∥p ≤ r for a predefined bud-
get r to remain undetectable.

We propose the following objective for fixed classifier net-
work but it does not involve a significance level α. We first
define soft set size

MT (x; f, τ) =
∑

k∈[K]

σ

(
fk(x)− τ

T

)
, (4)

where σ(x) = 1/(1 + e−z) is the sigmoid function and
T > 0 is a temperature hyperparameter. It is worth noting
that for fixed (x; f, τ) such that fk ̸= τ for every k ∈ [K],

lim
T↓0

σ

(
fk(x)− τ

T

)
= 1{k ∈ Γ(x; f, τ)}, (5)

and

lim
T↓0

MT (x; f, τ) = |Γ(x; f, τ)|. (6)

The sigmoid function and MT represent the soft indica-
tor function and set size function respectively. This is a
technique also employed in conformal training methodolo-
gies (Stutz et al., 2021). For a given input sample (x, y), we
propose that the attacker’s objective is to find an adversarial
perturbation ϵ∗(x, y) that maximizes this soft set size, using
the perturbed true class score fy(x+ ϵ) as the internal ref-
erence threshold within MT . The optimization problem is
thus formulated as:

ϵ∗(x, y) = argmax
ϵ:∥ϵ∥p≤r,

x+ϵ∈[0,1]d

MT (x+ ϵ; f, fy(x+ ϵ)). (7)

Here, the maximization is performed for each specific sam-
ple (x, y) to find its corresponding optimal perturbation.

The construction of this objective function shares conceptual
similarities with prior work, such as (Robey et al., 2024),
particularly in its implicit use of logit differences of the
form fk(x + ϵ) − fy(x + ϵ). Our approach distinctively

Algorithm 1 Optimal Size Attack (OPSA)
Require: A single labeled data: (x, y);

Perturbation budget: r; Temperature: T1;
Maximum iteration number: J ;
Targeted classifier: f ;
Learning rate: η.

Ensure: Adversarial perturbation: ϵ∗.
1: function OPSA(Dtrain, r, f, T1, J, η)
2: ▷ Initialize Perturbation:
3: ϵ←− Unif(Br(0)).
4: while j ≤ J or ϵ has not converged do
5: ▷ Update Perturbation:
6: ϵ←− ϵ+ η∇ϵMT1(x+ ϵ; f, fy(x+ ϵ))
7: ϵ←− ΠBr(0)∩([0,1]d−x)

8: j ←− j + 1
9: end while

10: Return ϵ∗

11: end function

applies a scaled sigmoid function to these effective differ-
ences (achieved by setting the internal threshold of MT to
fy(x + ϵ)) to specifically target the maximization of the
(soft) prediction set size. A key advantage of this formula-
tion is that the attacker does not require knowledge of the
defender’s chosen significance level α (and consequently,
the operational threshold τ ) to craft the perturbation ϵ∗.

Algorithm 1 details the iterative process for finding the
optimal perturbation ϵ∗ for a given input sample. Although
presented conceptually as gradient ascent for simplicity, our
actual implementation leverages the Adam optimizer for
more effective and stable optimization, leading to higher-
quality adversarial perturbations. A critical component of
each iteration is the projection of the updated perturbation
ϵ back onto the feasible region. This step guarantees that
the perturbation satisfies both the norm constraint, ∥ϵ∥p ≤
r (confining ϵ to the ball Br(0)), and the image validity
constraint, ensuring x+ ϵ ∈ [0, 1]d. The set of perturbations
satisfying the image validity constraint can be expressed as
[0, 1]d − x = {ϵ ∈ Rd : x+ ϵ ∈ [0, 1]d}.

3.4. Adversarial Robust Conformal Training

In the context of the min-max formulation presented in (3),
adversarial training (AT) endeavors to identify a classifier
f(x; θ), parameterized by θ, that minimizes the loss in-
curred from potential adversarial perturbations ϵ applied to
the input images. Our work posits that for achieving robust
conformal prediction, it is particularly crucial to train the
classifier against the specific perturbation ϵ∗ generated by
our OPSA method (detailed in Algorithm 1). The training
of this classifier, f( · ; θ), is subsequently guided by the two
loss components detailed below.
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Classification Loss. The classification loss, denoted as
Lclass, is designed to encourage the inclusion of the true
class label y within the soft prediction set (implicitly defined
by τ and T2), while simultaneously penalizing the inclusion
of incorrect classes. For a given input x, its true label y,
classifier f , threshold τ , and temperature T2, this loss is
defined as:

Lclass (x, y; f, τ, T2) = σ

(
fy(x)− τ

T2

)
−
∑
k ̸=y

σ

(
fk(x)− τ

T2

)
.

To understand the behavior of this loss, consider the limit
as T2 ↓ 0, where the sigmoid function σ(·) approximates
an indicator function I(· ≥ 0). In this scenario, the first
term, σ

(
fy(x)−τ

T2

)
, approaches 1 if fy(x) ≥ τ (i.e., the

true label is correctly included in the hard prediction set),
and 0 otherwise. The second term,

∑
k ̸=y σ

(
fk(x)−τ

T2

)
,

approximates the count of incorrect classes k ̸= y for which
fk(x) ≥ τ (i.e., the number of incorrect labels erroneously
included in the hard prediction set). Thus, Lclass effectively
approximates the difference between an indicator for the
true label’s inclusion and the count of incorrectly included
labels. Maximizing this loss (or minimizing its negative)
encourages both the inclusion of y and the exclusion of
k ̸= y from the prediction set defined by τ .

Size Loss. The size loss, denoted as Lsize, aims to mini-
mize the average size of the confidence sets, thereby reduc-
ing inefficiency. The soft prediction set size is defined in (4).
We will use the same notation MT and its definition.

Total Loss Function. To balance the contributions of clas-
sification accuracy and the efficiency of the confidence sets,
the total loss function integrates the classification loss and
the size loss using a weighting factor λ:

Ltotal(x, y; θ, τ, T2) = Lclass(x, y; f(·; θ), τ, T2)

+ λMT2
(x; f(·; θ), τ),

(8)

where θ are the parameters of f .

Adversarial Training Procedure. The algorithm trains
the model on noisy images subjected to the OPSA attack.
We assume the defender possesses noise-free images with
their corresponding labels. The perturbation ϵ∗, as the out-
put of Algorithm 1, is added to the images. Differing from
some conformal training approaches such as (Stutz et al.,
2021), the threshold τ in our method is obtained by comput-
ing the exact quantile, rather than being determined via a
sigmoid-approximated mechanism. The objective is then to
find θ∗ that minimizes the loss function defined in (8):

θ∗ := argmin
θ

∑
i∈Itrain

Ltotal(xi + ϵ∗i , yi; θ, τ, T2).

Algorithm 2 OPSA Adversarial Training (OPSA-AT)
Require: A set of labeled data: Dtrain;

Pre-trained classifier parameter: finit;
Pre-determined Coverage Probability: 1− α;
Maximum number of epoch: J ′;
Temperature: T2; Loss weight: λ;
Parameters for adversarial attack: r, T1, J .

Ensure: Robust conformal prediction model f∗.
1: function OPSA-AT(Itrain, f, T2,K

′, λ)
2: ▷ Initialize classifier parameter:
3: θ ← θinit
4: while j ≤ J ′ or θ has not converged do
5: for mini-Batch B ⊂ Dtrain do
6: Randomly split B into Btrain and Bcal.
7: ▷ Train attacker’s perturbation:
8: for i ∈ Btrain do
9: ϵ∗i ←− OPSA((xi, yi), r, f

AT( · , θ), T1, J, η).
10: end for
11: ▷ Find threshold:
12: τ ←− as the ⌈(1 + |Bcal|)(1 − α)⌉ largest

fyi
(xi; θ) for (xi, yi) ∈ Bcal.

13: ▷ Update classifier parameter:
14: I ←− set of indices of Btrain
15: θ ← θ − η∇θ

∑
i∈I
Ltotal(xi + ϵ∗i , yi; θ, τ, T2)

16: j ←− j + 1
17: end for
18: end while
19: θ∗ ←− θ
20: Return fAT( · , θ∗)
21: end function

The optimization of θ (model training) and the determina-
tion of the threshold τ (calibration) are performed iteratively,
as the optimal τ depends on the current model f(·; θ), and
the update to θ depends on τ .

Algorithm 2 outlines the steps of our adversarial robust con-
formal training. In addition to the optimization procedure
for θ, the algorithm first specifies the mini-batch determi-
nation during the training process. For each batch, the data
(now adversarial) is further split into training and calibra-
tion subsets. The adversarial perturbation ϵ∗ is generated
based on the data designated for the training subset of the
batch, and the threshold τ is subsequently obtained from the
calibration subset of the same batch.

3.5. Conformal Prediction with the Robust Classifier

Having obtained a robust classifier, fAT(·; θ∗), through the
adversarial training procedure (OPSA-AT), we now inte-
grate it with the conformal prediction methodology. The
application of conformal prediction largely mirrors the pro-
cedure detailed in Section 3.1, with the crucial substitution
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of the original classifier f(x) with our adversarially trained
classifier fAT(x; θ

∗). The following key aspects underpin
this integration.

Data Splitting. A fundamental prerequisite for valid con-
formal guarantees is that the dataset used for training the
model parameters θ∗ (i.e., the adversarial training set) must
be strictly disjoint from the samples utilized for the CP cali-
bration phase. This separation is crucial for the integrity of
the CP guarantees.

Exchangeability for Calibration and Test Data. The
validity of CP hinges on the core assumption of exchange-
ability between the calibration and test samples. It is im-
portant to emphasize that this exchangeability assumption
does not impose specific requirements on whether these
samples are adversarially perturbed or not. For instance, the
CP guarantees hold if all calibration and test samples are
clean (unperturbed), if all are perturbed (e.g., by the OPSA
attack detailed in Algorithm 1), or if a random subset of
them is perturbed, as long as the perturbation mechanism (or
lack thereof) is applied consistently or randomly in a way
that preserves exchangeability between the two sets. The
validity of CP relies solely on this exchangeability property
of the (potentially transformed) data points.

Experimental Focus. In the experimental evaluations pre-
sented in this paper, we specifically investigate a challeng-
ing scenario. While the adversarial training for θ∗ might
be based on or include clean samples, both the calibration
and test datasets are composed of samples adversarially per-
turbed by our OPSA method. This setup stringently tests
the robustness of the conformalized predictions.

4. Experiments
Settings. In this section, we evaluate the performance of
OPSA and OPSA-AT on the CIFAR-10 (Krizhevsky et al.,
2009) and CIFAR-100 datasets using ResNet34 (He et al.,
2016a) as the training framework. Additionally, we con-
duct evaluations on the mini-ImageNet (Deng et al., 2009;
Vinyals et al., 2016) dataset using ResNet50. For attack,
we compare OPSA to methods such as FGSM (Goodfel-
low et al., 2014), PGD10 (Madry et al., 2017), PGD40,
BETA10 (Robey et al., 2024), Square (1000 queries) (An-
driushchenko et al., 2020), Auto100 attack (Croce & Hein,
2020), and APGD100 (Croce & Hein, 2020), where the su-
perscript indicates the attack iteration. For defense, we
select adversarial training based on FGSM, PGD, as well as
TRADES (Zhang et al., 2019), MART (Wang et al., 2019),
and BETA-AT for comparison, with each model undergoing
10 iterations. For parameter settings, we adhere to the stan-
dard perturbation budget of ϵ = 8/255 (0.03) and ℓ∞ norm,
applying a step size of 2/255 attacks during training and
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Figure 1. Box-violin plots of CIFAR-10 results under FGSM, PGD,
and TRADES defense models

testing. The trade-off parameter for TRADES and MART
is set to 5, in alignment with their original implementa-
tions. To initialize our models, We conduct pre-training on
clean data for 5 epochs on the CIFAR−10 and CIFAR−100
datasets, while for the mini-ImageNet dataset, we perform
10 epochs of pre-training on clean data. Subsequently, on
the CIFAR−10 and CIFAR−100 datasets, we split the test
set into Ical and Itest in a ratio of 20% to 80%. Given that the
training and test sets of mini-ImageNet are not interchange-
able, we divide its training set into Itrain, Ical, and Itest in
proportions of 50%, 25%, and 25%, respectively. Follow-
ing (Stutz et al., 2021), we set both T1 and T2 to 1 on the
CIFAR−10, CIFAR−100,and Mini-ImageNet datasets to
approximate the THR method. We evaluate model robust-
ness by launching attacks on both validation and test sets,
setting the alpha parameter to 10%.
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Attacks Indicator Training Algorithm
FGSM PGD10 TRADES10 MART10 BETA-AT10 OPSA-ST10 OPSA-AT10

Clean
Coverage (%) 90.50 ± 0.33 89.40 ± 0.34 89.72 ± 0.35 89.44 ± 0.34 88.24 ± 0.36 89.49 ± 0.31 89.25 ± 0.34

Size 2.00 ± 0.01 4.15 ± 0.02 1.51 ± 0.01 1.29 ± 0.01 7.06 ± 0.03 1.30 ± 0.01 1.24 ± 0.01
SSCV 0.04 ± 0.01 0.02 ± 0.01 0.04 ± 0.01 0.10 ± 0.01 0.11 ± 0.03 0.08 ± 0.03 0.08 ± 0.01

FGSM
Coverage (%) 87.99 ± 0.37 88.88 ± 0.38 89.05 ± 0.34 89.08 ± 0.35 90.05 ± 0.66 89.38 ± 0.35 89.48 ± 0.35

Size 6.61 ± 0.02 4.43 ± 0.02 3.59 ± 0.02 4.61 ± 0.02 3.20 ± 0.02 2.56 ± 0.02 2.50 ± 0.02
SSCV 0.03 ± 0.01 0.03 ± 0.01 0.02 ± 0.01 0.03 ± 0.01 0.08 ± 0.07 0.02 ± 0.01 0.03 ± 0.01

PGD10
Coverage (%) 88.24 ± 0.36 88.84 ± 0.36 89.08 ± 0.35 89.36 ± 0.34 88.90 ± 0.34 89.19 ± 0.34 89.29 ± 0.35

Size 7.06 ± 0.02 4.46 ± 0.02 3.96 ± 0.02 5.19 ± 0.02 6.63 ± 0.02 3.46 ± 0.03 3.24 ± 0.03
SSCV 0.02 ± 0.01 0.03 ± 0.01 0.02 ± 0.01 0.05 ± 0.01 0.06 ± 0.02 0.07 ± 0.01 0.07 ± 0.01

PGD40
Coverage (%) 88.33 ± 0.37 88.84 ± 0.34 89.35 ± 0.35 89.04 ± 0.35 88.92 ± 0.35 89.20 ± 0.35 89.30 ± 0.03

Size 7.07 ± 0.02 4.47 ± 0.02 3.97 ± 0.02 5.19 ± 0.02 6.84 ± 0.03 3.46 ± 0.03 3.24 ± 0.03
SSCV 0.02 ± 0.03 0.03 ± 0.01 0.02 ± 0.01 0.05 ± 0.02 0.08 ± 0.02 0.07 ± 0.01 0.07 ± 0.01

BETA10
Coverage (%) 88.05 ± 0.37 89.21 ± 0.35 89.06 ± 0.35 89.21 ± 0.35 90.40 ± 0.33 89.69 ± 0.35 88.98 ± 0.36

Size 6.38 ± 0.02 3.89 ± 0.02 2.77 ± 0.02 3.89 ± 0.03 3.19 ± 0.01 2.10 ± 0.02 2.04 ± 0.02
SSCV 0.03 ± 0.01 0.03 ± 0.01 0.05 ± 0.01 0.05 ± 0.01 0.09 ± 0.09 0.03 ± 0.01 0.03 ± 0.01

Square
Coverage (%) 89.44 ± 0.36 89.40 ± 0.35 90.86 ± 0.32 89.41 ± 0.35 88.24 ± 0.37 89.52 ± 0.34 89.09 ± 0.34

Size 5.38 ± 0.03 4.16 ± 0.02 2.16 ± 0.02 3.10 ± 0.02 7.45 ± 0.03 1.96 ± 0.02 1.90 ± 0.03
SSCV 0.01 ± 0.01 0.02 ± 0.01 0.06 ± 0.01 0.01 ± 0.03 0.32 ± 0.08 0.05 ± 0.01 0.03 ± 0.01

APGD100
Coverage (%) 89.25 ± 0.34 89.40 ± 0.35 89.58 ± 0.35 89.59 ± 0.33 90.64 ± 0.33 89.81 ± 0.34 89.78 ± 0.35

Size 5.76 ± 0.03 4.16 ± 0.02 2.64 ± 0.02 3.94 ± 0.03 7.66 ± 0.03 2.42 ± 0.02 2.32 ± 0.20
SSCV 0.02 ± 0.01 0.02 ± 0.01 0.05 ± 0.01 0.05 ± 0.01 0.25 ± 0.06 0.05 ± 0.00 0.06 ± 0.00

Auto
Coverage (%) 89.22 ± 0.36 89.40 ± 0.34 89.58 ± 0.35 89.56 ± 0.34 88.24 ± 0.36 89.82 ± 0.33 89.76 ± 0.34

Size 5.77 ± 0.03 4.16 ± 0.02 2.66 ± 0.02 3.95 ± 0.03 7.71 ± 0.03 2.44 ± 0.02 2.36 ± 0.02
SSCV 0.02 ± 0.01 0.02 ± 0.01 0.05 ± 0.00 0.05 ± 0.01 0.60 ± 0.30 0.05 ± 0.00 0.06 ± 0.00

OPSA10
Coverage (%) 89.61 ± 0.36 89.11 ± 0.34 89.62 ± 0.35 90.46 ± 0.32 89.92 ± 0.35 89.70 ± 0.33 89.50 ± 0.34

Size 7.29 ± 0.02 4.50 ± 0.02 4.02 ± 0.02 5.40 ± 0.02 7.34 ± 0.02 3.37 ± 0.03 3.11 ± 0.03
SSCV 0.09 ± 0.00 0.04 ± 0.01 0.03 ± 0.01 0.04 ± 0.01 0.02 ± 0.01 0.02 ± 0.00 0.03 ± 0.01

Table 1. Mean and Standard Deviation of Coverage, Size, and SSCV for CIFAR-10

Metrics. To comprehensively assess the performance of
shape-preserving prediction methods, we adopt three core
metrics: Coverage, Size, and Size-Stratified Coverage Viola-
tion (SSCV).

The Coverage metric quantifies the proportion of test in-
stances in Itest for which the true label is encompassed
within the prediction set Γ(x; f, τ), formulated as:

Coverage =
1

|Itest|
∑
i∈Itest

1 (yi ∈ Γ(xi; f, τ)) . (9)

A higher coverage value signifies that the prediction sets
consistently include the true labels.

The Size metric assesses the average quantity of labels
within the prediction sets across all test instances, given
by:

Size =
1

|Itest|
∑
i∈Itest

|Γ(xi; f, τ)|, (10)

where smaller sizes imply more concise and informative
predictions.

The Size-Stratified Coverage Violation (SSCV) (Angelopou-
los et al., 2021) examines the consistency of coverage across

varying prediction set sizes. It is defined as:

SSCV(Γ, {Sj}sj=1) =

sup
j∈[s]

∣∣∣∣ |i ∈ Jj : yi ∈ Γ(xi; f, τ)|
|Jj |

− (1− α)

∣∣∣∣ , (11)

where {Sj}sj=1 partitions the possible prediction set sizes,
and Jj = i ∈ Itest : |Γ(xi; f, τ)| ∈ Sj . A smaller SSCV
indicates more stable coverage across different set sizes.

Collectively, these metrics strike a balance between achiev-
ing the desired coverage probability and maintaining in-
formative prediction sets, while ensuring that conformal
prediction’s coverage guarantees hold irrespective of the
underlying model’s accuracy.

Results. We present our experimentatal results in Tables 1
and 2. To facilitate comparison among attacks, we highlight
the best results in each column in bold, while underlining
the best defense results in each row. Following prior con-
formal prediction studies, we do not highlight results for
Coverage, as they typically fluctuate around the theoretical
1 − α level due to finite sample sizes and stochastic vari-
ability. Therefore, under the constraint of maintaining the
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Attacks Indicator Training Algorithm
FGSM PGD10 TRADES10 MART10 BETA-AT10 OPSA-AT10

Clean
Coverage (%) 90.26 ± 0.32 88.99 ± 0.34 90.50 ± 0.33 89.24 ± 0.36 91.39 ± 0.31 89.38 ± 0.36

Size 13.47 ± 0.01 32.93 ± 0.17 8.81 ± 0.07 8.65 ± 0.08 73.65 ± 0.27 8.41 ± 0.01
SSCV 0.08 ± 0.01 0.09 ± 0.01 0.07 ± 0.01 0.06 ± 0.01 0.40 ± 0.28 0.05 ± 0.00

FGSM
Coverage (%) 90.67 ± 0.33 89.36 ± 0.34 90.55 ± 0.33 90.48 ± 0.33 88.50 ± 0.37 89.76 ± 0.33

Size 60.36 ± 0.21 38.01 ± 0.20 28.27 ± 0.17 29.17 ± 0.20 25.71 ± 0.12 24.52 ± 0.22
SSCV 0.10 ± 0.01 0.08 ± 0.01 0.07 ± 0.01 0.06 ± 0.01 0.10 ± 0.03 0.03 ± 0.01

PGD10
Coverage (%) 90.65 ± 0.33 89.31 ± 0.34 90.28 ± 0.32 90.74 ± 0.34 89.01 ± 0.34 89.58 ± 0.34

Size 64.94 ± 0.22 38.22 ± 0.20 32.05 ± 0.20 35.17 ± 0.23 68.70 ± 0.22 33.85 ± 0.30
SSCV 0.10 ± 0.00 0.09 ± 0.01 0.06 ± 0.01 0.05 ± 0.01 0.03 ± 0.03 0.04 ± 0.01

PGD40
Coverage (%) 90.66 ± 0.32 89.31 ± 0.35 90.25 ± 0.34 90.75 ± 0.32 89.25 ± 0.34 90.18 ± 0.33

Size 64.95 ± 0.34 38.22 ± 0.20 32.04 ± 0.19 35.14 ± 0.24 71.12 ± 0.23 33.74 ± 0.28
SSCV 0.10 ± 0.00 0.09 ± 0.01 0.07 ± 0.01 0.05 ± 0.01 0.07 ± 0.05 0.04 ± 0.01

BETA10
Coverage (%) 90.49 ± 0.33 89.49 ± 0.33 90.36 ± 0.32 90.64 ± 0.32 88.36 ± 0.35 89.41 ± 0.34

Size 57.59 ± 0.22 32.98 ± 0.19 20.38 ± 0.14 20.40 ± 0.16 23.44 ± 0.11 17.00 ± 0.15
SSCV 0.10 ± 0.00 0.09 ± 0.01 0.10 ± 0.00 0.08 ± 0.01 0.10 ± 0.02 0.06 ± 0.02

Square
Coverage (%) 88.98 ± 0.33 88.99 ± 0.35 90.86 ± 0.33 89.79 ± 0.34 91.39 ± 0.32 89.31 ± 0.34

Size 28.15 ± 0.18 33.03 ± 0.18 11.61 ± 0.09 11.60 ± 0.10 74.69 ± 0.27 13.81 ± 0.27
SSCV 0.07 ± 0.01 0.09 ± 0.01 0.09 ± 0.00 0.07 ± 0.01 0.40 ± 0.26 0.06 ± 0.01

APGD100
Coverage (%) 89.05 ± 0.35 88.99 ± 0.34 90.22 ± 0.34 89.11 ± 0.36 91.37 ± 0.31 90.04 ± 0.34

Size 32.00 ± 0.21 33.06 ± 0.18 13.54 ± 0.11 13.48 ± 0.12 75.05 ± 0.28 16.01 ± 0.20
SSCV 0.07 ± 0.01 0.09 ± 0.01 0.08 ± 0.00 0.07 ± 0.01 0.90 ± 0.30 0.05 ± 0.01

Auto
Coverage (%) 89.00 ± 0.36 88.99 ± 0.36 90.22 ± 0.34 89.12 ± 0.36 91.39 ± 0.32 89.50 ± 0.31

Size 32.00 ± 0.21 33.06 ± 0.18 13.70 ± 0.22 13.58 ± 0.12 75.10 ± 0.27 13.42 ± 0.16
SSCV 0.07 ± 0.01 0.09 ± 0.01 0.08 ± 0.01 0.07 ± 0.01 0.90 ± 0.29 0.05 ± 0.01

OPSA10
Coverage (%) 90.81 ± 0.32 89.79 ± 0.34 90.31 ± 0.33 90.46 ± 0.33 89.36 ± 0.36 89.16 ± 0.35

Size 65.56 ± 0.22 39.23 ± 0.20 32.30 ± 0.19 35.38 ± 0.23 75.25 ± 0.20 32.07 ± 0.25
SSCV 0.10 ± 0.00 0.07 ± 0.01 0.09 ± 0.01 0.07 ± 0.01 0.10 ± 0.00 0.03 ± 0.01

Table 2. Mean and Standard Deviation of Coverage, Size, and SSCV for CIFAR-100

coverage guarantee, the primary metric of interest is the size
of the prediction intervals.

As shown in Table 1, we conducted an additional experi-
ment on CIFAR-10 using soft thresholding (the conformal
training method proposed by Stutz et al. (2021)), denoted
as OPSA-ST. Training with a mini-batch size of 64, our de-
fense model demonstrates superior performance across all
attack methods, yielding the minimal uncertainty (i.e., size)
in the results. Furthermore, when excluding the two models
inherently trained with OPSA attacks (OPSA-ST and OPSA-
AT) and the BETA-AT defense model, our attack method
consistently achieves the largest size among other defense
frameworks. Notably, despite BETA-AT employing a train-
ing attack strategy similar to ours and OPSA-ST(including
OPSA-AT) utilizing the OPSA attack methodology, the size
produced by our attack method remains highly competitive
with the strongest baseline attacks. To visually demonstrate
these discrepancies, we present Box-violin plots (Figures

1-2) that illustrate the variance in attack performance across
different defense models under identical experimental con-
ditions.

Additionally, our experimental results on the CIFAR-100
dataset (Table 2) further validate the superiority of our de-
fense framework and the potency of our attack methodology
compared to existing approaches. Notably, our attack consis-
tently produces the largest size across all evaluated defense
models except when applied to our own proposed defense
mechanism. Furthermore, our defense exhibits significantly
reduced predictive uncertainty compared to baseline meth-
ods. Due to hardware limitations, we employed a batch
size of 64 for standard training and a mini-batch size of
200 for conformal training experiments. While computa-
tional constraints currently restrict our implementation to
these parameters, we included a remark (2) explaining that
theoretical analysis suggests optimal performance would
be achieved with mini-batch sizes between 500− 1000, as
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Figure 2. Box-violin plots of CIFAR-10 results under MART, BETA-ST, OPSA-ST, and OPSA-AT defense models

this range better approximates the idealized exchangeability
conditions required for robust conformal prediction.

Remark 2 (mini-Batch). In Section 3.4, we emphasized
the critical importance of partitioning datasets into training
(Btrain) and calibration (Bcal) subsets during model training.
To effectively approximate the THR procedure, maintaining
exchangeability between Btrain and Bcal within each mini-
batch is essential. However, practical considerations of com-
putational efficiency and memory constraints necessitate a
balance. We recommend setting the subset size between
5− 10 times the number of classification categories (K) to
optimize both approximation fidelity and training efficiency.

We further elaborate on supplementary experimental de-
tails across multiple appendices: Appendix B comprehen-
sively profiles the computational overhead of various attack
methodologies and defense models; Appendix C details
our experimental results on the mini-ImageNet dataset; Ap-
pendix D presents comprehensive accuracy metrics for all
evaluated defense models under diverse attack scenarios;
and Appendix E provides an ablation study analyzing the
impact of hyperparameter T1 on experimental outcomes.

5. Conclusion
In this study, we introduce a novel framework that integrates
adversarial training with conformal prediction to enhance
the robustness of deep learning models against adversarial
attacks. We treat adversarial training within this conformal
framework as a dual-objective optimization challenge: on
the one hand, our designed attack method aims to maximize
the uncertainty of the prediction set without prior knowl-
edge of the coverage rate; on the other hand, our defense
method strives to minimize the uncertainty of the prediction
set while maintaining a certain coverage rate. However, it’s
worth noting that our current experimental setup is relatively
limited. We plan to expand our experiments by including
the PreAct ResNet network in future studies. Experimental
validations on CIFAR-10, CIFAR-100, and Mini-ImageNet
datasets reveal that, compared to existing methods, our pro-
posed attack method generates greater uncertainty, while
the defense model demonstrates significantly improved ro-
bustness against various adversarial attacks. These findings
strongly affirm the effectiveness of combining adversarial
training with conformal prediction, providing new insights
for developing reliable and resilient deep learning models
in safety-critical applications.

9



OPSA: Hard Quantile Framework for Adversarial Robustness

Acknowledgements
This work was partially supported by Hong Kong RGC
and City University of Hong Kong grants (Project No.
9610639 and 6000864), Chengdu Municipal Office of Phi-
losophy and Social Science grant 2024BS013, DFG grant
No. 389792660, and VolkswagenStiftung Grant AZ 98514.
Zhixin Zhou’s research was supported by the Genesis Award
for Scientific Breakthrough from Alpha Benito LLC.

Impact Statement
The work presented in this paper aims to advance the field
of machine learning, particularly through supplementary
theoretical developments and explorations of adversarial
training within the Conformal Prediction framework. There
are many potential societal consequences of our work, none
which we feel must be specifically highlighted here.

References
Andriushchenko, M., Croce, F., Flammarion, N., and Hein,

M. Square attack: a query-efficient black-box adversarial
attack via random search. In European conference on
computer vision, pp. 484–501. Springer, 2020.

Angelopoulos, A. N., Bates, S., Jordan, M., and Malik, J.
Uncertainty sets for image classifiers using conformal
prediction. In International Conference on Learning
Representations, 2021.

Cauchois, M., Gupta, S., Ali, A., and Duchi, J. C. Robust
validation: Confident predictions even when distributions
shift. Journal of the American Statistical Association, pp.
1–66, 2024.

Croce, F. and Hein, M. Reliable evaluation of adversarial
robustness with an ensemble of diverse parameter-free
attacks. In International conference on machine learning,
pp. 2206–2216. PMLR, 2020.

Croce, F., Andriushchenko, M., Sehwag, V., Debenedetti,
E., Flammarion, N., Chiang, M., Mittal, P., and Hein,
M. Robustbench: a standardized adversarial robustness
benchmark. In Thirty-fifth Conference on Neural Informa-
tion Processing Systems Datasets and Benchmarks Track
(Round 2), 2021.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255. Ieee, 2009.
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A. Illustrative Example
To better understand the application of the improved negative margin in adversarial attacks within the conformal prediction
framework, we use a one-dimensional prediction problem as an example. Please note that the parameter ranges here may
differ from those in image-based scenarios, but this example sufficiently demonstrates the robustness of our algorithm.
Consider the following example:

Assume a four-class classification problem with classes K = {1, 2, 3, 4}. The classifier f outputs logits as follows:

f(x) =


f1(x)
f2(x)
f3(x)
f4(x)

 =


5− x1

3 + x1

2 + 0.5x1

1− 0.2x1

 .

The true class label is y = 1. The goal is to design an adversarial perturbation ϵ such that, when added to the input x, it
causes the prediction set Γ(x; f, τ) to include more non-true classes, thereby increasing the model’s uncertainty.

A.1. Original Input

Consider the original input x = 2. The logits are:

f(2) =


5− 2 = 3
3 + 2 = 5

2 + 0.5× 2 = 3
1− 0.2× 2 = 0.6

 .

Based on these logits, the prediction set Γ(2) might be {1, 2}, assuming a confidence threshold that includes classes with
logits close to the highest logit.

A.2. Designing the Adversarial Perturbation

A.2.1. STEP 1: DEFINE NEGATIVE MARGINS

For each class k ∈ [K], define the negative margin as:

fj(x+ ϵ)− fy(x+ ϵ).

Specifically:
f1(x+ ϵ)− y = 0,

f2(x+ ϵ)− y = (3 + (x1 + ϵ))− (5− (x1 + ϵ)) = 2ϵ+ 2x1 − 2,

f3(x+ ϵ)− y = (2 + 0.5(x1 + ϵ))− (5− (x1 + ϵ)) = 1.5ϵ+ x1 − 3,

f4(x+ ϵ)− y = (1− 0.2(x1 + ϵ))− (5− (x1 + ϵ)) = −0.2ϵ− 0.2x1 − 4.

A.2.2. STEP 2: TEMPERATURE-SCALED NEGATIVE MARGIN

Introduce a temperature parameter T = 1 to scale the negative margins within the Sigmoid function:

MT (x+ ϵ; f, y) =
∑

k∈[K]

σ

(
fk(x+ ϵ)− y

T

)
= σ(2ϵ+ 2x1 − 2) + σ(1.5ϵ+ x1 − 3) + σ(−0.2ϵ− 0.2x1 − 4).
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A.2.3. STEP 3: OPTIMIZATION OBJECTIVE

Formulate the adversarial perturbation ϵ∗ as:

ϵ∗ = arg max
∥ϵ∥∞≤0.5

[σ(2ϵ+ 2x1 − 2) + σ(1.5ϵ+ x1 − 3) + σ(−0.2ϵ− 0.2x1 − 4)] .

Given x = 2:

MT (x+ ϵ; f, y) = σ(2ϵ+ 4− 2) + σ(1.5ϵ+ 2− 3) + σ(−0.2ϵ− 0.4− 4),

MT (x+ ϵ; f, y) = σ(2ϵ+ 2) + σ(1.5ϵ− 1) + σ(−0.2ϵ− 4.4).

A.2.4. STEP 4: EVALUATING MT (x+ ϵ; f, y)

Evaluate MT (x+ ϵ; f, y) for different ϵ values within the allowed range [−0.5, 0.5]:

ϵ 2ϵ+ 2 1.5ϵ− 1 −0.2ϵ− 4.4 σ(2ϵ+ 2) σ(1.5ϵ− 1) σ(−0.2ϵ− 4.4) MT (x+ ϵ; f, y)
-0.5 1 -1.75 -4.3 0.7311 0.1521 0.0133 0.8965

-0.25 1.5 -1.375 -4.35 0.8176 0.1839 0.0114 1.0129
0 2 -1 -4.4 0.8808 0.2689 0.0123 1.1619

0.25 2.5 -0.625 -4.45 0.9241 0.3446 0.0118 1.2805
0.3 2.6 -0.55 -4.46 0.9306 0.3685 0.0117 1.3108
0.4 2.8 -0.4 -4.48 0.9423 0.4013 0.0115 1.3541
0.5 3 -0.25 -4.5 0.9526 0.4378 0.0112 1.4016

Table 3. Evaluation of MT (x+ ϵ; f, y) for different ϵ values.

A.2.5. STEP 5: SELECTING OPTIMAL ϵ

From the table, it is evident that MT (x+ ϵ; f, y) increases as ϵ increases within the permissible range. Thus, the optimal
perturbation is at the upper bound:

ϵ∗ = 0.5.

A.2.6. STEP 6: IMPACT ON CONFORMAL PREDICTION

Applying ϵ∗ = 0.5 to the input x = 2:

x+ ϵ∗ = 2 + 0.5 = 2.5.

Calculate the perturbed logits:

f(2.5) =


5− 2.5 = 2.5
3 + 2.5 = 5.5

2 + 0.5× 2.5 = 3.25
1− 0.2× 2.5 = 0.5

 .

Compute the negative margins:
M1(2.5, 2.5, 1) = 0,

M(2.5, 5.5, 1)2 = 5.5− 2.5 = 3.0 > 0,

M(2.5, 3.25, 1)3 = 3.25− 2.5 = 0.75 > 0,

M ′(2.5, 0.5, 1)4 = 0.5− 2.5 = −2.0 < 0.
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Dataset Training Algorithm
FGSM PGD10 TRADES10 MART10 BETA-AT10 OPSA-AT10

CIFAR-10 65 655 321 445 469 1642

CIFAR-100 70 1398 342 742 1190 1689

mini-ImageNet 81 1766 452 881 1805 2024

Table 4. The time taken (in seconds) by each adversarial training model to complete one epoch of training on 100 batches, utilizing an
NVIDIA A100 80GB GPU.

Attacks FGSM PGD10 TRADES10 MART10 BETA-AT10 OPSA-AT10

FGSM 18.5176 15.3600 17.2783 15.7824 18.5751 20.8580
Auto 1595.8604 2275.8080 2017.4780 2125.3660 669.0256 2543.7452
Square 272.9225 342.7212 336.6973 321.6511 107.9474 432.7322
PGD10 20.0746 18.3247 18.7224 19.7636 21.3279 21.5170
PGD40 27.1290 24.2051 24.0342 25.5516 29.1992 28.5025
APGD100 37.0082 39.8945 35.6490 35.7549 33.0879 35.6442
BETA10 32.7680 27.5900 27.1002 26.5268 29.0277 31.3223
OPSA10 25.9038 24.1116 25.4911 25.3905 27.2531 27.4187

Table 5. The attack execution time (in seconds) for various attack methods against different defense models, these results were derived
from 8 batches of tests conducted on 100 images randomly sampled from the CIFAR-100 test set. Note that Auto-Attack was executed
with its default parameters, and the square black-box attack was configured to perform 1000 queries.

Thus, the negative margins are:

MT (x+ ϵ; f, y) = σ(3.0) + σ(0.75) + σ(−2.0) ≈ 0.9526 + 0.6792 + 0.1192 = 1.7509.

Since both M(2.5, 5.5, 1)2 > 0 and M(2.5, 3.25, 1)3 > 0, the prediction set Γ(2.5) now includes classes 1, 2, and 3, i.e.,
Γ(2.5) = {1, 2, 3}.

Impact Analysis:

Before Perturbation: The prediction set Γ(2) = {1, 2} included the true class 1 and one non-true class 2. After Perturbation:
The prediction set Γ(2.5) = {1, 2, 3} includes the true class 1 and two non-true classes 2 and 3.

This enlargement of the prediction set demonstrates that the adversarial perturbation successfully increases the model’s
uncertainty by incorporating additional non-true classes.

B. Adversarial attack and adversarial training time
As detailed in this appendix, we present the training durations for various models and the computational overhead of
different attack methods. Notably, our proposed model demonstrates scalability advantages - its training time does not
escalate substantially with increasing dataset complexity, maintaining efficient performance across diverse experimental
configurations.

C. mini-ImageNet and figures
This appendix presents a comprehensive experimental evaluation on the mini-ImageNet dataset. As evidenced in Table 6
and Figure 3, the results clearly demonstrate both the superiority of our defense methodology and the remarkable efficacy of
our attack strategy. Additionally, Figure 4 visualizes our experimental results on the CIFAR-100 dataset.

15



OPSA: Hard Quantile Framework for Adversarial Robustness

Attacks Indicator Training Algorithm
FGSM PGD10 TRADES10 MART10 BETA-AT10 OPSA-AT10

Clean
Coverage (%) 90.38 ± 0.27 90.26 ± 0.48 89.17 ± 0.51 90.16 ± 0.50 90.08 ± 0.47 89.69 ± 0.50

Size 43.52 ± 0.70 56.63 ± 0.16 10.91 ± 0.10 11.30 ± 0.11 57.57 ± 0.03 17.02 ± 0.17
SSCV 0.38 ± 0.01 0.90 ± 0.20 0.09 ± 0.01 0.07 ± 0.01 0.01 ± 0.00 0.02 ± 0.01

FGSM
Coverage (%) 90.49 ± 0.47 91.15 ± 0.47 90.49 ± 0.50 89.79 ± 0.48 89.90 ± 0.46 89.14 ± 0.50

Size 49.49 ± 0.12 36.26 ± 0.16 38.66 ± 0.17 26.37 ± 0.18 57.51 ± 0.01 26.31 ± 0.21
SSCV 0.53 ± 0.18 0.08 ± 0.10 0.10 ± 0.00 0.15 ± 0.06 0.01 ± 0.00 0.04 ± 0.04

PGD10
Coverage (%) 89.97 ± 0.50 91.15 ± 0.44 90.89 ± 0.47 89.48 ± 0.49 89.64 ± 0.49 88.80 ± 0.49

Size 52.55 ± 0.12 39.63 ± 0.17 43.19 ± 0.17 30.49 ± 0.19 57.31 ± 0.01 27.41 ± 0.21
SSCV 0.90 ± 0.20 0.10 ± 0.01 0.06 ± 0.02 0.23 ± 0.12 0.01 ± 0.00 0.06 ± 0.04

PGD40
Coverage (%) 89.92 ± 0.49 91.15 ± 0.48 90.89 ± 0.48 89.48 ± 0.48 89.71 ± 0.49 88.83 ± 0.51

Size 52.59 ± 0.49 39.63 ± 0.17 43.19 ± 0.18 30.48 ± 0.20 57.31 ± 0.01 27.39 ± 0.21
SSCV 0.90 ± 0.20 0.10 ± 0.01 0.06 ± 0.03 0.23 ± 0.12 0.00 ± 0.00 0.06 ± 0.04

BETA10
Coverage (%) 90.36 ± 0.48 91.07 ± 0.44 90.70 ± 0.47 90.29 ± 0.49 89.90 ± 0.47 88.88 ± 0.49

Size 48.60 ± 0.13 35.63 ± 0.16 35.53 ± 0.18 21.64 ± 0.15 57.51 ± 0.01 25.62 ± 0.21
SSCV 0.40 ± 0.16 0.10 ± 0.01 0.10 ± 0.00 0.05 ± 0.03 0.00 ± 0.00 0.03 ± 0.03

Square
Coverage (%) 90.98 ± 0.33 90.26 ± 0.50 90.57 ± 0.46 90.36 ± 0.47 90.08 ± 0.49 89.69 ± 0.49

Size 50.24 ± 0.18 56.79 ± 0.17 21.59 ± 0.17 14.45 ± 0.13 57.57 ± 0.03 21.75 ± 0.23
SSCV 0.57 ± 0.01 0.90 ± 0.20 0.08 ± 0.01 0.06 ± 0.02 0.00 ± 0.00 0.06 ± 0.01

APGD100
Coverage (%) 90.05 ± 0.35 90.26 ± 0.47 90.05 ± 0.49 90.05 ± 0.49 90.08 ± 0.00 89.69 ± 0.48

Size 51.37 ± 0.21 56.79 ± 0.17 25.70 ± 0.18 16.24 ± 0.14 57.57 ± 0.03 22.61 ± 0.25
SSCV 0.50 ± 0.01 0.90 ± 0.19 0.08 ± 0.02 0.08 ± 0.01 0.00 ± 0.00 0.06 ± 0.01

OPSA10
Coverage (%) 90.16 ± 0.48 91.28 ± 0.44 90.31 ± 0.33 89.56 ± 0.48 89.92 ± 0.49 89.96 ± 0.51

Size 53.42 ± 0.11 40.00 ± 0.16 44.12 ± 0.16 30.84 ± 0.19 57.50 ± 0.00 27.55 ± 0.21
SSCV 0.90 ± 0.30 0.10 ± 0.01 0.08 ± 0.02 0.16 ± 0.09 0.00 ± 0.00 0.06 ± 0.03

Table 6. Mean and Standard Deviation of Coverage, Size, and SSCV for mini-ImageNet

D. Accuracy metrics on various datasets
This appendix presents the accuracy of various defense models under different attack methods across three datasets, with
Tables 7-9 summarizing the results for CIFAR-10, CIFAR-100, and mini-ImageNet respectively. Notably, while the OPSA
attack method does not consistently yield the lowest accuracy, its focus on targeting uncertainty leads to significantly larger
size metrics compared to alternative approaches.

E. Parameter analysis
Regarding the hyperparameters T2 and λ, we refer to the detailed analysis in (Stutz et al., 2021), where these parameters
were rigorously analyzed. For T1 , its core function is to calibrate the sigmoid function to approximate the Threshold
Response (THR) method (Sadinle et al., 2019), enlargement of prediction Interval. As shown in Table 10, systematic
variations of on CIFAR-100 reveal a critical threshold effect: as randomly sampled values increase, the prediction set size
expands progressively before plateauing at approximately 10.
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Indicator Attacks Training Algorithm
FGSM PGD10 TRADES10 MART10 BETA-AT10 OPSA-ST10 OPSA-AT10

Accuracy

Clean 72.84% 48.48% 77.84% 81.69% 55.65% 81.33% 89.15%
FGSM 36.11% 44.32% 54.81% 43.35% 37.04% 64.75% 65.83%
PGD10 29.60% 43.85% 50.76% 25.36% 29.06% 53.60% 57.27%
PGD40 29.60% 43.86% 50.75% 34.36% 28.94% 53.43% 57.13%

BETA10 39.75% 49.64% 63.80% 50.09% 43.79% 70.57% 70.34%
Square 27.56% 43.09% 54.54% 40.29% 33.04% 58.26% 61.04%

APGD100 24.75% 42.16% 51.37% 33.16% 12.21% 52.05% 56.07%
Auto 24.04% 41.58% 48.70% 32.86% 26.65% 51.68% 55.30%

OPSA10 30.21% 44.39% 51.58% 35.09% 19.48% 54.16% 57.91%

Table 7. accuracy for CIFAR-10

Indicator Attacks Training Algorithm
FGSM PGD10 TRADES10 MART10 BETA-AT10 OPSA-AT10

Accuracy

Clean 43.65% 24.15% 51.55% 52.10% 6.07% 55.65%
FGSM 16.10% 20.69% 30.23% 30.18% 24.24% 37.04%
PGD10 12.85% 20.49% 26.70% 25.35% 5.29% 29.06%
PGD40 12.81% 20.47% 26.67% 25.27% 4.93% 28.94%

BETA10 17.94% 24.69% 38.22% 39.77% 25.94% 43.79%
Square 10.87% 20.05% 28.99% 28.68% 2.38% 33.04%

APGD100 9.88% 19.46% 25.47% 24.32% 1.19% 27.73%
Auto 9.46% 18.73% 24.34% 23.12% 0.95% 26.65%

OPSA10 13.14% 20.89% 27.60% 26.27% 5.78% 29.99%

Table 8. accuracy for CIFAR-100

Indicator Attacks Training Algorithm
FGSM PGD10 TRADES10 MART10 BETA-AT10 OPSA-AT10

Accuracy

Clean 18.39% 4.71% 43.67% 45.13% 1.56% 55.65%
FGSM 9.61% 20.47% 15.42% 25.39% 24.24% 37.04%
PGD10 5.78% 16.72% 10.73% 20.70% 1.56% 29.06%
PGD40 5.70% 16.72% 10.65% 25.27% 1.56% 28.94%

BETA10 10.86% 21.17% 19.14% 20.73% 1.56% 43.79%
Square 3.26% 2.19% 28.99% 22.14% 1.56% 33.04%

APGD100 2.06% 2.08% 16.24% 24.32% 1.56% 27.73%
Auto 9.46% 18.73% 24.34% 23.12% 0.95% 26.65%

OPSA10 6.07% 17.14% 11.15% 21.38% 1.56% 29.99%

Table 9. Accuracy for mini-ImageNet
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T1 OPSA OPSA-AT10

0.001
Coverage (%) 89.62 ± 0.35

Size 22.06 ± 0.20
SSCV 0.03 ± 0.01

0.1
Coverage (%) 89.76 ± 0.34

Size 29.35 ± 0.26
SSCV 0.03 ± 0.01

1
Coverage (%) 89.95 ± 0.35

Size 33.30 ± 0.27
SSCV 0.03 ± 0.01

10
Coverage (%) 89.88 ± 0.34

Size 33.50 ± 0.25
SSCV 0.03 ± 0.01

10
Coverage (%) 89.90 ± 0.33

Size 33.50 ± 0.26
SSCV 0.03 ± 0.01

1000
Coverage (%) 89.91 ± 0.34

Size 33.50 ± 0.26
SSCV 0.03 ± 0.01

Table 10. The effectiveness of OPSA attacks at different T1.
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Figure 3. Box-violin plots of mini-ImageNet results under FGSM, PGD, TRADES, MART, BETA-ST, and OPSA-AT defense models
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Figure 4. Box-violin plots of CIFAR100 results under FGSM, PGD, TRADES, MART, BETA-ST, and OPSA-AT defense models
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