
From Many Voices to One: Statistically Principled
Aggregation of LLM Judges

Anonymous Author(s)
Affiliation
Address
email

Abstract

LLM-as-a-judge—often with multiple judges—is now the standard paradigm for1

scalable model evaluation. This strategy is known to suffer from biases, spurious2

correlations, confounding factors, etc., and many heuristic approaches have been3

proposed to tackle these. We address this problem from the point of view of proba-4

bilistic graphical models, enabling us to capture the challenges involved in using5

multiple judges in a principled way. By considering Markov random fields (MRF)6

with multiple latent factors, we can model undesired correlations between judges, a7

latent unknown true notion of quality, and one or more additional latent distractors8

(for example, generation length). The key technical challenge is to identify and9

learn a higher-rank latent variable MRF, which we solve via a new approach that10

mixes sparse plus low-rank and tensor decompositions. This enables us to better11

understand the quality and behavior of judges, leading to improved evaluation12

capabilities. In addition, we show how to augment our approach via programmatic13

judges that can be cheaply constructed and added to standard model-based judges.14

Empirically, our framework, CARE (Confounder-Aware Aggregation for Reliable15

Evaluation), demonstrates consistent gains on diverse public benchmarks, reducing16

aggregation error by up to 25.15% and showing robust integration of programmatic17

judges. Additionally, CARE offers superior performance and efficiency compared18

to individual-judge intervention strategies. These results underscore CARE’s ability19

to effectively model correlations and mitigate biases, leading to more accurate and20

robust aggregation of LLM judge scores.21

1 Introduction22

Large language models (LLMs) are the workhorse solution for automated evaluation of model23

generations. For example, using LLM-as-a-judge systems avoids incurring the cost and latency24

of expert annotation [1]. Given the ease of applying such tools, a common evaluation paradigm25

is to ensemble multiple LLM judges to form consensus evaluation scores [2]. While attractive,26

these approaches are unreliable. Judges can be individually inaccurate and suffer from biases, e.g.,27

relying on spurious factors like position or verbosity [3, 4, 5]. Additionally, judge models are highly28

correlated (due to being trained on the same data), so that incorporating more judges may add no29

additional evaluation signal—or worse, boost confidence in an incorrect assessment [6, 7].30

Many heuristic techniques have been proposed to mitigate these issues. Single judge bias-reduction31

methods include answer-order shuffling [8], prompt calibration [9, 10, 11], and fine-tuned evaluators32

(e.g., JudgeLM [12], PandaLM [5]). Ensembling methods aggregate judge scores via a simple33

majority vote or average [13] in the hope of reducing unreliability. Unfortunately, these approaches34

do not provide a general and principled way to improve LLM-as-a-judge frameworks. Indeed,35

ad-hoc approaches target one spurious factor (e.g., generation length [3]) and leave others in place, or36

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

make implicit assumptions that are unlikely to hold (e.g., majority vote and unweighted averages37

assume access to independent and equally reliable judges).38

These difficulties motivate the need for a general and principled approach to LLM-as-a-judge39

ensembles. We provide one through the lens of probabilistic graphical models—a classic framework40

that can be used for modeling and aggregating viewpoints. Concretely, we recast multi-judge41

evaluation as probabilistic inference in a higher-rank latent variable Markov Random Field (MRF).42

This enables us to model and deal with key challenges in LLM-as-a-judge ensembles:43

• No access to ground-truth scores: One latent variable in the MRF represents a ground-truth44

quality for the generation being evaluated; we have no access to it and never observe it.45

• Unknown spurious factors: Other latent MRF components model unknown and general distractors46

or spurious correlations that are associated with—but not causal—to generation quality. These47

might include generation length, verbosity, and other factors.48

• Complex correlations: Judges may have correlations beyond their voting behavior, due to the use49

of shared data for training or shared base models. These correlations are flexibly modeled by MRF50

interactions between variables corresponding to judges.51

Higher-rank latent variable MRFs provide a principled and general recipe to automated model-based52

evaluation. The recipe is to learn the MRF (i.e., learn its parameters, including those for the latent53

variables, from observed data—LLM votes) then compute a posterior estimate of the latent ground-54

truth quality. However, learning such higher-rank latent MRFs is challenging. We must address 1)55

how can we learn the model parameters despite never observing any latent variable, and 2): how can56

we identify which latent corresponds to a ground-truth quality score (rather than spurious factors)?57

We tackle this technical challenge with a two-pronged approach. First, to address 1), we introduce a58

novel two-stage technique to learn higher-rank latent MRFs. It combines a sparse plus low-rank59

decomposition that partially recovers the model with a second tensor decomposition step to fix60

the remaining parameters. While each approach has been individually used to learn latent factor61

models in more limited settings, our new combined approach is substantially more general. Second,62

to handle 2), we introduce a variety of approaches that boost identifiability, enabling us to distinguish63

between latent variables corresponding to ground-truth scores versus spurious factors or confounders.64

In addition to our basic estimator, we develop an adaptive approach that augments an existing set65

of judges with new, generated judges. The augmented evaluators we focus on in particular are66

programmatic judges—programs that can perform evaluation that are themselves the output of LLMs.67

We find that such programmatic judges enable (1) boosting the signal for evaluation and (2) facilitate68

the expansion of the judge set, leading to improved accuracy and robustness.69

Summary of Contributions.70

1. We propose CARE, the first confounder-aware aggregation framework that explicitly models71

shared latent confounders among LLM judges, unifying single-judge debiasing with principled72

statistical fusion.73

2. We prove identifiability and derive finite-sample error bounds, showing that our estimator can74

reliably aggregate judge scores even when confounders are non-trivial.75

3. We characterize the inherent model misspecification error incurred by methods ignoring con-76

founders, demonstrating CARE’s advantage over independence-based competitors.77

4. We demonstrate consistent gains on diverse public benchmarks, reducing aggregation error by up78

to 25.15% and proving more performant and efficient than individual-judge intervention strategies.79

5. We show that CARE robustly integrates programmatic judges and supports progressive expansion80

of the evaluator pool, consistently outperforming baseline aggregation methods.81

By explicitly modeling confounders during aggregation, our framework offers a principled alternative82

to current heuristic pipelines and substantially enhances the reliability of LLM-as-a-judge.83

2 Background and Overview84

We start with brief background on automated evaluation and probabilistic graphical models.85

LLM-as-a-judge. The goal of these techniques is to efficiently and cheaply evaluate model gener-86

ations. Large language models can act as inexpensive, fast proxies for human raters by returning87

(i) scalar quality scores (e.g., 1–10 Likert or percentile ranks) [12, 5, 4], (ii) pairwise preferences88

2

(a) Naive: only true-quality (b) Connection-aware (c) Confounder-aware (Ours)

Figure 1: Graphical models for aggregating judge scores under different structural assumptions.
(a) A naive model assumes scores reflect only a true latent quality (Q) and that all judges are
equally reliable and represent independent views. (b) Connection-aware approach models intra-judge
interactions (J2 − J3 − J4), but still assumes the presence of a single latent quality score. (c) Our
Confounder-aware model introduces additional latent confounders (C) influencing judge scores.

that indicate which of two candidate answers is better—an output format popularized by RLHF89

pipelines [14, 15], and (iii) categorical labels such as error type, topic tag, or correctness flags90

[16, 8]. As individual LLM judges are often biased, recent work [17] deploys multiple LLM judges91

and aggregates their opinions—via majority vote, average pooling, or other techniques—to boost92

robustness and accuracy. Our framework builds on this line of work but seeks a more principled93

approach to multi-judge aggregation that explicitly models shared confounders and correlated errors.94

Graphical Models and Latent-Variable MRFs. Graphical models represent conditional indepen-95

dence in multivariate distributions, with Markov Random Fields (MRFs) being particularly valuable96

due to their effective structure learning and efficient inference capabilities, enabling the discovery97

of meaningful dependency structures from data for probabilistic reasoning at scale. In our LLM-as-98

a-judge setting, we employ MRFs to jointly model judge scores (J), confounding factors (C), and99

latent quality variables, allowing us to capture intricate dependencies among LLM evaluations while100

maintaining efficient inference and learnability. When key influences are unobserved, such as the true101

quality signal, augmenting an MRF with latent nodes allows for the recovery of this hidden structure102

or “ground-truth” variables from noisy observations. This latent-variable MRF perspective is crucial103

in our context, offering a principled method to estimate the latent, true-quality signal from observable104

judges’ scores while accounting for correlated judging errors.105

3 CARE: Confounder-Aware Aggregation for Reliable Evaluation106

We introduce CARE (Confounder-Aware Aggregation for Reliable Evaluation), our graphical model-107

based aggregation framework that robustly estimates the true quality of LLM-as-a-judge assessments.108

Our framework explicitly models the influence of a latent true-quality variable and additional latent109

confounders on the observed scores provided by multiple judges.110

3.1 Graphical Model Framework And Assumptions111

For each prompt-response pair, we observe scores J = (J1, . . . , Jp)
⊤ from p judges. We assume112

these observed scores depend on latent variables including one true quality variable Q and one113

or more confounders C = (C1, . . . , Ck), which we define as H = (Q,C). Our graphical model114

encodes the conditional independence structure among the nodes in (J,Q,C): if there is no edge115

between a pair of nodes, they are independent conditioned on the other nodes. An example is shown116

on the right in Fig. 1. We assume this structure is sparse; i.e., there are not too many edges in the117

graph, and make this precise later on.118

This framework is quite general and is compatible with a variety of distributions. For example, we119

may take J,Q,C to involve discrete variables, Gaussians, or mixed models. We can take the model120

to be an MRF or alternatively a mixture model. Our approaches are compatible with a broad range of121

choices, with practitioners able to select the most suitable modeling assumptions for their settings.122

Goals and Assumptions. Under the chosen modeling assumptions, our goal is to learn the distribution123

over J,Q,C. This involves handling three challenges. First, C1: we never observe the latents in124

H—neither ground truth nor confounders. Second, C2: we cannot assume any particular interaction125

in the graph. Third, C3: even if we recover the model parameters, we must be able to distinguish126

3

Algorithm 1 CARE: Confounder-Aware Aggregation for Reliable Evaluation

Input: Score matrix J ∈ Rn×p, parameters (γn, τ), decomposition method D ∈ {SVD,Tensor}
Output: Estimated True Quality {q̂(i)}ni=1

1: Graph Sparse Structure Estimation: Compute appropriate observed matrix f(J).
2: Sparse + low-rank decomposition:

(Ŝ, L̂)← argmin
S,L

1
2∥f(J)− S − L∥

2
F + γn(∥S∥1 + τ∥L∥∗)

3: Latent Factor Extraction:
4: if D = SVD then ▷ Fully Gaussian scenario
5: Compute UΛU⊤ ← SVD(L̂), where U ∈ Rp×h

6: else if D = Tensor then ▷ Binary-Gaussian mixture scenario
7: Partition judges into independent groups using Ŝ
8: Form empirical third-order tensor from judge groups
9: Run tensor decomposition, obtain latent conditional means µqc and mixture proportions πqc

10: end if
11: Symmetry Breaking: Identify the true-quality factor using heuristics described in §3.3
12: Latent Quality Estimation: Use the identified quality factor, compute q̂(i) for each example,

where q̂(i) = P (Q = 1 | Ji) for mixture model or q̂(i) = E[Q | J] for fully gaussian

between Q and the confounders C to identify the model. The latter is required to discover which127

latent is the ground-truth quality—and which is a confounder. Once these obstacles are overcome,128

we seek to perform aggregation, e.g., compute a posterior P (Q|J), the Bayesian estimate for the129

latent true quality conditioned on all observable judge scores.130

In the following, we will work under the assumption that the judge scores J conditioned on the latents131

form a multivariate Gaussian distribution, i.e., J | H ∼ N (µH ,Σ), where µH is the conditional132

mean of observable variables. We defer other scenarios to the Appendix.133

3.2 CARE Algorithm134

The idea behind CARE is to examine two techniques, each of which is stymied by one of the135

obstacles C2 or C3 and to delicately combine them in a novel way. First, the sparsity of the136

conditional independence graph is encoded into an two-dimensional object that can be empirically137

estimated (e.g., the observable covariance matrix, or a cross-moment matrix). However, the presence138

of the latent variables (C1) obscures this structure—but a sparse + low-rank decomposition can139

reveal it [18]. However, while we can decompose the resulting low-rank term via SVD in the hope of140

identifying the model, we can only do so up to rotations. Therefore we are blocked by C3.141

Conversely, tensor product decompositions [19] exploit tensor rigidity to enable this decomposition142

to be uniquely identified. However, for these techniques the judges must be independent conditioned143

on the latents—and we cannot assume this by C2.144

CARE (Algorithm 1) combines these approaches. First, it estimates the underlying graph structure145

from the observed judge scores via the sparse + low-rank decomposition, overcoming C1 and C2. It146

then uses recovered sparse term to estimate the graph and discover subsets of judges with sufficient147

conditional independence. These sets are then used to construct a tensor that can be decomposed via148

standard approaches (e.g., tensor power method) to recover the model, mitigating C3.149

This procedure is then followed by a symmetry-breaking step. This requires a weak assumption on150

the quality of the judges; in practice, even this assumption can be removed by employing simple151

heuristics to identify the true-quality factor among the latent factors. Finally, we aggregate judge152

scores into robust evaluations by weighting according to loadings from the identified quality factor.153

We study two special cases to build our intuition; more general settings are shown in the Appendix.154

4

CARE For Gaussian Mixtures. We have binary latents (Q,C) with Pr
(
Q = q, C = c

)
= πqc,155

where the judges follow a Gaussian conditional distribution with mean µqc ∈ Rp and covariance Σ:156

J
∣∣ (Q = q, C = c) ∼ N

(
µqc, Σ

)
, (q, c) ∈ {0, 1}2.

Here, performing the sparse + low-rank decomposition and obtaining L̂ is insufficient: the eigen-157

decomposition of L̂ does not directly yield identifiable latent-judge connections. We rely on third-158

order tensor statistics to identify conditional distributions explicitly:159

E(X1 ⊗X2 ⊗X3 | Q,C) = E(X1 | Q,C)⊗ E(X2 | Q,C)⊗ E(X3 | Q,C),

where judges are partitioned into independent groups X1, X2, X3 using the learned sparse structure160

Ŝ. Performing a tensor decomposition yields the conditional means µqc and mixture proportions πqc.161

Then, applying Bayes’ rule allows estimation of latent variables given observed scores:162

P (Q = 1|J) ∝ π10µ10 + π11µ11. (1)

CARE for Fully Gaussian Models. Under the fully Gaussian assumption, latent variables H are163

continuous, and the inverse covariance matrix (the precision matrix) encodes independence:164

Σ = Cov
[
(J,H)⊤

]
, Σ−1 = K =

(
KJJ KJH

KHJ KHH

)
, S = KJJ , L = KJHK

−1
HHKHJ .

If assuming connections KJH between latent variables and judges are orthogonal and no direct165

connections among latent variables (i.e. KHH is diagonal), the low-rank matrix L̂ admits eigen-166

decomposition L̂ = UΛU⊤, where eigenvectors in U directly correspond to latent-judge edges167

(KJH), and eigenvalues correspond to KHH . Each eigenvector represents how one latent variable168

influences observable judges. With these edges recovered, the conditional mean of true quality Q can169

be estimated by E(Q | J) = K−1
QQKQJJ , a weighted linear combination of observed scores.170

The fully Gaussian model prevents decomposing the low-rank term uniquely (due to rotational171

invariance). This holds regardless of whether we apply SVD or a tensor decomposition, leading to172

the special handling in Algorithm 1. As a result, in this case, orthogonal and independent latent173

assumptions are needed for identifying the latent-judge connection. This works the best when each174

judge is connected to exactly one latent variable. If a judge depends on both the confounder C and175

the true quality Q with comparable weights, the recovered columns {µ̂r} are only identifiable up to176

an arbitrary rotation, causing estimation errors.177

3.3 Heuristics for Identifiability and Robust Estimation178

Any instantiation of CARE will require symmetry-breaking procedures for latent variable identifia-179

bility. For example, the fully Gaussian case needs a heuristic to identify the true-quality direction180

among latent factors, distinguishing Q from confounders C. In the binary-Gaussian mixture scenario,181

an additional step resolves ambiguity between latent states (Q = 0 vs. Q = 1). Doing so will require182

additional information that can come from modeling assumptions, the use of ground-truth samples,183

or heuristics. We detail some examples below:184

Identifying True-Quality Factor for Joint-Gaussian Model. We introduce heuristics particularly185

aimed at distinguishing the true-quality latent variable from confounding latent variables. First, the186

human-anchor criterion leverages a small validation set containing human ratings. By including187

these human judgments in the graphical model, we anchor the latent quality variable to ground truth188

by selecting the latent factor exhibiting the strongest connection to the human evaluations. Second,189

we apply a loading balance heuristic, identifying the true-quality factor as one that loads broadly and190

with similar magnitude across all competent judges. Conversely, factors dominated by a few judges191

typically indicate shared confounding rather than true quality.192

Identifying Latent States for Mixed Model. In scenarios such as the tensor-based method, symmetry193

breaking additionally involves distinguishing latent states corresponding to different quality levels194

(e.g., Q = 0 versus Q = 1). In practice, we can use known labeled samples (such as high-195

quality examples) to anchor and identify latent-state configurations. By comparing different latent196

configurations with these known labeled samples, we select the latent-state assignment that best197

aligns with empirical observations, effectively removing latent state ambiguity.198

5

4 Theoretical Analysis199

We provide the following theoretical guarantees for our Algorithm 1.200

Identifiability of the Latent Structure. To ensure identifiability of the latent structure, we introduce201

assumptions on latent independence and orthogonality of latent-observable connections. Under202

these assumptions, we prove exact recovery of the latent directions, as well as stability under mild203

perturbations from orthogonality (see Appendix D.2).204

Sample Complexity Bound. We derive sample complexity bounds for consistent estimation of latent-205

observable connections, demonstrating how estimation accuracy depends on factors like eigengaps206

and manifold curvature (Appendix D.3).207

Model Misspecification Error. We analyze errors arising from model misspecification—specifically,208

the bias introduced when confounding latent factors are omitted—and provide explicit bounds on the209

resulting errors in estimated conditional means (Appendix D.4).210

5 Experimental Results211

We evaluate the effectiveness of CARE across diverse experimental setups, encompassing synthetic,212

semi-synthetic, and real-world scenarios. Our goal is to validate the following key claims:213

• Improving aggregation of LLM judge: CARE produces more accurate and robust aggregate214

scores from multiple LLM judges compared to existing methods. (Section 5.1)215

• Effective Integration of Program Judges: CARE integrates programmatic judges, known to have216

high bias, by explicitly modeling their biases [20] (Section 5.2).217

• Evolving Jury via Progressive Program Judge Expansion: CARE effectively incorporates an218

expanding pool of judges, demonstrating consistent improvements in aggregation performance as219

judges are progressively added (Section 5.3).220

• Greater Robustness than Individual Intervention: CARE is competitive against interventions at221

the individual judge level, which typically require extensive manual tuning (Section 5.4).222

• Demonstrating Robustness under Controlled Confounding Factors: CARE remains accurate223

when evaluations are deliberately affected by controlled biases, as demonstrated by the semi-224

synthetic data from [8] (Section 5.5).225

• Validating Theoretical Results in a Fully Controlled Setting: We empirically validate our226

theoretical results through synthetic experiments (Section 5.6).227

Datasets & Metrics. We use FeedbackQA [21], UltraFeedback [22], and HelpSteer2 [23] datasets for228

response scoring. Performance is benchmarked using Mean Absolute Error (MAE) to measure numer-229

ical accuracy and Kendall’s τ rank correlation [24] to evaluate ranking consistency, accommodating230

variations in judge scales and calibration.231

Baselines. We compare CARE to following baseline aggregation methods: (i) majority voting232

(MV), (ii) simple averaging (AVG) [13], (iii) discrete-based weak supervision (WS) [25], and (iv)233

continuous-based weak supervision (UWS) [26].234

LLM Judges. We consider the following LLMs as judges to score responses: Llama-3.2-1B235

[27], Llama-3.1-8B-Instruct [27], Mistral-7B-Instruct-v0.3 [28], Qwen3-0.6B236

[29], Qwen3-1.7B [29], Qwen3-4B [29], Qwen3-8B [29], Phi-4-mini-instruct [30],237

gemma-3-1b-it [31], gemma-3-4b-it [31].238

5.1 Improving Aggregation of LLM judges239

Setup. We compare aggregation methods using the 10 LLM judges listed above. To ensure consis-240

tency, we adapt the prompt template from [32], modifying it to fit our experimental setup. The exact241

used prompt is provided in Appendix E.242

Results. We present aggregation performance in Table 1. The CARE approach consistently outper-243

forms baseline methods. Specifically, CARE achieves the lowest MAE on FeedbackQA (0.7866) and244

UltraFeedback (0.6379), outperforming the majority vote (MV) baseline by 10.74% and 25.15%,245

6

Table 1: Aggregation performance across different datasets, measured by MAE and Kendall’s τ
CARE outperforms baseline methods in most cases.

FeedbackQA HelpSteer2 UltraFeedback
MAE (↓) τ (↑) MAE (↓) τ (↑) MAE (↓) τ (↑)

MV 0.8812 0.3703 0.9951 0.1629 0.8522 0.2985
AVG 0.8492 0.4497 0.9822 0.1611 0.6860 0.3621
WS 0.8144 0.4401 1.3030 0.1511 1.1603 0.3306

UWS 0.9051 0.4580 0.9849 0.1697 0.6794 0.3669
CARE 0.7866 0.4542 0.9742 0.1805 0.6379 0.3806

Table 2: Performance on different datasets using both LLM and program judges. Program judges are
beneficial in FeedbackQA but may introduce noise in HelpSteer2 and UltraFeedback. In both cases,
CARE consistently outperforms other baselines.

FeedbackQA HelpSteer2 UltraFeedback
MAE (↓) τ (↑) MAE (↓) τ (↑) MAE (↓) τ (↑)

MV 0.8607 0.3815 1.0244 0.1465 0.8751 0.3179
AVG 0.8128 0.4671 1.1012 0.1268 1.0371 0.3733
UWS 0.8179 0.4816 0.9992 0.1040 0.9534 0.3047
CARE 0.7582 0.4796 0.9800 0.1398 0.7351 0.3520

respectively. These gains highlight CARE’s ability to model correlations among LLM judges and246

mitigate compounding biases.247

5.2 Effective Integration of Program Judges248

Setup. We integrate our LLM-based evaluators with ten program judges, each encoding their249

evaluation logic in program code and synthesized by OpenAI’s GPT-4o [33]. These judges are250

designed to assess response quality through specific, individual criteria, such as structure, readability,251

safety, relevance, and factuality. While cost-effective to construct them, their deterministic nature252

may introduce systematic biases, potentially leading to noisy signals. Details of program judge253

generation process are provided in Appendix E.254

0 2 4 6 8
Number of added program judges

0.70

0.75

0.80

0.85

0.90

M
AE

MV
AVG
WS
UWS
CARE

Figure 2: Progressive judge selection
on the FeedbackQA dataset. CARE ro-
bustly integrates new judges and consis-
tently outperforms baseline aggregation
methods.

Results. Table 2 presents the integration results. Adding255

program judges enhance performance on FeedbackQA,256

where CARE achieves the lowest MAE (0.7582) and high-257

est τ (0.4796), outperforming the MV baseline’s MAE258

by 11.92%. However, performance declines on Help-259

Steer2 and UltraFeedback, where CARE records MAEs260

of 0.9800 and 0.7351, respectively, still outperforming MV261

by 4.33% and 15.99%. Despite these variations, CARE262

consistently exceeds baselines on MAE across all datasets,263

demonstrating its effectiveness when encountering noisier264

signals for aggregation.265

5.3 Progressive Judge Expansion266

Setup. Next, we start with a fixed set of LLM judges and267

progressively add program judges from a pool of 23. At268

each step, we greedily select the program judge that yields269

the largest improvement in the validation of MAE. The process stops when no further reduction270

in validation MAE is observed. We evaluate aggregation methods as in previous sections, using271

FeedbackQA, where program judges were most beneficial.272

Results. Figure 2 shows the experimental result. CARE achieves consistently lower error as more273

program judges are added, highlighting its ability to adaptively improve with additional supervision.274

This points to a promising direction for developing dynamic, expandable judge ensembles.275

7

Table 3: Comparison with aggregation methods using individually intervened LLM judges. While
other baselines aggregate scores from debiased LLM judges, CARE operates directly on raw outputs.

FeedbackQA HelpSteer2 UltraFeedback
MAE (↓) τ (↑) MAE (↓) τ (↑) MAE (↓) τ (↑)

MV 0.8004 0.9640 0.9951 0.1629 0.8562 0.2799
AVG 0.8029 0.4412 0.9822 0.1611 0.6801 0.3704
WS 0.7674 0.4429 1.3030 0.1511 1.1516 0.3588

UWS 0.8117 0.4390 0.9849 0.1697 0.6683 0.3782
CARE 0.7866 0.4542 0.9742 0.1805 0.6379 0.3806

Table 4: Robustness to artificially injected bias. CARE is particularly effective against stylistic biases
such as beauty (rich content) and authority, but less effective for gender and fallacy biases, which
may impact the actual quality of system answers.

Beauty Bias Fallacy Oversight Bias Gender Bias Authority Bias
MAE (↓) τ (↑) MAE (↓) τ (↑) MAE (↓) τ (↑) MAE (↓) τ (↑)

MV 0.9190 0.3336 1.8971 -0.0284 1.7428 0.1272 0.8239 0.2977
AVG 0.5063 0.3943 1.4007 0.1181 1.1355 0.2879 0.3250 0.4288
WS 1.9225 0.3792 2.5588 0.0680 2.0217 0.2474 0.9296 0.4886

UWS 0.5080 0.4383 1.3826 0.0491 1.1646 0.2576 0.2705 0.5799
CARE 0.3749 0.5334 1.8996 0.0116 1.5985 0.2311 0.2466 0.6327

5.4 Comparison with Individual Intervention276

Setup. An alternative to our confounder-aware approach is direct interventions at the individual277

judge level. Specifically, we compare CARE to prompt-based interventions proposed by [34], which278

instruct LLM judges to account for known sources of bias. The intervened prompt used for this279

comparison is included in Appendix E.280

Results. Table 3 presents the results. While bias-aware prompting improves performance in most281

cases, CARE remains the top performer in the majority of settings, and even when not, it is com-282

petitive with the best. This suggests that CARE can effectively mitigate biases without relying on283

careful prompt engineering.284

5.5 Robustness to Confounding Factors285

Setup. We evaluate robustness using the dataset from [8], in which LLM responses are system-286

atically altered to introduce specific biases via targeted GPT-4 prompts. The dataset includes287

four types of injected bias: beauty, fallacy oversight, gender, and authority. LLM judges are288

prompted to assign scores from 1 to 10 for each response. Robustness is assessed by com-289

paring aggregated scores before and after bias injection, using mean absolute error (MAE) and290

Kendall’s τ . Lower MAE and higher Kendall’s τ indicate better robustness under perturbation.291

Figure 3: Averaged cross-entropy loss
of our algorithm versus the number of
samples. Markers denote average over
three random seeds, and the shaded band
denotes one standard deviation.

292 Results. Table 4 shows that CARE exhibits strong ro-293

bustness to stylistic biases—such as beauty and author-294

ity—maintaining consistent rankings and score levels. In295

contrast, its robustness diminishes when facing biases that296

alter the factual or semantic content, including logical297

fallacies and gender-related framing.298

5.6 Synthetic Experiments299

We evaluate the performance of CARE-Tensor using sim-300

ulated binary-Gaussian mixture data. Dataset details de-301

ferred to Appendix.302

Sample Complexity Result. We investigate how the sam-303

ple size n influences estimation accuracy. We estimate304

conditional means µ̂qc and latent state proportions π̂qc us-305

ing Algorithm 2. Subsequently, we compute the posterior306

probabilities P (Q = 1 | J) via the Bayesian formula-307

8

tion in Eq. 1. We measure the performance using cross-entropy loss. Lower entropy loss yields308

more accurate prediction. We observe a clear decreasing trend in cross-entropy loss as sample size309

increases.310

Tensor Decomposition vs SVD. We illustrate the advantage of tensor decomposition over classical311

eigen-decomposition (SVD) in addressing rotation ambiguity with higher-order moments. We312

quantify performance using mean squared error (MSE) between true conditional means µqc and313

estimated means µ̂qc. Detailed methodologies for SVD estimation are deferred to the appendix.314

Evaluating across 10 random seeds, we find substantial performance differences: CARE-Tensor315

achieves significantly lower estimation errors with MSE (0.51 ± 0.41) compared to the eigen-316

decomposition baseline (SVD) with MSE (1.18±0.74). This shows tensor decomposition accurately317

recovers conditional means without affected by rotation ambiguity.318

6 Related Work319

We discuss related work in bias in LLM-as-a-judge, label aggregation, and highlight our contribution.320

An extended discussion on related work can be found in Appendix B.321

Bias in LLM-as-a-judge. Large language models (LLMs) used as automated evaluators exhibit322

systematic preferences such as positional, verbosity, authority, and self-enhancement biases [3, 12].323

To mitigate these issues, prior work has explored prompt-based interventions [4, 35, 3] and fine-tuned324

evaluators such as JudgeLM and PandaLM, which aims to align model judgments more closely with325

human preferences [12, 5, 36]. While effective locally, these techniques debias each single LLM326

judge and do not address the downstream problem of aggregating multiple, potentially correlated,327

LLM scores.328

Label Aggregation. Classic aggregation models such as Dawid–Skene [37], GLAD [38], and329

MACE [39] infer latent truth by modeling annotator-specific error rates. Weak-supervision frame-330

works generalize this idea to programmatic sources [25, 40, 26]. Recently, [2] introduce GED, a331

framework that ensembles and denoises preference graphs from multiple weak LLM evaluators332

to produce consistent and reliable model rankings. [41] analyzed various inference methods for333

decoding LLM-as-a-judge by looking at the judge probability distributions and computing statistics334

such as mean and mode (i.e greedy decoding) and studied how pre- vs post-aggregation of judge335

outputs affect the judge scores. However, existing methods do not account for shared confounding336

factors that systematically influence annotators or LLMs alike.337

Our Contribution. We propose the first confounder-aware aggregation method for the LLM-as-a-338

judge setting. Unlike prior work that assumes independent annotator noise around a latent true score,339

our approach explicitly models shared latent confounders—such as verbosity or formality—that may340

jointly affect all judges. This bridges the gap between single-judge bias mitigation and statistical341

aggregation, enabling more reliable consensus scores in the presence of correlated judgment errors.342

7 Conclusion343

We introduce CARE, a confounder-aware aggregation framework that formulates multi-judge scoring344

as inference in a higher-rank latent-variable model and delivers three main contributions. (i) It345

explicitly models shared confounders, providing an aggregation scheme tailored to LLM-judge346

scenarios. (ii) It offers statistically principled estimators—sparse-plus-low-rank covariance recovery347

and tensor method—with provable identifiability. (iii) On three public benchmarks, CARE lowers348

MAE and raises Kendall’s τ by up to 15%. Taken together, these advances enable principled, scalable,349

and low-cost evaluation pipelines for LLMs.350

Limitations. Our theory assumes sufficient sparsity and approximate factor orthogonality; strong351

collinearity among latent variables, or latent components exhibiting similar spectral strengths may352

still hinder identifiability. In addition, selecting the “quality” factor currently relies on a simple353

loading-balance heuristic that can be unstable when confounders dominate, and our experiments are354

confined to English, text-only, scalar ratings—generalization to multilingual or multimodal settings355

remains future work.356

9

References357

[1] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,358

Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.359

Judging LLM-as-a-judge with MT-bench and chatbot arena. In Thirty-seventh Conference on360

Neural Information Processing Systems Datasets and Benchmarks Track, 2023.361

[2] Zhengyu Hu, Jieyu Zhang, Zhihan Xiong, Alexander Ratner, Hui Xiong, and Ranjay Kr-362

ishna. Language model preference evaluation with multiple weak evaluators. arXiv preprint363

arXiv:2410.12869, 2024.364

[3] Jiayi Ye, Yanbo Wang, Yue Huang, Dongping Chen, Qihui Zhang, Nuno Moniz, Tian Gao,365

Werner Geyer, Chao Huang, Pin-Yu Chen, Nitesh V Chawla, and Xiangliang Zhang. Justice or366

prejudice? quantifying biase in LLM-as-a-judge. In The Thirteenth International Conference367

on Learning Representations, 2025.368

[4] Lin Shi, Chiyu Ma, Wenhua Liang, Weicheng Ma, and Soroush Vosoughi. Judging the judges:369

A systematic investigation of position bias in pairwise comparative assessments by llms. arXiv370

preprint arXiv:2406.07791, 2024.371

[5] Yidong Wang, Zhuohao Yu, Wenjin Yao, Zhengran Zeng, Linyi Yang, Cunxiang Wang, Hao372

Chen, Chaoya Jiang, Rui Xie, Jindong Wang, et al. Pandalm: An automatic evaluation373

benchmark for llm instruction tuning optimization. In The Twelfth International Conference on374

Learning Representations.375

[6] Daniel Deutsch, Rotem Dror, and Dan Roth. On the limitations of reference-free evaluations376

of generated text. In Proceedings of the 2022 Conference on Empirical Methods in Natural377

Language Processing, pages 10960–10977, Abu Dhabi, United Arab Emirates, December 2022.378

Association for Computational Linguistics.379

[7] Dawei Li, Renliang Sun, Yue Huang, Ming Zhong, Bohan Jiang, Jiawei Han, Xiangliang Zhang,380

Wei Wang, and Huan Liu. Preference leakage: A contamination problem in llm-as-a-judge.381

2025.382

[8] Guiming Hardy Chen, Shunian Chen, Ziche Liu, Feng Jiang, and Benyou Wang. Humans or383

LLMs as the judge? a study on judgement bias. In Proceedings of the 2024 Conference on384

Empirical Methods in Natural Language Processing, pages 8301–8327, Miami, Florida, USA,385

November 2024. Association for Computational Linguistics.386

[9] Haitao Li, Junjie Chen, Qingyao Ai, Zhumin Chu, Yujia Zhou, Qian Dong, and Yiqun Liu.387

Calibraeval: Calibrating prediction distribution to mitigate selection bias in llms-as-judges.388

arXiv preprint arXiv:2410.15393, 2024.389

[10] Shaz Furniturewala, Surgan Jandial, Abhinav Java, Pragyan Banerjee, Simra Shahid, Sumit390

Bhatia, and Kokil Jaidka. “thinking” fair and slow: On the efficacy of structured prompts391

for debiasing language models. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen,392

editors, Proceedings of the 2024 Conference on Empirical Methods in Natural Language Pro-393

cessing, pages 213–227, Miami, Florida, USA, November 2024. Association for Computational394

Linguistics.395

[11] Yue Guo, Yi Yang, and Ahmed Abbasi. Auto-debias: Debiasing masked language models with396

automated biased prompts. In Proceedings of the 60th Annual Meeting of the Association for397

Computational Linguistics (Volume 1: Long Papers), pages 1012–1023, Dublin, Ireland, May398

2022. Association for Computational Linguistics.399

[12] Lianghui Zhu, Xinggang Wang, and Xinlong Wang. Judgelm: Fine-tuned large language models400

are scalable judges. In The Thirteenth International Conference on Learning Representations.401

[13] Haitao Li, Qian Dong, Junjie Chen, Huixue Su, Yujia Zhou, Qingyao Ai, Ziyi Ye, and Yiqun402

Liu. Llms-as-judges: a comprehensive survey on llm-based evaluation methods. arXiv preprint403

arXiv:2412.05579, 2024.404

10

[14] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,405

Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to406

follow instructions with human feedback. Advances in neural information processing systems,407

35:27730–27744, 2022.408

[15] Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn409

Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless410

assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,411

2022.412

[16] Fabrizio Gilardi, Meysam Alizadeh, and Maël Kubli. Chatgpt outperforms crowd workers for413

text-annotation tasks. Proceedings of the National Academy of Sciences, 120(30):e2305016120,414

2023.415

[17] Pat Verga, Sebastian Hofstatter, Sophia Althammer, Yixuan Su, Aleksandra Piktus, Arkady416

Arkhangorodsky, Minjie Xu, Naomi White, and Patrick Lewis. Replacing judges with juries:417

Evaluating llm generations with a panel of diverse models. arXiv preprint arXiv:2404.18796,418

2024.419

[18] Venkat Chandrasekaran, Pablo A. Parrilo, and Alan S. Willsky. Latent variable graphical model420

selection via convex optimization. The Annals of Statistics, 40(4), August 2012.421

[19] Animashree Anandkumar, Rong Ge, Daniel J Hsu, Sham M Kakade, Matus Telgarsky, et al.422

Tensor decompositions for learning latent variable models. J. Mach. Learn. Res., 15(1):2773–423

2832, 2014.424

[20] Tzu-Heng Huang, Catherine Cao, Vaishnavi Bhargava, and Frederic Sala. The alchemist:425

Automated labeling 500x cheaper than llm data annotators. In The Thirty-eighth Annual426

Conference on Neural Information Processing Systems.427

[21] Zichao Li, Prakhar Sharma, Xing Han Lu, Jackie Chi Kit Cheung, and Siva Reddy. Using428

interactive feedback to improve the accuracy and explainability of question answering systems429

post-deployment. In Findings of the Association for Computational Linguistics: ACL 2022,430

pages 926–937, 2022.431

[22] Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan432

Liu, and Maosong Sun. Ultrafeedback: Boosting language models with high-quality feedback.433

2023.434

[23] Zhilin Wang, Yi Dong, Olivier Delalleau, Jiaqi Zeng, Gerald Shen, Daniel Egert, Jimmy J435

Zhang, Makesh Narsimhan Sreedhar, and Oleksii Kuchaiev. Helpsteer2: Open-source dataset436

for training top-performing reward models. arXiv preprint arXiv:2406.08673, 2024.437

[24] Maurice Kendall. A new measure of rank correlation. Biometrika, pages 81–89, 1938.438

[25] Stephen H Bach, Daniel Rodriguez, Yintao Liu, Chong Luo, Haidong Shao, Cassandra Xia,439

Souvik Sen, Alex Ratner, Braden Hancock, Houman Alborzi, et al. Snorkel drybell: A case440

study in deploying weak supervision at industrial scale. In Proceedings of the 2019 International441

Conference on Management of Data, pages 362–375, 2019.442

[26] Changho Shin, Winfred Li, Harit Vishwakarma, Nicholas Carl Roberts, and Frederic Sala.443

Universalizing weak supervision. In International Conference on Learning Representations444

(ICLR), 2022.445

[27] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,446

Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama447

3 herd of models. arXiv preprint arXiv:2407.21783, 2024.448

[28] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh449

Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile450

Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut451

Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023.452

[29] Qwen Team. Qwen3, April 2025.453

11

[30] Abdelrahman Abouelenin, Atabak Ashfaq, Adam Atkinson, Hany Awadalla, Nguyen Bach,454

Jianmin Bao, Alon Benhaim, Martin Cai, Vishrav Chaudhary, Congcong Chen, et al. Phi-4-mini455

technical report: Compact yet powerful multimodal language models via mixture-of-loras.456

arXiv preprint arXiv:2503.01743, 2025.457

[31] Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona458

Merhej, Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma459

3 technical report. arXiv preprint arXiv:2503.19786, 2025.460

[32] Aymeric Roucher. Using LLM-as-a-judge for an automated and versatile evaluation. https:461

//huggingface.co/learn/cookbook/en/llm_judge, n.d. Accessed: 2025-05-15.462

[33] Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark,463

AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv464

preprint arXiv:2410.21276, 2024.465

[34] Jiayi Ye, Yanbo Wang, Yue Huang, Dongping Chen, Qihui Zhang, Nuno Moniz, Tian Gao,466

Werner Geyer, Chao Huang, Pin-Yu Chen, et al. Justice or prejudice? quantifying biases in467

llm-as-a-judge. In Neurips Safe Generative AI Workshop 2024.468

[35] Tong Jiao, Jian Zhang, Kui Xu, Rui Li, Xi Du, Shangqi Wang, and Zhenbo Song. Enhancing fair-469

ness in llm evaluations: Unveiling and mitigating biases in standard-answer-based evaluations.470

In Proceedings of the AAAI Symposium Series, volume 4, pages 56–59, 2024.471

[36] Zongjie Li, Chaozheng Wang, Pingchuan Ma, Daoyuan Wu, Shuai Wang, Cuiyun Gao, and Yang472

Liu. Split and merge: Aligning position biases in LLM-based evaluators. In Proceedings of the473

2024 Conference on Empirical Methods in Natural Language Processing, pages 11084–11108,474

Miami, Florida, USA, November 2024. Association for Computational Linguistics.475

[37] Alexander Philip Dawid and Allan M Skene. Maximum likelihood estimation of observer476

error-rates using the em algorithm. Applied statistics, pages 20–28, 1979.477

[38] Jacob Whitehill, Ting-fan Wu, Jacob Bergsma, Javier R. Movellan, and Paul Ruvolo. Whose478

vote should count more? optimal integration of labels from labelers of unknown expertise. In479

Advances in Neural Information Processing Systems, volume 22, pages 2035–2043, 2009.480

[39] Dirk Hovy, Taylor Berg-Kirkpatrick, Ashish Vaswani, and Eduard Hovy. Learning whom to481

trust with MACE. In Proceedings of NAACL-HLT, pages 1120–1130, 2013.482

[40] Daniel Y. Fu, Mayee F. Chen, Frederic Sala, Sarah M. Hooper, Kayvon Fatahalian, and Christo-483

pher Ré. Fast and three-rious: Speeding up weak supervision with triplet methods. In Proceed-484

ings of the 37th International Conference on Machine Learning (ICML 2020), 2020.485

[41] Victor Wang, Michael JQ Zhang, and Eunsol Choi. Improving llm-as-a-judge inference with486

the judgment distribution. arXiv preprint arXiv:2503.03064, 2025.487

[42] Tom Kocmi and Christian Federmann. Large language models are state-of-the-art evaluators of488

translation quality. In Proceedings of the 24th Annual Conference of the European Association489

for Machine Translation (EAMT), pages 193–203, 2023.490

[43] Chenhui Shen, Liying Cheng, Xuan-Phi Nguyen, Yang You, and Lidong Bing. Large language491

models are not yet human-level evaluators for abstractive summarization. In Findings of the492

Association for Computational Linguistics: EMNLP 2023, pages 4215–4233, 2023.493

[44] Cheng-Han Chiang and Hung yi Lee. Can large language models be an alternative to human494

evaluations? In Proceedings of the 61st Annual Meeting of the Association for Computational495

Linguistics (ACL), pages 15607–15631, 2023.496

[45] Peiyi Wang, Lei Li, Liang Chen, Zefan Cai, Dawei Zhu, Binghuai Lin, Yunbo Cao, Lingpeng497

Kong, Qi Liu, Tianyu Liu, and Zhifang Sui. Large language models are not fair evaluators.498

In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics499

(ACL), pages 9440–9450, 2024.500

12

https://huggingface.co/learn/cookbook/en/llm_judge
https://huggingface.co/learn/cookbook/en/llm_judge
https://huggingface.co/learn/cookbook/en/llm_judge

[46] Zhiyuan Zeng, Jiatong Yu, Tianyu Gao, Yu Meng, Tanya Goyal, and Danqi Chen. Evaluat-501

ing large language models at evaluating instruction following. In Proceedings of the 12th502

International Conference on Learning Representations (ICLR), 2024.503

[47] Junsoo Park, Seungyeon Jwa, Meiying Ren, Daeyoung Kim, and Sanghyuk Choi. OffsetBias:504

Leveraging debiased data for tuning evaluators. In Findings of the Association for Computational505

Linguistics: EMNLP 2024, pages 1043–1067, 2024.506

[48] Akbir Khan, John Hughes, Dan Valentine, Laura Ruis, Kshitij Sachan, Ansh Radhakrishnan,507

Edward Grefenstette, Samuel R. Bowman, Tim Rockt"aschel, and Ethan Perez. Debating with508

more persuasive LLMs leads to more truthful answers. arXiv preprint arXiv:2402.06782, 2024.509

[49] Lianghui Zhu, Xinggang Wang, and Xinlong Wang. JudgeLM: Fine-tuned large language510

models are scalable judges. arXiv preprint arXiv:2310.17631, 2023.511

[50] Ruosen Li, Teerth Patel, and Xinya Du. PRD: Peer rank and discussion improve large language512

model based evaluations. Transactions on Machine Learning Research, 2024.513

[51] Alexander Ratner, Christopher De Sa, Sen Wu, Daniel Selsam, and Christopher Ré. Snorkel:514

Rapid training data creation with weak supervision. In Proceedings of the VLDB Endowment,515

volume 11, pages 269–282, 2017.516

[52] Stephen H Bach, Daniel Rodriguez, Yintao Liu, Chong Luo, Haidong Shao, Cassandra Xia,517

Souvik Sen, Alex Ratner, Braden Hancock, Houman Alborzi, et al. Snorkel drybell: A case518

study in deploying weak supervision at industrial scale. In Proceedings of the 2019 International519

Conference on Management of Data, pages 362–375, 2019.520

[53] Sebastian Rühling Cachay, Benjamin Boecking, and Artur Dubrawski. End-to-end weak521

supervision. In Advances in Neural Information Processing Systems, 2021.522

[54] Zheng Kuang, Chidubem Arachie, Brian Liang, Pratyush Narayana, Grace DeSalvo, Michael523

Quinn, Bo Huang, Gabriel Downs, and Yiming Yang. Firebolt: Weak supervision under weaker524

assumptions. In Proceedings of the 25th International Conference on Artificial Intelligence and525

Statistics, 2022.526

[55] Changho Shin, Sonia Cromp, Dyah Adila, and Frederic Sala. Mitigating source bias for fairer527

weak supervision. In Advances in Neural Information Processing Systems (NeurIPS), 2023.528

[56] Pat Verga, Sebastian Hofstätter, Sophia Althammer, Yixuan Su, Aleksandra Piktus, et al.529

Replacing judges with juries: Evaluating llm generations with a panel of diverse models. arXiv530

preprint arXiv:2404.18796, 2024.531

[57] Zhengyu Hu, Jieyu Zhang, Zhihan Xiong, Alexander Ratner, Hui Xiong, and Ranjay Kr-532

ishna. Language model preference evaluation with multiple weak evaluators. arXiv preprint533

arXiv:2410.12869, 2024.534

[58] Hossein A. Rahmani, Emine Yilmaz, Nick Craswell, and Bhaskar Mitra. Judgeblender: En-535

sembling judgments for automatic relevance assessment. arXiv preprint arXiv:2412.13268,536

2024.537

[59] Yi Yu, Tengyao Wang, and Richard J Samworth. A useful variant of the davis–kahan theorem538

for statisticians. Biometrika, 102(2):315–323, 2015.539

[60] Daniel Hsu and Sham M Kakade. Learning mixtures of spherical gaussians: moment methods540

and spectral decompositions. In Proceedings of the 4th conference on Innovations in Theoretical541

Computer Science, pages 11–20, 2013.542

[61] Tzu-Heng Huang, Catherine Cao, Spencer Schoenberg, Harit Vishwakarma, Nicholas Roberts,543

and Frederic Sala. Scriptoriumws: A code generation assistant for weak supervision. arXiv544

preprint arXiv:2502.12366, 2025.545

[62] Daniel Borkan, Lucas Dixon, Jeffrey Sorensen, Nithum Thain, and Lucy Vasserman. Nuanced546

metrics for measuring unintended bias with real data for text classification. In Companion547

Proceedings of The 2019 World Wide Web Conference, pages 491–500, 2019.548

13

The appendix is structured as follows. It starts with the glossary table, defining key notations549

used throughout the paper in Appendix A. Next, Appendix B discusses additional related work. In550

Appendix C, we introduce details about our tensor-based CARE algorithm, discussion for general551

CARE method, and additional discussion about method heuristics. Following this, Appendix D offers552

theoretical support of our approach and supported proofs. It includes the graphical model formulation,553

graph structure recovery error bound, sample complexity, and the misspecification error arising from554

incorrectly characterized confounding factors. Subsequently, Appendix E provides experimental555

details and additional experiment results. Finally, Appendix F concludes by discussing the broader556

impacts and limitations of the work.557

A Glossary558

The notations are summarized in Table 5 below.

Table 5: Glossary of variables and symbols used in this paper.

Symbol Definition

(J1, . . . , Jp) p vector of Judges score
Q True-quality latent variable
(C1, . . . , Ck) k latent confounder variables
H All the hidden variables (true + confounder) i.e (Q C1, . . . , Ck)
h dimension of H i.e all hidden variables = k + 1
X Score matrix of dimension (n× p) where n is the number of examples and p is the number of judges

K Precision matrix
Koo Observable-observable connection matrix
Koh Observable-latent connection matrix
Khh Latent-latent connection matrix
Σo Covariance matrix of observable variables
S Sparse matrix (Rp×p) which encodes edges between judges
L Low-rank matrix (with rank(L) ≤ h) which captures dependencies mediated by latent variables
R Rotation matrix (Rh×h)

γn Regularization for sparse and low-rank matrix S in Algorithm 1
τ Regularization for low-rank matrix L in Algorithm 1
ŝ
(i)
agg Aggregated scores for ith example in the dataset from p judges
Σ̂ Sample precision estimation or covariance matrix
Ŝ Sample Sparse matrix (Rp×p) which encodes direct connectional edges among judges
L̂ Sample Low-rank matrix (with rank(L) ≤ h) which captures dependencies mediated by latent variables
U Latent factor extraction matrix i.e latent-judge connections (Rp×h) from Algorithm 1
Θ Precision matrix
w Weight for aggregating judges
λ Singular values of L
u⋆ Singular vector of L corresponds to true quality factor
λ⋆ Singular value of L that corresponds to true quality factor
µqc Conditional mean of judges given Q = q, C = c
µ̂qc Estimated conditional mean of judges given Q = q, C = c
πqc Probability of Q = q, C = c
π̂qc Estimation of probability of Q = q, C = c
{Gℓ}3ℓ=1 Groups of judges that are independent of judges outside the group
T̂ Empirical 3-way tensor
µ̂
(1)
qc , µ̂(2)

qc , µ̂(3)
qc Estimated conditional mean of three views

µ̂ρ(r) Estimated conditional mean of judges after permutation
µanchor(r) Conditional mean of anchor sets

559

14

B Extended Related Work560

B.1 Biases in LLM–as–a–Judge561

Large language models (LLMs) have quickly become the standard automatic evaluators for generation562

tasks because they correlate well with human judgments in translation and summarization [42, 43, 44].563

Yet a growing body of work shows that these models are far from impartial. Positional bias—564

preferring the second answer in a pairwise comparison—was first noted in MT-Bench [1] and later565

quantified in detail by [45], who observed reversals of up to 30% when simply swapping order.566

Verbosity bias, wherein longer answers receive higher scores regardless of quality, is highlighted by567

[8]. LLM judges also display self-enhancement bias, overrating responses produced by models from568

the same family [46]. Less studied but equally problematic are concreteness/authority biases: judges569

over-reward answers that contain citations, numbers, or confident tone even when these features are570

irrelevant [47].571

Mitigation strategies span two levels. Prompt-level interventions randomize answer order, enforce572

symmetric formatting, and instruct the judge to ignore superficial features [45, 36]. Adding chain-573

of-thought rationales or decomposing the rubric into sub-criteria (accuracy, conciseness, style) also574

moderates shallow heuristics [48]. On the model level, fine-tuned evaluators such as JudgeLM [49]575

and Split-and-Merge Judge [36] are trained on curated data that explicitly counter positional and576

length biases. Peer-review and debate schemes go a step further: PRD lets a second LLM critique577

the first judge and often corrects biased decisions [50], while [48] show that dialog with a more578

persuasive model leads to more truthful verdicts.579

Despite progress, most debiasing work treats a single judge in isolation. When evaluations aggregate580

many LLM scorers—for robustness, cost sharing, or diversity—biases can compound in complex581

ways that individual fixes do not capture.582

B.2 Label Aggregation for Multiple Noisy Evaluators583

Weak-supervision. Treating each LLM prompt or model as a noisy labeling function aligns584

aggregation with modern weak supervision. Snorkel [51, 52] estimates source accuracies and585

dependencies to denoise programmatic labels, laying the foundation for LLM-prompt aggregation.586

[40] introduces a scalable moment-matching estimator with closed-form weights.[26] generalizes587

label models beyond categorical labels to arbitrary metric spaces, greatly expanding their applicability.588

[53] jointly optimizes a classifier and a differentiable label model, outperforming two-stage pipelines589

when sources are dependent. Firebolt further removes requirements on known class priors or source590

independence, estimating class-specific accuracies and correlations in closed form [54]. [55] shows591

that fixing source bias in labeling functions using optimal transport can improve both accuracy and592

fairness.593

Aggregation of multiple LLM judges. Recent work shows that ensembling smaller evaluators can594

beat a single large judge. The PoLL jury combines three diverse 7–35B models and attains higher595

correlation with human ratings than GPT-4 while costing 7× less and reducing bias [56]. GED merges596

preference graphs from weak evaluators (Llama3-8B, Mistral-7B, Qwen2-7B) and denoises cycles; its597

DAG ranking surpasses a single 72B judge on ten benchmarks [57]. JudgeBlender ensembles either598

multiple models or multiple prompts, improving precision and consistency of relevance judgments599

over any individual LLM [58]. These findings echo classic “wisdom-of-crowds” results—when600

paired with principled aggregation, a panel of smaller, heterogeneous judges can outperform a much601

larger model, offering a practical path toward reliable, low-cost evaluation.602

B.3 Our Contribution in Context603

Prior research either (i) debiases one judge at a time or (ii) aggregates multiple judges assuming604

independent noise. Our confounder-aware aggregation unifies these threads. We posit latent factors605

(e.g., verbosity, formality) that influence all judges simultaneously and show how to infer both the606

latent truth and the shared confounders. This yields more reliable consensus scores when individual607

judges—human or LLM—share systemic biases.608

15

C Algorithm Details609

This section details the implementation of our CARE framework. Specifically, it includes the610

full CARE tensor algorithm, details about SVD baseline method for comparing our tensor-based611

algorithm, generalizations beyond Gaussian assumptions, and practical heuristics to address non-612

orthogonality in latent factors and justification for where the sparse structure lies in mixed Gaussian613

data.614

C.1 Tensor-based CARE Algorithm615

Algorithm 2 CARE (T)

Input: Score matrix J ∈ Rn×p, tolerance ε.
Output: Estimates

{
µ̂qc, π̂qc

}
q,c∈{0,1}.

A. Anchor discovery (graph partition)
1: Compute the sample covariance Σ̂ = J⊤J/n and perform the sparse+low-rank split Σ̂ ≈ Ŝ + L̂

(Alg. 1).
2: Partition judges into three disjoint groups {Gℓ}3ℓ=1 that satisfy

a ̸=b, j1∈Ga, j2∈Gb =⇒ |Ŝj1,j2 | ≤ ε,

ensuring no direct edges with strength greater than ϵ can exist across groups.

B. Empirical third-order moment tensor
3: for ℓ = 1, 2, 3 do
4: Xℓ ← columns of J indexed by Gℓ ▷ Xℓ ∈ Rn×|Gℓ|

5: end for
6: Compute

T̂ =
1

n

n∑
i=1

X
(i)
1 ⊗X

(i)
2 ⊗X

(i)
3 ∈ R|G1|×|G2|×|G3|.

C. Tensor decomposition
7: Run a CP tensor-power decomposition on T̂ to obtain k = 4 components{

(π̂qc, µ̂
(1)
qc , µ̂

(2)
qc , µ̂

(3)
qc)
}
q,c∈{0,1}2 , where π̂qc > 0 and µ̂(ℓ)

qc ∈ R|Gℓ|.

D. Assemble full means
8: for q, c ∈ {0, 1}2 do
9: µ̂qc ← concat

(
µ̂
(1)
qc , µ̂

(2)
qc , µ̂

(3)
qc

)
∈ Rp.

10: end for
E. State alignment with anchors

11: Find the permutation ρ of {1, . . . , 4} that minimizes
∑4

r=1

∥∥µ̂ρ(r) − µanchor(r)
∥∥2
2
, where the four

anchor prototypes correspond to (Q,C)={00, 01, 10, 11}.
12: (µ̂00, µ̂01, µ̂10, µ̂11)← (µ̂ρ(1), µ̂ρ(2), µ̂ρ(3), µ̂ρ(4)).

F. Mixing weights
13: (π̂00, π̂01, π̂10, π̂11)← (π̂ρ(1), π̂ρ(2), π̂ρ(3), π̂ρ(4)).

14: return {µ̂qc, π̂qc}q,c∈{0,1}.

C.2 SVD Baseline in Synthetic Experiment616

We form the empirical two-way moment between view 1 and view 2:617

M̂1,2 =
1

n

n∑
i=1

X
(i)
1 X

(i)⊤
2 =

∑
q,c

πq,c µ1,q,c µ
⊤
2,q,c + sampling noise,

where πq,c = Pr[Q = q, C = c] and µv,q,c = E[Jv | Q = q, C = c] for judge/view v A618

singular-value decomposition619

M̂1,2 = U12 Σ12 V
⊤
12

16

yields factor matrices620

U12 Σ
1/2
12 ≈ [µ1,q,c]R, V12 Σ

1/2
12 ≈ [µ2,q,c]R,

where R ∈ O(4) is an unknown orthogonal matrix.621

Repeating on M̂1,3 = 1
n

∑
iX

(i)
1 X

(i)⊤
3 = U13 Σ13 V

⊤
13 produces a second rotated copy of [µ1,q,c].622

We solve the Procrustes problem623

R = arg min
O∈O(4)

∥∥U12 Σ
1/2
12 − U13 Σ

1/2
13 O

∥∥ ∗ F,
then set µ̂2,q,c = (V12 Σ

1/2
12)R⊤ and µ̂3,q,c = (V13 Σ

1/2
13)R⊤ to align all three views.624

This SVD baseline recovers {µv,q,c} up to the permutation/sign ambiguity inherent in any orthogonal625

transform.626

C.3 Genral CARE Setup627

Extension Beyong the Gaussian Observation Model. The multivariate-Gaussian assumption628

for J |H is convenient—its first two or three moments already encode all information needed for629

the sparse + low-rank and tensor steps—but it is not a requirement. Because CARE learns the630

graphical structure, the same pipeline applies whenever each judge’s conditional distribution lies in631

an exponential family or, more generally, a latent-variable generalized linear model (GLM):632

• Categorical or ordinal scores. For Likert ratings or pairwise preferences we can set633

Ji | H ∼ Categorical
(
softmax(W⊤

i H)
)

or Ordinal−logit(W⊤
i H).

The graph—hence the sparse mask S—is unchanged; only the node-wise likelihoods differ. We still634

recover S from conditional-mutual-information or pseudo-likelihood scores, and we still factorize635

higher-order indicator moments such as E
[
1{Ja=ℓ} 1{Jb=m} 1{Jc=n}

]
.636

• Mixed Discrete-Continous Scores. When some judges output real scores and others categorical637

flags, we use a mixed conditional distribution:638

p(J |H) =
[
Πi∈Cont.N (Ji;µHi

, σ2
i)
] [

Πj∈Disc.Bernoulli(σ(W⊤
j H))

]
.

CARE forms mixed raw/indicator moments, and identifiability again follows from standard tensor-639

decomposition guarantees for mixed conditional means.640

• Heavy-tailed or skewed real scores. When numeric scores are skewed or contain outliers, a641

multivariate-t or Gaussian scale mixture is appropriate. Up to a scalar factor, the covariance still642

decomposes as sparse + low-rank, so Steps 1–2 of Algorithm 1 work after a simple rescaling.643

Empirically, we find that replacing the Gaussian local likelihood only affects the estimation of644

sparse structure and extraction of latent factors, not the subsequent symmetry-breaking or posterior645

computation; thus the overall CARE pipeline generalizes with minimal adjustments.646

C.4 Heuristics and Justifications647

Heuristic for Addressing Orthogonality Violations in CARE (SVD).648

Existing heuristics for identifying the true quality latent factor can estimate corresponding weights,649

but they often suffer from bias when the orthogonality assumption—central to the application of650

SVD—is violated. This issue commonly arises in real-world datasets. We found the following651

weighting rule effective in both synthetic and real-world settings:652

w ← λ⋆u⋆ −
∑

ui∈U\{u⋆}

λiui,

where w represents the learned weights for each judge, λ∗ and u∗ is the singular value and vector of653

L that corresponds to the direction that is closest to true quality latent variable, λi, ui represent rest654

of the singular values and vectors, which can be interpreted as spurious/confounding factors.655

17

0 2000 4000 6000 8000 10000
Number of samples

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
SE

Orthogonal
Unadjusted
Heuristic

(a) Orthogonal

0 2000 4000 6000 8000 10000
Number of samples

0.0

0.2

0.4

0.6

0.8

1.0

M
SE

Non-orthogonal
Unadjusted
Heuristic

(b) Non-Orthogonal

Figure 4: Effect of the proposed heuristic in a fully Gaussian synthetic setup. We estimate the true
quality variable Q and report the mean squared error. The heuristic improves estimation in the
non-orthogonal setting, but slightly degrades performance in the orthogonal setting where true and
confounding components are disjoint.

This rule intuitively subtracts the influence of overlapping (non-orthogonal) confounding components656

from the estimated true score factor.657

Figure 4 illustrates the effect of this heuristic in a synthetic fully Gaussian setup. In the non-orthogonal658

case—where confounding components overlap with the true signal—the heuristic improves the659

estimation of the true latent variable. In contrast, it underperforms in the orthogonal case, where660

judges influenced by true scores are cleanly separated from those influenced by confounders.661

Justification of Decomposing Covariance Matrix. In the joint-Gaussian setting we decompose the662

precision matrix, whose sparsity pattern directly encodes conditional independences in an undirected663

graphical model. For a mixed Gaussian model, however, each observation J ∈ Rp is generated by664

first drawing a latent class label Q,C ∈ {0, 1}2 (with probabilities πqc) and then sampling665

J | Q,C = q, c ∼ N
(
µqc, Σ

)
,

where the within-component covariance Σ does not depend on q, c. Because the latent variable only666

perturbs the mean, the marginal covariance of J splits, via the law of total covariance, into667

Cov(J) = E
[
Cov(J | Q,C)

]︸ ︷︷ ︸
=Σ

+ Cov
(
E[J | Q,C]

)︸ ︷︷ ︸
=
∑

q,c πqc (µqc−µ̄)(µqc−µ̄)⊤

, µ̄ :=
∑
q,c

πqcµqc. (2)

The first term, Σ, is the same sparse block-diagonal matrix we plant in the simulator to model668

direct judge–judge interactions; the second term is an outer-product mixture of at most 4 linearly669

independent directions and hence has rank ≤ 4. Equation equation 2 therefore exhibits the population670

covariance as a sparse + low-rank decomposition,671

Cov(J) = S + L, S = Σ (sparse), L = Cov
(
E[J | Q,C]

)
(low rank).

Because sparsity now lives in S, not in the inverse covariance, estimating S and L by fitting a sparse-672

plus-low-rank model directly to the empirical covariance is both natural and statistically identifiable673

for the mixed Gaussian case.674

18

D Theory675

We formalize the graphical model under joint gaussian distribution and notation (Section D.1), then676

discuss the identifiability of graph structure with exact and approximate recovery (Section D.2)677

and quantify the sample complexity required for consistent recovery of our SVD-based algorithm678

(Section D.3). Next, we present the model misspecification error when confounding factor is not679

correctly characterized (Section D.4). Finally, we discuss sample complexity required for tensor-680

based algorithm under mixed Gaussian distribution (Section D.5. All proofs are included in Section681

D.6.682

D.1 Model and Notation683

We discuss the model under joint-gaussian distribution where all variables follow the same definitions684

as in Section 3. Briefly, J = (J1, . . . , Jp)
⊤ stacks the p observable judge scores, and H =685

(Q,C1, . . . , Ck)
⊤ collects the h = k + 1 latent variables.686

Σ = Cov
[
(J,H)⊤

]
, Σ−1 = K =

(
KJJ KJH

KHJ KHH

)
,

where the subscript J (resp. H) refers to observable (resp. latent) coordinates.687

The observable block factorizes via the Schur complement:688

(ΣJJ)
−1 = S + L, S = KJJ , L = KJH K−1

HH KHJ .

Here Σo is the covariance matrix of observable variables, S ∈ Rp×p is sparse and encodes direct689

conditional edges among judges, L is low-rank with rank(L) ≤ h and captures dependencies690

mediated by the latent variables. Entry (KJH)iℓ is the edge weight between judge i and latent691

factor ℓ.692

D.2 Graph Structure Identifiability693

While (S,L) can be recovered (e.g. via convex sparse-plus-low-rank regularization [18], the finer694

structure of KJH is usually not identifiable from L. For example, for arbitrary rotation matrix R ∈695

Rh×h, L = (KJHK
−1/2
HH R)(R⊤K

−1/2
HH KHJ), this indicates one cannot distinguish KJHK

−1/2
HH696

from KJHK
−1/2
HH R without further constraints. Hence, we need to impose additional assumptions:697

Assumption D.1 (Latent–latent independence and eigen-gap). KHH = diag(d1, . . . , dh) with698

d1 > d2 > · · · > dh > 0.699

Assumption D.2 (Orthogonal latent–observable connections). The columns of KJH are orthogonal,700

i.e. K⊤
JHKJH is diagonal. A special case is the disjoint-support model where each judge connects to701

exactly one latent factor.702

Next, we provide an exact recovery result given the above assumptions.703

Theorem D.3 (Exact Recovery). Under Assumptions 1 and 2, columns in KJH are identifiable up to704

column permutations and sign flips.705

Real-world data rarely satisfy the exact orthogonality in Assumption D.2. To assess robustness,706

consider the following perturbed connection matrix:707

K̃JH = KJH + E, ∥E∥2 small.
The associated low-rank part is L̃ = K̃JHK

−1
HHK̃HJ . Let the eigen-pairs of L = KJHK

−1
HHKHJ708

and L̃ be {(λi, ui)}hi=1 and {(λ̃i, ũi)}hi=1, ordered so that λ1 > · · · > λh > 0, and denote the709

eigen-gap by710

δi = min
j ̸=i
|λi − λj | > 0.

Theorem D.4 (Stability under approximate orthogonality). For every i ∈ [h],711

∥ûi − ui∥2 ≤
2∥K−1

HH∥2 ∥E∥2
δi

+ O
(
∥E∥22

)
.

This indicates that latent–observable directions remain identifiable (up to column permutations and712

sign flips) whenever the perturbation norm ∥E∥2 is small relative to the eigen-gap δi. We defer the713

proof to Appendix D.6.714

19

D.3 Sample Complexity Bound715

We now quantify how many i.i.d. samples are needed for the two–stage estimator in Algorithm 1 to716

recover the latent–observable directions KJH ∈Rp×h.717

As detailed in Algorithm 1, our estimator for KJH proceeds in two stages: first, a sparse + low-rank718

decomposition of sample precision matrix. Second, we extract the latent–observable directions by719

taking the rank-h eigen-decomposition L̂n =
∑h

i=1 λ̂i ûiû
⊤
i and setting K̂JH := [û1, . . . , ûh].720

Theorem D.5 (Sample complexity for recovering KJH). Let L∗ = KJHK
−1
HHKHJ ∈ Rp×p have721

distinct eigenvalues λ1 > · · · > λh and define the (global) eigengap δ := min1≤i<j≤h|λi − λj |.722

Assume the identifiability, incoherence, and curvature conditions of [18]. Then for any ϵ > 0, with723

probability at least 1− 2e−ϵ,724

max
i≤h

∥∥ ûi − ui ∥∥2 = O
(√

ϵ√
n ξ(T) δ

)
,

where n is the sample size, ûi and ui are the i-th eigenvectors of L̂n and L∗ respectively. T = T (L∗)725

is the tangent space of L∗, ξ(T) is the curvature constant from [18].726

We defer the proof to Appendix D.6. At a high-level, we adapt the identifiability, incoherence and727

curvature conditions from Theorem 4.1 of [18] and combine it with extended result of Davis-Khan’s728

theorem [59].729

This bound shows that the column-wise ℓ2 error decays at the standard parametric rate n−1/2, and730

is attenuated by both the manifold curvature ξ(T) and the eigengap δ. Achieving an accuracy of at731

most α ∈ (0, 1) therefore requires732

n = Õ
(ϵ

ξ(T)2δ2α2

)
samples, up to universal constants and log-factors.733

D.4 Misspecification Error734

Many label aggregation frameworks (e.g.,[25, 40, 26]) assume a single latent variable that explains the735

observed labels. However, in setups like LLM-as-a-judge, the scores may be influenced by additional736

latent factors or confounders that also affect the observed annotations. Ignoring these confounder737

latents leads to model misspecification, which can bias the aggregated labels. We characterize this738

bias and analyze its impact on the estimated aggregation weights.739

Let L∗ =
∑h

ℓ=1
1
dℓ
kℓk

T
ℓ be the true rank-h low-rank component of the observable precision matrix,740

derived from the latent-observable connection matrix KJH = [k1, . . . ,kh] and latent-latent precision741

KHH = diag(d1, . . . , dh). Let utrue
1 = k1/||k1||2 be the true direction of influence for the quality742

score latent variable Q (assuming k1 ̸= 0).743

Define A = 1
d1
k1k

T
1 . Its principal (and only non-zero) eigenvalue is λ1 = 1

d1
||k1||22, and its spectral744

gap (to its other zero eigenvalues) is δ = λ1. Let E =
∑h

ℓ=2
1
dℓ
kℓk

T
ℓ be the confounding component,745

so L∗ = A+E. Let v1 be the principal unit-norm eigenvector of L∗. When a rank-1 model is fitted,746

the estimated direction is ûpop
1 = v1.747

Theorem D.6. If ||E||op ≤ δ/2, the ℓ2 deviation of the estimated direction v1 from utrue
1 is bounded748

by:749 ∣∣∣∣v1 − sutrue
1

∣∣∣∣
2
≤

2 ||E||op

δ
=

2
∣∣∣∣∣∣∑h

ℓ=2
1
dℓ
kℓk

T
ℓ

∣∣∣∣∣∣
op

1
d1
||k1||22

for a sign s = ±1 (chosen so that s(utrue
1)Tv1 ≥ 0).750

Proof. By Davis-Kahan theorem (Theorem 2 in [59]), if ||E||op ≤ δ/2, then the ℓ2 distance between751

v1 and utrue
1 (after aligning their signs via s = ±1) is bounded by:752 ∣∣∣∣v1 − s · utrue

1

∣∣∣∣
2
≤

2 ||E||op

δ
.

20

Plugging in E yields the desired result:753

∣∣∣∣v1 − s · utrue
1

∣∣∣∣
2
≤

2
∣∣∣∣∣∣∑h

ℓ=2
1
dℓ
kℓk

T
ℓ

∣∣∣∣∣∣
op

1
d1
||k1||22

.

754

The theorem quantifies the directional bias in the estimated influence of Q when confounders are755

ignored. This bias is proportional to the collective “strength” of confounders in the precision domain756

(numerator) and inversely proportional to Q’s own “strength” (denominator). Fitting a rank-1 model757

forces this bias, while a higher-rank model offers the capacity to separate these influences.758

Corollary D.7 (Error Bound for Estimated Conditional Mean of Q). Denote the true conditional759

mean of true quality score latent variable Q given the observable variables O = (J1, ..., Jp)760

be denoted by E[Q|O]true. Then, E[Q|o]true = − ||k1||2
d1

(utrue
1)To. Let an estimated conditional761

mean with the misspecified direction, E[Q|o]mis, be formed using the misspecified direction v1 be762

E[Q|o]mis = −
||k1||2

d1
(s · v1)

To, where s = ±1 is chosen such that s · (utrue
1)Tv1 ≥ 0. Then, the763

absolute error in the estimated conditional mean due to the directional misspecification is bounded764

by:765

|E[Q|o]mis − E[Q|o]true| ≤
2
∣∣∣∣∣∣∑h

ℓ=2
1
dℓ
kℓk

T
ℓ

∣∣∣∣∣∣
op

||k1||2
||o||2

This holds if the condition from the main theorem, ||E||op ≤ δ/2 = 1
2d1
||k1||22, is met, where766

E =
∑h

ℓ=2
1
dℓ
kℓk

T
ℓ .767

Proof. The absolute difference is:768

|E[Q|o]mis − E[Q|o]true| =
∣∣∣∣−||k1||2

d1
(s · v1)

To−
(
−
||k1||2
d1

(utrue
1)To

)∣∣∣∣
=

∣∣∣∣−||k1||2
d1

(s · v1 − utrue
1)To

∣∣∣∣
=
||k1||2
d1

∣∣(s · v1 − utrue
1)To

∣∣
By the Cauchy-Schwarz inequality,

∣∣(x)Ty∣∣ ≤ ||x||2 ||y||2. Applying this:769

|E[Q|o]mis − E[Q|o]true| ≤
||k1||2
d1

∣∣∣∣s · v1 − utrue
1

∣∣∣∣
2
||o||2

The term ||s · v1 − utrue
1 ||2 is equivalent to ||v1 − s · utrue

1 ||2 from the main theorem statement, where770

s aligns utrue
1 with v1. From the preceding Theorem, we have the bound (where δ = 1

d1
||k1||22):771

∣∣∣∣v1 − s · utrue
1

∣∣∣∣
2
≤

2 ||E||op

δ
=

2
∣∣∣∣∣∣∑h

ℓ=2
1
dℓ
kℓk

T
ℓ

∣∣∣∣∣∣
op

1
d1
||k1||22

Substituting this bound into the inequality for the error in the conditional mean:772

|E[Q|o]mis − E[Q|o]true| ≤
||k1||2
d1

(
2 ||E||op
1
d1
||k1||22

)
||o||2

=
||k1||2
d1

·
2d1 ||E||op

||k1||22
· ||o||2

=
2 ||E||op

||k1||2
||o||2

=
2
∣∣∣∣∣∣∑h

ℓ=2
1
dℓ
kℓk

T
ℓ

∣∣∣∣∣∣
op

||k1||2
||o||2

773

21

This corollary shows that the error in the estimated conditional mean of Q (due to using the misspeci-774

fied direction for Q’s influence) scales with:775

• The magnitude of the observable vector o (specifically, ||o||2).776

• The collective strength of the confounding latent variables in the precision domain777

(
∣∣∣∣∣∣∑h

ℓ=2
1
dℓ
kℓk

T
ℓ

∣∣∣∣∣∣
op

).778

• Inversely with the ℓ2-norm of the true connection weights of Q (||k1||2).779

Especially, we see that strong confounders widen the gap bound, whereas heavier connection weights780

to the true score shrink it. Put differently, misspecification hurts most when confounders are strong781

and the quality signal is weak.782

D.5 Sample Complexity for CARE tensor algorithm783

Assumption D.8 (Model and identifiability). Let J = (X⊤
1 , X

⊤
2 , X

⊤
3)⊤ ∈ Rp (p = p1 + p2 + p3)784

be one observations i.i.d generated as785

(Q,C) ∼ Multinomial({πqc}q,c∈{0,1}), Xℓ | (Q = q, C = c) ∼ N
(
µ(ℓ)
qc , Σ

)
,

with ℓ ∈ {1, 2, 3}. Write r ∈ [4]↔ (q, c) ∈ {0, 1}2 and define wr := πqc, ar := µ
(1)
qc ∈ Rp1 , br :=786

µ
(2)
qc ∈ Rp2 , cr := µ

(3)
qc ∈ Rp3 .787

(A1) Block-conditional independence. X1 ⊥ X2 ⊥ X3 | (Q,C).788

(A2) Full-rank moment tensor. The population third-order moment M := E[X1 ⊗ X2 ⊗789

X3] =
∑4

r=1 wr ar ⊗ br ⊗ cr has rank 4, with πmin := minr πr > 0 and λmin :=790

minr ∥ar∥2∥br∥2∥cr∥2 > 0.791

(A3) Non-degenerate covariance. σ2
max := ∥Σ∥op <∞.792

(A4) Spectral gap. The CP factors are uniquely defined up to scaling/sign and satisfy the eigenvalue-793

gap condition of Theorem 5.1 in [19]. Denote that gap by δ > 0.794

(A5) Correct graph partition. There exist a graph partition such that judges between different795

groups are conditional independent. Step A of Algorithm 2 returns the true groups G1,G2,G3.796

Theorem D.9 (Sample complexity of CARE tensor step). Fix 0 < ε < 1 and let the assumptions797

above hold. Run Algorithm 2 (CARE) on n i.i.d. samples to obtain {µ̂qc, π̂qc}q,c∈{0,1}. Under798

Assumption D.8, there exist universal constants C1, C2 > 0 such that if799

n ≥ C1
σ6
max

δ2 π2
min

p log
(
p/ε
)
,

then with probability at least 1− ε800

max
q,c

∥∥µ̂qc − µqc

∥∥
2
≤ C1

σ3
max

δ

√
p log(p/ε)

n
, max

q,c

∣∣π̂qc − πqc∣∣ ≤ C2

√
p log(p/ε)

n
.

We defer the proof to D.6.801

D.6 Proofs802

Proof of Theorem D.3803

Proof. Let low-rank matrix satisfies L =
∑h

i=1 di uiu
⊤
i with ui the i-th column of Koh. By804

Assumption D.2 the ui are mutually orthogonal, and by Assumption D.1 the eigenvalues d1 > · · · >805

dh are distinct; hence this rank-1 decomposition is the (unique) spectral decomposition of L. Thus806

each ui is identifiable from L up to sign and ordering, proving the theorem.807

22

Proof of Theorem D.4808

Proof. We apply standard matrix perturbation theory for eigenvectors. Starting from the eigenvalue809

decomposition:810

Lui = λi ui,

we write the perturbed matrix as811

L̃ = (Koh + E)K−1
hh (Koh + E)⊤ = L + KohK

−1
hhE

⊤ + EK−1
hhK

⊤
oh + EK−1

hhE
⊤.

Let ∆L = L̃− L. By the Davis–Kahan theorem,812

∥ûi − ui∥2 ≤
2 ∥∆L∥2

δi
,

where δi = minj ̸=i |λi − λj | > 0. Moreover,813

∥∆L∥2 ≤ 2 ∥Koh∥2 ∥K−1
hh ∥2 ∥E∥2 + O(∥E∥22)

and ∥Koh∥2 = 1. Hence814

∥ûi − ui∥2 ≤
2 ∥K−1

hh ∥2 ∥E∥2
δi

+ O(∥E∥22).

This completes the proof.815

Proof of Theorem D.5816

Proof of Theorem D.5. Step 1 – Spectral error of L̂n. Apply Chandrasekaran et al.’s Theorem 4.1817

with the regularization parameters818

γn =
48
√
2Dψ(2− ν)
ξ(T)ν

√
ϵ

n
, σ, θ as in their conditions (3)–(4).

Under the incoherence and curvature conditions of their Proposition 3.3, there exists a universal819

constant C1 > 0 such that, with probability at least 1− 2e−ϵ,820 ∥∥ L̂n − L∗∥∥
2
≤ C1

√
ϵ/n

ξ(T)
. (3)

Step 2 – Eigenvector perturbation via Davis–Kahan. Let L∗ = UΛU⊤ with Λ =821

diag(λ1, . . . , λh, 0, . . . , 0) and collect the top–h eigenvectors in Uh = [u1, . . . , uh]. Write the822

spectral decomposition of the estimator as L̂n = ÛhΛ̂Û
⊤
h + R, where R contains only the eigen-823

components of rank > h. Set the perturbation E := L̂n − L∗.824

Applying Corollary 3 from [59] to the i-th eigenpair gives825

∥ui − ûi∥2 ≤
23/2∥E∥2

δi
. (4)

Step 3 – Combine the two bounds. Insert equation 3 into equation 4:826

∥ ûi − ui ∥2 ≤
23/2C1

δ ξ(T)

√
ϵ

n
∀ i ∈ [h],

and take the maximum over i. This proves the advertised high-probability bound827

max
i≤h
∥ ûi − ui ∥2 = O

(√
ϵ/n

ξ(T) δ

)
.

Step 4 – Invert to a sample-size requirement. Setting the right-hand side to a target accuracy828

ε ∈ (0, 1) and solving for n yields n ≥ 4C2
1

ε2
ϵ

ξ(T)2δ2 , which is the sample-complexity statement in829

the theorem.830

23

Proof for Theorem D.9831

Proof sketch. Step 1: Concentration of the empirical tensor. Let M̂ := 1
n

∑n
i=1X

(i)
1 ⊗X

(i)
2 ⊗832

X
(i)
3 . Because each Xℓ is sub-Gaussian with proxy σmax, the operator-norm Bernstein bound for833

order-3 tensors (Lemma 5 of 60) yields834

∥M̂ −M∥op = O
(
σ3
max

√
p log(p/ε)

n

)
w.p. 1− ε/2.

Step 2: Robust CP decomposition. Applying the non-symmetric tensor power method of [19,835

Alg. 2] to M̂ and invoking their perturbation bound (Theorem 5.1 therein) gives, for every component836

r ∈ [4],837 ∥∥(âr, b̂r, ĉr)− (ar, br, cr)
∥∥
2

= O
(

1
δ ∥M̂ −M∥op

)
.

Step 3: Assembling full means. Algorithm 2 concatenates the three block-means, so µ̂r − µr =838

(âr − ar, b̂r − br, ĉr − cr), and the same O(·) factor carries through.839

Step 4: Mixing-weight estimation. Given accurate factor recovery, the usual least-squares re-840

estimation of weights satisfies |π̂qc − πqc| = O
(
∥M̂ −M∥op

)
(19, Theorem B.1), yielding the stated841

rate.842

Step 5: Union bound. Combine Steps 1–4 and union-bound over the four components to obtain the843

final probability 1− ε.844

E Experiment Details845

In this section, we provide experimental details and additional experiment results. We describe846

datasets details, evaluation prompts we used to collect LLM judgments, and individual judge per-847

formance. In addition, we introduce the construction of programmatic judge, and ablation studies848

including prompt-based interventions. Finally, we include additional experiment results for our849

tensor-based CARE algorithm: synthetic experiments results on graph-aware judge partition, and850

real-world applications.851

E.1 Datasets852

FeedbackQA [21]. A question-answering dataset with human-provided scalar ratings of answer853

helpfulness, ranging from 1 to 5. We use the validation set in our experiments, treating the average of854

two human ratings as the ground truth.855

HelpSteer2 [23]. A large-scale dataset of assistant responses annotated with real-valued scores (0856

to 4) across multiple axes, including helpfulness, correctness, coherence, complexity, and verbosity.857

We use the validation set and take the helpfulness score as the ground truth.858

UltraFeedback [22]. A scalar feedback dataset where assistant responses are rated from 0 to 10859

based on overall quality, using scores aggregated from GPT-4 and human raters. We randomly sample860

5,000 examples for evaluation.861

Synthetic Dataset (Section 5.6). We construct a synthetic dataset with latent state probabilities862

set to πqc = [0.2, 0.2, 0.3, 0.3], corresponding to latent states (Q,C) as (0, 0), (0, 1), (1, 0), (1, 1)863

respectively. The judges are organized into three distinct groups, each containing four judges whose864

conditional means µqc are randomly drawn from a uniform distribution ranging between 1 and 4.865

Dependence structures are imposed explicitly: for judges independent of the true quality variable866

Q, we constrain their conditional means such that averages depend solely on the confounder C (i.e.,867

rows corresponding to Q = 0 and Q = 1 are identical for each C state).868

24

E.2 Prompt Templates869

In this subsection we provide the prompts we used for collecting LLM judgements.870

LLM Judge Scoring Template (FeedbackQA, HelpSteer2, Ultrafeedback)

You will be given a user_question and system_answer couple.

Your task is to provide a ‘total rating’ scoring how well the system_answer answers the
user concerns expressed in the user_question. Give your answer as a float on a scale of
{min_rating} to {max_rating}, where {min_rating} means that the system_answer is not
helpful at all, and {max_rating} means that the answer completely and helpfully addresses the
question.

Provide your feedback as follows:

Feedback:::
Total rating: (your rating, as a float between {min_rating} and {max_rating})

Now here are the question and answer.

Question: {question}
Answer: {answer}

Feedback:::
Total rating:

871

Intervened LLM Judge Scoring Template (Section 5.4)

You are a careful and impartial evaluator. Your task is to rate how well the system_answer
responds to the user_question, focusing on substance, correctness, and completeness.

Rate the answer on a scale from {min_rating} to {max_rating}, where:
- {min_rating} means the answer does not address the question or is misleading,
- {max_rating} means the answer fully and helpfully addresses the question with accurate,
relevant, and concise information.

Avoid common judgment biases:
- Do **not** reward irrelevant fluency, length, or politeness.
- Do **not** penalize answers solely for brevity if they are complete.
- Do **not** be influenced by phrasing style unless it affects clarity or correctness.

Judge only the answer’s content in relation to the question. Ignore formatting, gram-
mar, or tone unless they impact understanding or utility.

Provide your feedback as follows:

Feedback:::
Total rating: (a float from {min_rating} to {max_rating})

Now, here are the inputs:

Question: {question}
Answer: {answer}

872

25

Feedback:::
Total rating:

873

LLM Judge Toxicity Scoring Template (CivilComments)

You will be given a user_question and system_answer couple.

Your task is to provide a ‘total rating’ scoring how well the system_answer answers the
user concerns expressed in the user_question. Give your answer as a float on a scale of
{min_rating} to {max_rating}, where {min_rating} means that the system_answer is not
helpful at all, and {max_rating} means that the answer completely and helpfully addresses the
question.

Provide your feedback as follows:

Feedback:::
Total rating: (your rating, as a float between {min_rating} and {max_rating})

Now here are the question and answer.

Question: {question}
Answer: {answer}

Feedback:::
Total rating:

874

E.3 Individual LLM Judge Performance875

Table 6 shows the performance of individual LLM judges. Overall, we find that aggregation methods876

outperform or match the best single judge. Since the relative performance of individual LLM judges877

is not known a priori in practical settings, aggregation offers a useful approach for integrating judges878

in an agnostic manner.

Table 6: Individual Judge Performance in Section 5.1

FeedbackQA HelpSteer2 UltraFeedback
MAE (↓) τ (↑) MAE (↓) τ (↑) MAE (↓) τ (↑)

gemma-3-1b-it 1.0073 0.2315 1.0666 0.0825 1.0606 0.1812
gemma-3-4b-it 0.7578 0.4537 0.9920 0.1402 0.8492 0.2309

Llama-3.1-8B-Instruct 0.8148 0.4341 1.1364 0.1261 0.8648 0.3194
Llama-3.2-1B 1.2219 -0.0525 1.0049 -0.0132 1.0119 0.0752
Llama-3.2-3B 1.0362 0.0051 0.9995 0.0251 1.1522 0.1648

Mistral-7B-Instruct-v0.3 1.0244 0.4539 1.0793 0.1116 0.8572 0.1735
Phi-4-mini-instruct 0.8082 0.4557 1.0692 0.1576 0.8355 0.3147

Qwen3-0.6B 1.0969 0.2073 1.1255 0.0370 1.0233 0.1254
Qwen3-1.7B 1.1507 0.2485 1.0693 0.1049 1.1382 0.1926
Qwen3-4B 1.0999 0.2854 0.9675 0.2290 0.7088 0.3921
Qwen3-8B 1.0517 0.4417 0.9675 0.2094 0.7512 0.3140

879

E.4 Programmatic Judges880

Programmatic judges, synthesized by LLMs, distill and convert evaluation logic into interpretable,881

cheap-to-obtain program code [20, 61]. These program judges provide specialized, independent882

assessments compared to using LLMs directly as evaluators. We integrate these judge sets into CARE883

to enhance evaluation signals.884

26

We describe the creation of programmatic judges and the criteria they encode. Using OpenAI’s885

GPT-4o [33], we generate judges with the following prompt:886

Program Judge Template

You are now a judge to evaluate LLM generated response with a given question. You will
write your evaluation logic into code and generate python programs to return their scores.
Higher represents better response quality. Consider complex criteria for assessing responses,
leveraging third-party models, embedding models, or text score evaluators as needed.

Function signature: def _judging_function(self, question, response):
887

We synthesize 23 programs and select 10 representative ones for our experiments (see Section 5.2888

and Section 5.3). These programs evaluate responses based on diverse criteria: (i) structure, (ii)889

readability, (iii) safety, (iv) relevance, and (v) factuality. For example:890

• Structure: A judge counts transition markers (e.g., “therefore,” “however”) to assess coherence,891

with more markers indicating better quality.892

• Relevance: A judge uses TF-IDF to convert questions and responses into vectors, computing cosine893

similarity to measure semantic alignment (see Program 1). Another employs semantic embeddings894

for similarity metrics (see Program 2).895

• Readability: A judge leverages a third-party API to evaluate complexity, using metrics like the896

Flesch–Kincaid grade level (see Program 3).897

All judging logic, conditions, and pre-defined keyword lists are generated by the LLM. Below, we898

provide examples to illustrate this approach.899

900
def _lexical_overlap(self , question , response):901

""" Compute lexical overlap using TF -IDF for relevance evaluation.902

"""903

Preprocess input question and response (e.g., lowercase , remove904

stopwords)905

question_clean = self._preprocess(question)906

response_clean = self._preprocess(response)907

908

Return 0.0 if either input is empty after preprocessing909

if not question_clean.strip () or not response_clean.strip ():910

return 0.0911

912

Transform inputs to TF-IDF vectors using the vectorizer913

tfidf_matrix = self.tfidf_vectorizer.fit_transform ([question_clean914

, response_clean])915

question_vec = tfidf_matrix [0] # Extract question vector916

response_vec = tfidf_matrix [1] # Extract response vector917

918

Compute cosine similarity between vectors and return as float919

return float(cosine_similarity(question_vec , response_vec)[0][0])920921

Program 1: Lexical Overlap Computation using TF-IDF.

922
def _semantic_similarity_strong(self , question , response):923

""" Compute semantic similarity between question and response."""924

Return 0.0 if either input is empty925

if not question.strip () or not response.strip():926

return 0.0927

928

Encode question and response into dense vectors using the929

embedding model930

question_embedding = self.semantic_embedding_strong_model.encode(931

question , max_length =4096932

)["dense_vecs"]933

response_embedding = self.semantic_embedding_strong_model.encode(934

27

response , max_length =4096935

)["dense_vecs"]936

937

Compute dot product similarity between embeddings938

similarity = question_embedding @ response_embedding939

940

Clamp similarity score between 0.0 and 1.0 and return as float941

return float(max(0.0, min(1.0, similarity)))942943

Program 2: Semantic Similarity using Embedding Model.

944
def _readability(self , response):945

""" Calculate readability metrics for response."""946

Compute readability scores using textstat library947

return {948

Flesch Reading Ease (inverted: higher score means harder to949

read)950

"flesch_reading_ease": 100 - textstat.flesch_reading_ease(951

response),952

SMOG Index (higher score indicates higher reading difficulty953

)954

"smog_index": textstat.smog_index(response),955

}956957

Program 3: Readability Metrics Calculation.

We report the performance of individual program judges in Table 7. While their standalone perfor-958

mance is limited, they provide useful signals for the integration strategies discussed in Sections 5.2959

and 5.3.

Table 7: Program Judge Performance. (*) represents the selected judges in Section 5.2.

FeedbackQA HelpSteer2 UltraFeedback
MAE (↓) τ (↑) MAE (↓) τ (↑) MAE (↓) τ (↑)

factuality_check_score (*) 1.9956 0.0872 1.1992 0.0075 1.1910 0.0492
factuality_factKB_score (*) 1.0343 0.2288 1.7180 0.0414 1.4342 0.1051

readability_flesch_reading (*) 1.2185 0.0431 2.5682 0.0445 2.5145 0.1396
readability_smog (*) 0.9805 0.1277 2.3286 0.0283 2.3122 0.1604

relevance_bleu 1.4035 0.0126 2.7452 -0.0355 2.7330 0.0560
relevance_keyword_overlap 1.2779 0.1977 2.3735 0.0138 2.2725 0.1461

relevance_lexical_overlap (*) 1.1371 0.2316 2.0148 -0.0144 1.9182 0.1187
relevance_rouge 1.3079 0.2066 2.5603 0.0232 2.4838 0.1327

relevance_semantic_sim_strong (*) 0.8759 0.4092 1.1182 0.0395 0.9866 0.1601
safety_toxicity (*) 1.5396 -0.0380 1.1105 0.0300 1.0139 -0.0043

structure_avg_paragraph_length_dist 1.4560 -0.1883 2.5562 -0.0081 2.4637 0.1074
structure_avg_sentence_length_dist 1.5248 -0.0140 2.4407 -0.0287 2.4179 0.1612

structure_cohesion_score 1.4078 0.2070 2.7139 0.0345 2.6578 0.1567
structure_emphasis_count 1.2826 0.1988 2.6642 0.0482 2.5955 0.2060

structure_headings 1.4765 0.0423 2.6521 -0.0340 2.5916 0.1049
structure_lexical_diversity 1.0672 0.1625 2.1864 0.0444 2.0981 0.1935

structure_list_usage 1.6284 0.0159 3.0208 -0.0108 3.0132 0.0872
structure_logical_transitions (*) 1.2694 0.1743 2.2693 0.0520 2.4355 0.2263

structure_max_sentence_length (*) 1.3039 0.1272 2.7532 0.0104 2.7511 0.1377
structure_min_sentence_length 1.3568 0.1887 2.4872 0.0400 2.4322 0.2046

structure_questions 1.2443 0.2692 2.4910 0.0360 2.4064 0.2114
structure_sentence_balance 1.4423 0.1835 2.6757 0.0501 2.6444 0.2203

structure_sentence_count (*) 1.3099 0.1742 2.4408 0.0807 2.6570 0.2300

960

28

E.5 Effects of Prompt-Based Intervention (Section 5.4)961

We begin by analyzing how the intervention using a robust prompt affects the performance of962

individual LLM judges. Figures 5 (MAE) and 6 (Kendall’s τ) present the performance differences963

relative to the vanilla prompt. While the intervention aims to reduce confounding signals, its impact964

varies—some model–dataset combinations show improvement, while others show degradation.965

We then assess how these shifts influence aggregate performance. Figures 7 and 8 show the corre-966

sponding changes in aggregation accuracy. Most baseline methods benefit from the intervention,967

whereas CARE shows a slight performance drop. A plausible explanation is that once confounding968

signals are mitigated, the additional latent variables in CARE may begin to model residual noise969

rather than meaningful structure, slightly reducing its performance. Nevertheless, as shown in Sec-970

tion 5.4, CARE without intervention still outperforms other baselines with the robustness prompt,971

highlighting its effectiveness even without manually crafted interventions for hidden confounders.972

Lla
ma-3

.2-
1B

Ph
i-4

-m
ini-

ins
tru

ct

Qwen
3-4

B

Lla
ma-3

.2-
3B

ge
mma-3

-1b
-it

ge
mma-3

-4b
-it

Qwen
3-1

.7B

Qwen
3-8

B

Lla
ma-3

.1-
8B

-In
str

uct

Qwen
3-0

.6B

Mistr
al-

7B
-In

str
uct

-v0
.3

Models

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
AE

feedbackqa
Raw
Intervened

Lla
ma-3

.2-
1B

Ph
i-4

-m
ini-

ins
tru

ct

Qwen
3-4

B

Lla
ma-3

.2-
3B

ge
mma-3

-1b
-it

ge
mma-3

-4b
-it

Qwen
3-1

.7B

Qwen
3-8

B

Lla
ma-3

.1-
8B

-In
str

uct

Qwen
3-0

.6B

Mistr
al-

7B
-In

str
uct

-v0
.3

Models

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
AE

helpsteer2
Raw
Intervened

Lla
ma-3

.2-
1B

Ph
i-4

-m
ini-

ins
tru

ct

Qwen
3-4

B

Lla
ma-3

.2-
3B

ge
mma-3

-1b
-it

ge
mma-3

-4b
-it

Qwen
3-1

.7B

Qwen
3-8

B

Lla
ma-3

.1-
8B

-In
str

uct

Qwen
3-0

.6B

Mistr
al-

7B
-In

str
uct

-v0
.3

Models

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
AE

ultrafeedback
Raw
Intervened

MAE Comparison: Raw vs Intervened (Individual)

Figure 5: Change in MAE (↓) for individual LLM judges after applying the robustness prompt.

Lla
ma-3

.2-
1B

Ph
i-4

-m
ini-

ins
tru

ct

Qwen
3-4

B

Lla
ma-3

.2-
3B

ge
mma-3

-1b
-it

ge
mma-3

-4b
-it

Qwen
3-1

.7B

Qwen
3-8

B

Lla
ma-3

.1-
8B

-In
str

uct

Qwen
3-0

.6B

Mistr
al-

7B
-In

str
uct

-v0
.3

Models

0.0

0.1

0.2

0.3

0.4

Ke
nd

al
l's

 Ta
u

feedbackqa
Raw
Intervened

Lla
ma-3

.2-
1B

Ph
i-4

-m
ini-

ins
tru

ct

Qwen
3-4

B

Lla
ma-3

.2-
3B

ge
mma-3

-1b
-it

ge
mma-3

-4b
-it

Qwen
3-1

.7B

Qwen
3-8

B

Lla
ma-3

.1-
8B

-In
str

uct

Qwen
3-0

.6B

Mistr
al-

7B
-In

str
uct

-v0
.3

Models

0.05

0.00

0.05

0.10

0.15

0.20

Ke
nd

al
l's

 Ta
u

helpsteer2

Raw
Intervened

Lla
ma-3

.2-
1B

Ph
i-4

-m
ini-

ins
tru

ct

Qwen
3-4

B

Lla
ma-3

.2-
3B

ge
mma-3

-1b
-it

ge
mma-3

-4b
-it

Qwen
3-1

.7B

Qwen
3-8

B

Lla
ma-3

.1-
8B

-In
str

uct

Qwen
3-0

.6B

Mistr
al-

7B
-In

str
uct

-v0
.3

Models

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ke
nd

al
l's

 Ta
u

ultrafeedback
Raw
Intervened

Kendall Tau Comparison: Raw vs Intervened (Individual)

Figure 6: Change in Kendall’s τ (↑) for individual LLM judges after the robustness prompt.

29

MV
AV

G WS
UWS

CARE

Models

0.0

0.2

0.4

0.6

0.8

M
AE

feedbackqa
Raw
Intervened

MV
AV

G WS
UWS

CARE

Models

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
AE

helpsteer2
Raw
Intervened

MV
AV

G WS
UWS

CARE

Models

0.0

0.2

0.4

0.6

0.8

1.0

1.2

M
AE

ultrafeedback
Raw
Intervened

MAE Comparison: Raw vs Intervened (Aggregation)

Figure 7: Change in aggregate MAE (↓) after propagating the robustness prompt through each
aggregation method.

MV
AV

G WS
UWS

CARE

Models

0.0

0.1

0.2

0.3

0.4

Ke
nd

al
l's

 Ta
u

feedbackqa
Raw
Intervened

MV
AV

G WS
UWS

CARE

Models

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Ke
nd

al
l's

 Ta
u

helpsteer2
Raw
Intervened

MV
AV

G WS
UWS

CARE

Models

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Ke
nd

al
l's

 Ta
u

ultrafeedback
Raw
Intervened

Kendall Tau Comparison: Raw vs Intervened (Aggregation)

Figure 8: Change in aggregate Kendall’s τ (↑) after the robustness prompt.

30

E.6 Confounding Factors in Robustness Experiments973

To clarify the setup in Section 5.5, we summarize the artificially injected confounding factors in974

Table 8, along with illustrative snippets. These perturbations target different dimensions of bias,975

ranging from superficial stylistic changes to alterations that directly affect semantic correctness.976

Bias Perturbation Injected Example Snippet (from Fig. 1)
Fallacy Oversight Insert a factual error “The square root of 36 is 7. . . ” (correct value is 6)
Authority Add a fake citation “. . . (Weisstein, Eric W. ‘Square Root.’ Math-

World. . .)”
Beauty Add emojis / formatting “ 6⃝ multiplied by 6⃝ equals 36.”
Gender Add a gender-biased remark “This might be a bit difficult for women to under-

stand. . . ”
Table 8: Confounding factors and illustrative snippets.

Table 4 reports the robustness of different aggregation methods under these injected biases. We find977

that CARE is highly stable against stylistic biases such as beauty and authority, preserving both978

rankings and score magnitudes. In contrast, robustness deteriorates when the bias directly undermines979

factual or semantic content—as in fallacy oversight and gender perturbations.980

This distinction aligns with our hypothesis: fallacy oversight introduces factual inaccuracies that981

reduce answer quality, producing expected shifts in judge scores. Meanwhile, gender bias activates982

explicit safety mechanisms in alignment-tuned LLM judges, leading to consistent downscoring across983

models and correspondingly large shifts in aggregate outcomes.984

31

E.7 Additional Controlled Experiment on Confounding Factors985

Unlike the semi-synthetic perturbations in Section 5.5, here we investigate whether CARE can986

separate the true quality latent factor from naturally arising confounders in a more controlled setting.987

Specifically, we introduce two dummy judges whose scores are directly correlated with response988

length or the presence of specific words. If CARE functions as intended, CARE should recover a989

factor structure in which high-quality judges align with the true quality factor Q, while the dummy990

judges align with a distinct confounder.991

Setup. We ran CARE-SVD with 14 judges on the FEEDBACKQA dataset, combining 10 LLM992

judges, 2 programmatic “dummy” judges (sensitive to length or special keywords), and 2 human993

annotators. The factor loadings are presented in Table 9.994

Results. The observed loadings align with our hypothesis:995

• Factor 1 (true quality Q). This factor exhibits broad, balanced loadings across competent LLM996

judges and the two human judges, with much weaker loadings for the programmatic dummy judges.997

Within model families, larger models have higher loadings (e.g., Llama-3.1-8B > Llama-3.2-3B ≈998

Llama-3.2-1B), suggesting that Q reflects underlying capability. Instruction-tuned models (Mistral-999

7B-Instruct, Phi-4-mini-instruct, Llama-3.1-8B-Instruct, Gemma-3-4B-it) also show above-median1000

loadings, consistent with their alignment to human rubrics.1001

• Factor 2 (length confounder). This factor is dominated by a high, concentrated loading on the1002

length-sensitive dummy_eval_1, with a secondary loading on gemma-3-1b-it (0.59). In contrast,1003

nearly all other judges—including both humans and stronger instruction-tuned models—have1004

near-zero loadings. Such a one-sided, few-judge pattern is characteristic of a confounder rather1005

than true quality.1006

Table 9: Judge loadings on latent factors in CARE-SVD. Factor 1 corresponds to true quality Q;
Factor 2 reflects a length confounder.

Judge Q (true quality) Length confounder
Qwen3-8B 0.396 -0.240
Llama-3.1-8B-Instruct 0.664 -0.076
gemma-3-4b-it 0.706 -0.152
Llama-3.2-1B -0.009 -0.140
Qwen3-4B 0.180 0.008
gemma-3-1b-it 0.243 0.595
Llama-3.2-3B 0.033 0.057
Phi-4-mini-instruct 0.715 -0.051
Qwen3-1.7B 0.199 -0.012
Mistral-7B-Instruct-v0.3 0.804 0.016
dummy_eval_1 0.098 0.742
dummy_eval_2 0.035 0.290
human_eval_1 0.337 0.078
human_eval_2 0.338 0.059

32

(a) Random Partitioning (b) Graph-aware Partitioning

Figure 9: Random Partitioning vs. Graph Aware Partitioning. A random partitioning (a) leaves cross-
view edges that violate the independence assumptions of tensor methods, whereas the graph-aware
partitioning (b) considers cross-view edges and restores the required separation.

E.8 Additional Real-World Experiment on Gaussian Mixture1007

We consider a Gaussian mixture setting where the latent variable is binary, but the observables (judge1008

outputs) are real-valued Gaussian scores. This experiment evaluates the effectiveness of Algorithm 21009

on a real dataset.1010

Setup. We use a subset of the CivilComments dataset [62], randomly sample 5,000 examples. The1011

ground-truth label is binary toxicity (0 or 1), while LLM judges provide real-valued toxicity scores1012

ranging from 0 to 9. In addition to the original LLM judges, we include five LLMs:1013

• meta-llama/Meta-Llama-3-8B-Instruct,1014

• mistralai/Mistral-7B-Instruct-v0.2,1015

• Qwen/Qwen2.5-0.5B-Instruct,1016

• Qwen/Qwen2.5-1.5B-Instruct,1017

• Qwen/Qwen2.5-3B-Instruct.1018

For the MV and WS baselines, we first discretize judge scores using a threshold of 4.5 before1019

applying majority vote or weighted sum. For AVG and UWS, we aggregate scores first, then apply1020

the threshold. CARE (Algorithm 2) directly infers the latent binary label from continuous scores.1021

We evaluate all methods using classification accuracy.1022

Table 10: Aggregated accuracy (higher is better) in CivilComments dataset.
Method Acc. (%)
MV 74.32%
AVG 73.80%
WS 74.95%
UWS 74.95%
CARE 75.27%

Results. Table 10 shows that CARE achieves the highest accuracy. This result highlights its ability1023

to better handle confounding factors and perform effective latent inference, even when the observed1024

data (continuous scores) differ from the latent variable type (binary labels).1025

E.9 Synthetic Experiment on Graph-Aware Tensor Decomposition1026

When judges exhibit conditional dependencies, naively partitioning them into views violates the1027

independence assumptions required by tensor decomposition. We hypothesize that partitioning judges1028

via a graph-aware procedure that respects dependency structure yields substantially better estimation1029

than random partitioning.1030

33

Setup. We simulated 10,000 items scored by p = 12 judges, partitioned into three views of four1031

judges each. To induce conditional dependencies, we planted edges of strength 0.3 within each true1032

view at 40% density. We then compared two grouping strategies across ten random seeds:1033

• Random: assign judges to views uniformly at random;1034

• Graph-Aware: assign views to minimize cross-block edges in the empirical precision matrix.1035

Performance was measured by the ℓ2 error in recovering the latent component means, i.e.1036

||µqc − µ̂qc||2).1037

Random
Grouping

Graph-Aware
Grouping

0

5

10

15

20

2 r
ec

on
st

ru
ct

io
n

er
ro

r

Effect of Grouping Strategy on Recovery Error

Figure 10: ℓ2 reconstruction error (mean
± SD) for random vs. graph-aware
grouping.

Results. As shown in Figure 10, graph-aware grouping1038

dramatically reduces reconstruction error—by more than1039

an order of magnitude—compared to random grouping.1040

This confirms the importance of respecting dependency1041

structure during view formation and underscores the advan-1042

tage of CARE, which integrates graph structure directly1043

into the tensor decomposition procedure.1044

E.10 Computing Resources1045

We used a server equipped with an NVIDIA RTX 40901046

(24GB). Generating LLM judge outputs took up to 3 hours1047

per dataset. In contrast, the aggregation algorithms were1048

efficient, completing in under 1 minute for datasets with1049

approximately 5,000 rows.1050

F Broader Impact Statement1051

This work presents a novel approach to aggregate scores1052

from multiple LLMs serving as judges by identifying con-1053

founding variables and thus potentially reducing the bias1054

in the overall judge scores. The potential broader impact1055

includes a framework for improved LLM-as-a-judge scores which can be used at various applications.1056

However, it is important to acknowledge that using LLMs as potential judges to automate labor-1057

intense annotation tasks which is an active area of research carries some limitations and past research1058

has discussed some unintended consequences, such as over-reliance on judge outputs, misuse and1059

misinterpretation of results which might carry high real-world stakes. It is crucial to use automated1060

LLM-as-a-judge tools responsibly and ethically, considering potential biases in data and models, and1061

ensuring transparency and accountability in their application.1062

34

	Introduction
	Background and Overview
	CARE: Confounder-Aware Aggregation for Reliable Evaluation
	Graphical Model Framework And Assumptions
	CARE Algorithm
	Heuristics for Identifiability and Robust Estimation

	Theoretical Analysis
	Experimental Results
	Improving Aggregation of LLM judges
	Effective Integration of Program Judges
	Progressive Judge Expansion
	Comparison with Individual Intervention
	Robustness to Confounding Factors
	Synthetic Experiments

	Related Work
	Conclusion
	Glossary
	Extended Related Work
	Biases in LLM-as-a-Judge
	Label Aggregation for Multiple Noisy Evaluators
	Our Contribution in Context

	Algorithm Details
	Tensor-based CARE Algorithm
	SVD Baseline in Synthetic Experiment
	Genral CARE Setup
	Heuristics and Justifications

	Theory
	Model and Notation
	Graph Structure Identifiability
	Sample Complexity Bound
	Misspecification Error
	Sample Complexity for CARE tensor algorithm
	Proofs

	Experiment Details
	Datasets
	Prompt Templates
	Individual LLM Judge Performance
	Programmatic Judges
	Effects of Prompt-Based Intervention (Section 5.4)
	Confounding Factors in Robustness Experiments
	Additional Controlled Experiment on Confounding Factors
	Additional Real-World Experiment on Gaussian Mixture
	Synthetic Experiment on Graph-Aware Tensor Decomposition
	Computing Resources

	Broader Impact Statement

