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Abstract

Vision-Language Models (VLMs) integrate visual knowledge with the analytical
capabilities of Large Language Models (LLMs) through supervised visual instruc-
tion tuning, using image-question-answer triplets. However, the potential of VLMs
trained without supervised instruction remains largely unexplored. This study
validates that VLMs possess inherent self-refinement capabilities, enabling them
to generate high-quality supervised data without external inputs and thereby learn
autonomously. Specifically, to stimulate the self-refinement ability of VLMs, we
propose a self-refinement framework based on a Triangular Consistency principle:
within the image-query-answer triangle, any masked elements should be consis-
tently and accurately reconstructed. The framework involves three steps: (1) We
enable the instruction generation ability of VLMs by adding multi-task instruction
tuning like image→question-answer or image-answer→question. (2) We gener-
ate image-query-answer triplets from unlabeled images and use the Triangular
Consistency principle for filtering. (3) The model is further updated using the
filtered synthetic data. To investigate the underlying mechanisms behind this self-
refinement capability, we conduct a theoretical analysis from a causal perspective.
Using the widely recognized LLaVA-1.5 as our baseline, our experiments reveal
that the model can autonomously achieve consistent, though deliberately modest,
improvements across multiple benchmarks without any external supervision, such
as human annotations or environmental feedback. We expect that the insights of
this study on the self-refinement ability of VLMs can inspire future research on the
learning mechanism of VLMs. Code is available at SRF-LLaVA.

1 Introduction

Recent advancements in Large Language Models (LLMs) have demonstrated remarkable capabilities
in natural language understanding and generation. By incorporating visual features into the linguistic
modalities understandable by Large Language Models (LLMs), Vision-Language Models (VLMs)
have developed the capability to interpret visual content effectively. A key factor in the success of
these VLMs [1, 2, 3, 4, 5, 6, 7] is visual instruction tuning, which aligns visual content with the
representation of LLM by optimizing the model’s responses to visual instructions.

Acquiring supervised data with high-quality annotations is crucial for the success of visual instruction
tuning. However, compiling visual instructions, such as image-question-answer triplets, is non-trivial.
Such data cannot be directly crawled from the web and requires human involvement, making the
process both challenging and costly. Careless data collection may lead to copyright issues. These
factors motivate researchers to leverage synthetic data instead.
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Task 3

(a) The illustration of the Triangular Consistency
principle. This principle evaluates the consistency
within image-question-answer triplets. Specifically,
we independently mask A, Q, or both, and use VLMs
to infer the masked elements. We then check consis-
tency by assessing whether the generated outputs align
with the original ones.

(b) Stimulating self-improvement boosts down-
stream performance.

The key to generating synthetic data lies in the creation of question-answer instructions. To ensure
high-quality supervision signals, several methods [8, 9, 10, 11] utilize advanced VLMs, such as GPT-
4V [12] and Gemini [13], to generate captions for unlabeled images. For example, ShareGPT4V [8]
applies GPT-4V to generate a curated set of 100K high-quality captions and expands the dataset to
1.2M using a captioner trained on these captions. Additionally, some methods [14, 15, 16] leverage
advanced LLMs, such as GPT-4 [17], as expert evaluators of generated data quality. However, these
approaches depend on high-quality VLMs, which may face bottlenecks due to usage limits or the
cost of proprietary models. As models improve, it becomes increasingly challenging to find superior
teacher models for data annotation. To address this issue, some methods propose deriving annotation
signals from environmental feedback, such as evaluation performance [18, 19, 20, 21]. However,
relying on environmental feedback for supervision signals may be inefficient for model training.
More discussion of the related work can be found in Appendix A.

Motivated by the challenges outlined above, this paper seeks to address the following question:

Can we refine VLMs without relying on external supervision, using only the model itself?
To stimulate the self-refinement capabilities of VLMs, we propose a framework using a Triangular
Consistency principle to generate high-quality instructions by the model itself. This framework
consists of three steps. (1) We fine-tune the VLMs to enhance their ability to generate instructions
through a multi-task objective. This involves randomly masking the question, answer, or both, and
training the VLMs to reconstruct the missing components. Consequently, the models can generate
query-answer pairs from unlabeled images. (2) To ensure high-quality generated instructions, as
shown in Figure 1a, we filter them with Triangular Consistency by inferring one component (question
or answer) based on the other, and then compare the consistency between new-inferred ones and the
original parts in the instructions. By filtering, we select the instructions with high consistency. (3)
Finally, we leverage the selected instructions to refine the VLMs. This structured framework enhances
the model’s capability through continuous improvement, using its outputs as a feedback mechanism.
Consequently, it supports multiple iterations of enhancement using only unlabeled images.

To investigate the underlying mechanisms behind the self-refinement capability of VLMs, we propose
both theoretical and experimental analyses for validation. Theoretically, we formulate the refinement
process as a semi-supervised learning task. Initially, we identify the causal relations between natural
language and images. Subsequently, we offer guarantees that learning can be effectively conducted
using only unlabeled images, grounded in the principles of causality. Then, experimentally, we
employ LLaVA-1.5 [2] as our baseline, and evaluate whether the self-generated instructions can
refine the models. As demonstrated by the results across multiple benchmarks, which are shown in
Figure 1b, the proposed framework can efficiently stimulate the self-refinement ability of VLMs. Our
primary contributions are summarized as follows:

• Triangular Consistency Principle: We introduced the Triangular Consistency principle as
a measure for testing the reliability of generated instructions on unlabeled data.

• Self-Refinement Framework: We developed a self-refinement framework to update the
model with self-generated instructions without the usage of any external annotations by
humans or other stronger VLMs.

• Theoretical and Experimental Analysis: We present a theoretical analysis from a causal
perspective to investigate the mechanisms of self-refinement. Furthermore, we experimen-
tally validate our method using LLaVA-1.5 as the baseline. The dataset, comprising 2
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Figure 2: An overview of the Self-Refinement framework. The Self-Refinement framework
comprises three stages. First, we design multi-task fine-tuning to enhance the model’s instruction
generation capabilities. Next, we apply the Triangular Consistency principle to filter high-quality
instructions based on their scores. Finally, the selected data is used to refine the model. By using the
updated model and synthetic data as the starting point for the next iteration, the framework naturally
supports an iterative process.

million images accompanied by generated instructions, will be publicly released to facilitate
further research.

2 Method

In this section, we first define the task and present the overall framework, which consists of three
stages. We then detail each stage to demonstrate how the framework facilitates self-refinement in
VLMs. Finally, we show that the framework is flexible enough to support multi-round refinement.

2.1 Overall framework

Our primary objective is to enable VLMs to refine themselves by extracting supervisory signals from
an unlabeled image dataset Dunlabeled = {Ii | i = 1, 2, . . . , N}, where N denotes the number of
images. To achieve this, we utilize the VLM itself to generate Image-Question-Answer (IQA) triplets
for the unlabeled images, thereby constructing a synthetic dataset Dsynthetic = {(Ii, Qi, Ai)}. Here,
Ii denotes the image, Qi represents a question generated based on the content of the image, and Ai is
the corresponding answer to the question.

As illustrated in Figure 2, we propose a three-stage self-refinement framework. Our preliminary
experiments (Table 6) indicate that directly utilizing existing VLMs, such as LLaVA, struggles to
generate precise and diverse instructions (question-answer pairs). To address this, we introduce
a multitask learning objective in the first stage, incorporating an image-conditional instruction-
generation task. Next, a filtering process is applied to collect a refined data set Dfiltered, ensuring
high-quality supervisory signals. In the final stage, we retrain the VLM using this filtered dataset by
tuning the visual instruction.

2.2 Enhancing instruction generation

Although current VLMs exhibit strong visual understanding and perform well in answering visual
questions, they often lack the ability to generate rich and diverse instructions (e.g., question-answer
pairs). To address this limitation, we propose retraining the VLM to generate a synthetic instruction
tuning dataset Dsynthetic from an unlabeled image dataset Dunlabeled. For clarity, we denote the original
VLM as M (0) and the model after fine-tuning for instruction generation as M (0)

g .

Specifically, we modify the typical instruction tuning stage [2] by introducing three specific tasks:

• I→ QA: Given an image Ii, generate a corresponding question-answer pair (Qi, Ai).
Below is an example:

Human: For this image, what can be the instruction and answer pair?
VLM: Instruction: What object is the man holding above his head in the image?
Answer: The man is holding a skateboard above his head in the image.
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• IQ→ A: Given an image Ii and a question Qi, predict the masked answer Ai. This task is
the typical instruction tuning task [1]. The following is an example:

Human: What other object is the person in the image holding or wearing?
VLM: The person is also holding or wearing a guitar around his neck.

• IA→ Q: Given an image Ii and an answer Ai, predict the masked question Qi. Here is an
example:

Human: Build the instruction based on the answer. Answer: Yes, the man in the
image appears to be in a band or a performer, as he is holding a guitar around
his neck and is in a location that could be a nightclub or performance venue.
VLM: Instruction: Does the man in the image appear to be in a band or a
performer?

Task I→ QA focuses on enhancing the model’s ability to generate instructions effectively. Tasks
IQ→ A and IA→ Q are aimed at improving data filtering in the subsequent stage by ensuring the
consistency and relevance of the generated question-answer pairs.

We preprocess the dataset [2] used in the instruction tuning of the original model M0 to create
training data suitable for these tasks. The templates to generate multi-task training data can be found
in Figure A2 of the Supplementary Materials. By organizing the training data in a way similar to an
instruction-tuning task, we can directly apply the training strategy used in visual instruction tuning.
Formally, the final multi-task loss function for this stage is defined as:

Lall = Lqa + La + Lq, (1)
where each loss term L corresponds to one of the tasks and is computed using the cross-entropy loss:

L = −
∑
t

logP (wt | Vinstruct, w<t) , (2)

where wt represents the target token at time step t. Vinstruct is the task-specific instruction including
the input information such as the image Ii, question Qi, or answer Ai, depending on the task.

2.3 Triangular consistency filtering

In this stage, we introduce the principle of Triangular Consistency to filter high-quality instructions
from the generated dataset. This principle is based on a simple hypothesis: robust instructions should
demonstrate consistency when any component of an image-question-answer (IQA) triplet is masked
and subsequently re-predicted. Specifically, for a given instruction triplet (Ii, Qi, Ai), where Qi, Ai

are generated by the VLMs:

• If we mask the answer Ai and let the same VLM predict it based on image Ii and question
Qi, the predicted answer A′

i should closely match the original Ai.
• Conversely, if we mask the question Qi and predict it using the image Ii and answer Ai, the

predicted question Q′
i should align with the original Qi.

According to the principle of triangular consistency, the predicted elements A′
i and Q′

i should be
consistent with the originals, Ai and Qi, respectively. To quantify this consistency, we define a
consistency score as:

S =
√

Sim(Qi, Q′
i)× Sim(Ai, A′

i), (3)

where Sim(Qi, Q
′
i) and Sim(Ai, A

′
i) represent similarity measures between the original and predicted

questions and answers, respectively.

In particular, in order to compute the similarity score across diverse types of question-answer pairs,
we have developed appropriate similarity metrics tailored to effectively handle each data type. For
single-sentence texts, we utilize a Sentence Transformer [22], while for longer texts, we employ
BERTScore [23]. When similarity can be precisely determined, such as in multiple-choice questions,
we apply fixed metrics by directly comparing the answers to assess the consistency score. In question-
answer pairs involving region descriptions and localization, we measure similarity by calculating the
Intersection over Union (IoU).

For each data type, we identify the top 20% of data exhibiting the highest triangular consistency
scores. These selected data points form a filtered synthetic instruction tuning dataset, Dfiltered, which
is then used to refine the VLMs.
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Figure 3: Causal modeling and understanding of involved data-generating processes. Panel (a)
presents causal relations among the language X , the semantic concept S, and the image Y . Panel (b)
summarizes the input-output relation of VLMs.

2.4 Instruction tuning & iteration

After obtaining the synthetic instructions about the unlabeled images, we merge this newly generated
data with the original seed dataset (e.g. llava_v1_5_mix665k used in LLaVA-1.5 [2]) as the final
training dataset. Then we finetune the VLM M (0) on this merged dataset to obtain the self-refined
VLM M1. The training strategy is the same as typical instruction tuning as shown in Equation 2.

We demonstrate that this three-stage process can be iteratively applied to enable continuous self-
refinement of the model. Starting with the initial VLM M (0) and an unlabeled image set D(0), we
execute the self-refinement procedure as outlined, producing an enhanced model M (1). In the next
iteration, we gather additional unlabeled data D(1) and repeat the process, treating M (1) as the new
base model. Through these repeated steps, the model is refined iteratively, resulting in M (2).

By iteratively repeating this process with the vast amount of unlabeled data available online, the model
can continually integrate real-world visual information from diverse image distributions. This iterative
approach drives progressive self-refinement, allowing the model to adapt to an ever-expanding range
of visual data. The self-refinement loop can continue until the VLM has learned from a sufficiently
comprehensive data distribution, encompassing most new images within its existing training domain.

3 Theoretical analysis

This section explores the self-refinement capability of VLMs from a causal perspective. Specifically,
we demonstrate that the language is selected by the semantic concept, and through which, eventually,
it serves as a cause of the image. We also present the theoretical foundation for the effectiveness of
our self-refinement framework.

3.1 Causal relations among language, image, and semantic concept

In order to see the causal relations between the language and the image, let us consider the roles
played by the semantic concept S as an auxiliary variable. Such a semantic concept is, in general,
regarded as a (latent) common cause of the observations for both image and text modalities [24, 25].
Here, we illustrate the asymmetric relationship between concepts and observations in image Y (with
pixels {Y1, Y2}) and text X (with words {X1, X2}). In this context, the semantic concept serves as a
selection mechanism for words rather than a common cause, considering the characteristics of natural
language. In particular, as illustrated in Figure 3 (a), the semantic concept serves as a selection for
language, i.e., {X1, X2} → S, and as a (latent) common cause for image, i.e., S → {Y1, Y2}.
Selection mechanisms indicate that samples are chosen based on specific criteria (e.g., only when
they meet certain principles) before being observed. Recent literature [26] in language processing
explores selection mechanisms, showing that language outputs are modulated by semantic concepts
specified in advance. Specifically, the semantic concept that the language needs to convey is a goal to
achieve, instead of a common cause for language. The key statistical difference between selection and
common cause lies in conditional independence. If a concept acts as a common cause, observations
(e.g., words) become more independent when conditioned on that concept. In contrast, selection
leads to the opposite effect. Clearly, when conditioned on certain topics, the relations of words would
be more dependent, indicating the selection instead of the common cause structure.
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Table 1: Comparison with advanced methods and baselines on 8 vision-language benchmarks.
Due to space limitations, the names of the benchmarks are abbreviated. LLaVAW: LLaVA-Bench (In-
the-Wild) [1]; MM-Vet [28]; MMEC: MME Cognition; MMB: MMBench [29]; MMBCN: MMBench-
Chinese; VQAv2 [30]; GQA [31]; SQAI: ScienceQA-IMG [32]. More evaluation results on additional
benchmarks are provided in Appendix C.1. Data: Number of Image–Instruction Pairs used during
visual instruction tuning. Recap-LLaVA-1.5 is obtained by using LLaVA-1.5 itself to caption one
million images and retraining on those new image–instruction pairs. For comparisons based on the
LLaVA-1.5 7B baseline, the best results are bolded and the second-best results are underlined.

Method LLM Data LLaVAW MM-Vet MMEC MMB MMBCN VQAv2 GQA SQAI

InstructBLIP Vicuna-7B 1.2M 60.9 26.2 - 36.0 23.7 - 49.2 60.5
IDEFICS-9B LLaMA-7B 1M - - - 48.2 25.2 50.9 38.4 -
Qwen-VL QWen-7B 50M - - - 38.2 7.4 78.8 59.3 67.1
Qwen-VL-Chat QWen-7B 50M - - 360.7 60.6 56.7 78.2 57.5 68.2
LLaVA Vicuna-1.5-7B 158K 63.0 26.7 247.9 34.1 14.1 79.0 - 38.5
LLaVA-1.5 13B Vicuna-1.5-13B 665K 70.7 35.4 295.4 67.7 63.6 80.0 63.3 71.6
SRF-LLaVA-1.5 13B Vicuna-1.5-13B 665K + 200k 73.5 37.7 334.2 68.6 64.0 81.3 65.1 72.2
LLaVA-1.5 7B Vicuna-1.5-7B 665K 63.4 30.5 316.1 64.3 58.3 78.5 62.0 66.8
Recap-LLaVA-1.5 7B Vicuna-1.5-7B 665K + 1M 63.3 29.9 321.3 66.1 58.5 79.2 62.5 69.01
SRF-LLaVA-1.5 7B Vicuna-1.5-7B 665K + 200k 66.9 33.1 331.8 66.3 59.2 79.6 63.35 67.72

3.2 Self-Refinement explanation

The input-output relations of a VLM can be summarized as generating the text X based on the
visual information Y and conditioned on a question Q, represented as P (X | Y ;Q). To simplify
the notation, we fix the question Q and use the shorthand P (X | Y ) in the following discussions
without ambiguity. The initial VLM models the mapping between Yold and Xold. To further refine the
VLM, we incorporate additional unlabeled images, Ynew, to improve the estimation of P (X | Y ). We
introduce the following mild assumptions, which are widely used in the causality theory [27]:

• Sufficiency and Independence. As shown in part (b) of Figure 3, the conditional distribution
P (Y | X), is defined by a deterministic function φ and an independent noise variable NY , such
that Y = φ(X,NY ) with NY ∼ P (NY ). Similarly, X is governed by an independent noise
variable NX with NX ∼ P (NX). The mechanism φ is irrelevant to the input distribution P (X).

• ANM and Decomposition. The Additive Noise Model (ANM) [33] assumes that the relationship
between X and Y can be expressed in the format of φ(X,NY ) = φ(X) +NY . We further posit
that the marginal distribution P (Y ) can be expressed as the convolution of two distributions:

P (Y ) = F ∗G =

∫
F (z)G(Y − z) dz, (4)

where F and G are component distributions. This decomposition is valid under conditions such as
NY being Gaussian and P (φ(X)) being indecomposable. The latter assumption is reasonable, as
X represents diverse textual data, making P (φ(X)) unlikely to be decomposable.

Both the independence-of-mechanism and ANM are standard functional assumptions that have been
extensively used to identify causal directions and to separate mechanisms from input distributions. In
our setting, they provide a principled reason why better estimating the image marginal P (Y )—via
additional unlabeled images Ynew—can improve our inference target P (X | Y ): the forward (causal)
model P (Y | X) is stable across changes in P (X), whereas the backward direction lacks such
invariance. Consequently, unlabeled images carry exploitable signal for refining P (Y ) and, through
Bayes’ rule, for improving P (X | Y ). We emphasize that Eq. (4) specifies the generative process
used for theoretical analysis and is not enforced during VLM training. While these assumptions
cannot be directly verified for modern VLMs, they are useful theoretical tools to capture plausible
structural properties and to derive interpretable insights.

Our goal is to estimate P (X | Y ) = P (Y |X)P (X)
P (Y ) . By incorporating unlabeled images Ynew, we can

refine the empirical estimate of P (Y ) with more observations. Since X is observed, improving the
estimate of P (Y | X) consequently improves our goal P (X | Y ).

Formally, under ANM assumptions, P (Y ) can be expressed as a convolution of the distributions of
φ(X) and NY . From the paired data (Xold, Yold), we can estimate the function φold and corresponding
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distribution P (φold(X)). Having estimates of both P (Y ) and P (φold(X)), we can identify the
noise distribution P (NY ) via deconvolution:P (NY ) = P (Y ) ∗ P (φold(X))−1. Due to the unique
decomposition of P (Y ), we can identify whether P (NY ) corresponds to F or G, and thus get the
true distribution P (NY ). This correction of P (NY ) can help obtain a better estimation of P (Y | X).

4 Experiments

4.1 Experimental settings

We adopted LLaVA-1.5 7B [2] as our baseline, which uses CLIP-Large [34] as visual encoder and
Vicuna-1.5 [35] as LLM. To rule out the possibility that our gains stem merely from more data or
longer training, we constructed an additional strong baseline, Recap-LLaVA-1.5, which uses the same
unlabeled images but replaces the Self-Refinement procedure with a straightforward self-annotation
pipeline: (i) starting from the same 1 M unlabeled images as SRF-LLaVA-1.5, we use a frozen
LLaVA-1.5-7B to generate one detailed caption per image; (ii) we retain all 1 M captions without
filtering and merge them with the original LLaVA-1.5 training set; and (iii) we fine-tune the model
using the identical training schedule as SRF-LLaVA-1.5.

Beyond the original training dataset llava_v1_5_mix665k used in LLaVA-1.5, we randomly
selected 2.8 million images from LAION [36] as the unlabeled image set to validate the self-
refinement ability. During fine-tuning on the merged dataset, we follow the standard LLaVA-1.5
instruction-tuning recipe. Specifically, we keep the vision encoder frozen and fine-tune both the
image-text projection layer and the LLM parameters. In the evaluation, we followed the setup of
LLaVA-1.5, which contains 8 benchmarks. For traditional VQA tasks, we used the VQAv2 [30],
GQA [31], and ScienceQA [32] datasets. For visual perception and reasoning tasks, we employed
MMBench [29], MMBench-Chinese [29], MME [37], and MM-Vet [28] benchmarks. To assess
visual dialogue ability, we utilized the LLaVA-Bench(In-the-Wild) [1] benchmark. Please note that
the goal of this work is to explore the self-refinement capability of VLMs without distilling knowledge
from other models like GPT-4V. Therefore, we did not incorporate such knowledge into our model
and did not conduct many comparisons with the methods using such models.

4.2 Implementation details

In the Enhancing instruction generation stage, we constructed the dataset using
llava_v1_5_mix665k as the seed. Specifically, we masked both the question (Q) and the
answer (A) in 50% of the data, only Q in 20%, and only A in the remaining 30%. For each task,
we randomly selected prompt templates combined with unmasked elements as inputs, with the
masked parts serving as ground-truth targets. Then we generate synthetic data from one million
unlabeled images and select the top 20% ones with higher Triangular Consistency scores. We design
a hybrid scoring approach suited to different instruction types. For shorter texts, we employed
UAE-Large-V1[22], a compact Sentence Transformer with only 335 million parameters, that
effectively compares single-sentence text similarity without introducing external knowledge. For
longer texts, since the performance of the Sentence Transformer diminishes, we opt for BertScore[23],
based on the bert-base-uncased model, as it provides robust discriminative capabilities for lengthier
text comparisons. To ensure fair comparisons with baseline, we adopted a head-to-head setup by
using the same base language model and prompts as LLaVA-1.5. Also, we adhered strictly to the
prompt templates and data preprocessing methods utilized by LLaVA-1.5. The specific calculation
procedure for Triangular Consistency scores is provided in Section B of Supplementary Materials.

4.3 Quantitative evaluation

We evaluated our framework alongside advanced VLMs, the baseline LLaVA-1.5 and the strong
baseline SRF-LLaVA-1.5 on 8 benchmarks. Overall, our framework offers consistent improvements
over LLaVA-1.5 on most of the benchmarks. For instance, in traditional VQA tasks—including
VQAv2 and GQA, our model outperformed LLaVA-1.5 by an average of 1.22%. For visual perception
and reasoning tasks such as MMBench, MM-VET, and LLaVA-Wild, we achieved improvements of
2.1%, 1.7%, and 3.5%, respectively. Although Recap-LLaVA-1.5 shows only small gains on most
benchmarks, SRF-LLaVA-1.5 improves them much more. This suggests that SRF-LLaVA-1.5’s
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LLaVA-1.5:The ending of this movie is not provided, as it is a scene from a movie or a TV show. However, it is likely that the couple will 

continue their adventure, as they are already on a boat and enjoying their time together.

Ours:The ending of the movie Titanic is well-known, as it is a classic romantic drama. In the film, the main characters, Jack and Rose, are 

on a ship called the Titanic. They fall in love and share a memorable night together on the deck of the ship. However, as the ship encounters 

an iceberg and begins to sink, Jack sacrifices his life by giving Rose a chance to survive by jumping into the icy water. The movie ends with 

Rose being rescued and the sinking of the Titanic. The emotional impact of the film and the tragic ending have made it a beloved classic 

and a symbol of love and sacrifice. 

Question: What’s the ending of this movie?

LLaVA-1.5: The image features a painting of a dog wearing a Renaissance-style dress, giving it a human-like appearance. The dog is sitting 

in a chair, looking directly at the viewer. The painting is quite detailed, capturing the dog‘s facial expression and the intricate design of the 

dress. In the background, there is a person partially visible on the left side of the painting. The overall scene is quite captivating and unique, 

as it combines the artistic style of the Renaissance with the subject matter of a dog.

Ours: The image features a painting of a dog dressed in a Renaissance-style outfit, resembling a woman. The dog is wearing a long dress 

and a hat, giving it a unique and artistic appearance. The painting is set in a landscape with a mountainous background, adding to the overall 

ambiance of the scene. The dog is positioned in the center of the painting, with its hands resting on its lap, as if it were a human. The 

painting captures the dog's unique and creative portrayal, making it an interesting and eye-catching piece of art.

Question: Describe this photo in detail.

Figure 4: Two comparison examples between our SRF-LLaVA-1.5 and LLaVA-1.5 in visual chat.
Red highlights indicate factual errors or irrelevant content in the response, while green highlights
emphasize image details critical for providing an accurate answer.

Table 3: Evaluations on MoblieVLM Baseline

Method LLM GQA SQAI VQAT POPE MMEP MMB

MobileVLM MobileLLaMA-1.4B 56.1 57.3 41.5 84.5 1196.2 53.2
SRF-MobileVLM MobileLLaMA-1.4B 58.1 59.8 43.3 85.3 1220.3 56.1

advantage comes mainly from the Triangular Consistency principle, which enhances self-refinement,
rather than from training on extra data.

Table 2: Training time compari-
son between LLaVA-1.5 and SRF-
LLaVA-1.5.

Model Total wall-clock time GPU-hours
LLaVA-1.5 7 h 56
SRF-LLaVA-1.5 12 h 96

Training cost analysis. At inference time, SRF-LLaVA-
1.5 and LLaVA-1.5 are identical in parameter count and
therefore require the same FLOPs and GPU memory. Dur-
ing training, however, SRF-LLaVA-1.5 processes a larger
number of images, leading to a longer training duration. Ta-
ble 2 compares the total wall-clock times of SRF-LLaVA-1.5
and LLaVA-1.5, both trained on a cluster equipped with 8
NVIDIA H100-NVL GPUs (96 GB each). The refinement procedure costs approximately 40 ad-
ditional GPU-hours (≈0.7×), which we report explicitly to inform practitioners of the trade-off
between accuracy and computational expense.

4.4 Qualitative evaluation

In this section, we illustrate how our self-refinement framework enhances the real-world visual
dialogue capabilities. Figure 4 presents two representative examples.

Enhanced World Knowledge. For the first example in Figure 4, our model correctly identifies the
individuals in the image as the protagonists of the movie Titanic and accurately describes the film’s
ending, whereas the original LLaVA-1.5 fails to do so. Though no external information is involved,
our framework can use the consistency principle to filter possible errors and do the refinement.

Improved Generalization Ability. For the second example, our model generates a description that is
significantly more detailed and accurate than that of LLaVA-1.5, without exhibiting hallucinations.
We attribute this improvement to the exposure to a wider variety of visual scenes and objects provided
by the unlabeled images. By learning from these diverse visual features during training, the model
enhanced its ability to recognize and represent them.

4.5 Ablation studies

Does Self-Refinement Generalize Across Different Scales and Architectures of VLMs? Yes. To
assess the generalization of our Self-Refinement framework across VLMs with different parameter
scales and architectures, we conducted experiments on MobileVLM-1.7B [38], QWen2.5-VL 3B [39],
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Table 4: Evaluations on QWen2.5-VL Baseline

Method LLM MMMU MMMU Pro MathVista MathVision MMStar MMB

Qwen2.5-VL Qwen2.5-3B 53.1 31.6 62.3 21.2 55.8 81.5
SRF-Qwen2.5-VL Qwen2.5-3B 55.0 31.9 64.7 23.3 56.5 80.8

and LLaVA-1.5 13B using an identical dataset and training pipeline. For MobileVLM and QWen2.5-
VL 3B, we followed their original configurations and, for each model respectively, evaluated SRF-
MobileVLM and SRF-QWen2.5-VL on six benchmarks selected from their official evaluation suites.
For LLaVA-1.5 13B, we mirrored the experimental setup used for LLaVA-1.5 7B. As shown in Table 3
and Table 4, SRF delivers consistent improvements in all baselines, indicating that self-refinement is
generalized across various VLM architectures. In particular, as shown in Table 1, SRF-LLaVA-1.5
13B exceeds LLaVA-1.5 13B in all 8 benchmarks, demonstrating effectiveness at larger parameter
scales.

Table 5: Ablation study on Framework Itera-
tion, Consistency Criterion, Selection Thresh-
old. Complete results are provided in Table A3 of
Supplementary Materials.

Ablations Patterns GQA SQAI MM-Vet LLaVAW

SRF-LLaVA-1.5 Default 63.35 67.72 33.1 66.9
LLaVA-1.5 Baseline 62.00 66.8 30.5 63.4
Multi-Round Round-2 63.25 67.77 33.9 67.7
Consistency Bottom 20% 62.85 66.70 30.4 64.4

Threshold

Top 5% 62.90 67.48 32.4 63.6
Top 20% 63.35 67.72 33.1 66.9
Top 50% 63.02 68.77 30.4 62.8
Top 80% 62.9 67.03 29.1 64.0

Top 100% 62.87 67.48 30.7 63.7

Can Multiple Iterations Lead to Better Per-
formance? Yes. As shown in Table 5, Round
2 performance was comparable to Round 1
on GQA and SQA, with noticeable improve-
ments on MM-Vet and LLaVA-Bench. How-
ever, the overall improvement in Round 2
was smaller. We hypothesize this satura-
tion stems from the finite exploitable signal
that unpaired images provide about the un-
derlying image distribution; once largely dis-
tilled, subsequent iterations yield diminishing
returns. Nevertheless, a second round still
produced measurable gains, implying that a
single pass does not fully harvest the avail-
able signal. Round 2 exhausted all our
collected images, suggesting that further performance gains would require additional data.

Table 6: Evaluations of GPT-4o accuracy, Type-
Token Ratio (TTR), and Distinct-2 on the gen-
erated QA pairs from SRF-LLaVA, baseline
LLaVA, and LLaVA with in-context learning.

SRF-LLavA 7B LLaVA-1.5 7B
Metrics 0-shot 0-shot 1-shot 5-shot
Acc(%) 85.3 73.9 79.2 63.6
TTR 0.1144 0.0888 0.0775 0.0692

Distinct-2 0.4790 0.3216 0.3075 0.2737

Does the Self-Refinement Framework Pro-
duce Better Instructions? Yes. Table 6
compares QA pairs generated by our Self-
Refinement framework against those from
prompted original LLaVA-1.5, evaluating GPT-
4o accuracy and diversity metrics (TTR [40] and
Distinct-2 [41]) on 1000 samples. Our model
demonstrates clear advantages over prompted
LLaVA-1.5, achieving superior accuracy and di-
versity. This indicates that explicitly training a
dedicated model for instruction generation ef-
fectively improves QA pair quality, particularly in diversity.

How does Triangular Consistency Principle work? To evaluate the effectiveness of the Triangular
Consistency Filtering stage, we conducted two comparisons: (1) between the retained and excluded
QA pairs after filtering and (2) by altering the filter criterion from the top 20% to the bottom 20%.
Table 7 presents both quantitative and qualitative evaluations of the retained versus excluded synthetic
data subsets. For the quantitative analysis, we used GPT-4o to evaluate 1,000 samples from each
subset. We also conducted a human study with 12 volunteers, each of the 100 samples reviewed
by 3 volunteers. The results confirm that the retained subset significantly outperforms the excluded
subset. Qualitative comparisons of the QA pair samples at the bottom of Table 7 further emphasize
the superior quality of data selected by the Triangular Consistency Principle. Additionally, as shown
in the “Consistency” group of Table 5, training the model on the lower 20% (ranked with consistency
score) of synthetic data resulted in a performance decline compared to SRF-LLaVA-1.5 (which using
top 20%), further validating the effectiveness of Triangular Consistency. More experimental details
on Triangular Consistency Filtering can be found in Section C of Supplementary Materials.

How do Different Instruction Types Influence Performance?
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Table 7: Quantitative and Qualitative Analysis of Retained
and Excluded QA Pairs. We evaluate the quality of the gener-
ated QA pairs through both GPT-4o assessments and a human
user study. Additionally, we present an example to qualitatively
compare the consistency between the Original and Recovered
QA pairs.

Type Evaluation / Examples

Quant.
Subset GPT Human

Retained 85.3 89.0
Excluded 59.9 83.0

Qual.

Subset Original QA Recovered QA

Retained

Q: What is the color of the
painting displayed in the im-
age?
A: The painting displayed in
the image is a blue picture.

Q’: What color is the picture
displayed in the image?
A’: The color of the painting
displayed in the image is blue.

Excluded

Q: What is the setting of the
image?
A: The setting of the image is
indoors, with the person using
a green case in a white room.

Q’: What is the setting of the
image?
A’: The setting of the image is
outdoors, with the person hold-
ing the small case or container
outside.

To further investigate which data
types have the greatest impact on
model performance, we replaced the
filtered synthetic data with different
subsets of data categories. Specifi-
cally, we retained only five types in-
cluding VQA (Visual Question An-
swering), Visual Chat, REG&REC
(Region Expression and Recog-
nition), Caption, and Multiple-
Choice/Judgment, and retrained
LLaVA-1.5 exclusively on these
subsets to observe any changes
in downstream performance. As
shown in Figure 5, different instruc-
tion types yield corresponding im-
provements, with captioning tasks
contributing the most overall en-
hancement. Please refer to Section
C of Supplementary Materials for
comprehensive comparisons, statis-
tical details on the distribution of
generated instructions, and further
experiments on the impact of different instruction partitions.
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Figure 5: Ablation study on specific synthetic
data types. The numbers denote the percentage
increase compared to LLaVA-1.5.

How Much Data is Required? More data of-
fers additional information but also introduces
more noise. We investigated the impact of vary-
ing the threshold of the triangular consistency
score used to screen high-quality synthetic data.
Specifically, we combined synthetic data with
scores ranking in the top 5%, 20%, 50%, 80%,
and 100% (i.e., without filtering and detailed
captions) with the LLaVA-1.5 665k dataset to
form the new training set, as illustrated in Ta-
ble 5. The results indicate that model perfor-
mance improves across all thresholds. However,
the best overall performance is achieved when
using the top 20% threshold.

5 Conclusion

In this work, we explored the self-refinement capability of Vision-Language Models (VLMs) through
a framework grounded in the Triangular Consistency principle. Our results demonstrate that this
self-refinement ability can be effectively activated, enabling VLMs to autonomously generate and
leverage high-quality supervision from unlabeled data. We further provided a causal explanation
for this phenomenon, showing how the model’s ability to infer missing modalities supports its
internal consistency and learning dynamics. Empirical evaluations confirm that our framework
consistently improves baseline performance without external supervision, highlighting the potential
of self-refinement as a pathway toward autonomous and continually improving multimodal intelli-
gence. Limitations: Although our approach successfully demonstrates self-refinement, the model’s
improvement diminishes when the newly introduced images closely align with the distribution of
the model’s existing training data. Societal Impact: By enabling self-improvement from unlabeled
images, our framework can reduce reliance on expensive and labor-intensive human annotations and
help democratize access to high-performance VLMs, particularly in low-resource settings. However,
learning from model-generated synthetic data risks reinforcing or amplifying biases and hallucina-
tions present in the pretrained model, and the absence of human-in-the-loop oversight can make
unintended behaviors harder to trace or audit.
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
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Justification: The main claims in the abstract accurately reflect our contributions.
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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and how they scale with dataset size.
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address problems of privacy and fairness.
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reviewers as grounds for rejection, a worse outcome might be that reviewers discover
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Justification: This paper does not include theoretical results.
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• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if
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proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide complete experimental details in Appendix B. In addition, the full
code for our main experiments has been open-sourced in an github repository (the link is
given in Abstract.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide an github link to the code and describe how to reproduce the
experimental results in the README file of the code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We describe the complete experimental details and hyperparameter choices in
Appendix B.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report the error bars of our main experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report the computational resource requirements of our proposed method in
Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research aligns with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss both potential positive societal impacts and negative societal
impacts of our framework in Section 5.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The code and datasets used in the paper are publicly available and properly
credited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We have provided detailed documentation for our open-source code.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This paper does not involve LLMs as any important, original, or non-standard
components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Related Work

Vision Language Models. Vision-Language Models (VLMs) leverage large datasets to learn joint
representations of visual and linguistic information. These models commonly employ training
frameworks such as contrastive matching [42, 43, 44, 45, 46, 47, 48, 49], cross-modal genera-
tion [50, 51, 52, 53, 54, 55, 56, 57], or a combination of both. Key examples include contrastive
frameworks like CLIP [58] and ALIGN [59] which synchronize text and image representations
through contrastive objectives. Conversely, the cross-modal generation approach, exemplified by
works such as VirTex [50] and VisualBERT [52], emphasizes generative tasks like captioning or
masked content reconstruction for learning representations. Additionally, the emergence of large
language models has significantly enhanced the capabilities of multimodal systems. These meth-
ods [12, 1, 2, 4, 6, 13, 60] integrate and expand upon this rich multimodal knowledge by aligning
the pre-trained LLMs with the visual modality.

Visual Instruction Tuning with Synthetic Data. To address the high costs and complexities of
acquiring copyrighted visual instruction data, recent approaches [8, 9, 10, 11, 61, 62] have advocated
for the use of synthetic data in model training. These methods typically utilize advanced VLMs
such as GPT4V [12] to analyze requirements, generate detailed captions or instructions, and assess
synthetic data quality. For instance, ShareGPT4V [8] and LLaVA-Next [9] employ GPT4V to
produce captions and instructions, respectively, while MLLM-DataEngine [11] focuses on identifying
model weaknesses and generating instructions with specific targeting. While these methods enhance
performance, they encounter two major limitations tied to the reliance on advanced VLMs: firstly,
high-quality VLMs often come with restrictive usage limits and high costs; secondly, as models
evolve, sourcing superior teacher models for effective data annotation becomes increasingly difficult.

Self-Refinement of LLMs. While discussions on VLMs’ self-refinement are limited, debates about
LLMs’ self-refinement persist. These methods fall into two categories: extrinsic and intrinsic self-
refinement. Extrinsic methods utilize feedback from external sources, such as evaluation models [20,
19, 63, 21, 64] or interactions with humans or tools [65, 66, 67, 68]. More related to this work
is the intrinsic self-refinement [69, 18, 70, 71, 72], which utilizes the model’s capabilities without
external feedback. For instance, Self-Refine [69] employs the in-context learning of LLMs to generate
and iteratively correct instructions using seed examples. Sun et al. [15] apply templates and text-
based rules for instruction selection, while IoE Prompt [72] uses carefully designed prompts for
self-correction through re-inference. However, applying these methods to VLMs presents significant
challenges. Multiple inferences [72] and multi-example in-context learning [69] are resource-intensive
with images. In addition, the use of image modality means that sample templates or text-only rules,
which only focus on textual quality without considering alignment, are less effective.

B More Implementation Details

In this section, we present some key implementation details of the Self-Refinement Framework to
facilitate a better understanding of its mechanisms.

B.1 Templates for Generating Multi-Task Training Data

We provide the prompts used to generate multi-task training data. During the training phase of
Enhancing Instruction Generation, we transform the original training data from the LLaVA-1.5
database, llava_v1_5_mix_665k, into data suitable for multi-task training by setting specific
prompt templates. Specifically, for the Image-Question-Answer (IQA) data triples in original dataset,
we established the following task types: I→ QA, IQ→ A, and IA→ Q.

For the IQ→ A task, we use the original data without modification. For the I→ QA and IA→ Q
tasks, we prepend a randomly selected prompt to the inputs to assist the VLM in more accurately
aligning the instructions with the respective downstream tasks. Additionally, we have also redesigned
the system prompts used by the VLM due to changes in training tasks. The complete prompts used
for training are detailed in Figure A1.
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System Prompt

• You are a visual-language assistant. You will be given one of the three kinds of tasks with
specified task type. Complete the task by generating a response.

Prompts for I→ QA Instructions

• Generate the instruction and answer pair corresponding to the image.
• Build the instruction and answer pair for this image.
• What can be the question and answer pair corresponding to the image?
• For this image, what can be the instruction and answer pair?
• Given the image, generate the question and answer pair.
• Can you generate the question and answer pair for this image?

Prompts for IA→ Q Instructions

• Generate the instruction based on the answer.
• Build the instruction based on the answer.
• What can be the instruction for the answer?
• What’s the question for this answer?
• For the response, what can be the instruction?

Figure A1: The list of prompts for Enhancing Instruction Generation. Given that IQ→ A task
is the same as typical instruction tuning, We provide the system prompt and template prompts for I
→ QA, and IA→ Q tasks. Notably, we do not enforce any particular question–answer type. The
prompts simply ask the model to generate a question and its answer. The distribution of generated
QA types is therefore emergent

B.2 Similarity Calculation across Diverse Data Types

We demonstrate detailed information on the similarity indices designed for different types of data
during the Triangular Consistency Filtering stage. We process various types of question-answer
data generated during the previous stage and flexibly adjust the similarity calculations based on data
characteristics, as follows:

• To assess text similarity, we use either Sentence Embedding or BertScore. As detailed
in Section 2.3, we separately calculate the similarities of questions (Q,Q′) and answers
(A,A′), then compute their geometric mean. For Visual Question Answering (VQA) data,
we employ Sentence Embedding for both questions and answers. In contrast, for Visual Chat
data with longer answers, we apply Sentence Embedding to questions and use BertScore for
answers, as it performs better with extended texts.

• When similarity values can be precisely calculated, we compute them directly using specific
metrics. For example, in Region Description (REG) and Recognition (REC) data involving
a region description query (Q) and corresponding coordinates (A), or vice versa, we use
Intersection over Union (IoU) to measure the similarity of region coordinates. The similarity
of region descriptions is calculated using Sentence Embedding, and we take the geometric
mean of both similarities. Similarly, for multiple-choice and true-false data consisting of
only a question and an answer, we do not compare question similarity since the same answer
might correspond to different questions. Instead, we check if the answer remains the same
before and after reconstruction; if identical, the similarity score is 1; otherwise, it is 0.
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VQA
Question: What is the color of the man’s shirt? Answer the question using a single word or
phrase.
Answer: Blue

Visual Chat
Question: Why might each of the three shots in this photograph be taken?
Answer: Each of the three shots in the photograph captures a different high angle angle
and side view of a man wearing a suit and tie, possibly for a wedding, as one of the angles
suggests. These shots might be taken to showcase the suit, tie, and overall look from different
angles and perspectives, providing a more comprehensive and visually appealing coverage of
the desired outfit. The variations in camera angles also provide a sense of uniqueness and
individuality, helping the viewer better understand the significance of the clothing and the
overall attire being presented.

REG & REC
Question: Please provide the bounding box coordinate of the region this sentence describes:
the mans right arm.
Answer: [0.82, 0.83, 0.97, 0.98]
Question: Please provide a short description for this region: [0.67, 0.78, 0.8, 0.93].
Answer: Two buttoned up shirts.

Caption
Question: Provide a one-sentence caption for the provided image. Reference OCR token:
Book, BEST
Answer: A poster of a smiling cartoon character in a white and blue shirt with the words best
at the bottom of the photo.

Multiple-Choice & True-False
Question: What kind of bag is shown? A. backpack B. tote C. purse D. briefcase Answer
with the option’s letter from the given choices directly.
Answer: B
Question: Is there a balcony in the picture? Answer the question using a single word or
phrase.
Answer: Yes

Figure A2: The list of Q-A pairs of different types. The parts marked in orange are fixed prompt
templates, which are not included in similarity calculations.

• For data where the questions are in a fixed format, we only compute the similarity of the
answers. For example, for Caption data, which includes an instruction (Q) and its corre-
sponding image description (A), we focus solely on the similarity of the image descriptions.
This is because the instructions primarily contain hints and OCR tokens without significant
meaning.

To fairly treat different types of data, we select the top 20% of data from each category. Additionally,
to prevent the similarity calculations from being influenced by repeated instruction templates, we
exclude all fixed-format instructions. Examples of each data type are shown in Figure A2.

B.3 Hyperparameters

To ensure a fair comparison, we adopted a head-to-head setup by using the same base language model
and prompts as LLaVA-1.5. The training hyperparameters were consistent with those of LLaVA-1.5:
an initial learning rate of 2 × 10−5 and a batch size of 128. Most of the training (including all
ablation studies) was conducted on 8 NVIDIA A100 GPUs, with both the first and third stages
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each taking approximately 20 hours. For evaluation, we compared our SRF-LLaVA-1.5 against the
original LLaVA-1.5. We adhered strictly to the prompt templates and data preprocessing methods
utilized by LLaVA-1.5. Decoding was performed using greedy search to maintain consistency and
reproducibility in our results.

B.4 Training Details of Other Baseline VLMs

The merged dataset for MobileVLM consists of (i) samples generated by MobileVLM itself through
our self-refinement loop on the 1M unlabeled images, and (ii) its original supervised training set. For
QWen2.5-VL, since its original training set is not publicly available, we follow the official repository’s
recommendations by combining our self-refinement dataset with the officially suggested datasets [73]
(nyu-visionx/Cambrian-10M, lmms-lab/LLaVA-NeXT-Data, FreedomIntelligence/ALLaVA-4V, and
TIGER-Lab/VisualWebInstruct) and subsequently perform SFT on the combined corpus.

B.5 Pseudo Code

Algorithm A1 Iterative Self-Refinement

1: Input: M0 . . . initial VLM
2: D0 . . . human-labeled (I,Q,A) dataset
3: U . . . unlabeled images
4: K . . . number of refinement rounds
5: for k = 1 to K do

▷ —– iterative self-refinement —–
Stage 1 – Multi-task fine-tune (caption, VQA, instruction)

6: Mgen
0 ← TRAIN(M0, D0)

7: S ← { (I,Q,A) produced by Mgen
0 for every I ∈ U }

8: S′ ← { (I,Q′, A′) | Q′ ←Mgen
0 (I,A) ∧ A′ ←Mgen

0 (I,Q) }
Stage 2 – Generate & filter synthetic IQA

9: for all (I,Q,A) ∈ S and (I,Q′, A′) ∈ S′ do
10: if Q = Q′ and A = A′ then
11: F ← (I,Q,A)
12: end if
13: end for

Stage 3 – Instruction tuning with filtered data
14: D1 ← D0 ∪ F
15: M1 ← TRAIN(M0, D1) ▷ instruction-only objective
16: end for
17: return M

As shown in Algorithm A1, we provide the pseudo code for the core algorithm of our SRF-LLaVA-1.5.
This pseudo code serves as a high-level description of the algorithm’s workflow, outlining its core
computational steps and logical structure.

C More Quantitative Results

C.1 Evaluation on More Challenging Benchmarks
Table A1: Comparison on more chal-
lenging benchmarks. For both LLaVA-
1.5-7B and SRF-LLaVA-1.5-7B, we ob-
tained the results through local evalua-
tion using VLMEvalKit.

Model MMMU MMMU Pro
Baseline 34.7 17.6
After refinement 36.6 18.3

To evaluate whether our method generalizes to more chal-
lenging benchmarks, we further assess SRF-LLaVA-1.5
7B and LLaVA-1.5 7B on MMMU and MMMU-Pro. The
results are shown in Table A1.

C.2 Ablation Results on More Benchmarks

This section presents the complete ablation study data conducted within the Self-Refinement Frame-
work. We examined the impact of various factors on the framework’s performance, including the
number of framework iterations, the selection of consistency criteria, the setting of filtering thresholds,
and the adjustment of data distribution. As shown in Table A2, we observed the following phenomena:
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Table A2: Complete ablation study results on Framework Iteration, Consistency Criterion,
Selection Threshold, and Data Partition. LLaVAW: LLaVA-Bench (In-the-Wild) [1]; MM-Vet [28];
MMEC: MME Cognition [37]; MMB: MMBench [29]; MMBCN: MMBench-Chinese; VQAv2 [30];
GQA [31]; SQAI: ScienceQA-IMG [32].

Ablations Patterns LLaVAW MM-Vet MMEC MMB MMBCN VQAv2 GQA SQAI

SRF-LLaVA-1.5 Default 66.9 33.1 331.8 66.3 59.2 79.6 63.35 67.72
LLaVA-1.5 Baseline 63.4 30.5 316.1 64.3 58.3 78.5 62.0 66.8
Multi-Round Round2 67.7 33.9 335.0 66.3 60.3 79.52 63.25 67.77
Consistency Lower Score 64.4 30.4 337.5 66.0 60.3 79.19 62.85 66.7

Partition
without long caption 64.8 30.1 321.4 66.3 60.2 79.41 63.27 67.03
LLaVA-1.5 partition 62.2 30.2 282.1 66.8 60.0 79.42 63.17 68.12

Threshold

top 5% 63.6 32.4 337.5 65.8 61.2 79.34 62.9 67.48
top 20% 66.9 33.1 331.8 66.3 59.2 79.6 63.35 67.72
top 50% 62.8 30.4 319.3 67.1 60.9 79.44 63.02 68.77
top 80% 64.0 29.1 316.4 66.5 60.4 79.33 62.9 67.03

top 100% 63.7 30.7 312.5 65.4 59.4 79.35 62.87 67.48

Table A3: Consistency score between reference and candidate answers.

Type Answer Similarity
Ref The answer is an apple. –

Cand1 The answer is an orange. 0.79
Cand2 The answer happens to be an apple. 0.98
Cand3 An apple is the correct answer. 0.94

Improved Performance with Additional Iterations With more iterations, the model’s performance
improves. The Round-2 model slightly surpasses SRF-LLaVA-1.5 on 5 benchmarks and is comparable
on others, achieving an average improvement of 0.4% across all benchmarks (excluding MME-C due
to unnormalized values, and keeping this setting for all following discussions). The performance gain
is more significant on real-world visual chat benchmarks than on traditional VQA tasks, suggesting
that supervisory information from unlabeled images in the new distribution benefits real-world
dialogue scenarios.

Preserving Data Distribution and Detailed Captions Improves Performance Maintaining
the original distribution of synthetic data, along with detailed captions, enhances self-refinement
performance. Adjusting the data distribution to match that of the LLaVA-1.5 training set causes a
slight performance drop. Likewise, removing all long-caption data decreases performance.

Impact of Filtering Threshold The filtering threshold affects model performance. A 20% threshold
yields the best results among thresholds of 5%, 20%, 50%, and 80%, suggesting the importance of
balancing data quality and quantity. Even without filtering (threshold of 100%), the model shows
some performance improvement (about 0.73%). This indicates that the VLM can learn supervisory
information from new images, even with low-quality synthetic annotations.

C.3 Effectiveness of Consistency Score Measurement

We used to explore several consistency score measurements, including RoBERTa and Vicuna1.5,
which yielded lower accuracy and higher costs, so we adopted the current method. Specifically,
we employ Sentence Transformer for shorter sentences, while for longer sentences or paragraphs,
we utilize BertScore, ensuring an optimal balance between evaluation accuracy and computational
efficiency. Table A3 presents consistency scores for sentence meaning shifts due to word changes.
The score is notably lower when the factual word “apple” changes to “orange.”
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Figure A3: The comparison between the data distributions of synthetic data and LLaVA-1.5
training dataset.

Table A4: Complete ablation study results on specific synthetic data types. Each value in the
Data Partition column corresponds to retaining only the indicated synthetic–data type.

Data Partition LLaVAW MM-Vet MMEC MMB MMBCN VQAv2 GQA SQAI

Add VQA 68.7 31.1 322.5 65.8 59.5 79.28 63.12 69.66
Add Caption 63.5 33.0 326.4 67.2 61.4 79.20 62.90 70.10
Add Visual Chat 69.5 32.8 335.4 66.4 60.5 79.27 62.35 68.82
Add REG&REC 68.4 33.0 287.9 66.6 59.5 79.20 62.45 68.62
Add True-False/Multiple-Choice 66.5 32.0 309.3 66.8 59.0 79.09 62.49 67.92

C.4 Data Types Investigation

This section presents the complete results of ablation studies on specific synthetic data types. This
experiment aims to comprehensively assess the impact of integrating different data types on the
Self-Refinement performance of VLMs.

Figure A3 illustrates the proportional differences in distribution between our synthetic data and the
original LLaVA-1.5 data. Compared to the original distribution, our synthetic data is more balanced,
without categories that are excessively underrepresented.

As shown in Table A4, we retained data solely from five types: VQA (Visual Question An-
swering), Visual Chat, REG&REC (Region Expression and Recognition), Caption, and Multiple-
Choice/Judgement tasks, and tested the performance of VLMs when re-instructed to fine-tune on
these filtered data distributions. The results indicate that the VLM generally shows performance
improvements in the training sets corresponding to the integrated data types. For instance, the
VLM integrated with VQA data outperformed others on the VQAv2 and GQA datasets. However,
this trend is not without exceptions. For example, after integrating multiple-choice data, the VLM
did not surpass the performance achieved with other data types on the ScienceQA and MM-Vet
benchmarks, which are also multiple-choice in nature. Moreover, the integration of Visual Chat data
resulted in the highest average performance improvement of 2.3%, while the performance gain from
Multiple-Choice/True-False data was the least. This could be due to Visual Chat data containing
richer image features compared to other types, thus providing more supervisory information during
the fine-tuning phase.

C.5 Ablation Study on Alternative Masking Ratios for QA pairs

Pilot results suggested limited sensitivity to the exact Q/A masking split, so we
used a balanced 50/30/20 (Q-mask/A-mask/None). To verify this, we retrained
Multitask-LLaVA-1.5 with two alternatives: Q-heavy (60/20/20) and A-heavy (40/40/20).
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Table A6: Comparison with advanced methods and baselines on 8 vision-language benchmarks
with error bar. Note: SRF-LLaVA-1.5 results are reported as mean ± standard deviation over three
independent fine-tuning runs with identical hyperparameters and random seeds.

Method LLM Data LLaVAW MM-Vet MMEC MMB MMBCN VQAv2 GQA SQAI

LLaVA-1.5 7B Vicuna-1.5-7B 665K 63.4 30.5 316.1 64.3 58.3 78.5 62.0 66.8
Recap-LLaVA-1.5 7B Vicuna-1.5-7B 665K + 1M 63.3 29.9 321.3 66.1 58.5 79.2 62.5 69.01
SRF-LLaVA-1.5 7B (mean ± std) Vicuna-1.5-7B 665K + 200K 67.2 ± 0.62 33.1 ± 0.06 332.0 ± 0.21 66.4 ± 0.16 59.1 ± 0.12 79.6 ± 0.03 62.4 ± 0.25 68.2 ± 0.35

Table A5: Masking configurations and results (Accuracy,
Type-Token Ratio, and Distinct-2).

Mask Type Mask Q&A Mask Q Mask A Acc(%) TTR Distinct-2
Original 50% 20% 30% 85.3 0.1144 0.4790
More Balanced 33% 33% 33% 87.7 0.0995 0.4381

Then, in Stage 1, generated QA
pairs for 1,000 unlabeled images
and evaluated their accuracy and
diversity: Acc↑ (GPT-4o judged
image–QA consistency), TTR↑
(type–token ratio), and Distinct2↑
(unique bigrams ratio). As shown in Table A5, all strategies yield comparable results; we therefore
keep 50/30/20 for simplicity and reproducibility.

C.6 Error Bars in the Main Experimental Results

We have repeated the entire instruction-fine-tuning phase of SRF-LLaVA three times, each time using
identical hyperparameters, the same random seed, and the same training-dataset order. The resulting
mean ± standard deviation across the three runs has been reported in Table A6.

D More Qualitative Results

Figure A4: More qualitative examples of our SRF-LLaVA-1.5 and LLaVA-1.5. In all three
examples, SRF-LLaVA-1.5 provides more detailed and instruction-aligned responses compared to
LLaVA-1.5. Red highlights indicate factual errors or irrelevant content in the response, while green
highlights emphasize image details critical for providing an accurate answer.

In this section, we present a series of qualitative results to intuitively compare the differences between
SRF-LLaVA-1.5 and the original LLaVA-1.5.

Improvements in Model Capabilities From these analyses, we observed several enhancements
in our model. As mentioned in Section 4.4, SRF-LLaVA-1.5 exhibits enhanced detail recognition,
capturing more subtle features in images than LLaVA-1.5; and possesses richer world knowledge,
successfully identifying artists and interpreting underlying meanings in artworks, as shown in
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Figure A5: Failure cases. Both SRF-LLaVA-1.5 and LLaVA-1.5 fail to correctly understand the
implications of the meme. Red highlights indicate factual errors or irrelevant content in the response,
while green highlights emphasize image details critical for providing an accurate answer.

Figure A4. In addition to the aforementioned capabilities, we have also observed that SRF-LLaVA-
1.5 demonstrates superior instruction-following capabilities, allowing it to flexibly adjust its responses
based on different types of prompts. For instance, in the second example of Figure A4, the user’s
instruction is to introduce the character "Joker." While LLaVA-1.5 continues to focus on describing
the image content, our SRF-LLaVA-1.5 provides a comprehensive summary of the Joker as per the
user’s request, without being confined to the content displayed in the image.

Failure Case Analysis Despite these improvements, SRF-LLaVA-1.5 shares some shortcomings
with the original LLaVA-1.5. In a meme presented in Figure A5, which superficially consists of four
unrelated images, a deeper analysis reveals concerns about students’ situations in online learning.
However, both models provide only surface-level analyses of the image. While this limitation is likely
due to constraints in the logical reasoning capabilities of the underlying language models used, we
are optimistic that future advancements through our Self-Refinement approach will help us overcome
this boundary, enabling SRF-LLaVA-1.5 to understand deeper meanings and provide more insightful
analyses.

E Empirical justification of Equation (4) on synthetic data

To examine the conditions underlying Equation (4), we design a controlled synthetic experiment
that follows the generative process in Section 3.3, where the output distribution P (Y ) arises from
the convolution of a deterministic component with independent noise. Concretely, we draw X ∼
Laplace(0, 1) and independent noise N ∼ Laplace(0, 0.6) in dimension d = 50, then set

Y = XΦ⊤ +N,

with a random full-rank matrix Φ ∈ R50×50. The dataset is split into Nlab = 1900 labeled pairs
(X,Y ) for training, Nunl = 4900 unlabeled observations Ynew for self-refinement, and Ntest = 1000
labeled pairs for evaluation.

A three-layer MLP with two hidden layers of 128 ReLU units takes a test vector Y ∈ R50 as input
and outputs two 50-dimensional vectors (µ, b), where µ estimates the conditional median of X and
b ∈ R50

>0 the coordinate-wise Laplace scales. The network is trained on labeled data by minimizing
the Laplace negative log-likelihood

L(X,µ, b) =

d∑
j=1

[
log(2bj) +

|Xj − µj |
bj

]
,

using Adam (learning rate 10−3, batch size 128, 50 epochs). During self-refinement, the model
predicts pseudo-labels X̂new = µ(Ynew), retains the top 40% most confident samples (smallest
predicted scales b), augments the training set with these pseudo-labels, and retrains; this process is
repeated for several rounds. On the test set, we report (i) Laplace NLL as above; (ii) mean squared
error

MSE =
1

Ntest d

Ntest∑
i=1

∥∥Xi − µi

∥∥2
2
;
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Table A7: Synthetic-data self-refinement under the generative model in Section 3.3. Lower
NLL/MSE is better; higher R2 is better.

Setting NLL MSE R2

Baseline 1.1840 0.4691 0.7635
After refinement 0.9046 0.2872 0.8551
Improvement (∆) 0.2794 0.1819 0.0916

and (iii) R2 computed by scikit-learn’s r2_score with multioutput="uniform_average"
(higher is better). Results are summarized in Table A7. The self-refinement procedure consistently
improves NLL, MSE, and R2, supporting the premise that additional observations of the effect
variable Y help estimate P (X | Y ) under the assumed decomposition. We note, however, that
directly transferring this decomposition to real-world VLMs remains a theoretical abstraction; see
Section 3.3 for discussion of this limitation.
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