Towards Self-Refinement of Vision-Language Models with Triangular Consistency

Yunlong Deng 1* , Guangyi Chen 1,2* , Tianpei Gu 3 , Lingjing Kong 2 , Yan Li 1 , Zeyu Tang 2 , and Kun Zhang 1,2

¹Mohamed bin Zayed University of Artificial Intelligence ²Carnegie Mellon University ³ByteDance US

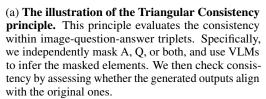
Abstract

Vision-Language Models (VLMs) integrate visual knowledge with the analytical capabilities of Large Language Models (LLMs) through supervised visual instruction tuning, using image-question-answer triplets. However, the potential of VLMs trained without supervised instruction remains largely unexplored. This study validates that VLMs possess inherent self-refinement capabilities, enabling them to generate high-quality supervised data without external inputs and thereby learn autonomously. Specifically, to stimulate the self-refinement ability of VLMs, we propose a self-refinement framework based on a Triangular Consistency principle: within the image-query-answer triangle, any masked elements should be consistently and accurately reconstructed. The framework involves three steps: (1) We enable the instruction generation ability of VLMs by adding multi-task instruction tuning like image \rightarrow question-answer or image-answer \rightarrow question. (2) We generate image-query-answer triplets from unlabeled images and use the Triangular Consistency principle for filtering. (3) The model is further updated using the filtered synthetic data. To investigate the underlying mechanisms behind this selfrefinement capability, we conduct a theoretical analysis from a causal perspective. Using the widely recognized LLaVA-1.5 as our baseline, our experiments reveal that the model can autonomously achieve consistent, though deliberately modest, improvements across multiple benchmarks without any external supervision, such as human annotations or environmental feedback. We expect that the insights of this study on the self-refinement ability of VLMs can inspire future research on the learning mechanism of VLMs. Code is available at SRF-LLaVA.

1 Introduction

Recent advancements in Large Language Models (LLMs) have demonstrated remarkable capabilities in natural language understanding and generation. By incorporating visual features into the linguistic modalities understandable by Large Language Models (LLMs), Vision-Language Models (VLMs) have developed the capability to interpret visual content effectively. A key factor in the success of these VLMs [1, 2, 3, 4, 5, 6, 7] is visual instruction tuning, which aligns visual content with the representation of LLM by optimizing the model's responses to visual instructions.

Acquiring supervised data with high-quality annotations is crucial for the success of visual instruction tuning. However, compiling visual instructions, such as image-question-answer triplets, is non-trivial. Such data cannot be directly crawled from the web and requires human involvement, making the process both challenging and costly. Careless data collection may lead to copyright issues. These factors motivate researchers to leverage synthetic data instead.



(b) Stimulating self-improvement boosts downstream performance.

The key to generating synthetic data lies in the creation of question-answer instructions. To ensure high-quality supervision signals, several methods [8, 9, 10, 11] utilize advanced VLMs, such as GPT-4V [12] and Gemini [13], to generate captions for unlabeled images. For example, ShareGPT4V [8] applies GPT-4V to generate a curated set of 100K high-quality captions and expands the dataset to 1.2M using a captioner trained on these captions. Additionally, some methods [14, 15, 16] leverage advanced LLMs, such as GPT-4 [17], as expert evaluators of generated data quality. However, these approaches depend on high-quality VLMs, which may face bottlenecks due to usage limits or the cost of proprietary models. As models improve, it becomes increasingly challenging to find superior teacher models for data annotation. To address this issue, some methods propose deriving annotation signals from environmental feedback, such as evaluation performance [18, 19, 20, 21]. However, relying on environmental feedback for supervision signals may be inefficient for model training. **More discussion of the related work can be found in Appendix A.**

Motivated by the challenges outlined above, this paper seeks to address the following question:

Can we refine VLMs without relying on external supervision, using only the model itself?

To stimulate the self-refinement capabilities of VLMs, we propose a framework using a Triangular Consistency principle to generate high-quality instructions by the model itself. This framework consists of three steps. (1) We fine-tune the VLMs to enhance their ability to generate instructions through a multi-task objective. This involves randomly masking the question, answer, or both, and training the VLMs to reconstruct the missing components. Consequently, the models can generate query-answer pairs from unlabeled images. (2) To ensure high-quality generated instructions, as shown in Figure 1a, we filter them with Triangular Consistency by inferring one component (question or answer) based on the other, and then compare the consistency between new-inferred ones and the original parts in the instructions. By filtering, we select the instructions with high consistency. (3) Finally, we leverage the selected instructions to refine the VLMs. This structured framework enhances the model's capability through continuous improvement, using its outputs as a feedback mechanism. Consequently, it supports multiple iterations of enhancement using only unlabeled images.

To investigate the underlying mechanisms behind the self-refinement capability of VLMs, we propose both theoretical and experimental analyses for validation. Theoretically, we formulate the refinement process as a semi-supervised learning task. Initially, we identify the causal relations between natural language and images. Subsequently, we offer guarantees that learning can be effectively conducted using only unlabeled images, grounded in the principles of causality. Then, experimentally, we employ LLaVA-1.5 [2] as our baseline, and evaluate whether the self-generated instructions can refine the models. As demonstrated by the results across multiple benchmarks, which are shown in Figure 1b, the proposed framework can efficiently stimulate the self-refinement ability of VLMs. Our primary contributions are summarized as follows:

- **Triangular Consistency Principle**: We introduced the Triangular Consistency principle as a measure for testing the reliability of generated instructions on unlabeled data.
- **Self-Refinement Framework**: We developed a self-refinement framework to update the model with self-generated instructions without the usage of any external annotations by humans or other stronger VLMs.
- **Theoretical and Experimental Analysis**: We present a theoretical analysis from a causal perspective to investigate the mechanisms of self-refinement. Furthermore, we experimentally validate our method using LLaVA-1.5 as the baseline. The dataset, comprising 2

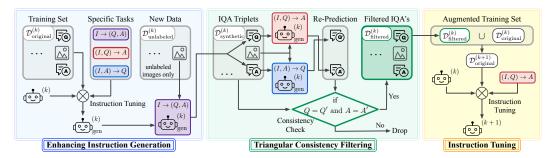


Figure 2: An overview of the Self-Refinement framework. The Self-Refinement framework comprises three stages. First, we design multi-task fine-tuning to enhance the model's instruction generation capabilities. Next, we apply the Triangular Consistency principle to filter high-quality instructions based on their scores. Finally, the selected data is used to refine the model. By using the updated model and synthetic data as the starting point for the next iteration, the framework naturally supports an iterative process.

million images accompanied by generated instructions, will be publicly released to facilitate further research.

2 Method

In this section, we first define the task and present the overall framework, which consists of three stages. We then detail each stage to demonstrate how the framework facilitates self-refinement in VLMs. Finally, we show that the framework is flexible enough to support multi-round refinement.

2.1 Overall framework

Our primary objective is to enable VLMs to refine themselves by extracting supervisory signals from an unlabeled image dataset $\mathcal{D}_{\text{unlabeled}} = \{I_i \mid i=1,2,\ldots,N\}$, where N denotes the number of images. To achieve this, we utilize the VLM itself to generate Image-Question-Answer (IQA) triplets for the unlabeled images, thereby constructing a synthetic dataset $\mathcal{D}_{\text{synthetic}} = \{(I_i,Q_i,A_i)\}$. Here, I_i denotes the image, Q_i represents a question generated based on the content of the image, and A_i is the corresponding answer to the question.

As illustrated in Figure 2, we propose a three-stage self-refinement framework. Our preliminary experiments (Table 6) indicate that directly utilizing existing VLMs, such as LLaVA, struggles to generate precise and diverse instructions (question-answer pairs). To address this, we introduce a multitask learning objective in the first stage, incorporating an image-conditional instruction-generation task. Next, a filtering process is applied to collect a refined data set $\mathcal{D}_{\text{filtered}}$, ensuring high-quality supervisory signals. In the final stage, we retrain the VLM using this filtered dataset by tuning the visual instruction.

2.2 Enhancing instruction generation

Although current VLMs exhibit strong visual understanding and perform well in answering visual questions, they often lack the ability to generate rich and diverse instructions (e.g., question-answer pairs). To address this limitation, we propose retraining the VLM to generate a synthetic instruction tuning dataset $\mathcal{D}_{\text{synthetic}}$ from an unlabeled image dataset $\mathcal{D}_{\text{unlabeled}}$. For clarity, we denote the original VLM as $M^{(0)}$ and the model after fine-tuning for instruction generation as $M_g^{(0)}$.

Specifically, we modify the typical instruction tuning stage [2] by introducing three specific tasks:

• $I \to QA$: Given an image I_i , generate a corresponding question-answer pair (Q_i, A_i) . Below is an example:

Human: For this image, what can be the instruction and answer pair? **VLM:** Instruction: What object is the man holding above his head in the image? Answer: The man is holding a skateboard above his head in the image.

• IQ \to A: Given an image I_i and a question Q_i , predict the masked answer A_i . This task is the typical instruction tuning task [1]. The following is an example:

Human: What other object is the person in the image holding or wearing? **VLM:** The person is also holding or wearing a guitar around his neck.

• IA \to Q: Given an image I_i and an answer A_i , predict the masked question Q_i . Here is an

Human: Build the instruction based on the answer. Answer: Yes, the man in the image appears to be in a band or a performer, as he is holding a guitar around his neck and is in a location that could be a nightclub or performance venue. **VLM:** Instruction: Does the man in the image appear to be in a band or a performer?

Task $I \to QA$ focuses on enhancing the model's ability to generate instructions effectively. Tasks $IQ \rightarrow A$ and $IA \rightarrow Q$ are aimed at improving data filtering in the subsequent stage by ensuring the consistency and relevance of the generated question-answer pairs.

We preprocess the dataset [2] used in the instruction tuning of the original model M^0 to create training data suitable for these tasks. The templates to generate multi-task training data can be found in Figure A2 of the Supplementary Materials. By organizing the training data in a way similar to an instruction-tuning task, we can directly apply the training strategy used in visual instruction tuning. Formally, the final multi-task loss function for this stage is defined as:

$$\mathcal{L}_{\text{all}} = \mathcal{L}_{\text{ga}} + \mathcal{L}_{\text{a}} + \mathcal{L}_{\text{g}},\tag{1}$$

 $\mathcal{L}_{all} = \mathcal{L}_{qa} + \mathcal{L}_{a} + \mathcal{L}_{q}, \tag{1}$ where each loss term \mathcal{L} corresponds to one of the tasks and is computed using the cross-entropy loss:

$$\mathcal{L} = -\sum_{t} \log P\left(w_t \mid V_{\text{instruct}}, w_{< t}\right), \tag{2}$$

where w_t represents the target token at time step t. V_{instruct} is the task-specific instruction including the input information such as the image I_i , question Q_i , or answer A_i , depending on the task.

2.3 Triangular consistency filtering

In this stage, we introduce the principle of **Triangular Consistency** to filter high-quality instructions from the generated dataset. This principle is based on a simple hypothesis: robust instructions should demonstrate consistency when any component of an image-question-answer (IQA) triplet is masked and subsequently re-predicted. Specifically, for a given instruction triplet (I_i, Q_i, A_i) , where Q_i, A_i are generated by the VLMs:

- If we mask the answer A_i and let the same VLM predict it based on image I_i and question Q_i , the predicted answer A'_i should closely match the original A_i .
- Conversely, if we mask the question Q_i and predict it using the image I_i and answer A_i , the predicted question Q'_i should align with the original Q_i .

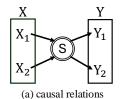
According to the principle of triangular consistency, the predicted elements A'_i and Q'_i should be consistent with the originals, A_i and Q_i , respectively. To quantify this consistency, we define a consistency score as:

$$S = \sqrt{\operatorname{Sim}(Q_i, Q_i') \times \operatorname{Sim}(A_i, A_i')},\tag{3}$$

where $Sim(Q_i, Q'_i)$ and $Sim(A_i, A'_i)$ represent similarity measures between the original and predicted questions and answers, respectively.

In particular, in order to compute the similarity score across diverse types of question-answer pairs, we have developed appropriate similarity metrics tailored to effectively handle each data type. For single-sentence texts, we utilize a Sentence Transformer [22], while for longer texts, we employ BERTScore [23]. When similarity can be precisely determined, such as in multiple-choice questions, we apply fixed metrics by directly comparing the answers to assess the consistency score. In questionanswer pairs involving region descriptions and localization, we measure similarity by calculating the Intersection over Union (IoU).

For each data type, we identify the top 20% of data exhibiting the highest triangular consistency scores. These selected data points form a filtered synthetic instruction tuning dataset, $\mathcal{D}_{\text{filtered}}$, which is then used to refine the VLMs.



(b) input-output of VLMs

Figure 3: Causal modeling and understanding of involved data-generating processes. Panel (a) presents causal relations among the language X, the semantic concept S, and the image Y. Panel (b) summarizes the input-output relation of VLMs.

2.4 Instruction tuning & iteration

After obtaining the synthetic instructions about the unlabeled images, we merge this newly generated data with the original seed dataset (e.g. $11ava_v1_5_mix665k$ used in LLaVA-1.5 [2]) as the final training dataset. Then we finetune the VLM $M^{(0)}$ on this merged dataset to obtain the self-refined VLM M^1 . The training strategy is the same as typical instruction tuning as shown in Equation 2.

We demonstrate that this three-stage process can be iteratively applied to enable continuous self-refinement of the model. Starting with the initial VLM $M^{(0)}$ and an unlabeled image set $\mathcal{D}^{(0)}$, we execute the self-refinement procedure as outlined, producing an enhanced model $M^{(1)}$. In the next iteration, we gather additional unlabeled data $\mathcal{D}^{(1)}$ and repeat the process, treating $M^{(1)}$ as the new base model. Through these repeated steps, the model is refined iteratively, resulting in $M^{(2)}$.

By iteratively repeating this process with the vast amount of unlabeled data available online, the model can continually integrate real-world visual information from diverse image distributions. This iterative approach drives progressive self-refinement, allowing the model to adapt to an ever-expanding range of visual data. The self-refinement loop can continue until the VLM has learned from a sufficiently comprehensive data distribution, encompassing most new images within its existing training domain.

3 Theoretical analysis

This section explores the self-refinement capability of VLMs from a causal perspective. Specifically, we demonstrate that the language is selected by the semantic concept, and through which, eventually, it serves as a cause of the image. We also present the theoretical foundation for the effectiveness of our self-refinement framework.

3.1 Causal relations among language, image, and semantic concept

In order to see the causal relations between the language and the image, let us consider the roles played by the semantic concept S as an auxiliary variable. Such a semantic concept is, in general, regarded as a (latent) common cause of the observations for both image and text modalities [24, 25]. Here, we illustrate the asymmetric relationship between concepts and observations in image Y (with pixels $\{Y_1, Y_2\}$) and text X (with words $\{X_1, X_2\}$). In this context, the semantic concept serves as a selection mechanism for words rather than a common cause, considering the characteristics of natural language. In particular, as illustrated in Figure 3 (a), the semantic concept serves as a selection for language, i.e., $\{X_1, X_2\} \to S$, and as a (latent) common cause for image, i.e., $S \to \{Y_1, Y_2\}$.

Selection mechanisms indicate that samples are chosen based on specific criteria (e.g., only when they meet certain principles) before being observed. Recent literature [26] in language processing explores selection mechanisms, showing that language outputs are modulated by semantic concepts specified in advance. Specifically, the semantic concept that the language needs to convey is a goal to achieve, instead of a common cause for language. The key statistical difference between selection and common cause lies in conditional independence. If a concept acts as a common cause, observations (e.g., words) become more independent when conditioned on that concept. In contrast, selection leads to the opposite effect. Clearly, when conditioned on certain topics, the relations of words would be more dependent, indicating the selection instead of the common cause structure.

Table 1: Comparison with advanced methods and baselines on 8 vision-language benchmarks. Due to space limitations, the names of the benchmarks are abbreviated. LLaVAW: LLaVA-Bench (Inthe-Wild) [1]; MM-Vet [28]; MMEC: MME Cognition; MMB: MMBench [29]; MMBCN: MMBench-Chinese; VQAV2 [30]; GQA [31]; SQAI: ScienceQA-IMG [32]. More evaluation results on additional benchmarks are provided in Appendix C.1. Data: Number of Image—Instruction Pairs used during visual instruction tuning. Recap-LLaVA-1.5 is obtained by using LLaVA-1.5 itself to caption one million images and retraining on those new image—instruction pairs. For comparisons based on the LLaVA-1.5 7B baseline, the best results are bolded and the second-best results are underlined.

Method	LLM	Data	LLaVAW	MM-Vet	MME ^C	MMB	MMB ^{CN}	VQA ^{v2}	GQA	SQA ^I
InstructBLIP	Vicuna-7B	1.2M	60.9	26.2	-	36.0	23.7	-	49.2	60.5
IDEFICS-9B	LLaMA-7B	1M	-	-	-	48.2	25.2	50.9	38.4	-
Qwen-VL	QWen-7B	50M	-	-	-	38.2	7.4	78.8	59.3	67.1
Qwen-VL-Chat	QWen-7B	50M	-	-	360.7	60.6	56.7	78.2	57.5	68.2
LLaVA	Vicuna-1.5-7B	158K	63.0	26.7	247.9	34.1	14.1	79.0	-	38.5
LLaVA-1.5 13B	Vicuna-1.5-13B	665K	70.7	35.4	295.4	67.7	63.6	80.0	63.3	71.6
SRF-LLaVA-1.5 13B	Vicuna-1.5-13B	665K + 200k	73.5	37.7	334.2	68.6	64.0	81.3	65.1	72.2
LLaVA-1.5 7B	Vicuna-1.5-7B	665K	63.4	<u>30.5</u>	316.1	64.3	58.3	78.5	62.0	66.8
Recap-LLaVA-1.5 7B	Vicuna-1.5-7B	665K + 1M	63.3	29.9	321.3	66.1	<u>58.5</u>	79.2	62.5	69.01
SRF-LLaVA-1.5 7B	Vicuna-1.5-7B	665K + 200k	66.9	33.1	331.8	66.3	59.2	79.6	63.35	<u>67.72</u>

3.2 Self-Refinement explanation

The input-output relations of a VLM can be summarized as generating the text X based on the visual information Y and conditioned on a question Q, represented as $P(X \mid Y; Q)$. To simplify the notation, we fix the question Q and use the shorthand $P(X \mid Y)$ in the following discussions without ambiguity. The initial VLM models the mapping between Y_{old} and X_{old} . To further refine the VLM, we incorporate additional unlabeled images, Y_{new} , to improve the estimation of $P(X \mid Y)$. We introduce the following mild assumptions, which are widely used in the causality theory [27]:

- Sufficiency and Independence. As shown in part (b) of Figure 3, the conditional distribution $P(Y \mid X)$, is defined by a deterministic function φ and an independent noise variable N_Y , such that $Y = \varphi(X, N_Y)$ with $N_Y \sim P(N_Y)$. Similarly, X is governed by an independent noise variable N_X with $N_X \sim P(N_X)$. The mechanism φ is irrelevant to the input distribution P(X).
- ANM and Decomposition. The Additive Noise Model (ANM) [33] assumes that the relationship between X and Y can be expressed in the format of $\varphi(X, N_Y) = \varphi(X) + N_Y$. We further posit that the marginal distribution P(Y) can be expressed as the convolution of two distributions:

$$P(Y) = F * G = \int F(z)G(Y - z) dz, \tag{4}$$

where F and G are component distributions. This decomposition is valid under conditions such as N_Y being Gaussian and $P(\varphi(X))$ being indecomposable. The latter assumption is reasonable, as X represents diverse textual data, making $P(\varphi(X))$ unlikely to be decomposable.

Both the independence-of-mechanism and ANM are standard functional assumptions that have been extensively used to identify causal directions and to separate mechanisms from input distributions. In our setting, they provide a principled reason why better estimating the image marginal P(Y)—via additional unlabeled images Y_{new} —can improve our inference target $P(X \mid Y)$: the forward (causal) model $P(Y \mid X)$ is stable across changes in P(X), whereas the backward direction lacks such invariance. Consequently, unlabeled images carry exploitable signal for refining P(Y) and, through Bayes' rule, for improving $P(X \mid Y)$. We emphasize that Eq. (4) specifies the generative process used for theoretical analysis and is not enforced during VLM training. While these assumptions cannot be directly verified for modern VLMs, they are useful theoretical tools to capture plausible structural properties and to derive interpretable insights.

Our goal is to estimate $P(X \mid Y) = \frac{P(Y \mid X)P(X)}{P(Y)}$. By incorporating unlabeled images Y_{new} , we can refine the empirical estimate of P(Y) with more observations. Since X is observed, improving the estimate of $P(Y \mid X)$ consequently improves our goal $P(X \mid Y)$.

Formally, under ANM assumptions, P(Y) can be expressed as a convolution of the distributions of $\varphi(X)$ and N_Y . From the paired data $(X_{\text{old}}, Y_{\text{old}})$, we can estimate the function φ_{old} and corresponding

distribution $P(\varphi_{old}(X))$. Having estimates of both P(Y) and $P(\varphi_{old}(X))$, we can identify the noise distribution $P(N_Y)$ via deconvolution: $P(N_Y) = P(Y) * P(\varphi_{old}(X))^{-1}$. Due to the unique decomposition of P(Y), we can identify whether $P(N_Y)$ corresponds to F or G, and thus get the true distribution $P(N_Y)$. This correction of $P(N_Y)$ can help obtain a better estimation of $P(Y \mid X)$.

4 Experiments

4.1 Experimental settings

We adopted LLaVA-1.5 7B [2] as our baseline, which uses CLIP-Large [34] as visual encoder and Vicuna-1.5 [35] as LLM. To rule out the possibility that our gains stem merely from more data or longer training, we constructed an additional strong baseline, Recap-LLaVA-1.5, which uses the same unlabeled images but replaces the Self-Refinement procedure with a straightforward self-annotation pipeline: (i) starting from the same 1 M unlabeled images as SRF-LLaVA-1.5, we use a frozen LLaVA-1.5-7B to generate one detailed caption per image; (ii) we retain all 1 M captions without filtering and merge them with the original LLaVA-1.5 training set; and (iii) we fine-tune the model using the identical training schedule as SRF-LLaVA-1.5.

Beyond the original training dataset 11ava_v1_5_mix665k used in LLaVA-1.5, we randomly selected 2.8 million images from LAION [36] as the unlabeled image set to validate the self-refinement ability. During fine-tuning on the merged dataset, we follow the standard LLaVA-1.5 instruction-tuning recipe. Specifically, we keep the vision encoder frozen and fine-tune both the image-text projection layer and the LLM parameters. In the evaluation, we followed the setup of LLaVA-1.5, which contains 8 benchmarks. For traditional VQA tasks, we used the VQAv2 [30], GQA [31], and ScienceQA [32] datasets. For visual perception and reasoning tasks, we employed MMBench [29], MMBench-Chinese [29], MME [37], and MM-Vet [28] benchmarks. To assess visual dialogue ability, we utilized the LLaVA-Bench(In-the-Wild) [1] benchmark. Please note that the goal of this work is to explore the self-refinement capability of VLMs without distilling knowledge from other models like GPT-4V. Therefore, we did not incorporate such knowledge into our model and did not conduct many comparisons with the methods using such models.

4.2 Implementation details

In the Enhancing instruction generation stage, we constructed the dataset using <code>llava_v1_5_mix665k</code> as the seed. Specifically, we masked both the question (Q) and the answer (A) in 50% of the data, only Q in 20%, and only A in the remaining 30%. For each task, we randomly selected prompt templates combined with unmasked elements as inputs, with the masked parts serving as ground-truth targets. Then we generate synthetic data from one million unlabeled images and select the top 20% ones with higher Triangular Consistency scores. We design a hybrid scoring approach suited to different instruction types. For shorter texts, we employed UAE-Large-V1[22], a compact Sentence Transformer with only 335 million parameters, that effectively compares single-sentence text similarity without introducing external knowledge. For longer texts, since the performance of the Sentence Transformer diminishes, we opt for BertScore[23], based on the bert-base-uncased model, as it provides robust discriminative capabilities for lengthier text comparisons. To ensure fair comparisons with baseline, we adopted a head-to-head setup by using the same base language model and prompts as LLaVA-1.5. Also, we adhered strictly to the prompt templates and data preprocessing methods utilized by LLaVA-1.5. The specific calculation procedure for Triangular Consistency scores is provided in Section B of Supplementary Materials.

4.3 Quantitative evaluation

We evaluated our framework alongside advanced VLMs, the baseline LLaVA-1.5 and the strong baseline SRF-LLaVA-1.5 on 8 benchmarks. Overall, our framework offers consistent improvements over LLaVA-1.5 on most of the benchmarks. For instance, in traditional VQA tasks—including VQAv2 and GQA, our model outperformed LLaVA-1.5 by an average of 1.22%. For visual perception and reasoning tasks such as MMBench, MM-VET, and LLaVA-Wild, we achieved improvements of 2.1%, 1.7%, and 3.5%, respectively. Although Recap-LLaVA-1.5 shows only small gains on most benchmarks, SRF-LLaVA-1.5 improves them much more. This suggests that SRF-LLaVA-1.5's

Question: What's the ending of this movie?

LLaVA-1.5:The ending of this movie is not provided, as it is a scene from a movie or a TV show. However, it is likely that the couple will continue their adventure, as they are already on a boat and enjoying their time together.

Ours: The ending of the movie Titanic is well-known, as it is a classic romantic drama. In the film, the main characters, Jack and Rose, are on a ship called the Titanic. They fall in love and share a memorable night together on the deck of the ship. However, as the ship encounters an iceberg and begins to sink, Jack sacrifices his life by giving Rose a chance to survive by jumping into the icy water. The movie ends with Rose being rescued and the sinking of the Titanic. The emotional impact of the film and the tragic ending have made it a beloved classic and a symbol of love and sacrifice.

Question: Describe this photo in detail.

LLaVA-1.5: The image features a painting of a dog wearing a Renaissance-style dress, giving it a human-like appearance. The dog is sitting in a chair, looking directly at the viewer. The painting is quite detailed, capturing the dog's facial expression and the intricate design of the dress. In the background, there is a person partially visible on the left side of the painting. The overall scene is quite captivating and unique, as it combines the artistic style of the Renaissance with the subject matter of a dog.

Ours: The image features a painting of a dog dressed in a Renaissance-style outfit, resembling a woman. The dog is wearing a long dress and a hat, giving it a unique and artistic appearance. The painting is set in a landscape with a mountainous background, adding to the overall ambiance of the scene. The dog is positioned in the center of the painting, with its hands resting on its lap, as if it were a human. The painting captures the dog's unique and creative portrayal, making it an interesting and eye-catching piece of art.

Figure 4: Two comparison examples between our SRF-LLaVA-1.5 and LLaVA-1.5 in visual chat. Red highlights indicate factual errors or irrelevant content in the response, while green highlights emphasize image details critical for providing an accurate answer.

Table 3: Evaluations on MoblieVLM Baseline

Method	LLM	GQA	SQA ^I	VQA ^T	POPE	MME ^P	MMB
MobileVLM	MobileLLaMA-1.4B	56.1	57.3	41.5	84.5	1196.2	53.2
SRF-MobileVLM	MobileLLaMA-1.4B	58.1	59.8	43.3	85.3	1220.3	56.1

advantage comes mainly from the Triangular Consistency principle, which enhances self-refinement, rather than from training on extra data.

Training cost analysis. At inference time, SRF-LLaVA-1.5 and LLaVA-1.5 are identical in parameter count and therefore require the same FLOPs and GPU memory. During training, however, SRF-LLaVA-1.5 processes a larger number of images, leading to a longer training duration. Table 2 compares the total wall-clock times of SRF-LLaVA-1.5 and LLaVA-1.5, both trained on a cluster equipped with 8

Table 2: Training time comparison between LLaVA-1.5 and SRF-LLaVA-1.5.

Model	Total wall-clock time	GPU-hours
LLaVA-1.5	7 h	56
SRF-LLaVA-1.5	12 h	96

NVIDIA H100-NVL GPUs (96 GB each). The refinement procedure costs approximately 40 additional GPU-hours ($\approx 0.7 \times$), which we report explicitly to inform practitioners of the trade-off between accuracy and computational expense.

4.4 Qualitative evaluation

In this section, we illustrate how our self-refinement framework enhances the real-world visual dialogue capabilities. Figure 4 presents two representative examples.

Enhanced World Knowledge. For the first example in Figure 4, our model correctly identifies the individuals in the image as the protagonists of the movie *Titanic* and accurately describes the film's ending, whereas the original LLaVA-1.5 fails to do so. Though no external information is involved, our framework can use the consistency principle to filter possible errors and do the refinement.

Improved Generalization Ability. For the second example, our model generates a description that is significantly more detailed and accurate than that of LLaVA-1.5, without exhibiting hallucinations. We attribute this improvement to the exposure to a wider variety of visual scenes and objects provided by the unlabeled images. By learning from these diverse visual features during training, the model enhanced its ability to recognize and represent them.

4.5 Ablation studies

Does Self-Refinement Generalize Across Different Scales and Architectures of VLMs? Yes. To assess the generalization of our Self-Refinement framework across VLMs with different parameter scales and architectures, we conducted experiments on MobileVLM-1.7B [38], QWen2.5-VL 3B [39],

Table 4: Evaluations on QWen2.5-VL Baseline

Method	LLM	MMMU	MMMU Pro	MathVista	MathVision	MMStar	MMB
Qwen2.5-VL	Qwen2.5-3B	53.1	31.6	62.3	21.2	55.8	81.5
SRF-Qwen2.5-VL	Qwen2.5-3B	55.0	31.9	64.7	23.3	56.5	80.8

and LLaVA-1.5 13B using an identical dataset and training pipeline. For MobileVLM and QWen2.5-VL 3B, we followed their original configurations and, for each model respectively, evaluated SRF-MobileVLM and SRF-QWen2.5-VL on six benchmarks selected from their official evaluation suites. For LLaVA-1.5 13B, we mirrored the experimental setup used for LLaVA-1.5 7B. As shown in Table 3 and Table 4, SRF delivers consistent improvements in all baselines, indicating that self-refinement is generalized across various VLM architectures. In particular, as shown in Table 1, SRF-LLaVA-1.5 13B exceeds LLaVA-1.5 13B in all 8 benchmarks, demonstrating effectiveness at larger parameter scales.

Can Multiple Iterations Lead to Better Per**formance? Yes.** As shown in Table 5, Round 2 performance was comparable to Round 1 on GQA and SQA, with noticeable improvements on MM-Vet and LLaVA-Bench. However, the overall improvement in Round 2 We hypothesize this saturawas smaller. tion stems from the finite exploitable signal that unpaired images provide about the underlying image distribution; once largely distilled, subsequent iterations yield diminishing returns. Nevertheless, a second round still produced measurable gains, implying that a single pass does not fully harvest the available signal. Round 2 exhausted all our

Table 5: Ablation study on Framework Iteration, Consistency Criterion, Selection Threshold. Complete results are provided in **Table A3** of Supplementary Materials.

Ablations	Patterns	GQA	SQA ^I	MM-Vet	LLaVAW
SRF-LLaVA-1.5	Default	63.35	67.72	33.1	66.9
LLaVA-1.5	Baseline	62.00	66.8	30.5	63.4
Multi-Round	Round-2	63.25	67.77	33.9	67.7
Consistency	Bottom 20%	62.85	66.70	30.4	64.4
	Top 5%	62.90	67.48	32.4	63.6
	Top 20%	63.35	67.72	<u>33.1</u>	<u>66.9</u>
Threshold	Top 50%	63.02	68.77	30.4	62.8
	Top 80%	62.9	67.03	29.1	64.0
	Top 100%	62.87	67.48	30.7	63.7

collected images, suggesting that further performance gains would require additional data.

Does the Self-Refinement Framework Produce Better Instructions? Yes. Table 6 compares QA pairs generated by our Self-Refinement framework against those from prompted original LLaVA-1.5, evaluating GPT-40 accuracy and diversity metrics (TTR [40] and Distinct-2 [41]) on 1000 samples. Our model demonstrates clear advantages over prompted LLaVA-1.5, achieving superior accuracy and diversity. This indicates that explicitly training a dedicated model for instruction generation ef-

Table 6: Evaluations of GPT-40 accuracy, Type-Token Ratio (TTR), and Distinct-2 on the generated QA pairs from SRF-LLaVA, baseline LLaVA, and LLaVA with in-context learning.

	SRF-LLavA 7B	LL	aVA-1.5	7B
Metrics	0-shot	0-shot	1-shot	5-shot
Acc(%)	85.3	73.9	79.2	63.6
TTR	0.1144	0.0888	0.0775	0.0692
Distinct-2	0.4790	0.3216	0.3075	0.2737

fectively improves QA pair quality, particularly in diversity.

How does Triangular Consistency Principle work? To evaluate the effectiveness of the Triangular Consistency Filtering stage, we conducted two comparisons: (1) between the retained and excluded QA pairs after filtering and (2) by altering the filter criterion from the top 20% to the bottom 20%. Table 7 presents both quantitative and qualitative evaluations of the retained versus excluded synthetic data subsets. For the quantitative analysis, we used GPT-40 to evaluate 1,000 samples from each subset. We also conducted a human study with 12 volunteers, each of the 100 samples reviewed by 3 volunteers. The results confirm that the retained subset significantly outperforms the excluded subset. Qualitative comparisons of the QA pair samples at the bottom of Table 7 further emphasize the superior quality of data selected by the Triangular Consistency Principle. Additionally, as shown in the "Consistency" group of Table 5, training the model on the lower 20% (ranked with consistency score) of synthetic data resulted in a performance decline compared to SRF-LLaVA-1.5 (which using top 20%), further validating the effectiveness of Triangular Consistency. More experimental details on Triangular Consistency Filtering can be found in Section C of Supplementary Materials.

How do Different Instruction Types Influence Performance?

To further investigate which data types have the greatest impact on model performance, we replaced the filtered synthetic data with different subsets of data categories. Specifically, we retained only five types including VQA (Visual Question Answering), Visual Chat, REG&REC (Region Expression and Recognition), Caption, and Multiple-Choice/Judgment, and retrained LLaVA-1.5 exclusively on these subsets to observe any changes in downstream performance. As shown in Figure 5, different instruction types yield corresponding improvements, with captioning tasks contributing the most overall enhancement. Please refer to Section C of Supplementary Materials for comprehensive comparisons, statistical details on the distribution of generated instructions, and further

Table 7: Quantitative and Qualitative Analysis of Retained and Excluded QA Pairs. We evaluate the quality of the generated QA pairs through both GPT-40 assessments and a human user study. Additionally, we present an example to qualitatively compare the consistency between the Original and Recovered QA pairs.

T	ype	Evaluation	/ Examples
Quant.	Subset	GPT	Human
Quant.	Retained	85.3	89.0
Excluded 59.9		59.9	83.0
	Subset	Original QA	Recovered QA
Qual.	Retained	Q: What is the color of the painting displayed in the image?A: The painting displayed in the image is a blue picture.	Q': What color is the picture displayed in the image? A': The color of the painting displayed in the image is blue.
	Excluded	Q: What is the setting of the image? A: The setting of the image is indoors, with the person using a green case in a white room.	Q': What is the setting of the image? A': The setting of the image is outdoors, with the person holding the small case or container outside.

experiments on the impact of different instruction partitions.

How Much Data is Required? More data offers additional information but also introduces more noise. We investigated the impact of varying the threshold of the triangular consistency score used to screen high-quality synthetic data. Specifically, we combined synthetic data with scores ranking in the top 5%, 20%, 50%, 80%, and 100% (i.e., without filtering and detailed captions) with the LLaVA-1.5 665k dataset to form the new training set, as illustrated in Table 5. The results indicate that model performance improves across all thresholds. However, the best overall performance is achieved when using the top 20% threshold.



Figure 5: **Ablation study on specific synthetic data types.** The numbers denote the percentage increase compared to LLaVA-1.5.

5 Conclusion

In this work, we explored the self-refinement capability of Vision-Language Models (VLMs) through a framework grounded in the Triangular Consistency principle. Our results demonstrate that this self-refinement ability can be effectively activated, enabling VLMs to autonomously generate and leverage high-quality supervision from unlabeled data. We further provided a causal explanation for this phenomenon, showing how the model's ability to infer missing modalities supports its internal consistency and learning dynamics. Empirical evaluations confirm that our framework consistently improves baseline performance without external supervision, highlighting the potential of self-refinement as a pathway toward autonomous and continually improving multimodal intelligence. Limitations: Although our approach successfully demonstrates self-refinement, the model's improvement diminishes when the newly introduced images closely align with the distribution of the model's existing training data. **Societal Impact:** By enabling self-improvement from unlabeled images, our framework can reduce reliance on expensive and labor-intensive human annotations and help democratize access to high-performance VLMs, particularly in low-resource settings. However, learning from model-generated synthetic data risks reinforcing or amplifying biases and hallucinations present in the pretrained model, and the absence of human-in-the-loop oversight can make unintended behaviors harder to trace or audit.

Acknowledgment

We would like to acknowledge the support from NSF Award No. 2229881, AI Institute for Societal Decision Making (AI-SDM), the National Institutes of Health (NIH) under Contract R01HL159805, and grants from Quris AI, Florin Court Capital, and MBZUAI-WIS Joint Program, and the Al Deira Causal Education project.

References

- [1] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances in neural information processing systems*, 36, 2023.
- [2] Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction tuning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 26296–26306, 2024.
- [3] Quan Sun, Qiying Yu, Yufeng Cui, Fan Zhang, Xiaosong Zhang, Yueze Wang, Hongcheng Gao, Jingjing Liu, Tiejun Huang, and Xinlong Wang. Emu: Generative pretraining in multimodality. In *The Twelfth International Conference on Learning Representations*, 2023.
- [4] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language model for few-shot learning. *Advances in neural information processing systems*, 35:23716–23736, 2022.
- [5] Wenliang Dai, Junnan Li, Dongxu Li, Anthony Tiong, Junqi Zhao, Weisheng Wang, Boyang Li, Pascale Fung, and Steven Hoi. InstructBLIP: Towards general-purpose vision-language models with instruction tuning. In *Advances in neural information processing systems*, 2023.
- [6] Anas Awadalla, Irena Gao, Josh Gardner, Jack Hessel, Yusuf Hanafy, Wanrong Zhu, Kalyani Marathe, Yonatan Bitton, Samir Gadre, Shiori Sagawa, et al. Openflamingo: An open-source framework for training large autoregressive vision-language models. *arXiv preprint arXiv:2308.01390*, 2023.
- [7] Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities. *arXiv preprint arXiv:2308.12966*, 2023.
- [8] Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Conghui He, Jiaqi Wang, Feng Zhao, and Dahua Lin. Sharegpt4v: Improving large multi-modal models with better captions. *arXiv* preprint arXiv:2311.12793, 2023.
- [9] Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee. Llava-next: Improved reasoning, ocr, and world knowledge, January 2024.
- [10] Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Yanwei Li, Ziwei Liu, and Chunyuan Li. Llava-onevision: Easy visual task transfer. arXiv preprint arXiv:2408.03326, 2024.
- [11] Zhiyuan Zhao, Linke Ouyang, Bin Wang, Siyuan Huang, Pan Zhang, Xiaoyi Dong, Jiaqi Wang, and Conghui He. Mllm-dataengine: An iterative refinement approach for mllm. *arXiv preprint arXiv:2308.13566*, 2023.
- [12] OpenAI. Gpt-4v(ision) system card. 2023.
- [13] Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.
- [14] Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A Smith, Daniel Khashabi, and Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions. *arXiv preprint arXiv:2212.10560*, 2022.

- [15] Zhiqing Sun, Yikang Shen, Qinhong Zhou, Hongxin Zhang, Zhenfang Chen, David Cox, Yiming Yang, and Chuang Gan. Principle-driven self-alignment of language models from scratch with minimal human supervision. *Advances in Neural Information Processing Systems*, 36, 2023.
- [16] Xian Li, Ping Yu, Chunting Zhou, Timo Schick, Omer Levy, Luke Zettlemoyer, Jason Weston, and Mike Lewis. Self-alignment with instruction backtranslation. *arXiv preprint arXiv:2308.06259*, 2023.
- [17] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.
- [18] Pinzhen Chen, Zhicheng Guo, Barry Haddow, and Kenneth Heafield. Iterative translation refinement with large language models. *arXiv preprint arXiv:2306.03856*, 2023.
- [19] Afra Feyza Akyürek, Ekin Akyürek, Aman Madaan, Ashwin Kalyan, Peter Clark, Derry Wijaya, and Niket Tandon. Rl4f: Generating natural language feedback with reinforcement learning for repairing model outputs. *arXiv* preprint arXiv:2305.08844, 2023.
- [20] Debjit Paul, Mete Ismayilzada, Maxime Peyrard, Beatriz Borges, Antoine Bosselut, Robert West, and Boi Faltings. Refiner: Reasoning feedback on intermediate representations. *arXiv* preprint arXiv:2304.01904, 2023.
- [21] Baolin Peng, Michel Galley, Pengcheng He, Hao Cheng, Yujia Xie, Yu Hu, Qiuyuan Huang, Lars Liden, Zhou Yu, Weizhu Chen, et al. Check your facts and try again: Improving large language models with external knowledge and automated feedback. *arXiv preprint arXiv:2302.12813*, 2023.
- [22] Xianming Li and Jing Li. Angle-optimized text embeddings, 2024.
- [23] Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. Bertscore: Evaluating text generation with bert. *arXiv preprint arXiv:1904.09675*, 2019.
- [24] Lingjing Kong, Shaoan Xie, Weiran Yao, Yujia Zheng, Guangyi Chen, Petar Stojanov, Victor Akinwande, and Kun Zhang. Partial disentanglement for domain adaptation. In *International conference on machine learning*, pages 11455–11472. PMLR, 2022.
- [25] Julius Von Kügelgen, Yash Sharma, Luigi Gresele, Wieland Brendel, Bernhard Schölkopf, Michel Besserve, and Francesco Locatello. Self-supervised learning with data augmentations provably isolates content from style. Advances in neural information processing systems, 34:16451–16467, 2021.
- [26] Jingling Li, Zeyu Tang, Xiaoyu Liu, Peter Spirtes, Kun Zhang, Liu Leqi, and Yang Liu. Steering llms towards unbiased responses: A causality-guided debiasing framework. arXiv preprint arXiv:2403.08743, 2024.
- [27] Bernhard Schölkopf, Dominik Janzing, Jonas Peters, Eleni Sgouritsa, Kun Zhang, and Joris Mooij. On causal and anticausal learning. *arXiv preprint arXiv:1206.6471*, 2012.
- [28] Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Zicheng Liu, Xinchao Wang, and Lijuan Wang. Mm-vet: Evaluating large multimodal models for integrated capabilities, 2023.
- [29] Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi Wang, Conghui He, Ziwei Liu, Kai Chen, and Dahua Lin. Mmbench: Is your multi-modal model an all-around player?, 2024.
- [30] Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the v in vqa matter: Elevating the role of image understanding in visual question answering. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 6904–6913, 2017.
- [31] Drew A. Hudson and Christopher D. Manning. Gqa: A new dataset for real-world visual reasoning and compositional question answering, 2019.

- [32] Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord, Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for science question answering, 2022.
- [33] Patrik Hoyer, Dominik Janzing, Joris M Mooij, Jonas Peters, and Bernhard Schölkopf. Nonlinear causal discovery with additive noise models. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, *Advances in Neural Information Processing Systems*, volume 21. Curran Associates, Inc., 2008.
- [34] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning transferable visual models from natural language supervision, 2021.
- [35] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica. Judging llm-as-a-judge with mt-bench and chatbot arena, 2023.
- [36] Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk, Clayton Mullis, Aarush Katta, Theo Coombes, Jenia Jitsev, and Aran Komatsuzaki. Laion-400m: Open dataset of clip-filtered 400 million image-text pairs, 2021.
- [37] Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu Zheng, Ke Li, Xing Sun, Yunsheng Wu, and Rongrong Ji. Mme: A comprehensive evaluation benchmark for multimodal large language models, 2024.
- [38] Xiangxiang Chu, Limeng Qiao, Xinyang Lin, Shuang Xu, Yang Yang, Yiming Hu, Fei Wei, Xinyu Zhang, Bo Zhang, Xiaolin Wei, et al. Mobilevlm: A fast, reproducible and strong vision language assistant for mobile devices. *arXiv preprint arXiv:2312.16886*, 2023.
- [39] Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan, Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng, Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report. arXiv preprint arXiv:2502.13923, 2025.
- [40] Mildred C Templin. Certain language skills in children; their development and interrelationships. 1957.
- [41] Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, and Bill Dolan. A diversity-promoting objective function for neural conversation models. *arXiv preprint arXiv:1510.03055*, 2015.
- [42] Kaicheng Yang, Jiankang Deng, Xiang An, Jiawei Li, Ziyong Feng, Jia Guo, Jing Yang, and Tongliang Liu. Alip: Adaptive language-image pre-training with synthetic caption. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 2922–2931, 2023.
- [43] Shijie Geng, Jianbo Yuan, Yu Tian, Yuxiao Chen, and Yongfeng Zhang. Hiclip: Contrastive language-image pretraining with hierarchy-aware attention. *arXiv preprint arXiv:2303.02995*, 2023.
- [44] Lewei Yao, Runhui Huang, Lu Hou, Guansong Lu, Minzhe Niu, Hang Xu, Xiaodan Liang, Zhenguo Li, Xin Jiang, and Chunjing Xu. Filip: Fine-grained interactive language-image pre-training. *arXiv preprint arXiv:2111.07783*, 2021.
- [45] Yanghao Li, Haoqi Fan, Ronghang Hu, Christoph Feichtenhofer, and Kaiming He. Scaling language-image pre-training via masking. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 23390–23400, 2023.
- [46] Chen Chen, Bowen Zhang, Liangliang Cao, Jiguang Shen, Tom Gunter, Albin Madappally Jose, Alexander Toshev, Jonathon Shlens, Ruoming Pang, and Yinfei Yang. Stair: learning sparse text and image representation in grounded tokens. *arXiv preprint arXiv:2301.13081*, 2023.

- [47] Lu Yuan, Dongdong Chen, Yi-Ling Chen, Noel Codella, Xiyang Dai, Jianfeng Gao, Houdong Hu, Xuedong Huang, Boxin Li, Chunyuan Li, et al. Florence: A new foundation model for computer vision. *arXiv preprint arXiv:2111.11432*, 2021.
- [48] Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas Carlini, Rohan Taori, Achal Dave, Vaishaal Shankar, Hongseok Namkoong, John Miller, Hannaneh Hajishirzi, Ali Farhadi, and Ludwig Schmidt. Openclip, July 2021. If you use this software, please cite it as below.
- [49] Hieu Pham, Zihang Dai, Golnaz Ghiasi, Kenji Kawaguchi, Hanxiao Liu, Adams Wei Yu, Jiahui Yu, Yi-Ting Chen, Minh-Thang Luong, Yonghui Wu, et al. Combined scaling for zero-shot transfer learning. *Neurocomputing*, 555:126658, 2023.
- [50] Karan Desai and Justin Johnson. Virtex: Learning visual representations from textual annotations. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 11162–11173, 2021.
- [51] Michael Tschannen, Manoj Kumar, Andreas Steiner, Xiaohua Zhai, Neil Houlsby, and Lucas Beyer. Image captioners are scalable vision learners too. *Advances in Neural Information Processing Systems*, 36, 2023.
- [52] Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh, and Kai-Wei Chang. Visualbert: A simple and performant baseline for vision and language. arXiv preprint arXiv:1908.03557, 2019.
- [53] Yicong Hong, Qi Wu, Yuankai Qi, Cristian Rodriguez-Opazo, and Stephen Gould. Vln bert: A recurrent vision-and-language bert for navigation. In *CVPR*, pages 1643–1653, 2021.
- [54] Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng, and Jingjing Liu. Uniter: Universal image-text representation learning. In *European conference on computer vision*, pages 104–120. Springer, 2020.
- [55] Xiujun Li, Xi Yin, Chunyuan Li, Pengchuan Zhang, Xiaowei Hu, Lei Zhang, Lijuan Wang, Houdong Hu, Li Dong, Furu Wei, et al. Oscar: Object-semantics aligned pre-training for vision-language tasks. In *Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXX 16*, pages 121–137. Springer, 2020.
- [56] Zhe Gan, Yen-Chun Chen, Linjie Li, Chen Zhu, Yu Cheng, and Jingjing Liu. Large-scale adversarial training for vision-and-language representation learning. *Advances in Neural Information Processing Systems*, 33:6616–6628, 2020.
- [57] Pengchuan Zhang, Xiujun Li, Xiaowei Hu, Jianwei Yang, Lei Zhang, Lijuan Wang, Yejin Choi, and Jianfeng Gao. Vinvl: Revisiting visual representations in vision-language models. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 5579–5588, 2021.
- [58] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In *ICML*, 2021.
- [59] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning with noisy text supervision. In *ICML*, pages 4904–4916, 2021.
- [60] Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: Enhancing vision-language understanding with advanced large language models. arXiv preprint arXiv:2304.10592, 2023.
- [61] Lin Chen, Xilin Wei, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Bin Lin, Zhenyu Tang, et al. Sharegpt4video: Improving video understanding and generation with better captions. *arXiv preprint arXiv:2406.04325*, 2024.
- [62] Yuanhan Zhang, Jinming Wu, Wei Li, Bo Li, Zejun Ma, Ziwei Liu, and Chunyuan Li. Video instruction tuning with synthetic data. *arXiv preprint arXiv:2410.02713*, 2024.

- [63] Sean Welleck, Ximing Lu, Peter West, Faeze Brahman, Tianxiao Shen, Daniel Khashabi, and Yejin Choi. Generating sequences by learning to self-correct. arXiv preprint arXiv:2211.00053, 2022.
- [64] Luyu Gao, Zhuyun Dai, Panupong Pasupat, Anthony Chen, Arun Tejasvi Chaganty, Yicheng Fan, Vincent Zhao, Ni Lao, Hongrae Lee, Da-Cheng Juan, et al. Rarr: Researching and revising what language models say, using language models. In *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 16477–16508, 2023.
- [65] Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Nan Duan, and Weizhu Chen. Critic: Large language models can self-correct with tool-interactive critiquing. *arXiv* preprint arXiv:2305.11738, 2023.
- [66] I Chern, Steffi Chern, Shiqi Chen, Weizhe Yuan, Kehua Feng, Chunting Zhou, Junxian He, Graham Neubig, Pengfei Liu, et al. FacTool: Factuality detection in generative ai–a tool augmented framework for multi-task and multi-domain scenarios. *arXiv preprint arXiv:2307.13528*, 2023.
- [67] Theo X Olausson, Jeevana Priya Inala, Chenglong Wang, Jianfeng Gao, and Armando Solar-Lezama. Is self-repair a silver bullet for code generation. In arXiv preprint arXiv:2306.09896, 2023.
- [68] Yue Wu, Zhiqing Sun, Huizhuo Yuan, Kaixuan Ji, Yiming Yang, and Quanquan Gu. Self-play preference optimization for language model alignment. arXiv preprint arXiv:2405.00675, 2024.
- [69] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement with self-feedback. *arXiv preprint arXiv:2303.17651*, 2023.
- [70] Potsawee Manakul, Adian Liusie, and Mark JF Gales. Selfcheckgpt: Zero-resource black-box hallucination detection for generative large language models. arXiv preprint arXiv:2303.08896, 2023.
- [71] Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song, and Denny Zhou. Large language models cannot self-correct reasoning yet. *arXiv* preprint *arXiv*:2310.01798, 2023.
- [72] Loka Li, Zhenhao Chen, Guangyi Chen, Yixuan Zhang, Yusheng Su, Eric Xing, and Kun Zhang. Confidence matters: Revisiting intrinsic self-correction capabilities of large language models. *arXiv preprint arXiv:2402.12563*, 2024.
- [73] Qwen Team. Qwen: Open large language models by alibaba cloud. https://github.com/ QwenLM/Qwen3-VL/tree/main/qwen-vl-finetune, 2024.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The main claims in the abstract accurately reflect our contributions.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitations of this work in Section 5.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [NA]

Justification: This paper does not include theoretical results.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide complete experimental details in Appendix B. In addition, the full code for our main experiments has been open-sourced in an github repository (the link is given in Abstract.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived
 well by the reviewers: Making the paper reproducible is important, regardless of
 whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We provide an github link to the code and describe how to reproduce the experimental results in the README file of the code.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We describe the complete experimental details and hyperparameter choices in Appendix B.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental
 material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the error bars of our main experimental results.

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).

- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: We report the computational resource requirements of our proposed method in Appendix.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research aligns with the NeurIPS Code of Ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss both potential positive societal impacts and negative societal impacts of our framework in Section 5.

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.

- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with
 necessary safeguards to allow for controlled use of the model, for example by requiring
 that users adhere to usage guidelines or restrictions to access the model or implementing
 safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
 not require this, but we encourage authors to take this into account and make a best
 faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: The code and datasets used in the paper are publicly available and properly credited.

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.

- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: We have provided detailed documentation for our open-source code.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: This work does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: This work does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.

- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: This paper does not involve LLMs as any important, original, or non-standard components.

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.

Appendix of "Towards Self-Refinement of Vision-Language Models with Triangular Consistency"

Yunlong Deng 1* , Guangyi Chen 1,2* , Tianpei Gu 3 , Lingjing Kong 2 , Yan Li 1 , Zeyu Tang 2 , and Kun Zhang 1,2

¹Mohamed bin Zayed University of Artificial Intelligence ²Carnegie Mellon University ³ByteDance US

Appendix organization:

A	Rela	ted Work	24
В	Mor	e Implementation Details	24
	B.1	Templates for Generating Multi-Task Training Data	24
	B.2	Similarity Calculation across Diverse Data Types	25
	B.3	Hyperparameters	26
	B.4	Training Details of Other Baseline VLMs	27
	B.5	Pseudo Code	27
C	Mor	e Quantitative Results	27
	C.1	Evaluation on More Challenging Benchmarks	27
	C.2	Ablation Results on More Benchmarks	27
	C.3	Effectiveness of Consistency Score Measurement	28
	C.4	Data Types Investigation	29
	C.5	Ablation Study on Alternative Masking Ratios for QA pairs	29
	C.6	Error Bars in the Main Experimental Results	30
D	Mor	e Qualitative Results	30
E	Emp	pirical justification of Equation (4) on synthetic data	31

A Related Work

Vision Language Models. Vision-Language Models (VLMs) leverage large datasets to learn joint representations of visual and linguistic information. These models commonly employ training frameworks such as contrastive matching [42, 43, 44, 45, 46, 47, 48, 49], cross-modal generation [50, 51, 52, 53, 54, 55, 56, 57], or a combination of both. Key examples include contrastive frameworks like CLIP [58] and ALIGN [59] which synchronize text and image representations through contrastive objectives. Conversely, the cross-modal generation approach, exemplified by works such as VirTex [50] and VisualBERT [52], emphasizes generative tasks like captioning or masked content reconstruction for learning representations. Additionally, the emergence of large language models has significantly enhanced the capabilities of multimodal systems. These methods [12, 1, 2, 4, 6, 13, 60] integrate and expand upon this rich multimodal knowledge by aligning the pre-trained LLMs with the visual modality.

Visual Instruction Tuning with Synthetic Data. To address the high costs and complexities of acquiring copyrighted visual instruction data, recent approaches [8, 9, 10, 11, 61, 62] have advocated for the use of synthetic data in model training. These methods typically utilize advanced VLMs such as GPT4V [12] to analyze requirements, generate detailed captions or instructions, and assess synthetic data quality. For instance, ShareGPT4V [8] and LLaVA-Next [9] employ GPT4V to produce captions and instructions, respectively, while MLLM-DataEngine [11] focuses on identifying model weaknesses and generating instructions with specific targeting. While these methods enhance performance, they encounter two major limitations tied to the reliance on advanced VLMs: firstly, high-quality VLMs often come with restrictive usage limits and high costs; secondly, as models evolve, sourcing superior teacher models for effective data annotation becomes increasingly difficult.

Self-Refinement of LLMs. While discussions on VLMs' self-refinement are limited, debates about LLMs' self-refinement persist. These methods fall into two categories: extrinsic and intrinsic self-refinement. Extrinsic methods utilize feedback from external sources, such as evaluation models [20, 19, 63, 21, 64] or interactions with humans or tools [65, 66, 67, 68]. More related to this work is the intrinsic self-refinement [69, 18, 70, 71, 72], which utilizes the model's capabilities without external feedback. For instance, Self-Refine [69] employs the in-context learning of LLMs to generate and iteratively correct instructions using seed examples. Sun et al. [15] apply templates and text-based rules for instruction selection, while IoE Prompt [72] uses carefully designed prompts for self-correction through re-inference. However, applying these methods to VLMs presents significant challenges. Multiple inferences [72] and multi-example in-context learning [69] are resource-intensive with images. In addition, the use of image modality means that sample templates or text-only rules, which only focus on textual quality without considering alignment, are less effective.

B More Implementation Details

In this section, we present some key implementation details of the Self-Refinement Framework to facilitate a better understanding of its mechanisms.

B.1 Templates for Generating Multi-Task Training Data

We provide the prompts used to generate multi-task training data. During the training phase of Enhancing Instruction Generation, we transform the original training data from the LLaVA-1.5 database, $11ava_v1_5_{mix_665k}$, into data suitable for multi-task training by setting specific prompt templates. Specifically, for the Image-Question-Answer (IQA) data triples in original dataset, we established the following task types: $I \rightarrow QA$, $IQ \rightarrow A$, and $IA \rightarrow Q$.

For the $IQ \to A$ task, we use the original data without modification. For the $I \to QA$ and $IA \to Q$ tasks, we prepend a randomly selected prompt to the inputs to assist the VLM in more accurately aligning the instructions with the respective downstream tasks. Additionally, we have also redesigned the system prompts used by the VLM due to changes in training tasks. The complete prompts used for training are detailed in Figure A1.

System Prompt

• You are a visual-language assistant. You will be given one of the three kinds of tasks with specified task type. Complete the task by generating a response.

Prompts for $I \rightarrow QA$ Instructions

- Generate the instruction and answer pair corresponding to the image.
- Build the instruction and answer pair for this image.
- What can be the question and answer pair corresponding to the image?
- For this image, what can be the instruction and answer pair?
- Given the image, generate the question and answer pair.
- Can you generate the question and answer pair for this image?

Prompts for IA \rightarrow Q Instructions

- Generate the instruction based on the answer.
- Build the instruction based on the answer.
- What can be the instruction for the answer?
- What's the question for this answer?
- For the response, what can be the instruction?

Figure A1: The list of prompts for Enhancing Instruction Generation. Given that $IQ \to A$ task is the same as typical instruction tuning, We provide the system prompt and template prompts for $I \to QA$, and $IA \to Q$ tasks. Notably, we do not enforce any particular question–answer type. The prompts simply ask the model to generate a question and its answer. The distribution of generated QA types is therefore emergent

B.2 Similarity Calculation across Diverse Data Types

We demonstrate detailed information on the similarity indices designed for different types of data during the Triangular Consistency Filtering stage. We process various types of question-answer data generated during the previous stage and flexibly adjust the similarity calculations based on data characteristics, as follows:

- To assess text similarity, we use either Sentence Embedding or BertScore. As detailed in Section 2.3, we separately calculate the similarities of questions (Q,Q') and answers (A,A'), then compute their geometric mean. For Visual Question Answering (VQA) data, we employ Sentence Embedding for both questions and answers. In contrast, for Visual Chat data with longer answers, we apply Sentence Embedding to questions and use BertScore for answers, as it performs better with extended texts.
- When similarity values can be precisely calculated, we compute them directly using specific metrics. For example, in Region Description (REG) and Recognition (REC) data involving a region description query (Q) and corresponding coordinates (A), or vice versa, we use Intersection over Union (IoU) to measure the similarity of region coordinates. The similarity of region descriptions is calculated using Sentence Embedding, and we take the geometric mean of both similarities. Similarly, for multiple-choice and true-false data consisting of only a question and an answer, we do not compare question similarity since the same answer might correspond to different questions. Instead, we check if the answer remains the same before and after reconstruction; if identical, the similarity score is 1; otherwise, it is 0.

VQA

Question: What is the color of the man's shirt? Answer the question using a single word or phrase.

Answer: Blue

Visual Chat

Question: Why might each of the three shots in this photograph be taken?

Answer: Each of the three shots in the photograph captures a different high angle angle and side view of a man wearing a suit and tie, possibly for a wedding, as one of the angles suggests. These shots might be taken to showcase the suit, tie, and overall look from different angles and perspectives, providing a more comprehensive and visually appealing coverage of the desired outfit. The variations in camera angles also provide a sense of uniqueness and individuality, helping the viewer better understand the significance of the clothing and the overall attire being presented.

REG & REC

Question: Please provide the bounding box coordinate of the region this sentence describes:

the mans right arm.

Answer: [0.82, 0.83, 0.97, 0.98]

Question: Please provide a short description for this region: [0.67, 0.78, 0.8, 0.93].

Answer: Two buttoned up shirts.

Caption

Question: Provide a one-sentence caption for the provided image. Reference OCR token:

Book, BEST

Answer: A poster of a smiling cartoon character in a white and blue shirt with the words best at the bottom of the photo.

Multiple-Choice & **True-False**

Question: What kind of bag is shown? A. backpack B. tote C. purse D. briefcase Answer with the option's letter from the given choices directly.

Answer: B

Question: Is there a balcony in the picture? Answer the question using a single word or

phrase.

Answer: Yes

Figure A2: **The list of Q-A pairs of different types.** The parts marked in orange are fixed prompt templates, which are not included in similarity calculations.

• For data where the questions are in a fixed format, we only compute the similarity of the answers. For example, for Caption data, which includes an instruction (Q) and its corresponding image description (A), we focus solely on the similarity of the image descriptions. This is because the instructions primarily contain hints and OCR tokens without significant meaning.

To fairly treat different types of data, we select the top 20% of data from each category. Additionally, to prevent the similarity calculations from being influenced by repeated instruction templates, we exclude all fixed-format instructions. Examples of each data type are shown in Figure A2.

B.3 Hyperparameters

To ensure a fair comparison, we adopted a head-to-head setup by using the same base language model and prompts as LLaVA-1.5. The training hyperparameters were consistent with those of LLaVA-1.5: an initial learning rate of 2×10^{-5} and a batch size of 128. Most of the training (including all ablation studies) was conducted on 8 NVIDIA A100 GPUs, with both the first and third stages

each taking approximately 20 hours. For evaluation, we compared our **SRF-LLaVA-1.5** against the original LLaVA-1.5. We adhered strictly to the prompt templates and data preprocessing methods utilized by LLaVA-1.5. Decoding was performed using greedy search to maintain consistency and reproducibility in our results.

B.4 Training Details of Other Baseline VLMs

The merged dataset for MobileVLM consists of (i) samples generated by MobileVLM itself through our self-refinement loop on the 1M unlabeled images, and (ii) its original supervised training set. For QWen2.5-VL, since its original training set is not publicly available, we follow the official repository's recommendations by combining our self-refinement dataset with the officially suggested datasets [73] (nyu-visionx/Cambrian-10M, lmms-lab/LLaVA-NeXT-Data, FreedomIntelligence/ALLaVA-4V, and TIGER-Lab/VisualWebInstruct) and subsequently perform SFT on the combined corpus.

B.5 Pseudo Code

Algorithm A1 Iterative Self-Refinement

```
1: Input: M_0 ... initial VLM
                 D_0 \dots human-labeled (I, Q, A) dataset
                 U\dots unlabeled images
 3:
                 K \dots number of refinement rounds
 4:
 5: for k = 1 to K do
          — iterative self-refinement –
     Stage 1 - Multi-task fine-tune (caption, VQA, instruction)
          M_0^{\mathrm{gen}} \leftarrow \mathrm{TRAIN}(M_0, D_0)
          \begin{array}{l} S \leftarrow \{\, (I,Q,A) \text{ produced by } M_0^{\text{gen}} \text{ for every } I \in U \,\} \\ S' \leftarrow \{\, (I,Q',A') \mid Q' \leftarrow M_0^{\text{gen}}(I,A) \, \wedge \, A' \leftarrow M_0^{\text{gen}}(I,Q) \,\} \end{array}
 7:
     Stage 2 – Generate & filter synthetic IQA
          for all (I,Q,A) \in S and (I,Q',A') \in S' do
 9:
               if Q = Q' and A = A' then
10:
11:
                     F \leftarrow (I, Q, A)
               end if
12:
          end for
13:
     Stage 3 – Instruction tuning with filtered data
          D_1 \leftarrow D_0 \cup F
14:
          M_1 \leftarrow \text{TRAIN}(M_0, D_1)
15:

    instruction-only objective

16: end for
17: return M
```

As shown in Algorithm A1, we provide the pseudo code for the core algorithm of our SRF-LLaVA-1.5. This pseudo code serves as a high-level description of the algorithm's workflow, outlining its core computational steps and logical structure.

C More Quantitative Results

C.1 Evaluation on More Challenging Benchmarks

To evaluate whether our method generalizes to more challenging benchmarks, we further assess SRF-LLaVA-1.5 7B and LLaVA-1.5 7B on MMMU and MMMU-Pro. The results are shown in Table A1.

Table A1: **Comparison on more challenging benchmarks.** For both LLaVA-1.5-7B and SRF-LLaVA-1.5-7B, we obtained the results through local evaluation using VLMEvalKit.

Model	MMMU	MMMU Pro
Baseline	34.7	17.6
After refinement	36.6	18.3

C.2 Ablation Results on More Benchmarks

This section presents the complete ablation study data conducted within the Self-Refinement Framework. We examined the impact of various factors on the framework's performance, including the number of framework iterations, the selection of consistency criteria, the setting of filtering thresholds, and the adjustment of data distribution. As shown in Table A2, we observed the following phenomena:

Table A2: Complete ablation study results on Framework Iteration, Consistency Criterion, Selection Threshold, and Data Partition. LLaVA^W: LLaVA-Bench (In-the-Wild) [1]; MM-Vet [28]; MME^C: MME Cognition [37]; MMB: MMBench [29]; MMB^{CN}: MMBench-Chinese; VQA^{v2} [30]; GQA [31]; SQA^I: ScienceQA-IMG [32].

Ablations	Patterns	LLaVAW	MM-Vet	MME ^C	MMB	MMB ^{CN}	VQA ^{v2}	GQA	SQA ^T
SRF-LLaVA-1.5	Default	66.9	33.1	331.8	66.3	59.2	79.6	63.35	67.72
LLaVA-1.5	Baseline	63.4	30.5	316.1	64.3	58.3	78.5	62.0	66.8
Multi-Round	Round2	67.7	33.9	335.0	66.3	60.3	79.52	63.25	67.77
Consistency	Lower Score	64.4	30.4	337.5	66.0	60.3	79.19	62.85	66.7
	without long caption	64.8	30.1	321.4	66.3	60.2	79.41	63.27	67.03
Partition	LLaVA-1.5 partition	62.2	30.2	282.1	66.8	60.0	79.42	63.17	68.12
	top 5%	63.6	32.4	337.5	65.8	61.2	79.34	62.9	67.48
	top 20%	66.9	33.1	331.8	66.3	59.2	79.6	63.35	67.72
Threshold	top 50%	62.8	30.4	319.3	67.1	60.9	79.44	63.02	68.77
Tillesholu	top 80%	64.0	29.1	316.4	66.5	60.4	79.33	62.9	67.03
	top 100%	63.7	30.7	312.5	65.4	59.4	79.35	62.87	67.48

Table A3: Consistency score between reference and candidate answers.

Type	Answer	Similarity
Ref	The answer is an apple.	_
Cand1	The answer is an orange.	0.79
Cand2	The answer happens to be an apple.	0.98
Cand3	An apple is the correct answer.	0.94

Improved Performance with Additional Iterations With more iterations, the model's performance improves. The Round-2 model slightly surpasses SRF-LLaVA-1.5 on 5 benchmarks and is comparable on others, achieving an average improvement of 0.4% across all benchmarks (excluding MME-C due to unnormalized values, and keeping this setting for all following discussions). The performance gain is more significant on real-world visual chat benchmarks than on traditional VQA tasks, suggesting that supervisory information from unlabeled images in the new distribution benefits real-world dialogue scenarios.

Preserving Data Distribution and Detailed Captions Improves Performance Maintaining the original distribution of synthetic data, along with detailed captions, enhances self-refinement performance. Adjusting the data distribution to match that of the LLaVA-1.5 training set causes a slight performance drop. Likewise, removing all long-caption data decreases performance.

Impact of Filtering Threshold The filtering threshold affects model performance. A 20% threshold yields the best results among thresholds of 5%, 20%, 50%, and 80%, suggesting the importance of balancing data quality and quantity. Even without filtering (threshold of 100%), the model shows some performance improvement (about 0.73%). This indicates that the VLM can learn supervisory information from new images, even with low-quality synthetic annotations.

C.3 Effectiveness of Consistency Score Measurement

We used to explore several consistency score measurements, including RoBERTa and Vicuna1.5, which yielded lower accuracy and higher costs, so we adopted the current method. Specifically, we employ Sentence Transformer for shorter sentences, while for longer sentences or paragraphs, we utilize BertScore, ensuring an optimal balance between evaluation accuracy and computational efficiency. Table A3 presents consistency scores for sentence meaning shifts due to word changes. The score is notably lower when the factual word "apple" changes to "orange."

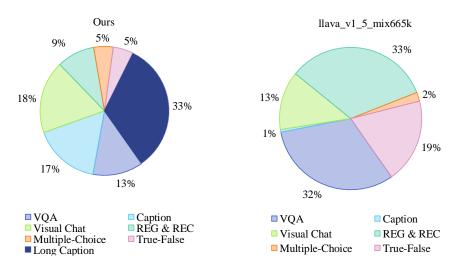


Figure A3: The comparison between the data distributions of synthetic data and LLaVA-1.5 training dataset.

Table A4: **Complete ablation study results on specific synthetic data types**. Each value in the *Data Partition* column corresponds to retaining *only* the indicated synthetic–data type.

Data Partition	LLaVAW	MM-Vet	MME ^C	MMB	MMB ^{CN}	VQA ^{v2}	GQA	SQA ^I
Add VQA	68.7	31.1	322.5	65.8	59.5	79.28	63.12	69.66
Add Caption	63.5	33.0	326.4	67.2	61.4	79.20	62.90	70.10
Add Visual Chat	69.5	32.8	335.4	66.4	60.5	79.27	62.35	68.82
Add REG&REC	68.4	33.0	287.9	66.6	59.5	79.20	62.45	68.62
Add True-False/Multiple-Choice	66.5	32.0	309.3	66.8	59.0	79.09	62.49	67.92

C.4 Data Types Investigation

This section presents the complete results of ablation studies on specific synthetic data types. This experiment aims to comprehensively assess the impact of integrating different data types on the Self-Refinement performance of VLMs.

Figure A3 illustrates the proportional differences in distribution between our synthetic data and the original LLaVA-1.5 data. Compared to the original distribution, our synthetic data is more balanced, without categories that are excessively underrepresented.

As shown in Table A4, we retained data solely from five types: VQA (Visual Question Answering), Visual Chat, REG&REC (Region Expression and Recognition), Caption, and Multiple-Choice/Judgement tasks, and tested the performance of VLMs when re-instructed to fine-tune on these filtered data distributions. The results indicate that the VLM generally shows performance improvements in the training sets corresponding to the integrated data types. For instance, the VLM integrated with VQA data outperformed others on the VQAv2 and GQA datasets. However, this trend is not without exceptions. For example, after integrating multiple-choice data, the VLM did not surpass the performance achieved with other data types on the ScienceQA and MM-Vet benchmarks, which are also multiple-choice in nature. Moreover, the integration of Visual Chat data resulted in the highest average performance improvement of 2.3%, while the performance gain from Multiple-Choice/True-False data was the least. This could be due to Visual Chat data containing richer image features compared to other types, thus providing more supervisory information during the fine-tuning phase.

C.5 Ablation Study on Alternative Masking Ratios for QA pairs

Pilot results suggested limited sensitivity to the exact Q/A masking split, so we used a balanced 50/30/20 (Q-mask/A-mask/None). To verify this, we retrained **Multitask-LLaVA-1.5** with two alternatives: *Q-heavy* (60/20/20) and *A-heavy* (40/40/20).

Table A6: Comparison with advanced methods and baselines on 8 vision-language benchmarks with error bar. Note: SRF-LLaVA-1.5 results are reported as mean \pm standard deviation over three independent fine-tuning runs with identical hyperparameters and random seeds.

Method	LLM	Data	LLaVAW	MM-Vet	MME ^C	MMB	MMB ^{CN}	VQA ^{v2}	GQA	SQA ^I
LLaVA-1.5 7B	Vicuna-1.5-7B	665K	63.4	30.5	316.1	64.3	58.3	78.5	62.0	66.8
Recap-LLaVA-1.5 7B	Vicuna-1.5-7B	665K + 1M	63.3	29.9	321.3	66.1	<u>58.5</u>	79.2	62.5	69.01
SRF-LLaVA-1.5 7B (mean ± std)	Vicuna-1.5-7B	665K + 200K	67.2 ± 0.62	33.1 ± 0.06	332.0 ± 0.21	66.4 ± 0.16	59.1 ± 0.12	79.6 ± 0.03	62.4 ± 0.25	68.2 ± 0.35

Then, in Stage 1, generated QA pairs for 1,000 unlabeled images and evaluated their accuracy and diversity: **Acc**↑ (GPT-40 judged image–QA consistency), **TTR**↑ (type–token ratio), and **Distinct**₂↑

Then, in Stage 1, generated QA Table A5: Masking configurations and results (Accuracy, pairs for 1,000 unlabeled images Type-Token Ratio, and Distinct-2).

Mask Type	Mask Q&A	Mask Q	Mask A	Acc(%)	TTR	Distinct-2
Original	50%	20%	30%	85.3	0.1144	0.4790
More Balanced	33%	33%	33%	87.7	0.0995	0.4381

(unique bigrams ratio). As shown in Table A5, all strategies yield comparable results; we therefore keep 50/30/20 for simplicity and reproducibility.

C.6 Error Bars in the Main Experimental Results

We have repeated the entire instruction-fine-tuning phase of SRF-LLaVA three times, each time using identical hyperparameters, the same random seed, and the same training-dataset order. The resulting mean \pm standard deviation across the three runs has been reported in Table A6.

D More Qualitative Results

Figure A4: More qualitative examples of our SRF-LLaVA-1.5 and LLaVA-1.5. In all three examples, SRF-LLaVA-1.5 provides more detailed and instruction-aligned responses compared to LLaVA-1.5. Red highlights indicate factual errors or irrelevant content in the response, while green highlights emphasize image details critical for providing an accurate answer.

In this section, we present a series of qualitative results to intuitively compare the differences between SRF-LLaVA-1.5 and the original LLaVA-1.5.

Improvements in Model Capabilities From these analyses, we observed several enhancements in our model. As mentioned in Section 4.4, SRF-LLaVA-1.5 exhibits enhanced detail recognition, capturing more subtle features in images than LLaVA-1.5; and possesses richer world knowledge, successfully identifying artists and interpreting underlying meanings in artworks, as shown in

Studying online Zoom Teacher Zoom Teacher T

Question: Can you explain this meme?

Figure A5: **Failure cases**. Both SRF-LLaVA-1.5 and LLaVA-1.5 fail to correctly understand the implications of the meme. Red highlights indicate factual errors or irrelevant content in the response, while green highlights emphasize image details critical for providing an accurate answer.

Figure A4. In addition to the aforementioned capabilities, we have also observed that SRF-LLaVA-1.5 demonstrates superior instruction-following capabilities, allowing it to flexibly adjust its responses based on different types of prompts. For instance, in the second example of Figure A4, the user's instruction is to introduce the character "Joker." While LLaVA-1.5 continues to focus on describing the image content, our SRF-LLaVA-1.5 provides a comprehensive summary of the Joker as per the user's request, without being confined to the content displayed in the image.

Failure Case Analysis Despite these improvements, SRF-LLaVA-1.5 shares some shortcomings with the original LLaVA-1.5. In a meme presented in Figure A5, which superficially consists of four unrelated images, a deeper analysis reveals concerns about students' situations in online learning. However, both models provide only surface-level analyses of the image. While this limitation is likely due to constraints in the logical reasoning capabilities of the underlying language models used, we are optimistic that future advancements through our Self-Refinement approach will help us overcome this boundary, enabling SRF-LLaVA-1.5 to understand deeper meanings and provide more insightful analyses.

E Empirical justification of Equation (4) on synthetic data

To examine the conditions underlying Equation (4), we design a controlled synthetic experiment that follows the generative process in Section 3.3, where the output distribution P(Y) arises from the convolution of a deterministic component with independent noise. Concretely, we draw $X \sim \text{Laplace}(0,1)$ and independent noise $N \sim \text{Laplace}(0,0.6)$ in dimension d=50, then set

$$Y = X\Phi^{\top} + N$$
,

with a random full-rank matrix $\Phi \in \mathbb{R}^{50 \times 50}$. The dataset is split into $N_{\text{lab}} = 1900$ labeled pairs (X,Y) for training, $N_{\text{unl}} = 4900$ unlabeled observations Y_{new} for self-refinement, and $N_{\text{test}} = 1000$ labeled pairs for evaluation.

A three-layer MLP with two hidden layers of 128 ReLU units takes a test vector $Y \in \mathbb{R}^{50}$ as input and outputs two 50-dimensional vectors (μ, b) , where μ estimates the conditional median of X and $b \in \mathbb{R}^{50}_{>0}$ the coordinate-wise Laplace scales. The network is trained on labeled data by minimizing the Laplace negative log-likelihood

$$\mathcal{L}(X, \mu, b) = \sum_{j=1}^{d} \left[\log(2b_j) + \frac{|X_j - \mu_j|}{b_j} \right],$$

using Adam (learning rate 10^{-3} , batch size 128, 50 epochs). During self-refinement, the model predicts pseudo-labels $\hat{X}_{\text{new}} = \mu(Y_{\text{new}})$, retains the top 40% most confident samples (smallest predicted scales b), augments the training set with these pseudo-labels, and retrains; this process is repeated for several rounds. On the test set, we report (i) Laplace NLL as above; (ii) mean squared error

$$MSE = \frac{1}{N_{\text{test}} d} \sum_{i=1}^{N_{\text{test}}} ||X_i - \mu_i||_2^2;$$

Table A7: Synthetic-data self-refinement under the generative model in Section 3.3. Lower NLL/MSE is better; higher \mathbb{R}^2 is better.

Setting	NLL	MSE	\mathbb{R}^2
Baseline	1.1840	0.4691	0.7635
After refinement	0.9046	0.2872	0.8551
Improvement (Δ)	0.2794	0.1819	0.0916

and (iii) R^2 computed by scikit-learn's r2_score with multioutput="uniform_average" (higher is better). Results are summarized in Table A7. The self-refinement procedure consistently improves NLL, MSE, and R^2 , supporting the premise that additional observations of the effect variable Y help estimate $P(X \mid Y)$ under the assumed decomposition. We note, however, that directly transferring this decomposition to real-world VLMs remains a theoretical abstraction; see Section 3.3 for discussion of this limitation.