© © N O O A~ W N =

23
24
25
26
27
28
29
30

31
32
33
34
35
36

From Many Voices to One: Statistically Principled
Aggregation of LLM Judges

Anonymous Author(s)
Affiliation
Address

email

Abstract

LLM-as-a-judge—often with multiple judges—is now the standard paradigm for
scalable model evaluation. This strategy is known to suffer from biases, spurious
correlations, confounding factors, etc., and many heuristic approaches have been
proposed to tackle these. We address this problem from the point of view of proba-
bilistic graphical models, enabling us to capture the challenges involved in using
multiple judges in a principled way. By considering Markov random fields (MRF)
with multiple latent factors, we can model undesired correlations between judges, a
latent unknown true notion of quality, and one or more additional latent distractors
(for example, generation length). The key technical challenge is to identify and
learn a higher-rank latent variable MRF, which we solve via a new approach that
mixes sparse plus low-rank and tensor decompositions. This enables us to better
understand the quality and behavior of judges, leading to improved evaluation
capabilities. In addition, we show how to augment our approach via programmatic
judges that can be cheaply constructed and added to standard model-based judges.
Empirically, our framework, CARE (Confounder-Aware Aggregation for Reliable
Evaluation), demonstrates consistent gains on diverse public benchmarks, reducing
aggregation error by up to 25.15% and showing robust integration of programmatic
judges. Additionally, CARE offers superior performance and efficiency compared
to individual-judge intervention strategies. These results underscore CARE’s ability
to effectively model correlations and mitigate biases, leading to more accurate and
robust aggregation of LLM judge scores.

1 Introduction

Large language models (LLMs) are the workhorse solution for automated evaluation of model
generations. For example, using LLM-as-a-judge systems avoids incurring the cost and latency
of expert annotation [[1]]. Given the ease of applying such tools, a common evaluation paradigm
is to ensemble multiple LLM judges to form consensus evaluation scores [2]. While attractive,
these approaches are unreliable. Judges can be individually inaccurate and suffer from biases, e.g.,
relying on spurious factors like position or verbosity [3l 4, 5]. Additionally, judge models are highly
correlated (due to being trained on the same data), so that incorporating more judges may add no
additional evaluation signal—or worse, boost confidence in an incorrect assessment [6} [7].

Many heuristic techniques have been proposed to mitigate these issues. Single judge bias-reduction
methods include answer-order shuffling [8], prompt calibration [9, 10} [11], and fine-tuned evaluators
(e.g., JudgeLM [12], PandalLM [5]). Ensembling methods aggregate judge scores via a simple
majority vote or average [13] in the hope of reducing unreliability. Unfortunately, these approaches
do not provide a general and principled way to improve LLM-as-a-judge frameworks. Indeed,
ad-hoc approaches target one spurious factor (e.g., generation length [3]) and leave others in place, or

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

37
38

39
40
M
42
43

44
45
46
47
48
49
50
51

52
53
54
55
56
57

58
59
60
61
62
63
64

65
66
67
68
69

70

71
72
73
74
75
76
77
78
79
80
81

82
83

84

85

86
87
88

make implicit assumptions that are unlikely to hold (e.g., majority vote and unweighted averages
assume access to independent and equally reliable judges).

These difficulties motivate the need for a general and principled approach to LLM-as-a-judge
ensembles. We provide one through the lens of probabilistic graphical models—a classic framework
that can be used for modeling and aggregating viewpoints. Concretely, we recast multi-judge
evaluation as probabilistic inference in a higher-rank latent variable Markov Random Field (MRF).
This enables us to model and deal with key challenges in LLM-as-a-judge ensembles:

* No access to ground-truth scores: One latent variable in the MRF represents a ground-truth
quality for the generation being evaluated; we have no access to it and never observe it.

* Unknown spurious factors: Other latent MRF components model unknown and general distractors
or spurious correlations that are associated with—but not causal—to generation quality. These
might include generation length, verbosity, and other factors.

» Complex correlations: Judges may have correlations beyond their voting behavior, due to the use
of shared data for training or shared base models. These correlations are flexibly modeled by MRF
interactions between variables corresponding to judges.

Higher-rank latent variable MRFs provide a principled and general recipe to automated model-based
evaluation. The recipe is to learn the MRF (i.e., learn its parameters, including those for the latent
variables, from observed data—LLM votes) then compute a posterior estimate of the latent ground-
truth quality. However, learning such higher-rank latent MRFs is challenging. We must address 1)
how can we learn the model parameters despite never observing any latent variable, and 2): how can
we identify which latent corresponds to a ground-truth quality score (rather than spurious factors)?

We tackle this technical challenge with a two-pronged approach. First, to address 1), we introduce a
novel two-stage technique to learn higher-rank latent MRFs. It combines a sparse plus low-rank
decomposition that partially recovers the model with a second tensor decomposition step to fix
the remaining parameters. While each approach has been individually used to learn latent factor
models in more limited settings, our new combined approach is substantially more general. Second,
to handle 2), we introduce a variety of approaches that boost identifiability, enabling us to distinguish
between latent variables corresponding to ground-truth scores versus spurious factors or confounders.

In addition to our basic estimator, we develop an adaptive approach that augments an existing set
of judges with new, generated judges. The augmented evaluators we focus on in particular are
programmatic judges—programs that can perform evaluation that are themselves the output of LLMs.
We find that such programmatic judges enable (1) boosting the signal for evaluation and (2) facilitate
the expansion of the judge set, leading to improved accuracy and robustness.

Summary of Contributions.

1. We propose CARE, the first confounder-aware aggregation framework that explicitly models
shared latent confounders among LLM judges, unifying single-judge debiasing with principled
statistical fusion.

2. We prove identifiability and derive finite-sample error bounds, showing that our estimator can
reliably aggregate judge scores even when confounders are non-trivial.

3. We characterize the inherent model misspecification error incurred by methods ignoring con-
founders, demonstrating CARE’s advantage over independence-based competitors.

4. We demonstrate consistent gains on diverse public benchmarks, reducing aggregation error by up
to 25.15% and proving more performant and efficient than individual-judge intervention strategies.

5. We show that CARE robustly integrates programmatic judges and supports progressive expansion
of the evaluator pool, consistently outperforming baseline aggregation methods.

By explicitly modeling confounders during aggregation, our framework offers a principled alternative
to current heuristic pipelines and substantially enhances the reliability of LLM-as-a-judge.

2 Background and Overview

We start with brief background on automated evaluation and probabilistic graphical models.

LLM-as-a-judge. The goal of these techniques is to efficiently and cheaply evaluate model gener-
ations. Large language models can act as inexpensive, fast proxies for human raters by returning
(1) scalar quality scores (e.g., 1-10 Likert or percentile ranks) [12, 5} 4l], (ii) pairwise preferences

89
90
91
92
93
94

95
96
97
98
99
100
101
102
103
104
105

106

107
108
109
110

111

112
113
114
115
116
117
118

119
120
121
122

123
124
125
126

Gf

(a) Naive: only true-quality (b) Connection-aware (c) Confounder-aware (Ours)

Figure 1: Graphical models for aggregating judge scores under different structural assumptions.
(a) A naive model assumes scores reflect only a true latent quality () and that all judges are
equally reliable and represent independent views. (b) Connection-aware approach models intra-judge
interactions (Jo — J3 — Jy), but still assumes the presence of a single latent quality score. (¢) Our
Confounder-aware model introduces additional latent confounders (C) influencing judge scores.

that indicate which of two candidate answers is better—an output format popularized by RLHF
pipelines [14} [15]], and (iii) categorical labels such as error type, topic tag, or correctness flags
[16,[8]. As individual LLM judges are often biased, recent work [[17] deploys multiple LLM judges
and aggregates their opinions—via majority vote, average pooling, or other techniques—to boost
robustness and accuracy. Our framework builds on this line of work but seeks a more principled
approach to multi-judge aggregation that explicitly models shared confounders and correlated errors.

Graphical Models and Latent-Variable MRFs. Graphical models represent conditional indepen-
dence in multivariate distributions, with Markov Random Fields (MRFs) being particularly valuable
due to their effective structure learning and efficient inference capabilities, enabling the discovery
of meaningful dependency structures from data for probabilistic reasoning at scale. In our LLM-as-
a-judge setting, we employ MRFs to jointly model judge scores (.J), confounding factors (C'), and
latent quality variables, allowing us to capture intricate dependencies among LLM evaluations while
maintaining efficient inference and learnability. When key influences are unobserved, such as the true
quality signal, augmenting an MRF with latent nodes allows for the recovery of this hidden structure
or “ground-truth” variables from noisy observations. This latent-variable MRF perspective is crucial
in our context, offering a principled method to estimate the latent, true-quality signal from observable
judges’ scores while accounting for correlated judging errors.

3 CARE: Confounder-Aware Aggregation for Reliable Evaluation

We introduce CARE (Confounder-Aware Aggregation for Reliable Evaluation), our graphical model-
based aggregation framework that robustly estimates the true quality of LLM-as-a-judge assessments.
Our framework explicitly models the influence of a latent true-quality variable and additional latent
confounders on the observed scores provided by multiple judges.

3.1 Graphical Model Framework And Assumptions

For each prompt-response pair, we observe scores J = (Ji, ..., Jp)T from p judges. We assume
these observed scores depend on latent variables including one true quality variable () and one
or more confounders C = (C4,...,Cy), which we define as H = (Q, C). Our graphical model
encodes the conditional independence structure among the nodes in (J, @, C): if there is no edge
between a pair of nodes, they are independent conditioned on the other nodes. An example is shown
on the right in Fig.[T] We assume this structure is sparse; i.e., there are not too many edges in the
graph, and make this precise later on.

This framework is quite general and is compatible with a variety of distributions. For example, we
may take J, Q, C to involve discrete variables, Gaussians, or mixed models. We can take the model
to be an MREF or alternatively a mixture model. Our approaches are compatible with a broad range of
choices, with practitioners able to select the most suitable modeling assumptions for their settings.

Goals and Assumptions. Under the chosen modeling assumptions, our goal is to learn the distribution
over J,), C. This involves handling three challenges. First, C1: we never observe the latents in
H—neither ground truth nor confounders. Second, C2: we cannot assume any particular interaction
in the graph. Third, C3: even if we recover the model parameters, we must be able to distinguish

127
128
129
130

131
132
133

134

135
136
137
138
139
140
141

142
143
144

145
146
147
148
149

151
152
153

154

Algorithm 1 CARE: Confounder-Aware Aggregation for Reliable Evaluation

Input: Score matrix J € R™*P, parameters (-, 7), decomposition method D € {SVD, Tensor}
Output: Estimated True Quality {¢(9}7_,

1: Graph Sparse Structure Estimation: Compute appropriate observed matrix f(J).

2: Sparse + low-rank decomposition:

(5, L) arg min sIlF () =8 = LIE + (ISl + 7l LI

Latent Factor Extraction:

if D = SVD then > Fully Gaussian scenario
Compute UAU T «+ SVD(L), where U € RP*"

else if D = Tensor then > Binary-Gaussian mixture scenario
Partition judges into independent groups using S
Form empirical third-order tensor from judge groups

9: Run tensor decomposition, obtain latent conditional means 4. and mixture proportions 7y
10: end if

11: Symmetry Breaking: Identify the true-quality factor using heuristics described in

A A

12: Latent Quality Estimation: Use the identified quality factor, compute ¢(*) for each example,
where () = P(Q = 1 J;) for mixture model or ¢ = E[Q | J] for fully gaussian

between () and the confounders C to identify the model. The latter is required to discover which
latent is the ground-truth quality—and which is a confounder. Once these obstacles are overcome,
we seek to perform aggregation, e.g., compute a posterior P(Q|J), the Bayesian estimate for the
latent true quality conditioned on all observable judge scores.

In the following, we will work under the assumption that the judge scores J conditioned on the latents
form a multivariate Gaussian distribution, i.e., J | H ~ N (m,X), where ppy is the conditional
mean of observable variables. We defer other scenarios to the Appendix.

3.2 CARE Algorithm

The idea behind CARE is to examine two techniques, each of which is stymied by one of the
obstacles C2 or C3 and to delicately combine them in a novel way. First, the sparsity of the
conditional independence graph is encoded into an two-dimensional object that can be empirically
estimated (e.g., the observable covariance matrix, or a cross-moment matrix). However, the presence
of the latent variables (C1) obscures this structure—but a sparse + low-rank decomposition can
reveal it [[18]. However, while we can decompose the resulting low-rank term via SVD in the hope of
identifying the model, we can only do so up to rotations. Therefore we are blocked by C3.

Conversely, tensor product decompositions [[19] exploit tensor rigidity to enable this decomposition
to be uniquely identified. However, for these techniques the judges must be independent conditioned
on the latents—and we cannot assume this by C2.

CARE (Algorithm [I)) combines these approaches. First, it estimates the underlying graph structure
from the observed judge scores via the sparse + low-rank decomposition, overcoming C1 and C2. It
then uses recovered sparse term to estimate the graph and discover subsets of judges with sufficient
conditional independence. These sets are then used to construct a tensor that can be decomposed via
standard approaches (e.g., tensor power method) to recover the model, mitigating C3.

This procedure is then followed by a symmetry-breaking step. This requires a weak assumption on
the quality of the judges; in practice, even this assumption can be removed by employing simple
heuristics to identify the true-quality factor among the latent factors. Finally, we aggregate judge
scores into robust evaluations by weighting according to loadings from the identified quality factor.

We study two special cases to build our intuition; more general settings are shown in the Appendix.

155
156

157

158
159

160

161
162

163
164

165
166

167
168
169
170

171
172
173
174
175
176
177

178

179
180
181
182
183
184

185
186
187
188
189
190
191
192

193
194
195
196
197
198

CARE For Gaussian Mixtures. We have binary latents (Q,C) with Pr(Q = ¢, C = ¢) = 7y,
where the judges follow a Gaussian conditional distribution with mean ji4. € R? and covariance X:

J ’ (Q=q,C=c) ~ Nge, ¥), (q,¢) € {0,1}2.

Here, performing the sparse + low-rank decomposition and obtaining L is insufficient: the eigen-

decomposition of L does not directly yield identifiable latent-judge connections. We rely on third-
order tensor statistics to identify conditional distributions explicitly:

E(X1 90X, @ X3]Q,0)=E(X1|Q,C)®E(X2 | Q,C)9E(X5 | Q,C),

where judges are partitioned into independent groups X1, X2, X3 using the learned sparse structure
S. Performing a tensor decomposition yields the conditional means /14, and mixture proportions 7.
Then, applying Bayes’ rule allows estimation of latent variables given observed scores:

P(Q = 1]|J) « mop10 + T11/411- (1)

CARE for Fully Gaussian Models. Under the fully Gaussian assumption, latent variables H are
continuous, and the inverse covariance matrix (the precision matrix) encodes independence:

K;; Kim

_ T -1 _ —
Y =Cov[(JH)'], % _K_<KHJ Kun

) ., S=Kjy;, L=KuKyyKn,.

If assuming connections K jz between latent variables and judges are orthogonal and no direct
connections among latent variables (i.e. Ky is diagonal), the low-rank matrix L admits eigen-

decomposition L = UAUT, where eigenvectors in U directly correspond to latent-judge edges
(K j), and eigenvalues correspond to K. Each eigenvector represents how one latent variable
influences observable judges. With these edges recovered, the conditional mean of true quality () can
be estimated by E(Q | J) = K, écl?K @JJ, a weighted linear combination of observed scores.

The fully Gaussian model prevents decomposing the low-rank term uniquely (due to rotational
invariance). This holds regardless of whether we apply SVD or a tensor decomposition, leading to
the special handling in Algorithm [I] As a result, in this case, orthogonal and independent latent
assumptions are needed for identifying the latent-judge connection. This works the best when each
judge is connected to exactly one latent variable. If a judge depends on both the confounder C' and
the true quality) with comparable weights, the recovered columns {/i,.} are only identifiable up to
an arbitrary rotation, causing estimation errors.

3.3 Heuristics for Identifiability and Robust Estimation

Any instantiation of CARE will require symmetry-breaking procedures for latent variable identifia-
bility. For example, the fully Gaussian case needs a heuristic to identify the true-quality direction
among latent factors, distinguishing @) from confounders C' In the binary-Gaussian mixture scenario,
an additional step resolves ambiguity between latent states () = 0 vs. Q = 1). Doing so will require
additional information that can come from modeling assumptions, the use of ground-truth samples,
or heuristics. We detail some examples below:

Identifying True-Quality Factor for Joint-Gaussian Model. We introduce heuristics particularly
aimed at distinguishing the true-quality latent variable from confounding latent variables. First, the
human-anchor criterion leverages a small validation set containing human ratings. By including
these human judgments in the graphical model, we anchor the latent quality variable to ground truth
by selecting the latent factor exhibiting the strongest connection to the human evaluations. Second,
we apply a loading balance heuristic, identifying the true-quality factor as one that loads broadly and
with similar magnitude across all competent judges. Conversely, factors dominated by a few judges
typically indicate shared confounding rather than true quality.

Identifying Latent States for Mixed Model. In scenarios such as the tensor-based method, symmetry
breaking additionally involves distinguishing latent states corresponding to different quality levels
(e.g., @ = 0 versus Q = 1). In practice, we can use known labeled samples (such as high-
quality examples) to anchor and identify latent-state configurations. By comparing different latent
configurations with these known labeled samples, we select the latent-state assignment that best
aligns with empirical observations, effectively removing latent state ambiguity.

199

200

201
202
203
204

205
206
207

208
209
210

211

212
213

214
215

216
217

218
219
220

221
222

223
224
225

226
227

228
229
230
231

232
233
234

235
236
237
238

239

240
241
242

243
244
245

4 Theoretical Analysis

We provide the following theoretical guarantees for our Algorithm [T}

Identifiability of the Latent Structure. To ensure identifiability of the latent structure, we introduce
assumptions on latent independence and orthogonality of latent-observable connections. Under
these assumptions, we prove exact recovery of the latent directions, as well as stability under mild
perturbations from orthogonality (see Appendix [D.2).

Sample Complexity Bound. We derive sample complexity bounds for consistent estimation of latent-
observable connections, demonstrating how estimation accuracy depends on factors like eigengaps
and manifold curvature (Appendix [D.3).

Model Misspecification Error. We analyze errors arising from model misspecification—specifically,
the bias introduced when confounding latent factors are omitted—and provide explicit bounds on the
resulting errors in estimated conditional means (Appendix [D.4).

S Experimental Results

We evaluate the effectiveness of CARE across diverse experimental setups, encompassing synthetic,
semi-synthetic, and real-world scenarios. Our goal is to validate the following key claims:

» Improving aggregation of LLM judge: CARE produces more accurate and robust aggregate
scores from multiple LLM judges compared to existing methods. (Section[5.1)

* Effective Integration of Program Judges: CARE integrates programmatic judges, known to have
high bias, by explicitly modeling their biases [20] (Section[5.2).

* Evolving Jury via Progressive Program Judge Expansion: CARE effectively incorporates an
expanding pool of judges, demonstrating consistent improvements in aggregation performance as
judges are progressively added (Section[5.3)).

* Greater Robustness than Individual Intervention: CARE is competitive against interventions at
the individual judge level, which typically require extensive manual tuning (Section[5.4).

* Demonstrating Robustness under Controlled Confounding Factors: CARE remains accurate
when evaluations are deliberately affected by controlled biases, as demonstrated by the semi-
synthetic data from [8]] (Section[5.5).

* Validating Theoretical Results in a Fully Controlled Setting: We empirically validate our
theoretical results through synthetic experiments (Section[5.6)).

Datasets & Metrics. We use FeedbackQA [21]], UltraFeedback [22], and HelpSteer2 [23] datasets for
response scoring. Performance is benchmarked using Mean Absolute Error (MAE) to measure numer-
ical accuracy and Kendall’s 7 rank correlation [[24] to evaluate ranking consistency, accommodating
variations in judge scales and calibration.

Baselines. We compare CARE to following baseline aggregation methods: (i) majority voting
(MV), (ii) simple averaging (AVG) [[13]], (iii) discrete-based weak supervision (WS) [25], and (iv)
continuous-based weak supervision (UWS) [26].

LLM Judges. We consider the following LLMs as judges to score responses: Llama-3.2-1B
[27], Llama-3.1-8B-Instruct [27], Mistral-7B-Instruct-v0.3 [28], Qwen3-0.6B
[29], Qwen3-1.7B [29], Qwen3-4B [29], Qwen3-8B [29], Phi-4-mini-instruct [301],
gemma-3-1b-it [31ll, gemma-3-4b-it [31].

5.1 Improving Aggregation of LLM judges

Setup. We compare aggregation methods using the 10 LLM judges listed above. To ensure consis-
tency, we adapt the prompt template from [32]], modifying it to fit our experimental setup. The exact
used prompt is provided in Appendix

Results. We present aggregation performance in Table[l| The CARE approach consistently outper-
forms baseline methods. Specifically, CARE achieves the lowest MAE on FeedbackQA (0.7866) and
UltraFeedback (0.6379), outperforming the majority vote (MV) baseline by 10.74% and 25.15%,

246
247

248

249
250
251
252
253
254

255
256
257
258
259

261
262
263
264
265

266

267
268
269
270
271
272

273
274
275

Table 1: Aggregation performance across different datasets, measured by MAE and Kendall’s 7
CARE outperforms baseline methods in most cases.

| FeedbackQA | HelpSteer2 | UltraFeedback
IMAE() | 7(D) | MAE() | 7(D) | MAE{) | 7()
MV 0.8812 | 0.3703 0.9951 0.1629 | 0.8522 | 0.2985
AVG 0.8492 | 0.4497 0.9822 | 0.1611 0.6860 | 0.3621
WS 0.8144 | 0.4401 1.3030 | 0.1511 1.1603 0.3306
UWS 0.9051 0.4580 | 0.9849 | 0.1697 0.6794 | 0.3669
CARE | 0.7866 | 0.4542 | 0.9742 | 0.1805 | 0.6379 | 0.3806

Table 2: Performance on different datasets using both LLM and program judges. Program judges are
beneficial in FeedbackQA but may introduce noise in HelpSteer2 and UltraFeedback. In both cases,
CARE consistently outperforms other baselines.

FeedbackQA HelpSteer2 \ UltraFeedback
IMAE() | 7() | MAE{) | 7() | MAE{) | 7(D
MV 0.8607 | 0.3815 | 1.0244 | 0.1465 | 0.8751 | 0.3179
AVG 0.8128 | 0.4671 1.1012 | 0.1268 | 1.0371 | 0.3733
UWS 0.8179 | 0.4816 | 0.9992 | 0.1040 | 0.9534 | 0.3047
CARE | 0.7582 | 0.4796 | 0.9800 | 0.1398 | 0.7351 | 0.3520

respectively. These gains highlight CARE’s ability to model correlations among LLM judges and
mitigate compounding biases.

5.2 Effective Integration of Program Judges

Setup. We integrate our LLM-based evaluators with ten program judges, each encoding their
evaluation logic in program code and synthesized by OpenAI’s GPT-40 [33]. These judges are
designed to assess response quality through specific, individual criteria, such as structure, readability,
safety, relevance, and factuality. While cost-effective to construct them, their deterministic nature
may introduce systematic biases, potentially leading to noisy signals. Details of program judge
generation process are provided in Appendix [E]

Results. Table 2] presents the integration results. Adding

program judges enhance performance on FeedbackQA, 090 - L"\‘/’G
where CARE achieves the lowest MAE (0.7582) and high- 0.85 e WS
est 7 (0.4796), outperforming the MV baseline’s MAE —e— uws
by 11.92%. However, performance declines on Help- w080 _._0_‘\._‘: SARE
Steer2 and UltraFeedback, where CARE records MAEs =

of 0.9800 and 0.7351, respectively, still outperforming MV 075

by 4.33% and 15.99% . Despite these variations, CARE 0.70

consistently exceeds baselines on MAE across all datasets,
demonstrating its effectiveness when encountering noisier
signals for aggregation.

0 2 4 6 8
Number of added program judges

Figure 2: Progressive judge selection
on the FeedbackQA dataset. CARE ro-
bustly integrates new judges and consis-
tently outperforms baseline aggregation
methods.

5.3 Progressive Judge Expansion

Setup. Next, we start with a fixed set of LLM judges and
progressively add program judges from a pool of 23. At
each step, we greedily select the program judge that yields
the largest improvement in the validation of MAE. The process stops when no further reduction
in validation MAE is observed. We evaluate aggregation methods as in previous sections, using
FeedbackQA, where program judges were most beneficial.

Results. Figure 2[shows the experimental result. CARE achieves consistently lower error as more
program judges are added, highlighting its ability to adaptively improve with additional supervision.
This points to a promising direction for developing dynamic, expandable judge ensembles.

276

277
278
279
280

281
282
283
284

285

286
287
288
289

291

292
293

294
295
296
297

299

300
301
302

303
304
305
306
307

Table 3: Comparison with aggregation methods using individually intervened LLM judges. While
other baselines aggregate scores from debiased LLM judges, CARE operates directly on raw outputs.

| FeedbackQA | HelpSteer2 | UltraFeedback

IMAE() | 7() |MAE() | 7() MAE() (1)

MV 0.8004 | 0.9640 | 0.9951 | 0.1629 0.8562 0.2799
AVG 0.8029 | 0.4412 | 09822 | 0.1611 0.6801 0.3704
WS 0.7674 | 0.4429 | 1.3030 | 0.1511 1.1516 0.3588
UWS 0.8117 | 0.4390 | 0.9849 | 0.1697 0.6683 0.3782
CARE | 0.7866 | 0.4542 | 0.9742 | 0.1805 0.6379 0.3806

Table 4: Robustness to artificially injected bias. CARE is particularly effective against stylistic biases
such as beauty (rich content) and authority, but less effective for gender and fallacy biases, which
may impact the actual quality of system answers.

| Beauty Bias | Fallacy Oversight Bias | Gender Bias | Authority Bias
IMAEQD | 7() |[MAEQ) | 7D |MAEQ) | 7(1) |MAEQ) | 71
MV 0.9190 | 0.3336 1.8971 -0.0284 1.7428 | 0.1272 | 0.8239 | 0.2977

AVG 0.5063 | 0.3943 | 1.4007 0.1181 1.1355 | 0.2879 | 0.3250 | 0.4288

WS 1.9225 | 0.3792 | 2.5588 0.0680 2.0217 | 0.2474 | 0.9296 | 0.4886
UWS 0.5080 | 0.4383 | 1.3826 0.0491 1.1646 | 0.2576 | 0.2705 | 0.5799
CARE | 0.3749 | 0.5334 | 1.8996 0.0116 1.5985 | 0.2311 | 0.2466 | 0.6327

5.4 Comparison with Individual Intervention

Setup. An alternative to our confounder-aware approach is direct interventions at the individual
judge level. Specifically, we compare CARE to prompt-based interventions proposed by [34], which
instruct LLM judges to account for known sources of bias. The intervened prompt used for this
comparison is included in Appendix [E]

Results. Table 3] presents the results. While bias-aware prompting improves performance in most
cases, CARE remains the top performer in the majority of settings, and even when not, it is com-
petitive with the best. This suggests that CARE can effectively mitigate biases without relying on
careful prompt engineering.

5.5 Robustness to Confounding Factors

Setup. We evaluate robustness using the dataset from [8], in which LLM responses are system-
atically altered to introduce specific biases via targeted GPT-4 prompts. The dataset includes
four types of injected bias: beauty, fallacy oversight, gender, and authority. LLM judges are
prompted to assign scores from 1 to 10 for each response. Robustness is assessed by com-
paring aggregated scores before and after bias injection, using mean absolute error (MAE) and
Kendall’s 7. Lower MAE and higher Kendall’s 7 indicate better robustness under perturbation.

Results. Table [4] shows that CARE exhibits strong ro-

bustness to stylistic biases—such as beauty and author- , , |
ity—maintaining consistent rankings and score levels. In 8
contrast, its robustness diminishes when facing biases that 2 31
alter the factual or semantic content, including logical % 51
fallacies and gender-related framing. ¢
g
5.6 Synthetic Experiments “ o

0 1000 2000 3000 4000 5000

We evaluate the performance of CARE-Tensor using sim- number of samples

ulated binary-Gaussian mixture data. Dataset details de-

ferred to Appendix. Figure 3: Averaged cross-entropy loss

of our algorithm versus the number of
Sample Complexity Result. We investigate how the sam- samples. Markers denote average over
ple size n influences estimation accuracy. We estimate three random seeds, and the shaded band
conditional means fi,. and latent state proportions 7. us- denotes one standard deviation.

ing Algorithm[2] Subsequently, we compute the posterior

probabilities P(QQ = 1 | J) via the Bayesian formula-

308
309
310

311
312
313
314

315
316
317
318

319

320
321

322

324
325
326
327
328

329
330
331
332
333

335
336
337

338
339
340
341
342

343

344

346
347
348
349
350

351
352
353

355
356

tion in Eq. [l We measure the performance using cross-entropy loss. Lower entropy loss yields
more accurate prediction. We observe a clear decreasing trend in cross-entropy loss as sample size
increases.

Tensor Decomposition vs SVD. We illustrate the advantage of tensor decomposition over classical
eigen-decomposition (SVD) in addressing rotation ambiguity with higher-order moments. We
quantify performance using mean squared error (MSE) between true conditional means fiq. and
estimated means ji4.. Detailed methodologies for SVD estimation are deferred to the appendix.

Evaluating across 10 random seeds, we find substantial performance differences: CARE-Tensor
achieves significantly lower estimation errors with MSE (0.51 4 0.41) compared to the eigen-
decomposition baseline (SVD) with MSE (1.18£0.74). This shows tensor decomposition accurately
recovers conditional means without affected by rotation ambiguity.

6 Related Work

We discuss related work in bias in LLM-as-a-judge, label aggregation, and highlight our contribution.
An extended discussion on related work can be found in Appendix

Bias in LLM-as-a-judge. Large language models (LLMs) used as automated evaluators exhibit
systematic preferences such as positional, verbosity, authority, and self-enhancement biases [3} [12].
To mitigate these issues, prior work has explored prompt-based interventions [4} 35} 3] and fine-tuned
evaluators such as JudgeLM and PandalLM, which aims to align model judgments more closely with
human preferences [12] (S, 36]. While effective locally, these techniques debias each single LLM
judge and do not address the downstream problem of aggregating multiple, potentially correlated,
LLM scores.

Label Aggregation. Classic aggregation models such as Dawid—Skene [37]], GLAD [38]], and
MACE [39] infer latent truth by modeling annotator-specific error rates. Weak-supervision frame-
works generalize this idea to programmatic sources [25, 40, 26]. Recently, [2] introduce GED, a
framework that ensembles and denoises preference graphs from multiple weak LLLM evaluators
to produce consistent and reliable model rankings. [41] analyzed various inference methods for
decoding LLM-as-a-judge by looking at the judge probability distributions and computing statistics
such as mean and mode (i.e greedy decoding) and studied how pre- vs post-aggregation of judge
outputs affect the judge scores. However, existing methods do not account for shared confounding
Jactors that systematically influence annotators or LLMs alike.

Our Contribution. We propose the first confounder-aware aggregation method for the LLM-as-a-
judge setting. Unlike prior work that assumes independent annotator noise around a latent true score,
our approach explicitly models shared latent confounders—such as verbosity or formality—that may
jointly affect all judges. This bridges the gap between single-judge bias mitigation and statistical
aggregation, enabling more reliable consensus scores in the presence of correlated judgment errors.

7 Conclusion

We introduce CARE, a confounder-aware aggregation framework that formulates multi-judge scoring
as inference in a higher-rank latent-variable model and delivers three main contributions. (i) It
explicitly models shared confounders, providing an aggregation scheme tailored to LLM-judge
scenarios. (ii) It offers statistically principled estimators—sparse-plus-low-rank covariance recovery
and tensor method—with provable identifiability. (iii) On three public benchmarks, CARE lowers
MAE and raises Kendall’s 7 by up to 15%. Taken together, these advances enable principled, scalable,
and low-cost evaluation pipelines for LLMs.

Limitations. Our theory assumes sufficient sparsity and approximate factor orthogonality; strong
collinearity among latent variables, or latent components exhibiting similar spectral strengths may
still hinder identifiability. In addition, selecting the “quality” factor currently relies on a simple
loading-balance heuristic that can be unstable when confounders dominate, and our experiments are
confined to English, text-only, scalar ratings—generalization to multilingual or multimodal settings
remains future work.

357

358
359
360

362
363
364

365

367
368

369
370
371

372
373
374
375

376
377
378
379

380
381
382

383

385
386

387
388
389

390
391
392
393
394
395

396
397
398
399

401

402

403
404

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging LLM-as-a-judge with MT-bench and chatbot arena. In Thirty-seventh Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2023.

Zhengyu Hu, Jieyu Zhang, Zhihan Xiong, Alexander Ratner, Hui Xiong, and Ranjay Kr-
ishna. Language model preference evaluation with multiple weak evaluators. arXiv preprint
arXiv:2410.12869, 2024.

Jiayi Ye, Yanbo Wang, Yue Huang, Dongping Chen, Qihui Zhang, Nuno Moniz, Tian Gao,
Werner Geyer, Chao Huang, Pin-Yu Chen, Nitesh V Chawla, and Xiangliang Zhang. Justice or
prejudice? quantifying biase in LLM-as-a-judge. In The Thirteenth International Conference
on Learning Representations, 2025.

Lin Shi, Chiyu Ma, Wenhua Liang, Weicheng Ma, and Soroush Vosoughi. Judging the judges:
A systematic investigation of position bias in pairwise comparative assessments by llms. arXiv
preprint arXiv:2406.07791, 2024.

Yidong Wang, Zhuohao Yu, Wenjin Yao, Zhengran Zeng, Linyi Yang, Cunxiang Wang, Hao
Chen, Chaoya Jiang, Rui Xie, Jindong Wang, et al. Pandalm: An automatic evaluation
benchmark for 1lm instruction tuning optimization. In The Twelfth International Conference on
Learning Representations.

Daniel Deutsch, Rotem Dror, and Dan Roth. On the limitations of reference-free evaluations
of generated text. In Proceedings of the 2022 Conference on Empirical Methods in Natural
Language Processing, pages 10960—10977, Abu Dhabi, United Arab Emirates, December 2022.
Association for Computational Linguistics.

Dawei Li, Renliang Sun, Yue Huang, Ming Zhong, Bohan Jiang, Jiawei Han, Xiangliang Zhang,
Wei Wang, and Huan Liu. Preference leakage: A contamination problem in llm-as-a-judge.
2025.

Guiming Hardy Chen, Shunian Chen, Ziche Liu, Feng Jiang, and Benyou Wang. Humans or
LLM:s as the judge? a study on judgement bias. In Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing, pages 8301-8327, Miami, Florida, USA,
November 2024. Association for Computational Linguistics.

Haitao Li, Junjie Chen, Qingyao Ai, Zhumin Chu, Yujia Zhou, Qian Dong, and Yiqun Liu.
Calibraeval: Calibrating prediction distribution to mitigate selection bias in 1lms-as-judges.
arXiv preprint arXiv:2410.15393, 2024.

Shaz Furniturewala, Surgan Jandial, Abhinav Java, Pragyan Banerjee, Simra Shahid, Sumit
Bhatia, and Kokil Jaidka. “thinking” fair and slow: On the efficacy of structured prompts
for debiasing language models. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen,
editors, Proceedings of the 2024 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 213-227, Miami, Florida, USA, November 2024. Association for Computational
Linguistics.

Yue Guo, Yi Yang, and Ahmed Abbasi. Auto-debias: Debiasing masked language models with
automated biased prompts. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 1012—1023, Dublin, Ireland, May
2022. Association for Computational Linguistics.

Lianghui Zhu, Xinggang Wang, and Xinlong Wang. Judgelm: Fine-tuned large language models
are scalable judges. In The Thirteenth International Conference on Learning Representations.

Haitao Li, Qian Dong, Junjie Chen, Huixue Su, Yujia Zhou, Qingyao Ai, Ziyi Ye, and Yiqun

Liu. Llms-as-judges: a comprehensive survey on llm-based evaluation methods. arXiv preprint
arXiv:2412.05579, 2024.

10

405
406
407
408

409
410
411
412

413
414
415

416
417
418
419

420
421

422
423
424

425
426
427

428
429

431

432
433
434

436
437

439
440
441
442

443
444
445

446
447
448

449
450
451
452

453

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]

[26]

[27]

[28]

[29]

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to
follow instructions with human feedback. Advances in neural information processing systems,
35:27730-27744, 2022.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
assistant with reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862,
2022.

Fabrizio Gilardi, Meysam Alizadeh, and Ma¢l Kubli. Chatgpt outperforms crowd workers for
text-annotation tasks. Proceedings of the National Academy of Sciences, 120(30):¢2305016120,
2023.

Pat Verga, Sebastian Hofstatter, Sophia Althammer, Yixuan Su, Aleksandra Piktus, Arkady
Arkhangorodsky, Minjie Xu, Naomi White, and Patrick Lewis. Replacing judges with juries:
Evaluating llm generations with a panel of diverse models. arXiv preprint arXiv:2404.18796,
2024.

Venkat Chandrasekaran, Pablo A. Parrilo, and Alan S. Willsky. Latent variable graphical model
selection via convex optimization. The Annals of Statistics, 40(4), August 2012.

Animashree Anandkumar, Rong Ge, Daniel J Hsu, Sham M Kakade, Matus Telgarsky, et al.
Tensor decompositions for learning latent variable models. J. Mach. Learn. Res., 15(1):2773—
2832, 2014.

Tzu-Heng Huang, Catherine Cao, Vaishnavi Bhargava, and Frederic Sala. The alchemist:
Automated labeling 500x cheaper than 1lm data annotators. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems.

Zichao Li, Prakhar Sharma, Xing Han Lu, Jackie Chi Kit Cheung, and Siva Reddy. Using
interactive feedback to improve the accuracy and explainability of question answering systems
post-deployment. In Findings of the Association for Computational Linguistics: ACL 2022,
pages 926-937, 2022.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan
Liu, and Maosong Sun. Ultrafeedback: Boosting language models with high-quality feedback.
2023.

Zhilin Wang, Yi Dong, Olivier Delalleau, Jiaqi Zeng, Gerald Shen, Daniel Egert, Jimmy J
Zhang, Makesh Narsimhan Sreedhar, and Oleksii Kuchaiev. Helpsteer2: Open-source dataset
for training top-performing reward models. arXiv preprint arXiv:2406.08673, 2024.

Maurice Kendall. A new measure of rank correlation. Biometrika, pages 81-89, 1938.

Stephen H Bach, Daniel Rodriguez, Yintao Liu, Chong Luo, Haidong Shao, Cassandra Xia,
Souvik Sen, Alex Ratner, Braden Hancock, Houman Alborzi, et al. Snorkel drybell: A case
study in deploying weak supervision at industrial scale. In Proceedings of the 2019 International
Conference on Management of Data, pages 362-375, 2019.

Changho Shin, Winfred Li, Harit Vishwakarma, Nicholas Carl Roberts, and Frederic Sala.
Universalizing weak supervision. In International Conference on Learning Representations
(ICLR), 2022.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian,
Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama
3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut
Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023.

Qwen Team. Qwen3, April 2025.

11

454
455
456
457

458
459
460

461
462

463
464
465

466
467
468

469
470
471

472
473
474
475

476
477

478

479

481
482

484

494

500

[30] Abdelrahman Abouelenin, Atabak Ashfaq, Adam Atkinson, Hany Awadalla, Nguyen Bach,
Jianmin Bao, Alon Benhaim, Martin Cai, Vishrav Chaudhary, Congcong Chen, et al. Phi-4-mini
technical report: Compact yet powerful multimodal language models via mixture-of-loras.
arXiv preprint arXiv:2503.01743, 2025.

[31] Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona
Merhej, Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Riviere, et al. Gemma
3 technical report. arXiv preprint arXiv:2503.19786, 2025.

[32] Aymeric Roucher. Using LLM-as-a-judge for an automated and versatile evaluation. https !
//huggingface.co/learn/cookbook/en/11m_judge, n.d. Accessed: 2025-05-15.

[33] Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark,
Al Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv
preprint arXiv:2410.21276, 2024.

[34] Jiayi Ye, Yanbo Wang, Yue Huang, Dongping Chen, Qihui Zhang, Nuno Moniz, Tian Gao,
Werner Geyer, Chao Huang, Pin-Yu Chen, et al. Justice or prejudice? quantifying biases in
Ilm-as-a-judge. In Neurips Safe Generative AI Workshop 2024.

[35] Tong Jiao, Jian Zhang, Kui Xu, Rui Li, Xi Du, Shangqi Wang, and Zhenbo Song. Enhancing fair-
ness in 1lm evaluations: Unveiling and mitigating biases in standard-answer-based evaluations.
In Proceedings of the AAAI Symposium Series, volume 4, pages 56-59, 2024.

[36] Zongjie Li, Chaozheng Wang, Pingchuan Ma, Daoyuan Wu, Shuai Wang, Cuiyun Gao, and Yang
Liu. Split and merge: Aligning position biases in LLM-based evaluators. In Proceedings of the
2024 Conference on Empirical Methods in Natural Language Processing, pages 11084-11108,
Miami, Florida, USA, November 2024. Association for Computational Linguistics.

[37] Alexander Philip Dawid and Allan M Skene. Maximum likelihood estimation of observer
error-rates using the em algorithm. Applied statistics, pages 20-28, 1979.

[38] Jacob Whitehill, Ting-fan Wu, Jacob Bergsma, Javier R. Movellan, and Paul Ruvolo. Whose
vote should count more? optimal integration of labels from labelers of unknown expertise. In
Advances in Neural Information Processing Systems, volume 22, pages 2035-2043, 2009.

[39] Dirk Hovy, Taylor Berg-Kirkpatrick, Ashish Vaswani, and Eduard Hovy. Learning whom to
trust with MACE. In Proceedings of NAACL-HLT, pages 1120-1130, 2013.

[40] Daniel Y. Fu, Mayee F. Chen, Frederic Sala, Sarah M. Hooper, Kayvon Fatahalian, and Christo-
pher Ré. Fast and three-rious: Speeding up weak supervision with triplet methods. In Proceed-
ings of the 37th International Conference on Machine Learning (ICML 2020), 2020.

[41] Victor Wang, Michael JQ Zhang, and Eunsol Choi. Improving llm-as-a-judge inference with
the judgment distribution. arXiv preprint arXiv:2503.03064, 2025.

[42] Tom Kocmi and Christian Federmann. Large language models are state-of-the-art evaluators of
translation quality. In Proceedings of the 24th Annual Conference of the European Association
for Machine Translation (EAMT), pages 193-203, 2023.

[43] Chenhui Shen, Liying Cheng, Xuan-Phi Nguyen, Yang You, and Lidong Bing. Large language
models are not yet human-level evaluators for abstractive summarization. In Findings of the
Association for Computational Linguistics: EMNLP 2023, pages 42154233, 2023.

[44] Cheng-Han Chiang and Hung yi Lee. Can large language models be an alternative to human
evaluations? In Proceedings of the 61st Annual Meeting of the Association for Computational
Linguistics (ACL), pages 15607-15631, 2023.

[45] Peiyi Wang, Lei Li, Liang Chen, Zefan Cai, Dawei Zhu, Binghuai Lin, Yunbo Cao, Lingpeng
Kong, Qi Liu, Tianyu Liu, and Zhifang Sui. Large language models are not fair evaluators.
In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(ACL), pages 9440-9450, 2024.

12

https://huggingface.co/learn/cookbook/en/llm_judge
https://huggingface.co/learn/cookbook/en/llm_judge
https://huggingface.co/learn/cookbook/en/llm_judge

501
502
503

504
505
506

507
508
509

510
511

512
513

514
515
516

517

519
520

521
522

523
524
525

527
528

529
530
531

532
533
534

535
536
537

[46] Zhiyuan Zeng, Jiatong Yu, Tianyu Gao, Yu Meng, Tanya Goyal, and Dangi Chen. Evaluat-
ing large language models at evaluating instruction following. In Proceedings of the 12th
International Conference on Learning Representations (ICLR), 2024.

[47] Junsoo Park, Seungyeon Jwa, Meiying Ren, Daeyoung Kim, and Sanghyuk Choi. OffsetBias:
Leveraging debiased data for tuning evaluators. In Findings of the Association for Computational
Linguistics: EMNLP 2024, pages 1043-1067, 2024.

[48] Akbir Khan, John Hughes, Dan Valentine, Laura Ruis, Kshitij Sachan, Ansh Radhakrishnan,
Edward Grefenstette, Samuel R. Bowman, Tim Rockt"aschel, and Ethan Perez. Debating with
more persuasive LLMs leads to more truthful answers. arXiv preprint arXiv:2402.06782, 2024.

[49] Lianghui Zhu, Xinggang Wang, and Xinlong Wang. JudgeLLM: Fine-tuned large language
models are scalable judges. arXiv preprint arXiv:2310.17631, 2023.

[50] Ruosen Li, Teerth Patel, and Xinya Du. PRD: Peer rank and discussion improve large language
model based evaluations. Transactions on Machine Learning Research, 2024.

[51] Alexander Ratner, Christopher De Sa, Sen Wu, Daniel Selsam, and Christopher Ré. Snorkel:
Rapid training data creation with weak supervision. In Proceedings of the VLDB Endowment,
volume 11, pages 269-282, 2017.

[52] Stephen H Bach, Daniel Rodriguez, Yintao Liu, Chong Luo, Haidong Shao, Cassandra Xia,
Souvik Sen, Alex Ratner, Braden Hancock, Houman Alborzi, et al. Snorkel drybell: A case
study in deploying weak supervision at industrial scale. In Proceedings of the 2019 International
Conference on Management of Data, pages 362-375, 2019.

[53] Sebastian Riihling Cachay, Benjamin Boecking, and Artur Dubrawski. End-to-end weak
supervision. In Advances in Neural Information Processing Systems, 2021.

[54] Zheng Kuang, Chidubem Arachie, Brian Liang, Pratyush Narayana, Grace DeSalvo, Michael
Quinn, Bo Huang, Gabriel Downs, and Yiming Yang. Firebolt: Weak supervision under weaker
assumptions. In Proceedings of the 25th International Conference on Artificial Intelligence and
Statistics, 2022.

[55] Changho Shin, Sonia Cromp, Dyah Adila, and Frederic Sala. Mitigating source bias for fairer
weak supervision. In Advances in Neural Information Processing Systems (NeurlPS), 2023.

[56] Pat Verga, Sebastian Hofstitter, Sophia Althammer, Yixuan Su, Aleksandra Piktus, et al.
Replacing judges with juries: Evaluating llm generations with a panel of diverse models. arXiv
preprint arXiv:2404.18796, 2024.

[57] Zhengyu Hu, Jieyu Zhang, Zhihan Xiong, Alexander Ratner, Hui Xiong, and Ranjay Kr-
ishna. Language model preference evaluation with multiple weak evaluators. arXiv preprint
arXiv:2410.12869, 2024.

[58] Hossein A. Rahmani, Emine Yilmaz, Nick Craswell, and Bhaskar Mitra. Judgeblender: En-
sembling judgments for automatic relevance assessment. arXiv preprint arXiv:2412.13268,
2024.

[59] Yi Yu, Tengyao Wang, and Richard J Samworth. A useful variant of the davis—kahan theorem
for statisticians. Biometrika, 102(2):315-323, 2015.

[60] Daniel Hsu and Sham M Kakade. Learning mixtures of spherical gaussians: moment methods
and spectral decompositions. In Proceedings of the 4th conference on Innovations in Theoretical
Computer Science, pages 11-20, 2013.

[61] Tzu-Heng Huang, Catherine Cao, Spencer Schoenberg, Harit Vishwakarma, Nicholas Roberts,
and Frederic Sala. Scriptoriumws: A code generation assistant for weak supervision. arXiv
preprint arXiv:2502.12366, 2025.

[62] Daniel Borkan, Lucas Dixon, Jeffrey Sorensen, Nithum Thain, and Lucy Vasserman. Nuanced
metrics for measuring unintended bias with real data for text classification. In Companion
Proceedings of The 2019 World Wide Web Conference, pages 491-500, 2019.

13

s49 The appendix is structured as follows. It starts with the glossary table, defining key notations
ss0 used throughout the paper in Appendix [A] Next, Appendix [B]discusses additional related work. In
551 Appendix[C] we introduce details about our tensor-based CARE algorithm, discussion for general
552 CARE method, and additional discussion about method heuristics. Following this, Appendix [D] offers
553 theoretical support of our approach and supported proofs. It includes the graphical model formulation,
s54 graph structure recovery error bound, sample complexity, and the misspecification error arising from
s55 incorrectly characterized confounding factors. Subsequently, Appendix [E] provides experimental
s56 details and additional experiment results. Finally, Appendix [Fconcludes by discussing the broader
557 impacts and limitations of the work.

sss. A Glossary

The notations are summarized in Table[3 below.

Table 5: Glossary of variables and symbols used in this paper.

Symbol Definition

A

—
=
N

p vector of Judges score

True-quality latent variable

k latent confounder variables

All the hidden variables (true + confounder) i.e (Q C4,...,Cy)

dimension of H i.e all hidden variables = k + 1

Score matrix of dimension (n x p) where n is the number of examples and p is the number of judges

S
Q

Precision matrix

Observable-observable connection matrix

Observable-latent connection matrix

Latent-latent connection matrix

Covariance matrix of observable variables

Sparse matrix (RP*?) which encodes edges between judges

Low-rank matrix (with rank(L) < h) which captures dependencies mediated by latent variables
Rotation matrix (R"*")

ERFEIPEE

Q

2w M

Regularization for sparse and low-rank matrix S in Algorithm

Regularization for low-rank matrix L in Algorithm

Aggregated scores for ith example in the dataset from p judges

Sample precision estimation or covariance matrix

Sample Sparse matrix (R?*?) which encodes direct connectional edges among judges
Sample Low-rank matrix (with rank(L) < h) which captures dependencies mediated by latent variables
Latent factor extraction matrix i.e latent-judge connections (RP*") from Algorithm
Precision matrix

Weight for aggregating judges

Singular values of L

U Singular vector of L corresponds to true quality factor

A* Singular value of L that corresponds to true quality factor

e Conditional mean of judges given Q = ¢,C = ¢

flge Estimated conditional mean of judges given Q = ¢,C' = ¢

Tge Probability of @ = ¢,C = ¢

Tge Estimation of probability of Q = ¢,C = ¢

{Q’g}?zl Groups of judges that are independent of judges outside the group

T Empirical 3-way tensor

;25,12, /lffc), ,15{? Estimated conditional mean of three views

Ap(r) Estimated conditional mean of judges after permutation

Hanchor(r) Conditional mean of anchor sets

> N

2 0T W

09
03

*

559

14

560

561

563
564
565
566
567
568
569
570
571

572
573
574
575
576
577

579

580
581
582

583

585
586
587
588
589
590

592
593

594
595
596
597
598
599
600
601
602

603

604
605
606
607
608

B Extended Related Work

B.1 Biases in LLM-as—a—Judge

Large language models (LLMs) have quickly become the standard automatic evaluators for generation
tasks because they correlate well with human judgments in translation and summarization [42} 43} 144]].
Yet a growing body of work shows that these models are far from impartial. Positional bias—
preferring the second answer in a pairwise comparison—was first noted in MT-Bench [[1] and later
quantified in detail by [45], who observed reversals of up to 30% when simply swapping order.
Verbosity bias, wherein longer answers receive higher scores regardless of quality, is highlighted by
[8]]. LLM judges also display self-enhancement bias, overrating responses produced by models from
the same family [46]. Less studied but equally problematic are concreteness/authority biases: judges
over-reward answers that contain citations, numbers, or confident tone even when these features are
irrelevant [47]].

Mitigation strategies span two levels. Prompt-level interventions randomize answer order, enforce
symmetric formatting, and instruct the judge to ignore superficial features [45)36]. Adding chain-
of-thought rationales or decomposing the rubric into sub-criteria (accuracy, conciseness, style) also
moderates shallow heuristics [48]. On the model level, fine-tuned evaluators such as JudgeLM [49]
and Split-and-Merge Judge [36]] are trained on curated data that explicitly counter positional and
length biases. Peer-review and debate schemes go a step further: PRD lets a second LLM critique
the first judge and often corrects biased decisions [S0]], while [48]] show that dialog with a more
persuasive model leads to more truthful verdicts.

Despite progress, most debiasing work treats a single judge in isolation. When evaluations aggregate
many LLM scorers—for robustness, cost sharing, or diversity—biases can compound in complex
ways that individual fixes do not capture.

B.2 Label Aggregation for Multiple Noisy Evaluators

Weak-supervision. Treating each LLM prompt or model as a noisy labeling function aligns
aggregation with modern weak supervision. Snorkel [S1} [52] estimates source accuracies and
dependencies to denoise programmatic labels, laying the foundation for LLM-prompt aggregation.
[40] introduces a scalable moment-matching estimator with closed-form weights.[26] generalizes
label models beyond categorical labels to arbitrary metric spaces, greatly expanding their applicability.
[S3] jointly optimizes a classifier and a differentiable label model, outperforming two-stage pipelines
when sources are dependent. Firebolt further removes requirements on known class priors or source
independence, estimating class-specific accuracies and correlations in closed form [54]. [55)] shows
that fixing source bias in labeling functions using optimal transport can improve both accuracy and
fairness.

Aggregation of multiple LLM judges. Recent work shows that ensembling smaller evaluators can
beat a single large judge. The PoLL jury combines three diverse 7-35B models and attains higher
correlation with human ratings than GPT-4 while costing 7x less and reducing bias [56]]. GED merges
preference graphs from weak evaluators (Llama3-8B, Mistral-7B, Qwen2-7B) and denoises cycles; its
DAG ranking surpasses a single 72B judge on ten benchmarks [S7]. JudgeBlender ensembles either
multiple models or multiple prompts, improving precision and consistency of relevance judgments
over any individual LLM [58]. These findings echo classic “wisdom-of-crowds” results—when
paired with principled aggregation, a panel of smaller, heterogeneous judges can outperform a much
larger model, offering a practical path toward reliable, low-cost evaluation.

B.3 Our Contribution in Context

Prior research either (i) debiases one judge at a time or (ii) aggregates multiple judges assuming
independent noise. Our confounder-aware aggregation unifies these threads. We posit latent factors
(e.g., verbosity, formality) that influence all judges simultaneously and show how to infer both the
latent truth and the shared confounders. This yields more reliable consensus scores when individual
judges—human or LLM—share systemic biases.

15

609

610

611

612

614

615

616

617

618
619

C Algorithm Details

This section details the implementation of our CARE framework. Specifically, it includes the
full CARE tensor algorithm, details about SVD baseline method for comparing our tensor-based
algorithm, generalizations beyond Gaussian assumptions, and practical heuristics to address non-
orthogonality in latent factors and justification for where the sparse structure lies in mixed Gaussian
data.

C.1 Tensor-based CARE Algorithm

Algorithm 2 CARE (T)

Input: Score matrix J € R™*P, tolerance €.
Output: Estimates { iz, 7qc }

q,c€{0,1}"
A. Anchor discovery (graph partition)
1: Compute the sample covariance 3. = .J .J/n and perform the sparse--low-rank split > ~ S + L

(Alg.[T).
2: Partition judges into three disjoint groups {G,}7_; that satisfy

a#b7 jl Egaa j2 Egb = ‘thjz' <S¢,
ensuring no direct edges with strength greater than e can exist across groups.

B. Empirical third-order moment tensor
:for?/=1,2,3do
X < columns of J indexed by G, > X, € R |Gel
. end for
: Compute

ZXY) ®X2(i) ®X§i) c R\gﬂxlgz\xl%l.
i=1

.1
T=—
n
C. Tensor decomposition
7: Run a CP tensor-power decomposition on 7" to obtain k£ = 4 components

L a1 A(2) A3 R (€
{(Fge: e, s, Mgc))}q)ce{m}?, where 7., > 0 and /i € RI%!.

D. Assemble full means
8: for ¢,c € {0,1}* do
: flge < concat(ﬂélc), ﬂézc),ﬂé‘z)) € RP.
10: end for
E. State alignment with anchors
11: Find the permutation p of {1, ...,4} that minimizes Zle Hﬂp(r) — uanchor(r)|
anchor prototypes correspond to (@, C)={00,01,10, 11}.
12: (fioo, flo1, f1105 211) = (fp(rys p(2)s p(3)s Hp(a))-
F. Mixing weights
13: (’froo, o1, 10, 7%11) — (’ﬁ'p(l), ’7ATp(2), ’f(p(g), ﬁf)(4)).

14: retarn {fige, Tgc}q,cc{0,1}-

2
9 where the four

C.2 SVD Baseline in Synthetic Experiment

We form the empirical two-way moment between view 1 and view 2:

7 L= (i) ()T T : :
Mo = E;Xl X5 = ZW%C/’LLQ,CM?,(],C + sampling noise,
1= q,c
where 7, = Pr[Q = ¢,C =] and py 4. = E[J, | Q@ = ¢,C = ¢] for judge/view v A
singular-value decomposition
Mo = UppE12 V),

16

620

621

622
623

624

625
626

627

628
629
630
631
632

633

634
635
636

637
638

639
640

641
642
643

644

646

647

648

649
650
651
652

653
654
655

yields factor matrices

Uiz 2142 ~ [t1,g,e] R, Via 2142 ~ [p2,9,c] R,

where R € O(4) is an unknown orthogonal matrix.
Repeating on M 5 = L3 XWXOT = U3 545 V] produces a second rotated copy of [11.q.].
We solve the Procrustes problem

R = argorerloir(l4)|‘U12 17— U 2142 Ol = F,

then set fi2 4. = (V12 E%Q) R and fiz 4. = (Vi3 Z}éz) R to align all three views.

This SVD baseline recovers {t, 4,c } up to the permutation/sign ambiguity inherent in any orthogonal
transform.

C.3 Genral CARE Setup

Extension Beyong the Gaussian Observation Model. The multivariate-Gaussian assumption
for J|H is convenient—its first two or three moments already encode all information needed for
the sparse + low-rank and tensor steps—but it is not a requirement. Because CARE learns the
graphical structure, the same pipeline applies whenever each judge’s conditional distribution lies in
an exponential family or, more generally, a latent-variable generalized linear model (GLM):

* Categorical or ordinal scores. For Likert ratings or pairwise preferences we can set
Ji | H ~ Categorical(softmax(W;r H)) or Ordinal —logit(W, H).

The graph—hence the sparse mask S—is unchanged; only the node-wise likelihoods differ. We still
recover S from conditional-mutual-information or pseudo-likelihood scores, and we still factorize
higher-order indicator moments such as E [1{ Jo=} Lir=my 14 Jc:n}} .

» Mixed Discrete-Continous Scores. When some judges output real scores and others categorical
flags, we use a mixed conditional distribution:
p(J|H) = [MicconN (Ji; par;, 07| [Ijepise. Bernoulli(o (W' H))] .
CARE forms mixed raw/indicator moments, and identifiability again follows from standard tensor-
decomposition guarantees for mixed conditional means.

* Heavy-tailed or skewed real scores. When numeric scores are skewed or contain outliers, a
multivariate-t or Gaussian scale mixture is appropriate. Up to a scalar factor, the covariance still
decomposes as sparse + low-rank, so Steps 1-2 of Algorithm [T]work after a simple rescaling.

Empirically, we find that replacing the Gaussian local likelihood only affects the estimation of
sparse structure and extraction of latent factors, not the subsequent symmetry-breaking or posterior
computation; thus the overall CARE pipeline generalizes with minimal adjustments.

C.4 Heuristics and Justifications

Heuristic for Addressing Orthogonality Violations in CARE (SVD).

Existing heuristics for identifying the true quality latent factor can estimate corresponding weights,
but they often suffer from bias when the orthogonality assumption—central to the application of
SVD—is violated. This issue commonly arises in real-world datasets. We found the following
weighting rule effective in both synthetic and real-world settings:

w4 \u* — Z i,
u; €U\ {u*}

where w represents the learned weights for each judge, A* and u™* is the singular value and vector of
L that corresponds to the direction that is closest to true quality latent variable, \;, u; represent rest
of the singular values and vectors, which can be interpreted as spurious/confounding factors.

17

656

658
659
660
661

663
664
665

666
667

668

670
671

672
673
674

Orthogonal Non-orthogonal

4.0 1.0
—— Unadjusted —— Unadjusted
3.5 Heuristic Heuristic
3.0 081
) N
2.5 0.6
@ &
2 2.0 2
15 0.4+
1.0
0.21
0.5
0.0+ u y u u T 0.0+ u u u u T
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Number of samples Number of samples
(a) Orthogonal (b) Non-Orthogonal

Figure 4: Effect of the proposed heuristic in a fully Gaussian synthetic setup. We estimate the true
quality variable) and report the mean squared error. The heuristic improves estimation in the
non-orthogonal setting, but slightly degrades performance in the orthogonal setting where true and
confounding components are disjoint.

This rule intuitively subtracts the influence of overlapping (non-orthogonal) confounding components
from the estimated true score factor.

Figure[d]illustrates the effect of this heuristic in a synthetic fully Gaussian setup. In the non-orthogonal
case—where confounding components overlap with the true signal—the heuristic improves the
estimation of the true latent variable. In contrast, it underperforms in the orthogonal case, where
judges influenced by true scores are cleanly separated from those influenced by confounders.

Justification of Decomposing Covariance Matrix. In the joint-Gaussian setting we decompose the
precision matrix, whose sparsity pattern directly encodes conditional independences in an undirected
graphical model. For a mixed Gaussian model, however, each observation J € RP? is generated by
first drawing a latent class label), C' € {0, 1}? (with probabilities ;) and then sampling

J|QaC:(I7C ~ N(,quca E)a

where the within-component covariance > does not depend on ¢, c. Because the latent variable only
perturbs the mean, the marginal covariance of J splits, via the law of fotal covariance, into

Cov(J) = E[Cov(J | Q,C)] + Cov(E[J|Q.C]) p:=§ Tgeklge-)
v q,c
=% :Zq,c Tge (ge—R)(Hge—R)T

The first term, ¥, is the same sparse block-diagonal matrix we plant in the simulator to model
direct judge—judge interactions; the second term is an outer-product mixture of at most 4 linearly
independent directions and hence has rank < 4. Equation equation 2] therefore exhibits the population
covariance as a sparse + low-rank decomposition,

Cov(J) = S + L, S=23(sparse), L= Cov(E[J|Q,C]) (low rank).

Because sparsity now lives in .S, not in the inverse covariance, estimating S and L by fitting a sparse-
plus-low-rank model directly to the empirical covariance is both natural and statistically identifiable
for the mixed Gaussian case.

18

675

676
677
678
679
680
681
682

683

684
685
686

687

688

689
690

692

693

694
695

696

697

698
699

700
701
702

703

704
705

706
707

708

709
710

71

712

713
714

D Theory

We formalize the graphical model under joint gaussian distribution and notation (Section[D.T)), then
discuss the identifiability of graph structure with exact and approximate recovery (Section [D.2)
and quantify the sample complexity required for consistent recovery of our SVD-based algorithm
(Section [D.3). Next, we present the model misspecification error when confounding factor is not
correctly characterized (Section [D.4). Finally, we discuss sample complexity required for tensor-
based algorithm under mixed Gaussian distribution (Section[D.5] All proofs are included in Section
D.6

D.1 Model and Notation

We discuss the model under joint-gaussian distribution where all variables follow the same definitions
as in Section Briefly, J = (Ji,..., Jp)T stacks the p observable judge scores, and H =

(Q,C1,...,Cy) T collects the h = k + 1 latent variables.

_ K K
¥ = Cov[(J,H) "], ST =K = (K}]Ii K;i) ’

where the subscript J (resp. H) refers to observable (resp. latent) coordinates.

The observable block factorizes via the Schur complement:

(X)) t=S+L, S=K;5, L=KiuKyyKuy.
Here X, is the covariance matrix of observable variables, S € RP*P is sparse and encodes direct
conditional edges among judges, L is low-rank with rank(L) < h and captures dependencies
mediated by the latent variables. Entry (K ;g). is the edge weight between judge 4 and latent
factor £.

D.2 Graph Structure Identifiability

While (S, L) can be recovered (e.g. via convex sparse-plus-low-rank regularization [[18], the finer
structure of K ; is usually not identifiable from L. For example, for arbitrary rotation matrix R €
RAXM L = (K g K R)(RT K 1) K 7). this indicates one cannot distinguish K g K ;5
from K ;g K E%QR without further constraints. Hence, we need to impose additional assumptions:

Assumption D.1 (Latent-latent independence and eigen-gap). Kyy = diag(dy,...,dy) with
dy >dy>--->dp >0.

Assumption D.2 (Orthogonal latent—observable connections). The columns of K ;z are orthogonal,
ie. K :']—HK sm 1s diagonal. A special case is the disjoint-support model where each judge connects to
exactly one latent factor.

Next, we provide an exact recovery result given the above assumptions.

Theorem D.3 (Exact Recovery). Under Assumptions 1 and 2, columns in K jp are identifiable up to
column permutations and sign flips.

Real-world data rarely satisfy the exact orthogonality in Assumption [D.2] To assess robustness,
consider the following perturbed connection matrix:

f(JH:KJH—f—E, ||E||2 small.
The associated low-rank part is L= RJHK;I}_IRHJ. Let the eigen-pairs of L = KJHKITIlHKHJ
and L be {(\;,u;)}_; and {(\;,@;)},, ordered so that A\; > --- >), > 0, and denote the
eigen-gap by
0; = min|)\i - /\]| > 0.
J#i
Theorem D.4 (Stability under approximate orthogonality). For every i € [h],
20K g2 121
d;

This indicates that latent—observable directions remain identifiable (up to column permutations and
sign flips) whenever the perturbation norm || F||2 is small relative to the eigen-gap d;. We defer the

proof to Appendix [D.6

la; — usll2 < + O(HEH%)

19

715

716
717

718
719

720

721
722
723
724

725
726

727
728
729

730
731
732

733

734

740

741
742
743

744

745
746
747
748
749

751

752

D.3 Sample Complexity Bound

We now quantify how many i.i.d. samples are needed for the two—stage estimator in Algorithm|I|to
recover the latent—observable directions K j € RP*",

As detailed in Algorithm [T} our estimator for K ;7 proceeds in two stages: first, a sparse + low-rank
decomposition of sample precision matrix. Second, we extract the latent—observable directions by

taking the rank-h eigen-decomposition L,, = Zz 1 \i G4 and setting Kz := [iiy, . . ., din).

Theorem D.5 (Sample complexity for recovering K jp). Let L* = K;g Ky HK gy € RPXP haye
distinct eigenvalues Ay > - -- > \p, and define the (global) eigengap 6 = mini<;<j<p|Ai — Aj|.
Assume the identifiability, incoherence, and curvature conditions of [lI8|]. Then for any € > 0, with
probability at least 1 — 2e™°,

o =], = O(=Yo),

where n is the sample size, U; and u; are the i-th eigenvectors of L, and L* respectively. T = T(L*)
is the tangent space of L*, £(T) is the curvature constant from [18]].

We defer the proof to Appendix At a high-level, we adapt the identifiability, incoherence and
curvature conditions from Theorem 4.1 of [18]] and combine it with extended result of Davis-Khan’s
theorem [59].

This bound shows that the column-wise /5 error decays at the standard parametric rate n~'/2, and

is attenuated by both the manifold curvature £(7") and the eigengap J. Achieving an accuracy of at

most a € (0, 1) therefore requires
€

(Tpea)

samples, up to universal constants and log-factors.

n =0

D.4 Misspecification Error

Many label aggregation frameworks (e.g.,[25} 40} [26]]) assume a single latent variable that explains the
observed labels. However, in setups like LLM-as-a-judge, the scores may be influenced by additional
latent factors or confounders that also affect the observed annotations. Ignoring these confounder
latents leads to model misspecification, which can bias the aggregated labels. We characterize this
bias and analyze its impact on the estimated aggregation weights.

Let L* = Z T Lk.k! be the true rank-h low-rank component of the observable precision matrix,
derived from the latent-observable connection matrix K ;g = [kq, ..., k] and latent-latent precision
Kppg = diag(dy,...,dy). Let u* = k; /||kq]|2 be the true direction of influence for the quality

score latent variable () (assuming ki # 0).
Define A = d—llklkf. Its principal (and only non-zero) eigenvalue is A\; = i”kl”%, and its spectral

gap (to its other zero eigenvalues) is § = \;. Let E = 2222 ékgk;{ be the confounding component,
so L* = A + E. Let v, be the principal unit-norm eigenvector of L*. When a rank-1 model is fitted,

the estimated direction is 0} = v.
Theorem D.6. If ||E||,, < 0/2, the {5 deviation of the estimated direction vy from u{* is bounded
by:
h 1 T
t 20l 2| gk
[[v1 = sui™[], < s 1 2
7kl

for a sign s = £1 (chosen so that s(u*®)Tv; > 0).

Proof. By Davis-Kahan theorem (Theorem 2 in [S9]), if ||E|[,, < 0,2, then the (> distance between
v and u"® (after aligning their signs via s = £1) is bounded by:

2|[Ell,,
el

Hvl _ true

20

753

754

755

757
758

759
760

761
762

763
764
765

766

767

768

770
771

772

773

Plugging in F yields the desired result:
K
2k]

2
a; lkall

. qqtrue <
[lvi—s-uil, <
O

The theorem quantifies the directional bias in the estimated influence of () when confounders are
ignored. This bias is proportional to the collective “strength” of confounders in the precision domain
(numerator) and inversely proportional to ()’s own “strength” (denominator). Fitting a rank-1 model
forces this bias, while a higher-rank model offers the capacity to separate these influences.

Corollary D.7 (Error Bound for Estimated Conditional Mean of Q). Denote the true conditional
mean of true quality score latent variable () given the observable variables O = (J1,...,Jp)
be denoted by E[Q|O)we. Then, E[Q|O)we = 7%(u‘f”e)T0. Let an estimated conditional
mean with the misspecified direction, E[Q|0]mis, be formed using the misspecified direction v, be

E[Q|O)mis = —%(s -vi)To, where s = +1 is chosen such that s - (u§**)Tvy > 0. Then, the

absolute error in the estimated conditional mean due to the directional misspecification is bounded

by:

h
2 ‘ ‘26:2 d%kfkéT

IE[Q[0]mis — E[Q[0]rue| < = = [loll,
JLSt|P
This holds if the condition from the main theorem, ||E||,, < 0/2 = ﬁ [|kq] 3 is met, where
h
E=%,, ékgsz.
Proof. The absolute difference is:
k k
|E[Q|O]mis _ E[Q‘O]true| _|_ || 1”2 (S . V1)T0 . || 1||2 (utlrue)TO
d1 dl
k
_ ’_ || ;HQ(S e utlrue)To
1
k
— H d11H2 ‘(S vy — utlrue)TO‘
By the Cauchy-Schwarz inequality, (X)Ty’ < ||x[|5 ||¥l|5- Applying this:

‘ | k true

[E{QIolms ~ ElQlolmel < 112 [Js vy —uf™ |, ol

The term ||s - v — uf"®

true

||, is equivalent to ||vi — s - uf*||, from the main theorem statement, where

s aligns u" with v;. From the preceding Theorem, we have the bound (where § = i ||k1] |§):

h 1 T
2], 2| S k]|
o . qqltue < P _ op
vi = -upe]], < o
ar |kl
Substituting this bound into the inequality for the error in the conditional mean:
k], (211Ell
|E[Q|0]mis — E[Q[0]irue| < d 2 1 0p2 ||0H2
o\ gkl
_ ally 2 [[E]
= . >
dy |[ka5
2[|El|,
JLSYP
2 HZ?:Q digkzkg

= % lol]
Hk1||2 ?

= - lol],

[loll

21

774
775

776

777

778

779

780

781
782

783

784
785

786

787

788

792

793
794

795
796

797

799

800

801

802

803

804
805
806
807

This corollary shows that the error in the estimated conditional mean of () (due to using the misspeci-
fied direction for Qs influence) scales with:

* The magnitude of the observable vector o (specifically, ||o]|5).

* The collective strength of the confounding latent variables in the precision domain
k
(|2t deat]])
op
* Inversely with the /5-norm of the true connection weights of @ (||k1||,).

Especially, we see that strong confounders widen the gap bound, whereas heavier connection weights
to the true score shrink it. Put differently, misspecification hurts most when confounders are strong
and the quality signal is weak.

D.5 Sample Complexity for CARE tensor algorithm

Assumption D.8 (Model and identifiability). Let J = (X, X5 , X3)" € R? (p = p1 + p2 + p3)
be one observations i.i.d generated as

(Qv C) ~ Muninomial({ﬁqc}q,ce{0,1})7 XZ | (Q =4q, C = C) ~ N(/J’éec)v Z)a
with £ € {1,2,3}. Write r € [4] <> (¢, ¢) € {0,1}2 and define w, := mge, ay 1= pit) € RP1, by :=
ug%) e RP2 ¢, := /,LE;? € RP3,

(A1) Block-conditional independence. X; 1 X, 1 X3 | (Q,C).

(A2) Full-rank moment tensor. The population third-order moment M = E[X; ® X5 ®

X3 = 24_ wyar @ b, @ ¢, has rank 4, with Ty, := min, 7, > 0 and Apin =

r=1
min, [|ar|2[[br[l2[cr[l2 > 0.

2
max

(A3) Non-degenerate covariance. o, = ||X|op < 0.

(A4) Spectral gap. The CP factors are uniquely defined up to scaling/sign and satisfy the eigenvalue-
gap condition of Theorem 5.1 in [19]. Denote that gap by ¢ > 0.

(A5) Correct graph partition. There exist a graph partition such that judges between different
groups are conditional independent. Step A of Algorithm [2]returns the true groups G1, Ga, Gs.

Theorem D.9 (Sample complexity of CARE tensor step). Fix 0 < ¢ < 1 and let the assumptions
above hold. Run Algorithm 2 (CARE) on n i.i.d. samples to obtain {fi,c, ﬁqc}q,ce{o,l}' Under
Assumption|[D.8) there exist universal constants Cy,Cy > 0 such that if

6
Omax

52 12

min

7”L>C1

p log(p/e),

then with probability at least 1 — ¢

X Onax P log(p/e) 3 p log(p/e)
H;?CXHUqc - HquQ < ¢ 6& n s H;aCX Tge — ch‘ < Oy T
We defer the proof to[D.6|
D.6 Proofs
Proof of Theorem[D.3|

Proof. Let low-rank matrix satisfies . = Z?Zl d; uzu;r with u; the ¢-th column of K,;. By
Assumption [D.2]the u; are mutually orthogonal, and by Assumption D.I|the eigenvalues dy > --- >
dy, are distinct; hence this rank-1 decomposition is the (unique) spectral decomposition of L. Thus
each wu; is identifiable from L up to sign and ordering, proving the theorem. O

22

808

809
810

811

812

813

814

815

816

817
818

819
820

821
822

823

824

825

826

827

828

829
830

Proof of Theorem

Proof. We apply standard matrix perturbation theory for eigenvectors. Starting from the eigenvalue
decomposition:
Lu; = X i,

we write the perturbed matrix as
L= (Ko +EK (Ko +E)T =L + K,,K;)ET + EK,;'K), + EK,'E".
Let AL=L — L. By the Davis—Kahan theorem,

s — uilla < M’
d;

where 0; = minj-; [A; — A;| > 0. Moreover,
1ALl < 2[[Konll2 [Ky ll2 1Bl + O(IE]3)
and || K,r||2 = 1. Hence

i -l < DEel2 0Bl o)
This completes the proof. O
Proof of Theorem
Proof of Theorem|[D.5] Step 1 — Spectral error of L. Apply Chandrasekaran et al.’s Theorem 4.1

with the regularization parameters

4 _
Yn = M \/? , 0, 0 as in their conditions (3)—(4).
T n

Under the incoherence and curvature conditions of their Proposition 3.3, there exists a universal
constant C7 > 0 such that, with probability at least 1 — 2e™¢,

| 20— 17|, < €3 YL

VT 3)

&(T)
Step 2 - Eigenvector perturbation via Davis-Kahan. Let L* = UAU' with A =
diag(A1,...,Ap,0,...,0) and collect the top-h eigenvectors in Uy, = [u1,...,up]. Write the

spectral decomposition of the estimator as L,, = (A]h/A&UZ + R, where R contains only the eigen-
components of rank > h. Set the perturbation F := L,, — L*.

Applying Corollary 3 from [59] to the i-th eigenpair gives
22| Bl

lui — ;]2 < 5,

“

Step 3 — Combine the two bounds. Insert equation [3|into equation [4}

. 23/20, e ,
-l < S/ vie,

and take the maximum over ¢. This proves the advertised high-probability bound

N
a1 — w2 = O(367f5)-

Step 4 — Invert to a sample-size requirement. Setting the right-hand side to a target accuracy
2
¢ € (0,1) and solving for n yields n > 48% m, which is the sample-complexity statement in

the theorem. O

23

831

832

833
834

835

836
837

838
839

840

841
842

843
844

845

846
847
848

850
851

852

853
854
855

856
857
858

859
860
861

862
863
864
865
866

868

Proof for Theorem

Proof sketch. Step 1: Concentration of the empirical tensor. Let M := % S X fi) ® X éi) ®

X él) Because each X, is sub-Gaussian with proxy o,,x, the operator-norm Bernstein bound for
order-3 tensors (Lemma 5 of60) yields

M—M|qp = Ofc? plosp/e)) p 1 —¢/2.
p

max n

Step 2: Robust CP decomposition. Applying the non-symmetric tensor power method of [19,

Alg.2] to M and invoking their perturbation bound (Theorem 5.1 therein) gives, for every component
r € [4],

H(drai)raér) - (a7‘abrvcr)H2 = O(% ”M - M”Op)'

Step 3: Assembling full means. Algorithm [2]concatenates the three block-means, so /i, — p, =
(a, — ap, b, — by, é. — ¢,), and the same O(-) factor carries through.

Step 4: Mixing-weight estimation. Given accurate factor recovery, the usual least-squares re-

estimation of weights satisfies |g. — Tqe| = O(||M — M||op) (19] Theorem B.1), yielding the stated
rate.

Step 5: Union bound. Combine Steps 1-4 and union-bound over the four components to obtain the
final probability 1 — .]

E Experiment Details

In this section, we provide experimental details and additional experiment results. We describe
datasets details, evaluation prompts we used to collect LLM judgments, and individual judge per-
formance. In addition, we introduce the construction of programmatic judge, and ablation studies
including prompt-based interventions. Finally, we include additional experiment results for our
tensor-based CARE algorithm: synthetic experiments results on graph-aware judge partition, and
real-world applications.

E.1 Datasets

FeedbackQA [21]. A question-answering dataset with human-provided scalar ratings of answer
helpfulness, ranging from 1 to 5. We use the validation set in our experiments, treating the average of
two human ratings as the ground truth.

HelpSteer2 [23]]. A large-scale dataset of assistant responses annotated with real-valued scores (0
to 4) across multiple axes, including helpfulness, correctness, coherence, complexity, and verbosity.
We use the validation set and take the helpfulness score as the ground truth.

UltraFeedback [22]. A scalar feedback dataset where assistant responses are rated from 0 to 10
based on overall quality, using scores aggregated from GPT-4 and human raters. We randomly sample
5,000 examples for evaluation.

Synthetic Dataset (Section[5.6). We construct a synthetic dataset with latent state probabilities
set to 4. = [0.2,0.2,0.3,0.3], corresponding to latent states (@), C) as (0,0), (0,1), (1,0), (1,1)
respectively. The judges are organized into three distinct groups, each containing four judges whose
conditional means 4. are randomly drawn from a uniform distribution ranging between 1 and 4.
Dependence structures are imposed explicitly: for judges independent of the true quality variable
@, we constrain their conditional means such that averages depend solely on the confounder C (i.e.,
rows corresponding to) = 0 and Q = 1 are identical for each C state).

24

869

870

871

872

E.2 Prompt Templates

In this subsection we provide the prompts we used for collecting LLM judgements.

LLM Judge Scoring Template (FeedbackQA, HelpSteer2, Ultrafeedback)

You will be given a user_question and system_answer couple.

Your task is to provide a ‘total rating’ scoring how well the system_answer answers the
user concerns expressed in the user_question. Give your answer as a float on a scale of
{min_rating} to {max_rating}, where {min_rating} means that the system_answer is not
helpful at all, and {max_rating} means that the answer completely and helpfully addresses the
question.

Provide your feedback as follows:

Feedback:::
Total rating: (your rating, as a float between {min_rating} and {max_rating})

Now here are the question and answer.

Question: {question}
Answer: {answer}

Feedback:::
Total rating:

Intervened LLM Judge Scoring Template (Section[5.4)

You are a careful and impartial evaluator. Your task is to rate how well the system_answer
responds to the user_question, focusing on substance, correctness, and completeness.

Rate the answer on a scale from {min_rating} to {max_rating}, where:

- {min_rating} means the answer does not address the question or is misleading,

- {max_rating} means the answer fully and helpfully addresses the question with accurate,
relevant, and concise information.

Avoid common judgment biases:

- Do **not** reward irrelevant fluency, length, or politeness.

- Do **not** penalize answers solely for brevity if they are complete.

- Do **not** be influenced by phrasing style unless it affects clarity or correctness.

Judge only the answer’s content in relation to the question. Ignore formatting, gram-
mar, or tone unless they impact understanding or utility.

Provide your feedback as follows:

Feedback:::
Total rating: (a float from {min_rating} to {max_rating})

Now, here are the inputs:

Question: {question}
Answer: {answer}

25

873

874

875

876

877
878

879

880

881

883
884

Feedback:::
Total rating:

LLM Judge Toxicity Scoring Template (CivilComments)
You will be given a user_question and system_answer couple.

Your task is to provide a ‘total rating’ scoring how well the system_answer answers the
user concerns expressed in the user_question. Give your answer as a float on a scale of
{min_rating} to {max_rating}, where {min_rating} means that the system_answer is not
helpful at all, and {max_rating} means that the answer completely and helpfully addresses the
question.

Provide your feedback as follows:

Feedback:::
Total rating: (your rating, as a float between {min_rating} and {max_rating})

Now here are the question and answer.

Question: {question}
Answer: {answer}

Feedback:::
Total rating:

E.3 Individual LLM Judge Performance

Table [6] shows the performance of individual LLM judges. Overall, we find that aggregation methods
outperform or match the best single judge. Since the relative performance of individual LLM judges
is not known a priori in practical settings, aggregation offers a useful approach for integrating judges
in an agnostic manner.

Table 6: Individual Judge Performance in Section

| FeedbackQA | HelpSteer2 | UltraFeedback

|MAE()) | 7(1) [MAEW) | 7(1) |MAE{) | 7()
gemma-3-1b-it 1.0073 0.2315 1.0666 0.0825 1.0606 | 0.1812
gemma-3-4b-it 0.7578 0.4537 0.9920 0.1402 0.8492 | 0.2309
Llama-3.1-8B-Instruct 0.8148 0.4341 1.1364 0.1261 0.8648 0.3194
Llama-3.2-1B 1.2219 -0.0525 1.0049 -0.0132 1.0119 0.0752
Llama-3.2-3B 1.0362 0.0051 0.9995 0.0251 1.1522 0.1648

Mistral-7B-Instruct-v0.3 1.0244 0.4539 1.0793 0.1116 0.8572 | 0.1735
Phi-4-mini-instruct 0.8082 0.4557 1.0692 0.1576 0.8355 | 0.3147

Qwen3-0.6B 1.0969 0.2073 1.1255 0.0370 1.0233 | 0.1254
Qwen3-1.7B 1.1507 0.2485 1.0693 0.1049 1.1382 | 0.1926
Qwen3-4B 1.0999 0.2854 0.9675 0.2290 0.7088 | 0.3921
Qwen3-8B 1.0517 0.4417 0.9675 0.2094 0.7512 | 0.3140

E.4 Programmatic Judges

Programmatic judges, synthesized by LLMs, distill and convert evaluation logic into interpretable,
cheap-to-obtain program code [20, |61]]. These program judges provide specialized, independent
assessments compared to using LLMs directly as evaluators. We integrate these judge sets into CARE
to enhance evaluation signals.

26

885
886

887

888
889
890

891
892

893
894
895

896

898
899

900
901

903
904
905
906
907
908
909
910
911

914

922
923

924
925
926
927
928
929
930
931
932
933
934

We describe the creation of programmatic judges and the criteria they encode. Using OpenAl’s
GPT-4o [33]], we generate judges with the following prompt:

Program Judge Template

You are now a judge to evaluate LLM generated response with a given question. You will
write your evaluation logic into code and generate python programs to return their scores.
Higher represents better response quality. Consider complex criteria for assessing responses,
leveraging third-party models, embedding models, or text score evaluators as needed.

Function signature: def _judging_function(self, question, response):

We synthesize 23 programs and select 10 representative ones for our experiments (see Section [5.2]
and Section @) These programs evaluate responses based on diverse criteria: (i) structure, (ii)
readability, (iii) safety, (iv) relevance, and (v) factuality. For example:

* Structure: A judge counts transition markers (e.g., “therefore,” “however”) to assess coherence,
with more markers indicating better quality.

* Relevance: A judge uses TF-IDF to convert questions and responses into vectors, computing cosine
similarity to measure semantic alignment (see Program|I). Another employs semantic embeddings
for similarity metrics (see Program2).

* Readability: A judge leverages a third-party API to evaluate complexity, using metrics like the
Flesch—Kincaid grade level (see Program J3).

All judging logic, conditions, and pre-defined keyword lists are generated by the LLM. Below, we
provide examples to illustrate this approach.

def _lexical_overlap(self, question, response):
""" Compute lextcal overlap using TF-IDF for relevance evaluation.

"wmn

Preprocess input question and response (e.g., lowercase, remove
stopwords)
question_clean = self._preprocess(question)

response_clean self . _preprocess (response)

Return 0.0 1if either <nput is empty after preprocessing
if not question_clean.strip() or not response_clean.strip():

return 0.0

Transform inputs to TF-IDF wectors using the wvectorizer

tfidf _matrix = self.tfidf_vectorizer.fit_transform([question_clean
, response_clean])

question_vec = tfidf_matrix[0] # Eztract question wector

response_vec = tfidf_matrix[1] # Eztract response wector

Compute cosine similarity between wvectors and return as float
return float(cosine_similarity(question_vec, response_vec) [0][0])

Program 1: Lexical Overlap Computation using TF-IDF.

def _semantic_similarity_strong(self, question, response):
"""Compute semantic similarity between question and Tresponse.
Return 0.0 if either <nput <s empty
if not question.strip() or not respomnse.strip():
return 0.0

nwmn

Encode question and response into dense vectors using the
embedding model

question_embedding = self.semantic_embedding_strong_model.encode(
question, max_length=4096

)["dense_vecs"]

response_embedding = self.semantiC_embedding_strong_model.encode(

27

944
945

958
959

960

response, max_length=4096
)["dense_vecs"]

Compute dot product similarity between embeddings
similarity = question_embedding @ response_embedding

Clamp similarity score between 0.0 and 1.0 and return as float
return float(max (0.0, min(1.0, similarity)))

Program 2: Semantic Similarity using Embedding Model.

def _readability(self, response):
"""Calculate readability metrics for response.
Compute readability scores wusing textstat library
return {
Flesch Reading Ease (inverted: higher score means harder to
read)
"flesch_reading_ease": 100 - textstat.flesch_reading_ease(
response),
SMOG Index (higher score indicates higher reading difficulty
)

"smog_index": textstat.smog_index(response),

mwnn

Program 3: Readability Metrics Calculation.

We report the performance of individual program judges in Table[/| While their standalone perfor-
mance is limited, they provide useful signals for the integration strategies discussed in Sections[5.2]

and[3.31
Table 7: Program Judge Performance. (*) represents the selected judges in Section

| FeedbackQA | HelpSteer2 | UltraFeedback

IMAE(l) | 7() |MAE{) | 7() | MAE{) 71

factuality_check_score (*) 1.9956 0.0872 1.1992 0.0075 1.1910 0.0492
factuality_factKB_score (*) 1.0343 0.2288 1.7180 0.0414 1.4342 0.1051
readability_flesch_reading (*) 1.2185 0.0431 2.5682 0.0445 2.5145 0.1396
readability_smog (*) 0.9805 0.1277 2.3286 0.0283 2.3122 0.1604
relevance_bleu 1.4035 0.0126 2.7452 -0.0355 2.7330 0.0560
relevance_keyword_overlap 1.2779 0.1977 2.3735 0.0138 2.2725 0.1461
relevance_lexical_overlap (*) 1.1371 0.2316 2.0148 -0.0144 1.9182 0.1187
relevance_rouge 1.3079 0.2066 2.5603 0.0232 2.4838 0.1327
relevance_semantic_sim_strong (*) 0.8759 0.4092 1.1182 0.0395 0.9866 0.1601
safety_toxicity (*) 1.5396 | -0.0380 | 1.1105 0.0300 1.0139 -0.0043

structure_avg_paragraph_length_dist | 1.4560 | -0.1883 | 2.5562 | -0.0081 | 2.4637 0.1074
structure_avg_sentence_length_dist 1.5248 -0.0140 2.4407 -0.0287 2.4179 0.1612

structure_cohesion_score 1.4078 0.2070 2.7139 0.0345 2.6578 0.1567
structure_emphasis_count 1.2826 0.1988 2.6642 0.0482 2.5955 0.2060
structure_headings 1.4765 0.0423 2.6521 | -0.0340 | 2.5916 0.1049
structure_lexical_diversity 1.0672 0.1625 2.1864 0.0444 2.0981 0.1935
structure_list_usage 1.6284 0.0159 3.0208 -0.0108 3.0132 0.0872

structure_logical_transitions (¥) 1.2694 0.1743 2.2693 0.0520 2.4355 0.2263
structure_max_sentence_length (¥) 1.3039 0.1272 2.7532 0.0104 2.7511 0.1377

structure_min_sentence_length 1.3568 0.1887 2.4872 0.0400 2.4322 0.2046
structure_questions 1.2443 0.2692 2.4910 0.0360 2.4064 0.2114
structure_sentence_balance 1.4423 0.1835 2.6757 0.0501 2.6444 0.2203
structure_sentence_count (*) 1.3099 0.1742 2.4408 0.0807 2.6570 0.2300

28

961

962
963
964
965

966
967
968
969
970
971
972

E.5 Effects of Prompt-Based Intervention (Section [5.4)

We begin by analyzing how the intervention using a robust prompt affects the performance of
individual LLM judges. Figures[5|(MAE) and[6] (Kendall’s 7) present the performance differences
relative to the vanilla prompt. While the intervention aims to reduce confounding signals, its impact
varies—some model—dataset combinations show improvement, while others show degradation.

We then assess how these shifts influence aggregate performance. Figures[7]and[§]show the corre-
sponding changes in aggregation accuracy. Most baseline methods benefit from the intervention,
whereas CARE shows a slight performance drop. A plausible explanation is that once confounding
signals are mitigated, the additional latent variables in CARE may begin to model residual noise
rather than meaningful structure, slightly reducing its performance. Nevertheless, as shown in Sec-
tion[5.4] CARE without intervention still outperforms other baselines with the robustness prompt,
highlighting its effectiveness even without manually crafted interventions for hidden confounders.

MAE Comparison: Raw vs Intervened (Individual)

feedbackqa helpsteer2 ultrafeedback
12
12 m Raw 12 EE Raw I B Raw
I Intervened B Intervened II [M B Intervened

1.0 = 1.

o

am = II [[1.0 ii II II
RRUURRRuRRl | . B Rl el
UHUURRRRREE ... KNdUNERuEEE
ol || il L
RURURURRRNE .. 1

I
L |
I
L |
I
JI—
]
I N
I I
I E—
]

MAE

=3 =3

o ©

MAE
o =3
o o
I I S R
| I I I
I
|
I
|
I
|
I
|
—
|
=3
IS

0.0 0.0 0.0
R R e R R RGP D
VS 0N W N o o0 S VSN NS o7 N VSN N N o7 N
2 & & S E o 27 & & S F Y 2T E S S Y E
I EEF T & FE S FEE ST F S FEE ST
N b’é\\ P& O o~ oq,:\(\ N b’é\\ P& C w0 O IS F S & C [
.. L 2 A . L e 2 o S o > AN
& & & & & & & & &
N & N & N &
Models Models Models

Figure 5: Change in MAE (]) for individual LLM judges after applying the robustness prompt.

Kendall Tau Comparison: Raw vs Intervened (Individual)

feedbackqa helpsteer2 ultrafeedback
0.40
B Raw I I 1 I I I B Raw
0.41 mmm Intervened Ii I I Ii 0.20 Ii ii 0.35 Ii s Intervened
i | ois| | :
=] 0.3 . > =] II
) ® o - "
B nlh o £ o010 B II
© 0.2 © ©
£ g I | ¢ i
0.05
g 1R | ¢ g
01 i I II
0.0 -u EE Raw
I —-0.05] B Intervened
R e RGOS TR D
VST VN N NS 0 N VSN N NS 90 A
DT E S DG SE I E 2 E S Y S
FL N FEE T S FL N FEE T S
$ & P &S R ¢ L& TS S o ¢ R
(\\:"‘ (S @7‘)' A X (S ,Df‘)' A
< N < N
¥ ¢ SHCE
Models Models Models

Figure 6: Change in Kendall’s 7 (1) for individual LLM judges after the robustness prompt.

29

MAE Comparison: Raw vs Intervened (Aggregation)

feedbackqa helpsteer2 ultrafeedback
T T 12
EE Raw BN Raw

m Intervened | 12 Intervened |

EmE Raw
s Intervened |

1.0

0.8

MAE
MAE

0.6

0.4

0.2

0.0

N A S S &P

© <«
N

Models Models Models

Figure 7: Change in aggregate MAE (|) after propagating the robustness prompt through each
aggregation method.

Kendall Tau Comparison: Raw vs Intervened (Aggregation)

feedbackqa helpsteer2 ultrafeedback
T T T

T
| B Raw
B Intervened

T
N Raw
0.44 ™ Intervened

T
N Raw
0351
B Intervened

Kendall's Tau
Kendall's Tau
Kendall's Tau

N NG

S R R S G S

Models Models Models

SR

Figure 8: Change in aggregate Kendall’s 7 (1) after the robustness prompt.

30

973 E.6 Confounding Factors in Robustness Experiments

o74 To clarify the setup in Section [5.5] we summarize the artificially injected confounding factors in
975 Table 8] along with illustrative snippets. These perturbations target different dimensions of bias,
976 ranging from superficial stylistic changes to alterations that directly affect semantic correctness.

Bias Perturbation Injected Example Snippet (from Fig. 1)

Fallacy Oversight | Insert a factual error “The square root of 36 is 7...” (correct value is 6)

Authority Add a fake citation “...(Weisstein, Eric W. ‘Square Root’ Math-
World. . .)”

Beauty Add emojis / formatting “(® multiplied by 6 equals 36.”

Gender Add a gender-biased remark | “This might be a bit difficult for women to under-
stand...”

Table 8: Confounding factors and illustrative snippets.

77 Table[]reports the robustness of different aggregation methods under these injected biases. We find
978 that CARE is highly stable against stylistic biases such as beauty and authority, preserving both
979 rankings and score magnitudes. In contrast, robustness deteriorates when the bias directly undermines
980 factual or semantic content—as in fallacy oversight and gender perturbations.

981 This distinction aligns with our hypothesis: fallacy oversight introduces factual inaccuracies that
982 reduce answer quality, producing expected shifts in judge scores. Meanwhile, gender bias activates
983 explicit safety mechanisms in alignment-tuned LLM judges, leading to consistent downscoring across
984 models and correspondingly large shifts in aggregate outcomes.

31

985

986
987
988
989
990
991

992
993
994

995

996
997
998
999
1000
1001
1002
1003
1004
1005
1006

E.7 Additional Controlled Experiment on Confounding Factors

Unlike the semi-synthetic perturbations in Section [5.5] here we investigate whether CARE can
separate the true quality latent factor from naturally arising confounders in a more controlled setting.
Specifically, we introduce two dummy judges whose scores are directly correlated with response
length or the presence of specific words. If CARE functions as intended, CARE should recover a
factor structure in which high-quality judges align with the true quality factor (), while the dummy
judges align with a distinct confounder.

Setup. We ran CARE-SVD with 14 judges on the FEEDBACKQA dataset, combining 10 LLM
judges, 2 programmatic “dummy” judges (sensitive to length or special keywords), and 2 human
annotators. The factor loadings are presented in Table 0]

Results. The observed loadings align with our hypothesis:

* Factor 1 (true quality @)). This factor exhibits broad, balanced loadings across competent LLM
judges and the two human judges, with much weaker loadings for the programmatic dummy judges.
Within model families, larger models have higher loadings (e.g., Llama-3.1-8B > Llama-3.2-3B ~
Llama-3.2-1B), suggesting that () reflects underlying capability. Instruction-tuned models (Mistral-
7B-Instruct, Phi-4-mini-instruct, Llama-3.1-8B-Instruct, Gemma-3-4B-it) also show above-median
loadings, consistent with their alignment to human rubrics.

Factor 2 (length confounder). This factor is dominated by a high, concentrated loading on the
length-sensitive dummy_eval_1, with a secondary loading on gemma-3-1b-it (0.59). In contrast,
nearly all other judges—including both humans and stronger instruction-tuned models—have
near-zero loadings. Such a one-sided, few-judge pattern is characteristic of a confounder rather
than true quality.

Table 9: Judge loadings on latent factors in CARE-SVD. Factor 1 corresponds to true quality Q;
Factor 2 reflects a length confounder.

Judge Q (true quality) | Length confounder
Qwen3-8B 0.396 -0.240
Llama-3.1-8B-Instruct 0.664 -0.076
gemma-3-4b-it 0.706 -0.152
Llama-3.2-1B -0.009 -0.140
Qwen3-4B 0.180 0.008
gemma-3-1b-it 0.243 0.595
Llama-3.2-3B 0.033 0.057
Phi-4-mini-instruct 0.715 -0.051
Qwen3-1.7B 0.199 -0.012
Mistral-7B-Instruct-v0.3 0.804 0.016
dummy_eval_1 0.098 0.742
dummy_eval_2 0.035 0.290
human_eval_1 0.337 0.078
human_eval_2 0.338 0.059

32

1007

1008
1009
1010

1011
1012
1013

1014

1015

1016

1017

1018

1019

1020

1021
1022

1023
1024
1025

1026

1027
1028
1029
1030

NS
olo]oi030]0)0)

(a) Random Partitioning (b) Graph-aware Partitioning

Figure 9: Random Partitioning vs. Graph Aware Partitioning. A random partitioning (a) leaves cross-
view edges that violate the independence assumptions of tensor methods, whereas the graph-aware
partitioning (b) considers cross-view edges and restores the required separation.

E.8 Additional Real-World Experiment on Gaussian Mixture

We consider a Gaussian mixture setting where the latent variable is binary, but the observables (judge
outputs) are real-valued Gaussian scores. This experiment evaluates the effectiveness of Algorithm 2]
on a real dataset.

Setup. We use a subset of the CivilComments dataset [62], randomly sample 5,000 examples. The
ground-truth label is binary toxicity (0 or 1), while LLM judges provide real-valued toxicity scores
ranging from 0 to 9. In addition to the original LLM judges, we include five LLMs:

* meta-llama/Meta-Llama-3-8B-Instruct,

e mistralai/Mistral-7B-Instruct-v0.2,

* Qwen/Qwen2.5-0.5B-Instruct,

* Qwen/Qwen2.5-1.5B-Instruct,

* Qwen/Qwen2.5-3B-Instruct.
For the MV and WS baselines, we first discretize judge scores using a threshold of 4.5 before
applying majority vote or weighted sum. For AVG and UWS, we aggregate scores first, then apply

the threshold. CARE (Algorithm[2) directly infers the latent binary label from continuous scores.
We evaluate all methods using classification accuracy.

Table 10: Aggregated accuracy (higher is better) in CivilComments dataset.
Method Acc. (%)

MV 74.32%
AVG 73.80%
WS 74.95%

UWS 74.95%
CARE 75.27%

Results. Table|10[shows that CARE achieves the highest accuracy. This result highlights its ability
to better handle confounding factors and perform effective latent inference, even when the observed
data (continuous scores) differ from the latent variable type (binary labels).

E.9 Synthetic Experiment on Graph-Aware Tensor Decomposition

When judges exhibit conditional dependencies, naively partitioning them into views violates the
independence assumptions required by tensor decomposition. We hypothesize that partitioning judges
via a graph-aware procedure that respects dependency structure yields substantially better estimation
than random partitioning.

33

1031
1032
1033

1034

1035

1036
1037

1038
1039
1040
1041
1042
1043
1044

1045

1046
1047
1048
1049
1050

1051

1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062

Setup. We simulated 10,000 items scored by p = 12 judges, partitioned into three views of four
judges each. To induce conditional dependencies, we planted edges of strength 0.3 within each true
view at 40% density. We then compared two grouping strategies across ten random seeds:

* Random: assign judges to views uniformly at random;

* Graph-Aware: assign views to minimize cross-block edges in the empirical precision matrix.

Performance was measured by the /5 error in recovering the latent component means, i.e.
||M(IC - MQCHQ)-

Results. As shown in Figure[T0} graph-aware grouping
dramatically reduces reconstruction error—by more than
an order of magnitude—compared to random grouping.
This confirms the importance of respecting dependency 201
structure during view formation and underscores the advan-
tage of CARE, which integrates graph structure directly
into the tensor decomposition procedure.

Effect of Grouping Strategy on Recovery Error

154
104

E.10 Computing Resources

£, reconstruction error

We used a server equipped with an NVIDIA RTX 4090 01 —
(24GB). Generating LLM judge outputs took up to 3 hours ganaqm GrgphlA_ware
rouping rouping

per dataset. In contrast, the aggregation algorithms were
efficient, completing in under 1 minute for datasets with Figure 10: ¢ reconstruction error (mean

approximately 5,000 rows. + SD) for random vs. graph-aware
grouping.
F Broader Impact Statement

This work presents a novel approach to aggregate scores

from multiple LLMs serving as judges by identifying con-

founding variables and thus potentially reducing the bias

in the overall judge scores. The potential broader impact

includes a framework for improved LLM-as-a-judge scores which can be used at various applications.
However, it is important to acknowledge that using LLMs as potential judges to automate labor-
intense annotation tasks which is an active area of research carries some limitations and past research
has discussed some unintended consequences, such as over-reliance on judge outputs, misuse and
misinterpretation of results which might carry high real-world stakes. It is crucial to use automated
LLM-as-a-judge tools responsibly and ethically, considering potential biases in data and models, and
ensuring transparency and accountability in their application.

34

	Introduction
	Background and Overview
	CARE: Confounder-Aware Aggregation for Reliable Evaluation
	Graphical Model Framework And Assumptions
	CARE Algorithm
	Heuristics for Identifiability and Robust Estimation

	Theoretical Analysis
	Experimental Results
	Improving Aggregation of LLM judges
	Effective Integration of Program Judges
	Progressive Judge Expansion
	Comparison with Individual Intervention
	Robustness to Confounding Factors
	Synthetic Experiments

	Related Work
	Conclusion
	Glossary
	Extended Related Work
	Biases in LLM-as-a-Judge
	Label Aggregation for Multiple Noisy Evaluators
	Our Contribution in Context

	Algorithm Details
	Tensor-based CARE Algorithm
	SVD Baseline in Synthetic Experiment
	Genral CARE Setup
	Heuristics and Justifications

	Theory
	Model and Notation
	Graph Structure Identifiability
	Sample Complexity Bound
	Misspecification Error
	Sample Complexity for CARE tensor algorithm
	Proofs

	Experiment Details
	Datasets
	Prompt Templates
	Individual LLM Judge Performance
	Programmatic Judges
	Effects of Prompt-Based Intervention (Section 5.4)
	Confounding Factors in Robustness Experiments
	Additional Controlled Experiment on Confounding Factors
	Additional Real-World Experiment on Gaussian Mixture
	Synthetic Experiment on Graph-Aware Tensor Decomposition
	Computing Resources

	Broader Impact Statement

