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Abstract

Typical Bayesian approaches to OOD detection use epistemic uncertainty. Surprisingly
from the Bayesian perspective, there are a number of methods that successfully use aleatoric
uncertainty to detect OOD points (e.g. Hendryks et al. 2018). In addition, it is difficult to
use outlier exposure to improve a Bayesian OOD detection model, as it is not clear whether
it is possible or desirable to increase posterior (epistemic) uncertainty at outlier points. We
show that a generative model of data curation provides a principled account of aleatoric
uncertainty for OOD detection. In particular, aleatoric uncertainty signals a specific type
of OOD point: one without a well-defined class-label, and our model of data curation gives
a likelihood for these points, giving us a mechanism for conditioning on outlier points and
thus performing principled Bayesian outlier exposure. Our principled Bayesian approach,
combining aleatoric and epistemic uncertainty with outlier exposure performs better than
methods using aleatoric or epistemic alone.

1. Introduction

The most typical approach to Bayesian OOD distribution detection uses epistemic uncer-
tainty (Lakshminarayanan et al., 2017; Malinin and Gales, 2018; Choi et al., 2018; Wen
et al., 2019; Malinin et al., 2020; Postels et al., 2020). We have epistemic uncertainty
when finite training data fails to pin down the classifier’s ideal outputs in all regions of the
input space (Der Kiureghian and Ditlevsen, 2009; Fox and Ülkümen, 2011; Kendall and
Gal, 2017). Importantly, the amount of epistemic uncertainty will vary depending on how
close a given test point is to the training data. Close to the training data, the classifier’s
predictive distribution is reasonably well-pinned-down and there is little epistemic uncer-
tainty. In contrast, far from the training data, the classifier’s predictive distribution is more
uncertain, and this uncertainty can be used to detect OOD data. In contrast, aleatoric
uncertainty is the irreducible output “noise” that is left over when there is no uncertainty
in the parameters (e.g. because a lot of training data is available).

Some work using Bayesian epistemic uncertainty for OOD detection explicitly rejects
the use of aleatoric uncertainty (Malinin and Gales, 2018; Malinin et al., 2020; Wen et al.,
2019; Choi et al., 2018; Postels et al., 2020), while other work implicitly combines aleatoric
and epistemic uncertainty by looking at the overall predictive entropy (Lakshminarayanan
et al., 2017; Izmailov et al., 2021; Ovadia et al., 2019; Maddox et al., 2019). Surprisingly
from the Bayesian perspective, there are a large number of methods that successfully use
aleatoric uncertainty alone to detect OOD points (Hendrycks and Gimpel, 2016; Liang et al.,
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2017; Lee et al., 2017; Liu et al., 2018; Hendrycks et al., 2018). In addition, many of these
methods can be trained on OOD points, in a process known as outlier exposure (OE).

When suitable OOD data is available, OE leads to dramatic increases in performance
(Hendrycks et al., 2018). However, developing a principled Bayesian method using OE is
difficult. In particular, a principled Bayesian formulation would involve treating the OE
points as providing extra terms in the likelihood. However, it not currently clear how to
create a likelihood for outlier points. Instead, current OE methods use a variety intuitively
reasonable objectives, which have no interpretation as log-likelihoods and thus cannot be
combined with Bayesian inference.

In this paper, we provide a principled account of how to incorporate aleatoric uncertainty
and outlier exposure into Bayesian OOD detection methods. In particular, we consider a
model of the curation process applied during the original creation of datasets such as CIFAR-
10 and ImageNet. Critically, this curation process is designed to filter out a specific set of
OOD points: data points without a well-defined class label. For simplicity, we will refer to
these points as OOD for the remainder of the paper. For instance, if we try to classify an
image of a radio as cat vs dog, there is no well-defined class-label, and we should not include
that image in the training set. We model curation as a consensus-formation process. In
particular, we give each the image to multiple human annotators: if the image has a well-
defined label (Fig. 1 left and middle), they will all agree, consensus will be reached and
the datapoint will be included in the dataset. In contrast, if the human annotators are
given an image with an undefined class label (Fig. 1 right), all they can do is to choose
randomly, in which case they disagree, consensus will not be reached and the datapoint
will be excluded from the dataset. Critically, that random final choice corresponds to
aleatoric, not epistemic uncertainty. If we ask a human to classify an image of a radio
as cat vs dog, the issue certainly is not that the human annotator is uncertain about the
radio’s degree of “cat-ness” or “dog-ness”. The issue is that we are forcing the human to
answer a fundamentally nonsensical question, and the only reasonable response is to choose
randomly. That random choice thus corresponds to aleatoric uncertainty, and thus aleatoric
uncertainty can signal that the point is OOD, and has an undefined class-label. Our model
gives a likelihood for being OOD (or having an “undefined class-label”) in terms of the
underlying classifier probabilities, allowing us to incorporate outliers in principled Bayesian
inference. We find that our approach, incorporating OE and aleatoric uncertainty with
Bayes performs better than a standard Bayesian approach without OE, and better than a
standard aleatoric uncertainty based approach with OE (e.g. Hendrycks et al., 2018).

2. Background: A model for data curation

In the introduction, we briefly noted that different annotators will agree about the class
label when that class label is well-defined, but will disagree for OOD inputs without a
well-defined class-label (if only because they are forced to the label the image and the
only thing they can do is to choose randomly). Interestingly, a simplified generative model
which considers the probability of disagreement amongst multiple annotators has already
been developed to describe the process of data curation (Aitchison, 2020, 2021). In data
curation, the goal is to exclude any OOD images to obtain a high-quality dataset containing
images with well-defined and unambiguous class-labels. Standard benchmark datasets in
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Figure 1: When training on MNIST (left), there is the potential for OOD images with a
well-defined class-label (middle), and for images that simultaneously are OOD
and have an undefined class-label (right).

image classification have indeed been carefully curated. For instance, in CIFAR-10, grad-
uate student annotators were instructed that “It’s worse to include one that shouldn’t be
included than to exclude one”, then Krizhevsky et al. (2009) “personally verified every label
submitted by the annotators”. Similarly, when ImageNet was created, Deng et al. (2009)
made sure that a number of Amazon Mechanical Turk (AMT) annotators agreed upon the
class before including an image in the dataset.

Aitchison (2021) proposes a generative model of data curation that we will connect to
the problem of OOD detection. Given a random input, X, drawn from P (X), a group of
S annotators (indexed by s ∈ {1, . . . , S}) are asked to assign labels Ys ∈ Y to X, where
Y = {1, . . . , C} represents the label set of C classes. If X is OOD, annotators are instructed
to label the image randomly. We assume that if the class-label is well-defined, sufficiently
expert annotators will all agree on the label, so consensus is reached, Y1=Y2= · · · =YS , and
the image will be included in the dataset. Any disagreement is assumed to arise because
the image is OOD, and such images are excluded from the dataset. In short, the final label
Y is chosen to be Y1 if consensus was reached and Undef otherwise (Fig. 2B).

Y |{Ys}Ss=1 =

{
Y1 if Y1=Y2= · · · =YS
Undef otherwise

(1)

From the equation above, we see that Y ∈ Y ∪ {Undef}, that is, Y could be any element
from the label set Y if annotators come to agreement or Undef if consensus is not reached.
Suppose further that all annotators are IID (in the sense that their probability distribution
over labels given an input image is the same). Then, the probability of Y ∈ Y can be

3



Bayesian OOD detection with aleatoric uncertainty and outlier exposure

A X

θ

Y

B X

θ

{Ys}Ss=1 Y

Figure 2: Graphical models under consideration. A The generative model for standard
supervised learning with no data curation. B The generative model with data
curation. (Adapted with permission from Aitchison, 2021).

written as

P (Y =y|X, θ) = P
(
{Ys=y}Ss=1|X, θ

)
=
∏S

s=1 P (Ys=y|X, θ)
= P (Ys=y|X, θ)S = pSy (X) (2)

where we have abbreviated the single-annotator probability as py(X) = P (Ys=y|X, θ).
When consensus is not reached (noconsensus), we have:

P (Y =Undef|X, θ) = 1−
∑
y∈Y

P (Y =y|X, θ)

= 1−
∑
y∈Y

pSy (X). (3)

Notice that the maximum of Eq.(3) is achieved when the predictive distribution is uni-
form: py = 1/C,∀y ∈ Y, as can be shown using a Lagrange multiplier γ to capture the
normalization constraint,

L =
(

1−
∑

yp
S
y

)
+ γ

(
1−

∑
ypy

)
(4)

0 =
∂L

∂py
= −SpS−1y − γ (5)

The value of py with maximal L is independent of y, so py is the same for all y ∈ Y, and
we must therefore have py = 1/C. In addition, the minimum of zero is achieved when one
of the C classes has a probability py(X) = 1. Therefore, an input with high predictive
(aleatoric) uncertainty is, by definition, an input with a high probability of disagreement
amongst multiple annotators, which corresponds to being OOD.

3. Methods

We are able to form a principled log-likelihood objective by combining Eq.(2) for inputs
with a well-defined class-label (denoted by Din) and Eq.(3) for OOD inputs without a
well-defined class label (denoted by Dout). However, this model was initially developed for
cold-posteriors (Aitchison, 2021) and semi-supervised learning (Aitchison, 2020) where the
noconsensus inputs were not known and were omitted from the dataset. In contrast, and
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following Hendrycks et al. (2018), we use proxy datasets for OOD inputs, and explicitly
maximize the probability of inputs from those proxy datasets having being OOD (Eq. 8).
Importantly, now that we explicitly fit the probability of an undefined class-label, we need to
introduce a little more flexibility into the model. In particular, a key issue with the current
model is that more annotators, S, implies a higher chance of disagreement hence implying
more OOD images. Thus, arbitrary choices about the relative amount of training data with
well-defined and undefined class-labels might cause issues. To avoid any such issues, we
modify the undefined-class probability by including a base-rate or bias parameter, c, which
modifies the log-odds for well-defined vs undefined class-labels. In particular, we define the
logits to be,

`0 = c+ log
(

1−
∑

y∈Yp
S
y (X)

)
(6)

`y∈Y = log pSy (X) (7)

where py(X) is the single-annotator probability output by the neural network.

P (Y =Undef|X, θ) =
e`0

e`0 +
∑

y∈Y e
`y

(8)

P (Y =y|X, θ) =
e`y

e`0 +
∑

y∈Y e
`y

(9)

with c = 0, this reverts to Eq.(2) and (3), while non-zero c allow us to modify the ratio of
well-defined to undefined class-labels to match that in the training data.

Of course, we do not have the actual datapoints that were rejected during the data
curation process, so instead Dout is a proxy dataset (e.g. taking CIFAR-10 as Din, we might
use downsampled ImageNet with 1000 classes as Dout). The objective is,

L = EDin [log P (Y =y|X, θ)] + λEDout [log P (Y =Undef|X, θ)] (10)

where λ represents the relative quantity of inputs with undefined to well-defined class-labels.
We use λ = 1 both for simplicity and because the inclusion of the bias parameter, c, should
account for any mismatch between the “true” and proxy ratios of inputs with well-defined
and undefined class-labels. In addition, we use a fixed value of S = 10 as is suggested by
Aitchison (2021) and we learn c via backpropagation during training.

Lastly, since our objective is a well-defined likelihood function that jointly models Din

and Dout, we can easily turn our model into a fully Bayesian one by adding a prior dis-
tribution on the neural network parameters, θ, and then perform approximate inference
approaches (e.g. stochastic gradient Markov chain Monte Carlo) to estimate the posterior
distribution over θ. The use of Bayesian inference in our approach allows us to incorporate
both epistemic uncertainty and aleatoric uncertainty when detecting OOD samples and we
will show in next section that combining two types of uncertainty together can lead to
performance superior than using either of them alone.

4. Results

In this section, we demonstrate the effectiveness of our approach via large scale image clas-
sification experiments with CIFAR-10 and CIFAR-100 as Din, and downsampled ImageNet

5



Bayesian OOD detection with aleatoric uncertainty and outlier exposure

Dataset FPR95 ↓

Din Dtest BNN OE Ours

Gaussian 13.91±11.05 9.03±5.83 0.00±0.0
Rad. 11.01±7.05 7.62±2.49 0.00±0.0

CIFAR-10 Blob 35.16±5.19 33.25±10.17 0.00±0.0
Texture 37.61±1.14 52.17±6.15 25.19±3.93
SVHN 28.55±4.36 19.43±2.46 12.28±2.28

Gaussian 14.47±5.45 32.92±12.43 0.00±0.00
Rad. 26.60±11.01 10.95±8.35 0.00±0.00

CIFAR-100 Blob 29.95±3.59 36.62±16.30 0.01±0.01
Texture 69.74±2.27 76.72±2.74 58.43±2.09
SVHN 52.18±2.90 63.67±6.24 42.70±5.57

Table 1: Experimental results on a range of different datasets for FPR95 (see Appendix A.1
and Appendix A.2 for more details). Note the arrows indicate the “better” direc-
tion (i.e. so lower FPR95 is better). Din represents the in-distribution dataset.
Dtest is the testing out-of-distribution dataset. (The results reported are mean
and standard error computed over 6 runs of different random seeds.)

as our training Dout. We considered two different baselines, in addition to our method.
First, in “BNN”, we followed the usual OOD detection procedure for Bayesian neural net-
works in training on our in-distribution dataset, Din, using SGLD, and ignored our OOD
dataset, Dout, as it is not clear how to incorporate these points into a classical Bayesian
neural network. Second, in “OE”, we used the non-Bayesian method of Hendrycks et al.
(2018), which trains on Din, and incorporates an objective that encourages uncertainty on
Dout. Our method uses a BNN, as in the BNN baseline, but additionally trains on Dout

using the log-likelihood from Eq.(3) to increase uncertainty on those points. The network
architecture is chosen to be a 40-2 Wide Residual Network (Zagoruyko and Komodakis,
2016) for all experiments. OE was trained directly using the code from Hendrycks et al.
(2018). For BNN and our approach, we used Cyclical Stochastic Gradient MCMC (Zhang
et al., 2020) to perform approximate inference over the network parameters. In addition,
we used a temperature of 0.1 on the likelihood for the baseline BNN, so as to match S = 10
in the labelled likelihood for our model (Eq. 2 Aitchison, 2020). In addition, the OOD
score is chosen to be the predictive distribution’s total uncertainty for all experiments (see
Appendix A.3).

Results Broadly, we found that our approach gave superior performance to the OE and
BNN using FPR95 on a wide range of test datasets Dtest that the model was not trained
on (Table 1).
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5. Conclusion

We developed a likelihood for undefined class-label samples (a subset of OOD points),
and used it to integrate OE methods within principled Bayesian inference. The resulting
Bayesian OE method gave superior performance to other methods, including pure aleatoric
uncertainty and Bayesian methods without OE.
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Appendix A. Experiment details

A.1. Test datasets

At test time, we evaluate the models’ OOD detection ability on a number of OOD datasets
that the model was not trained on, as proposed in Hendrycks and Gimpel (2016) and as
implemented by Hendrycks et al. (2018):

1. Isotropic zero-mean Gaussian noise with σ = 0.5
2. Rademacher noise where each dimension is −1 or 1 with equal probability.
3. Blobs data of algorithmically generated amorphous shapes with definite edges
4. Texture data (Cimpoi et al., 2014) of textural images in the wild.
5. SVHN (Netzer et al., 2011) which contains 32x32 colour images of house numbers.

A.2. OOD metric

OOD detection is in essence a binary classification problem. It is therefore sensible to
use metrics for binary classification to evaluate a model’s ability to detect OOD inputs.
In particular, we adopt the false positive rate at N% true positive rate (FPRN), which
computes the probability of an input being misclassified as having an undefined class-label
(false positive) when at least N% of the true inputs with undefined class-labels are correctly
detected (true positive). In practice, we would like to have a model with low FPRN% since
an ideal model should detect nearly all inputs with undefined class-labels while raising as
few false alarms as possible. In our experiments, we let N = 95.

A.3. OOD score

At test time, to distinguish between OOD and in-distribution examples, we need a score that
measures the model’s uncertainty. There are several model-specific choices. In our model
one can choose to use the OOD probability (Eq. 3) as the score. Hendrycks and Gimpel
(2016); Hendrycks et al. (2018) use the negative maximum softmax probability (Hendrycks
and Gimpel, 2016). However, to ensure a fair comparison, we used one metric that makes
sense for all methods considered, the total uncertainty (Depeweg et al., 2018). The total
uncertainty is the entropy of the predictive distribution, marginalising over uncertainty in
the neural network parameters, H [p(y | x∗)], which equals the sum of aleatoric uncertainty
and epistemic uncertainty. Note that the total uncertainty from OE only contains aleatoric
uncertainty since the model is fully deterministic. In contrast, the standard BNN and our
BNN approach both have aleatoric and epistemic uncertainty. The key differences is that
in our model, the aleatoric uncertainty is shaped by outlier exposure, whereas in a standard
BNN, the aleatoric uncertainty is determined solely by the in-distribution data.
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