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Abstract

Real-world noise removal is crucial in low-level computer vision. Due to the
remarkable generation capabilities of diffusion models, recent attention has shifted
towards leveraging diffusion priors for image restoration tasks. However, existing
diffusion priors-based methods either consider simple noise types or rely on ap-
proximate posterior estimation, limiting their effectiveness in addressing structured
and signal-dependent noise commonly found in real-world images. In this paper,
we build upon diffusion priors and propose adaptive likelihood estimation and
MAP inference during the reverse diffusion process to tackle real-world noise. We
introduce an independent, non-identically distributed likelihood combined with
the noise precision (inverse variance) prior and dynamically infer the precision
posterior using variational Bayes during the generation process. Meanwhile, we
rectify the estimated noise variance through local Gaussian convolution. The fi-
nal denoised image is obtained by propagating intermediate MAP solutions that
balance the updated likelihood and diffusion prior. Additionally, we explore the
local diffusion prior inherent in low-resolution diffusion models, enabling direct
handling of high-resolution noisy images. Extensive experiments and analyses on
diverse real-world datasets demonstrate the effectiveness of our method. Code is
available at https://github.com/HUST-Tan/DiffusionVI.

1 Introduction

Real-world imaging modalities, such as photography and biomedical imaging, frequently encounter
complex image noise that is both signal-dependent and spatially correlated [23, 35]. Removing such
noise is critical for subsequent image analysis and understanding. Existing deep learning-based image
denoising methods rely on either large amounts of paired images for supervised training [50, 48,
49, 25] or noisy images for self-supervised training [31, 23, 46, 33]. However, collecting massive
amounts of data is expensive and time-consuming in real-world scenarios. Therefore, designing
effective and data-efficient real-world denoising methods is of significant practical importance.

Incorporating image priors and the likelihood, and conducting the corresponding posterior inference
(e.g., maximum-a-posteriori (MAP) estimation and mean estimation), is a classical and data-efficient
approach to image restoration [26, 18]. Nowadays, deep generative models such as VAE, GAN, and
Normalizing-flow have shown the capacity to capture and model complex image statistics, surpassing
traditional analytical image priors [32]. Recent diffusion models have demonstrated state-of-the-art
image generation capabilities [14, 37] and have been incorporated into various image restoration
tasks as powerful image priors [19, 12, 5].
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The essence of applying diffusion priors to address image denoising lies in accurately integrating
the degraded image into the generation process of pre-trained diffusion models, underscoring the
importance of the likelihood function. Unlike Gaussian white noise, real-world image noise is
intricate and challenging to model precisely and analytically [17, 21]. Many existing methods based
on diffusion priors solely account for i.i.d. Gaussian noise [19, 5, 43, 10], making them ineffective
for real-world noise removal. On the other hand, some approaches targeting complex and non-linear
degradations employ hard data-consistency strategies and approximate posterior inference during the
generation process [12, 45, 8], yielding unsatisfactory real-world denoising outcomes due to their
coarse likelihood modeling. Although a structured and heteroscedastic Gaussian likelihood function
can well approximate real-world noise, such a model is computationally expensive due to the large
covariance matrix and also impractical due to the unknown noise variance.

To tackle these challenges, this paper integrates variational Bayes and presents adaptive likelihood
estimation and MAP inference during the generation process of diffusion priors to handle real-world
noise. We introduce an independent, non-identically distributed (i.ni.d.) likelihood combined with
a precision prior to model real-world noise. Such a choice allows modeling the spatially variant
feature of noise and meanwhile avoids modeling covariance, trading off the accuracy for practical
feasibility. Based on variational Bayes, the i.ni.d. precision posterior at each step in the reverse
process is subsequently inferred, which adaptively refines the likelihood function and aligns with
the real-world noise model. Additionally, we introduce local Gaussian convolution to rectify the
estimated noise variance, compensating for the lack of spatial correlation in the i.ni.d. likelihood
function. By adaptively updating the likelihood at each reverse diffusion step, the final denoised
result is achieved by progressively propagating the intermediate MAP solutions that strike the best
balance between the noisy image and diffusion prior.

Furthermore, real-world images exhibit diverse resolutions, often differing from those of pre-trained
diffusion models. Existing methods utilize patch-based [12] or resize-based [19] operations, which are
laborious and may impact low-level details. We observe that diffusion models pre-trained with low-
resolution (LR) images tend to yield local diffusion priors effective for image restoration, enabling
the direct treatment of high-resolution (HR) noisy images. The main contributions of this paper are
summarized as follows:

• We propose adaptive likelihood estimation and MAP inference based on diffusion priors
and variational Bayes to address real-world complex noise.

• We explore the local prior exhibited by diffusion models pre-trained with LR images.

• Our method outperforms other unsurpervised denoising methods as well as diffusion priors-
based methods on diverse real-world image denoising datasets.

2 Related Works

Deep Learning-based Image Denoising. By harnessing modern deep architectures and large-scale
paired training datasets, supervised learning-based denoising methods such as VDN [48], Restormer
[49], and GRL [25] have significantly enhanced in-distribution denoising performance. However,
their reliance on extensive paired data poses challenges for real-world applications, prompting the
exploration of self-supervised denoising approaches. These include Blind spot (BS)-based methods
(e.g., SSDN [22], Noise2Self [3], Nei2Nei [16], and B2U [44]), resampling-based methods (e.g.,
Nr2N [29] and R2R [34]), and regularization-based methods (e.g., Noise2Score [20] and Stein [38]).
However, these methods assume spatially independent or analytical noise, which deviates from the
structured and complex real-world noise. Recent advancements, such as AP-BSN [23] and LG-BPN
[46], have integrated Pixel-shuffle and masked convolution into BS networks to address real-world
noise. Other approaches have leveraged disentangled representation learning [11, 31, 6]. Nonetheless,
these methods often require large quantities of noisy images and lack data efficiency. Several single
image-based deep learning methods (e.g., DIP [42], Self2Self [36], ZS-N2N [27], and ScoreDVI [7])
have been proposed, but their performance in real-world denoising scenarios remains suboptimal,
underscoring the need for more effective approaches.

Diffusion Priors for Image Restoration. Diffusion models have exhibited remarkable image
generation capabilities [14, 40, 37] and have been integrated into inverse problems as diffusion priors
to address various image restoration tasks in an unsupervised manner [24]. Existing methods based
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on diffusion priors can be broadly categorized into two aspects: linear inverse problem-solving based
on exact degradation models (e.g., DDRM [19], DDNM [43], MCGDiff [5], and FPS [10]), and
nonlinear inverse problem-solving based on approximate posterior inference (e.g., DPS [8], GDP
[12], and DR2 [45]). In the former, these methods typically assume analytical noise, such as additive
white Gaussian noise, overlooking real-world noise that is signal-dependent and spatially correlated.
Given the difficulty in precisely modeling and estimating real-world noise, these methods often prove
ineffective in handling such noise.

In the latter, hard data-consistency terms are introduced to replace accurate likelihood modeling, and
approximate posterior inference is conducted during the inverse diffusion process to address complex
degradations. However, due to the absence of explicit constraints from likelihood functions, these
methods heavily rely on proper hyperparameters (e.g., guidance scales in GDP [12], step size in DPS
[8], or downsampling factors in DR2 [45]), leading to significant reconstruction errors. Diverging
from these methods, we refrain from specifying the accurate noise model but introduce the noise
precision prior and dynamically estimate its posterior using variational Bayes in the reverse diffusion
process, enabling adaptive estimation of likelihood functions and better posterior inference.

3 Methods

3.1 Preliminary

The Diffusion model is a class of generative models used to model the distribution q(x0). Its forward
process is a Markov chain with fixed Gaussian transition and length T , which gradually corrupts the
data x0 by adding Gaussian noise according to a pre-defined variance schedule η1, · · · , ηT :

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), q(xt|xt−1) = N (xt−1;
√
1− ηtxt−1, ηtI) (1)

A nice property of the forward process is that sample xt at any step t can be obtained from x0 in a
closed-form manner:

q(xt|x0) = N (xt;
√
ātx0, (1− āt)I) → xt =

√
ātx0 +

√
1− ātϵ (2)

where at = 1− ηt, āt =
∏t
s=1 as, ϵ ∼ N (0, I).

In the reverse process, the diffusion model progressively recovers data from noise distribution p(xT ),
which is again a Markov chain with learned Gaussian transition:

p(x0:T ) = p(xT )

T∏
t=1

p(xt−1|xt), p(xt−1|xt) = N (µθ(xt, t), σ
2
t I) (3)

where σ2
t is a constant relating to ηt and can be pre-computed. And µθ(xt, t) is usually parameterized

by a DNN ϵθ(xt, t):

µθ(xt, t) =
1

√
at

(
xt −

βt√
1− āt

)
ϵθ(xt, t) (4)

3.2 Naive Image Denoising

Consider the image formation process y0 = f(x0, n) in the real-world scenario, where n is the raw
noise, f is the transformation function, y0 ∈ RN and x0 ∈ RN (N is the total pixel number) are
the observed noisy image and original clean image, respectively. Noise in y0 generally exhibits
signal-dependent and spatially-correlated characteristics, e.g., sRGB noise [23], due to the Poisson
nature of photons and compound transformation in f . Suppose there are no non-linear parts in f , the
image formation process can be simplified as y0 = x0 + n0(x0) with corr(ni0, n

j
0) > 0, where n0 is

the image noise related to the signal x0; corr(i, j) represents the correlation coefficient between two
neighboring elements i and j.

Real-world image denoising task is to recover clean and high-quality x0 from noisy y0, which turns
into solving the posterior p(x0|y0) in Bayesian statistics. As the pre-trained diffusion model possesses
superior image priors, it is natural to inject the observed information y0 into its reverse diffusion
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(or generation) process defined in Eq. (3) to achieve the conditional inference of x0:T given y0, i.e.,
p(x0:T |y0). Due to that y0 and intermediate xt exhibit large distribution gaps (as they have different
noise types and strength) and it is also difficult to directly model p(y0|xt) [8], we hence follow
[39, 45] and re-corrupt y0 using Eq. (2) in each step t to obtain yt, which serves as intermediate
conditions. Such choice results in the target conditional distribution:

p(x0:T |y0) → p(xT )

T∏
t=1

p(xt−1|xt, yt−1) ∝ p(xT )

T∏
t=1

p(xt−1|xt)p(yt−1|xt−1) (5)

where yt =
√
āty0+

√
1− ātϵ, and p(xT |yT ) ≈ p(xT ) as xT and yT are approximated independent

normal distributions.

Structured and heteroscedastic Gaussian likelihood model. The right-hand side of Eq. (5)
explicitly involves the prior p(xt−1|xt) and likelihood p(yt−1|xt−1) at each step t. The prior
p(xt−1|xt) has been available from the pre-trained diffusion model in Eq. (3), necessitating the
modeling of p(yt−1|xt−1). As discussed above, in principle we can assume that y0 follows the
structured and heteroscedastic Gaussian distribution N (x0,Σ(x0)), where Σ is the non-diagonal
covariance matrix with variances related to signal x0, which allows modeling the signal-dependent
and spatially-correlated properties of real-world noise. As a result, we derive that

yt−1 =
√
αt−1 (x0 +Aϵ2) +

√
1− αt−1ϵ = xt−1 +

√
αt−1Aϵ2, AAT = Σ(x0), ϵ2 ∼ N (0, I)

(6)
which indicates that p(yt−1|xt−1) = N (yt−1;xt−1,Σ(xt−1)) with Σ(xt−1) = αt−1Σ(x0). See
detailed derivation in the Appendix A.1.

As the prior p(xt−1|xt) in Eq. (3) and likelihood p(yt−1|xt−1) in Eq. (6) both have Gaussian forms,
the posterior distribution in Eq. (5) is theoretically computable. Nevertheless, we note that the
above formulation presents several practical challenges. First, specifying an accurate Σ(x0) for
y0 is difficult, which involves the estimation of noise variance and the noise correlation between
neighboring pixels. These estimations are hard to achieve based on a single y0 and are open research
problems [17, 21]. In addition, the posterior inference with non-diagonal covariance matrix Σ is both
memory-demanding and computationally expensive. These challenges prevent the direct application
of the structured heteroscedastic Gaussian likelihood.

3.3 Variational Denoising with Adaptive Likelihood Estimation

To deal with these difficulties, we consider p(y0|x0) = N (x0, diag(ϕ0)
−1), which has diagonal

precision matrix diag(ϕ0) (i.e., the inverse of the covariance matrix, ϕ0 ∈ RN ). Such diagonal
Gaussian likelihood allows modeling the spatially variant feature of real-world noise but ignores the
noise correlation at this stage. Based on Eq. (6), p(yt−1|xt−1) then becomes:

p(yt−1|xt−1, ϕt−1) = N (yt−1;xt−1, diag(ϕt−1)
−1), ϕt−1 =

ϕ0

αt−1
(7)

Hyperprior for precision ϕt. Instead of specifying an accurate ϕ0, which is again difficult, we
introduce the independent Gamma hyperprior p(ϕ0) =

∏N
i=1 Gamma(ϕi0;α, β) for ϕ0 (α and β are

scalars), which serves as the rough precision prior for noise in y0. Meanwhile, based on Eq. (7), it is
straightforward that ϕt−1 follows

p(ϕt−1) =

N∏
i=1

Gamma(ϕit−1;αt−1, βt−1),with αt−1 = α, βt−1 = βαt−1 (8)

Because p(ϕt−1) merely provides initial gauss about the noise precision (also variance) at each step
t, we then expect to find the corresponding precision posterior p(ϕt−1|xt−1, yt−1), which is more
accurate and allows a better likelihood function p(yt−1|xt−1). As posterior ϕt−1 depends on xt−1,
we have to simuteniously infer them together, i.e., the following joint distribution:

p(xt−1, ϕt−1|xt, yt−1) =
p(yt−1|xt−1, ϕt−1)

1
γ p(ϕt−1)p(xt−1|xt)

p(yt−1|xt)
(9)

where γ ≤ 1 is the temperature parameter, which is typically utilized in variational inference to scale
the likelihood function [2].
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Variational inference of precision posterior. As p(xt−1, ϕt−1|xt, yt−1) in Eq. (9) is a non-trivial
distribution, we hence choose a trivial and factorized variational distribution g(xt−1, ϕt−1) =
g(xt−1)g(ϕt−1) to approximate the true posterior p(xt−1, ϕt−1|xt, yt−1), under the KL-divergence
distance. Following the mean-field variational Bayes presented in [4], the optimal g(xt−1)g(ϕt−1)
can be solved by cycling through xt−1 and ϕt−1 and replacing each in turn with a revised estimate of
g(xt−1) and g(ϕt−1). Specifically, we derive the following alternate update scheme for finding the
optimal g(ϕt−1):

1. Update g(xt−1). Given g(ϕt−1), the optimal g∗(xt−1) is provided by

log g∗(xt−1) = Eϕt−1
log p(yt−1|xt−1, ϕt−1)

1
γ p(xt−1|xt)p(ϕt−1) (10)

which corresponds to
g∗(xt−1) = N (xt−1; µ̂t−1, σ̂

2
t−1) (11)

with mean µ̂t−1 and variance σ̂2
t−1 as

µ̂t−1 =
σ2
tE(ϕt−1)⊙ yt−1 + µθ(xt, t)γ

E(ϕt−1)σ2
t + γ

, σ̂2
t−1 = diag

(
γσ2

t

E(ϕt−1)σ2
t + γ

)
(12)

where ⊙ denotes element-wise multiplication; E(ϕt−1) at step T is initialized as a constant (which is
robust to different initializations) and then is updated as E(ϕt−1) = α̂t−1/β̂t−1 (see Update 2).

2. Update g(ϕt−1). Similar to g(xt−1), the optimal g∗(ϕt−1) given g(xt−1) is

g∗(ϕt−1) =

N∏
i=1

Gamma(ϕit−1; α̂
i
t−1, β̂

i
t−1) (13)

with shape α̂t−1 and rate β̂t−1 as

α̂it−1 = αt−1 +
1

2γ
, β̂it−1 = βt−1 +

(yit−1 − µ̂it−1)
2 + (σ̂2

t−1)
i

2γ
(14)

The detailed derivation of Eqs. (11) and (13) is given in the Appendix A.2.

MAP estimation with updated likelihood. During the updates, α̂t−1 and β̂t−1 in g(ϕt−1) are
adptively updated and become signal-dependent as indicated by Eq. (14). Once the cycling con-
verges, we can obtain the approximated posterior distribution g(ϕt−1) and the updated likelihood
p(yt−1|xt−1) = Eϕt−1∼g(ϕt−1)p(yt−1|xt−1, ϕt−1) at step t. As a result, by maximizing the condi-
tional distribution in Eq. (5) at step t, the optimal x∗

t−1 that balances the image prior and the observed
yt−1 can be obtained as follows:

x∗
t−1 = argmax log p(yt−1|xt−1) + log p(xt−1|xt)

≈ argmax Eϕt−1 log p(yt−1|xt−1, ϕt−1) + log p(xt−1|xt)

= argmax − (xt−1 − yt−1)
2E(ϕt−1)−

(xt−1 − µθ(xt, t))
2

σ2
t

= π̂t−1yt−1 + (1− π̂t−1)µθ(xt, t),with π̂t−1 =
σ2
t

σ2
t + 1/E(ϕt−1)

(15)

where E(ϕt−1) = α̂t−1/β̂t−1 is the expectation of noise precision posterior (and hence 1/E(ϕt−1) =

β̂t−1/α̂t−1 is the estimated noise variance at step t), and π̂t ∈ [0, 1] suggests that the optimal x∗
t−1 is

the convex combination of yt−1 and µθ(xt, t). Note that, in the second row of Eq. (15), we utilize
the following Jensen’s Inequality

log p(yt−1|xt−1) = logEϕt−1∼g(ϕt−1)p(yt−1|xt−1, ϕt−1) ≥ Eϕt−1∼g(ϕt−1) log p(yt−1|xt−1, ϕt−1)
(16)

and employ the lower bound of log p(yt−1|xt−1). Optimizing this lower bound generally produces
satisfactory solutions, like in variational inference, VAE, and diffusion models.

Rectification of 1/E(ϕt−1). By considering the diagonal Gaussian likelihood, the noise correlation
between neighboring pixels in y0 (and yt) is ignored, which affects the estimation of the precision
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Algorithm 1 Difusion priors-based variational image denoising

Input: Pre-trained diffusion model, noisy observation y0, hyperparameters α, β, temperature γ
1: xT ∼ N (0, I),E(ϕT ) = 1⃗
2: for t = T, · · · , 1 do
3: Compute µθ(xt, t) based on Eq. (4); Compute yt−1 based on Eq. (7)
4: Set µ̂old

t−1 = 0⃗, µ̂t−1 = µθ(xt, t)

5: while ∥µ̂old
t−1 − µ̂t−1∥22 ≥ 1e−6 do

6: Update g(xt−1) = N (µ̂t−1, σ̂
2
t−1) using Eq. (12)

7: Update g(ϕt−1) =
∏N
i=1 Gamma(α̂it−1, β̂

i
t−1) using Eq. (14)

8: end while
9: Solve optimal xt−1 using Eq. (15) or Eq. (17)

10: end for
11: return x0

256×256 images sampled from 128×128 diffusion model 512×512 images sampled from 256×256 diffusion model

基于128×128扩散模型采样256×256分辨率图像 基于256×256扩散模型采样512×512分辨率图像

基于256×256扩散模型采样256×256分辨率图像基于128×128扩散模型采样128×128分辨率图像

Figure 1: Unconditional HR images generation from LR diffusion models

posterior and noise variance 1/E(ϕt−1). This is apparent as transformations in f (e.g., demosaicking
in the ISP pipeline) will cause the local correlation of noise variance (or precision) while elements
in E(ϕt−1) are updated independently as shown in Eq. (14). Motivated by the analysis of spatial
correlation of real-world noise in [23], we introduce a local 2D convolution with a normalized
Gaussian kernel G(l, s) (l is kernel size and s is the scale) to manually rectify 1/E(ϕt−1). That is,

1/E(ϕt−1) = Conv(1/E(ϕt−1), G(l, s)), π̂t−1 =
σ2
t

σ2
t + 1/E(ϕt−1)

(17)

By progressively calculating x∗
t−1 at each step t based on Eqs. (15) and (17), the final denoised result

x0 can be obtained. The whole denoising algorithm is presented in Alg. 1.

3.4 Local Diffusion Priors

The common practice of sampling images from pre-trained diffusion models is to maintain the sam-
pling resolution identical to the training resolution, which produces the best generation performance.
In image restoration tasks, however, the resolution of the observed noisy image generally mismatches
that of the pre-trained diffusion model. Existing approaches typically use patches [12] or resize
operations [19] to address this issue, which is cumbersome and may affect local details.

We observe that when a diffusion model trained with the U-Net architecture on low-resolution (LR)
images is employed to sample high-resolution (HR) images, it exhibits local properties. Fig. 1 shows
sampled 512× 512 and 256× 256 images from pre-trained 256× 256 2 and 128× 128 3 diffusion
models, respectively, and it is clear that the generated textures mainly focus on local areas. As HR
images contain more redundant information, denoising HR images is simpler than denoising their LR
counterparts under the same noise level [41]. When the LR diffusion model is used to generate HR
samples, there is only a short time window for it to decide the structures of the sampled images [15],
thus the generation tends to be local. Similar to traditional TV priors and Markov random fields that
focus on designing local image statistics, we note that the local property of LR diffusion models is
also effective for image denoising. This allows us to directly adopt the pre-trained LR diffusion prior
to denoise HR noisy images without additional operations.

2https://openaipublic.blob.core.windows.net/diffusion/jul-2021/256x256_diffusion_uncond.pt
3https://openaipublic.blob.core.windows.net/diffusion/jul-2021/128x128_diffusion.pt
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Table 1: Selection of β and s for different test datasets.
Datasets SIDD FMDD CC PolyU Datasets SIDD FMDD CC PolyU
β value 0.03 0.025 0.01 0.005 s value 0.6 1.0 1.0 1.0

4 Experiments

4.1 Experimental settings

Datasets. We consider several real-world denoising datasets to evaluate our method, including SIDD
[1], PolyU [47], CC [30], and FMDD [51]. SIDD validation, PolyU and CC datasets contain natural
sRGB images from smartphones or commercial camera brands, where SIDD consists of 1280 patches
with size 3×256×256, PolyU and CC consist of 100 and 15 natural images with size 3×512×512,
respectively. FMDD contains 48 fluorescence microscopy images with size 512× 512.

Implementation Details. We utilize the 256× 256 unconditional diffusion model 2 provided by [9]
as the diffusion prior throughout our main experiments, regardless of the resolution of input noisy
images. The total diffusion steps are 1000 by default, i.e., t ∈ [1, · · · , 1000]. We choose α = 1 and
Gaussian kernel size l = 9. The hyperparameters β and s for different datasets are summarized in
Table 1. Different α/β represent the rough estimation of the prior precision for noises in different
datasets, and Gaussian kernel scale s controls the range of local spatial correlation. The temperature γ
is set to 1/5 for all datasets and will be ablated in the sequel. For SIDD dataset, the sizes of x0:T are
3× 256× 256. For the remaining datasets, they are 3× 512× 512. The denoised results for FMDD
are obtained by averaging the channel dimension of x0 to get one-channel images. All experiments
are conducted on Nvidia 2080Ti GPU.

Compared methods. We consider several representative single image-based unsupervised denoising
methods, including DIP [42], Self2Self [36], PD-denoising [52], ZS-N2N [27], and ScoreDVI [7]. We
also compare against AP-BSN [23], a self-supervised denoising method that can be trained on noisy
images of test sets directly. In addition, several diffusion priors-based image restoration methods,
including DDRM [19], GDP [12], and DR2 [45], are chosen to denoise real-world images. For these
compared methods, we utilize their official source code and report the corresponding performance.
Particularly, these diffusion-based methods employ the same diffusion prior 2 as ours. As DDRM
can only handle i.i.d. Gaussian noise and requires the noise std σddrm, we hence set σddrm =

√
β/α,

i.e., the prior noise std in our method. GDP introduced the hard data-fidelity term ŝ∥x̂0 − y0∥22,
where x̂0 is the estimated denoised result at each reverse diffusion step, and ŝ is the guidance scale.
We tune different ŝ for different datasets. DR2 first obtained the intermediate xt−1 by adopting a
low-pass filter ΦD and setting xt−1 = ΦDyt−1 + (1− ΦD)xt−1 and then conducted inference from
step τ + 0.25T to τ . We set D = 8 (Downsampling factor) and τ = 100 for DR2. We evaluate the
quantitative denoising quality using PSNR and SSIM metrics.

4.2 Main Results

We present quantitative comparisons of different methods in Table 2 and visual comparisons in Figs.
2, 3 (and Figs. 5, 6, 7 in the Appendix A.4). Overall, our method achieves the best quantitative (on
average) and qualitative performance across all compared methods.

First, while Self2Self excels on PolyU and CC datasets, it shows poor denoising capacity (both
PSNR/SSIM values and visual results) on SIDD and FMDD that contain severe image noise, as
shown in Fig. 5. PD-denoising is generally effective but often introduces small artifacts that hinder
visual effects, as seen in Fig. 5. ZS-N2N struggles with real-world noisy images and typically leaves
noticeable noise after denoising due to its reliance on the independent noise assumption. Regarding
diffusion priors-based methods, GDP and GR2 perform poorly on real-world denoising, introducing
artifacts (see Figs 5a and 7) and over-smoothing (see Fig. 3), possibly because they adopt hard
data-consistency methods, which significantly deviate from the true likelihood function. As DDRM
assumes Gaussian white noise, the denoised images often retain some noise, which cannot be entirely
removed, as shown in Figs 3 and 5b. ScoreDVI is the most competitive method against ours, but it
sometimes blurs images and loses local textures, as indicated by Fig. 2. Unlike these methods, our
approach effectively removes severe noise while preserving image details and textures.
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Table 2: Quantitative comparisons (PSNR(dB)/SSIM) of different methods on diverse real-world
image datasets. The best and second-best PSNR/SSIM results are marked in bold and underlined.

Methods SIDD Validation [1] FMDD [51] PolyU [47] CC [30] Average
DIP [42] 32.11/0.740 32.90/0.854 37.17/0.912 35.61/0.912 34.45/0.855

Self2Self [36] 29.46/0.595 30.76/0.695 38.33/0.962 37.45/0.948 34.00/0.800
PD-denoising [52] 33.97/0.820 33.01/0.856 37.04/0.940 35.85/0.923 34.97/0.885

ZS-N2N [27] 25.58/0.433 31.61/0.767 36.05/0.916 33.58/0.854 31.71/0.743
ScoreDVI [7] 34.75/0.856 33.10/0.865 37.77/0.959 37.09/0.945 35.68/0.906

GDP [12] 27.65/0.615 27.68/0.698 32.30/0.905 31.45/0.916 29.77/0.784
DR2 [45] 32.02/0.728 30.52/0.813 34.37/0.925 32.30/0.876 32.30/0.836

DDRM [19] 33.14/0.796 32.54/0.837 33.14/0.767 36.04/0.923 33.72/0.831
Ours 34.76/0.887 33.14/0.860 38.71/0.970 38.01/0.959 36.16/0.919

APBSN [23] 36.80/0.874 31.99/0.836 37.03/0.951 34.88/0.925 35.18/0.897

SIDD 37-18,37-22,10-6,17-21,39-4,10-23,19-32,8-30,2-21,10-11
ScoreDVI:391,1087,1179,37,1183,828

26.75/0.627

ScoreDVI

27.40/0.601

APBSNDDRM

24.41/0.639

GDP Ours

19.37/0.251

31.53/0.80931.58/0.775 29.99/0.74121.35/0.365

19.44/0.234

28.13/0.755

27.22/0.633

Noisy GT

17.82/0.084

Figure 2: Visual comparison of different denoising methods in SIDD validation dataset.
NikonD800_5_125_6400_stair_3_real

APBSN

ZSN2N

Self2Self GDP Ours

DDRM ScoreDVI

GTNikonD800_5_125_6400_stair_3_real

PD DR2

Figure 3: Visual comparison of different denoising methods in PolyU. PSNR/SSIM values: PD
(36.77/0.916), APBSN (37.59/0.944), DR2 (34.53/0.864), Self2Self (39.44/0.961), ZSN2N (35.12/0.879), GDP
(33.43/0.888), DDRM (33.61/0.773), ScoreDVI (37.76/0.939), Ours (39.01/0.965)

Although APBSN achieves the best PSNR values in the SIDD dataset, it frequently introduces
noticeable color artifacts (see Figs. 2, 3) and oversmooths images (see Fig. 7). In addition, when
applied to FMDD, PolyU, and CC datasets that contain fewer noisy images, its denoising performance
significantly degrades and underperforms our method. This highlights the advantage of our data-
efficient approach.

4.3 Ablation and Analyses

Adaptive likelihood estimation (ALE). We analyze 1/E(ϕ0) = β̂0/α̂0, the estimated noise variance,
and present quantitative and qualitative results in Fig. 4. Fig. 4a demonstrates that β̂0/α̂0 effectively
reflects the noise variance of y0. That is, β̂0/α̂0 exhibits larger values in noisier areas of y0 and
smaller values (black) in less noisy areas. Fig. 4b implies that the average of β̂0/α̂0 are inversely
correlated with PSNR values of denoised images, which is reasonable since noisier images are more
challenging to denoise and hence have lower PSNR. Conversely, the prior noise variance β/α = 3e−3,
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Figure 4: The estimated noise variance 1/E(ϕ0) = β̂0/α̂0 on SIDD dataset

Table 3: Ablation on adaptive likelihood estimation and local Gaussian convolution
with ALE with Gaussian Conv SIDD FMDD PolyU CC

✗ ✗ 32.12/0.741 27.07/0.530 35.40/0.895 33.10/0.830
✓ ✗ 34.63/0.870 33.11/0.865 38.70/0.969 37.82/0.956
✓ ✓ 34.76/0.887 33.14/0.860 38.71/0.970 38.01/0.959

indicated by the black plot in Fig. 4b are constant for all noisy images. These analyses suggest that
the ALE captures the signal-dependent features of real-world noise effectively.

In addition, we skip the variational inference process and directly use the prior precision p(ϕt−1)
to derive x∗

t−1, resulting in x∗
t−1 = πt−1yt−1 + (1− πt−1)µθ(xt, t), πt−1 = σ2

tα/(σ
2
tα+ β). The

corresponding denoising result (i.e., without ALE) is reported in the second row of Table 3 and is
largely behind the denoising result of using ALE, further verifying the effectiveness of ALE.

Rectification in Eq. (17). By introducing the local Gaussian convolution operation, we explicitly
refine the estimated noise variance 1/E(ϕt−1). As shown in the fourth row of Table 3, using
1/E(ϕt−1) consistently improves the quantitative performance.

Table 4: Ablation of temperature γ on CC dataset
γ value 1 1/2 1/4

PSNR/SSIM 37.74/0.955 37.73/0.955 37.90/0.957
γ value 1/5 1/10 1/20

PSNR/SSIM 38.01/0.959 37.80/0.953 35.55/0.913

Table 5: Ablation of β and s on CC dataset
β value 5e-3 1e-2 1.5e-2

PSNR/SSIM 38.03/0.957 38.01/0.959 37.47/0.953
s value 0.8 1.0 1.2

PSNR/SSIM 37.876/0.957 38.01/0.959 38.10/0.959

Table 6: Denoising performance of using diffusion priors pre-trained with other image resolutions
Res.: Train → Test SIDD Res.: Train → Test CC PolyU FMDD

128 → 256 34.80/0.836 256 → 512 38.01/0.959 38.71/0.970 33.14/0.860
256 → 256 34.76/0.887 512 → 512 37.01/0.950 38.33/0.966 33.02/0.859

Temperature γ. When γ ≤ 1, the effect of diffusion priors p(xt−1|xt) is reduced within the
variational inference during the reverse diffusion process. As shown in Table 4, decreasing γ
gradually improves the quantitative denoising performance, peaking at γ = 1/5. Further reducing γ
degrades PSNR/SSIM as insufficient diffusion priors are involved in variational Bayes.

β in prior precision and kernel scale s. Regarding β, it roughly represents the noise level of noisy
image y (given α = 1) and we choose β according to the empirical variance of the textureless area
of y for one test set. kernel scale s is set by considering the spatial correlation of noise present in
real-world images. We ablate these two parameters in Table 5, which indicates that they are relatively
robust to moderate changes.

Local diffusion priors. We consider diffusion models pre-trained with other image resolutions
as diffusion priors, including the 128 × 128 version and 512 × 512 version 4. The corresponding
denoising performance is reported in Table 6, and implementation details are provided in the Appendix
A.3.1. Regarding SIDD, we observe that matching the resolution of diffusion priors and test images
(both 256× 256) achieves the best performance. Such a result is reversed for the remaining datasets,

4https://openaipublic.blob.core.windows.net/diffusion/jul-2021/512x512_diffusion.pt
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Table 7: The quantitative performance on removing other non-Gaussian synthetic noises
CBSD68 [28] Poisson (λ = 30) Bernoulli (p = 0.2) KodaK [13] Poisson (λ = 30) Bernoulli (p = 0.2)

ZS-N2N 27.55/0.781 20.20/0.828 ZS-N2N 28.09/0.750 19.98/0.820
Ours 29.24/0.833 26.11/0.784 Ours 30.56/0.839 27.17/0.799

where the 256× 256 diffusion prior for HR images is more effective than its 512× 512 counterpart.
This is likely because training HR diffusion models (e.g., ≥ 512) is more challenging, resulting in
inferior generation performance (e.g., FID) compared to LR diffusion models [9]. Consequently, the
local prior inherent in medium-resolution diffusion models is superior for restoring HR images.

4.4 Application to other non-Gaussian noises

Although our method is designed to handle real-world noise, it can also address other non-Gaussian
noises, including Poisson noise and multiplicative Bernoulli noise. As these synthetic noises are
spatially independent, we do not utilize Eq. (17) in our method. We report the denoising performance
in Table 7, with ZS-N2N [16] selected for comparison. Experimental details and visual results are
given in the Appendix A.3.2 and A.5. Our method achieves better quantitative metrics than ZS-N2N
on Poisson denoising and also preserves more local details and textures (see Fig. 8). While ZS-N2N
shows better SSIM than ours on Bernoulli denoising, it causes intensity shifts (see Fig. 9) and thus
has poorer PSNR.

4.5 Application to image demosaicing

In addition to denoising, our method is readily available for image restoration with pixel-wise
degradation, e.g., image demosaicing. To adapt our method to this task, we define the forward process
y0 = M ⊙ x0, where M is the degradation operator, and denotes element-wise multiplication. For
demosaicing, M is the binary mask with 0 values indicating missing pixels of y0. We can incorporate
M into p(yt−1|xt−1, ϕt−1) in Eq. (15), which results in π̂t−1 =

Mσ2
t

Mσ2
t+1/E(ϕt−1)

. In Table 8, we
compare our method against DDRM on image demosaicing (CFA pattern: RGGB), and our method
shows better results.

Table 8: Results of image demosaicing
Dataset Set14 CBSD68
DDRM 24.68/0.714 24.52/0.705

Ours 26.02/0.756 25.43/0.732

Table 9: Results of different sampling steps
Step 1000 500 250

SIDD Val 34.76/0.887 33.54/0.838 23.89/0.825
CC 38.01/0.959 37.18/0.947 22.72/0.716

Limitation. Our method builds on the DDPM sampling with a total of 1000 diffusion steps. Denoising
a single noisy image with a resolution of 256× 256 on an Nvidia 2080Ti GPU takes approximately
230 seconds, which is inefficient. In comparison, ZS-N2N takes about 16 seconds, despite its inferior
denoising performance. Naively reducing diffusion steps in our method leads to apparent performance
decreases, as indicated in Table 9. Our next move is to incorporate advanced accelerated sampling
strategies into our method to reduce inference time while maintaining performance.

5 Conclusion

In this paper, we built upon diffusion priors and variational Bayes and proposed adaptive likelihood
estimation and MAP inference during the reverse diffusion process, to handle real-world image
noise that is structured and signal-dependent. The employed i.ni.d. likelihood function, combined
with the precision prior and variational Bayes, allowed for the dynamical update of i.ni.d. noise
precision posterior in each step of the generation process. This strategy adaptively refined the
likelihood function and enabled the better MAP inference. Our method achieved excellent denoising
performance on diverse real-world image denoising datasets and was also effective for removing
other non-Gaussian synthetic noises.
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A Appendix

A.1 Derivation of Eq. (6)

As analyzed in Section 3.2, in principle we can model the likelihood function of real-world noisy
images as p(y0|x0) = N (x0,Σ(x0)), where Σ is a non-diagonal covariance matrix and its variance
is related to its mean x0 (or signal). In order to incorporate y0 into the inverse diffusion process
and shorten its gap to xt−1, we can construct yt−1 based Eq. (2) to obtain yt−1 =

√
ᾱt−1y0 +√

1− ᾱt−1ϵ2. For y0, it can be sampled from the multi-variate Gaussian p(y0|x0) = N (x0,Σ(x0)),
i.e., y0 = x0 + Aϵ, where AAT = Σ(x0), and A is obtained by Cholesky decomposition. Finally,
we obtain

yt−1 =
√
ᾱt−1y0 +

√
1− ᾱt−1ϵ =

√
ᾱt−1(x0 +Aϵ2) +

√
1− ᾱt−1ϵ

=
√
ᾱt−1x0 +

√
1− ᾱt−1ϵ+

√
ᾱt−1Aϵ2 = xt−1 +

√
ᾱt−1Aϵ2

(18)

A.2 Derivations of Eqs. (11) and (13)

Regarding Eq. (10), we have

Eϕt−1
logp(yt−1|xt−1, ϕt−1)

1
γ p(xt−1|xt)p(ϕt−1)

=Eϕt−1

N∑
i=1

(
−
(yit−1 − xit−1)

2

2γ
ϕit−1 −

(xit−1 − µit)
2

2σ2
t

)
+ const

=

N∑
i=1

(
−
(yit−1 − xit−1)

2

2γ
E(ϕit−1)−

(xit−1 − µit)
2

2σ2
t

)
+ const

=

N∑
i=1

−
(yit−1 − xit−1)

2E(ϕit−1)σ
2
t + (xit−1 − µit)

2γ

2γσ2
t

+ const

=

N∑
i=1

−
(E(ϕit−1)σ

2
t + γ)(xit−1)

2 − 2(E(ϕit−1)σ
2
t y
i
t−1 + µitγ)x

i
t−1

2γσ2
t

+ const

(19)

where µt = µθ(xt, t). We observe that Eq. (19) has the summation and quadratic form of xit−1, and
hence g(xt−1) is identified as a diagonal Gaussian distribution. By completing the square, we can
obtain

g(xt−1) = N (
σ2
tE(ϕt−1)⊙ yt−1 + µtγ

E(ϕt−1)σ2
t + γ

, diag(
γσ2

t

E(ϕt−1)σ2
t + γ

)) (20)

Similarly, given g(xt−1), the optimal g∗(ϕt−1) is provided by

log g∗(ϕt−1) = Ext−1
log p(yt−1|xt−1, ϕt−1)

1
γ p(xt−1|xt)p(ϕt−1) (21)

which corresponds to

Ext−1
log p(yt−1|xt−1, ϕt−1)

1
γ p(xt−1|xt)p(ϕt−1)

=Ext−1

N∑
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(
1

2γ
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2
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+ const
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1
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t
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i
t−1

)
+ const

(22)

From Eq. (22), we identify each g(ϕit−1) is a independent gamma distribution and hence g(ϕt−1) is

g∗(ϕt−1) =

N∏
i=1

Gamma(ϕit−1;αt−1 +
1

2γ
, βt−1 +

(yit−1 − µ̂it−1)
2 + (σ̂2

t−1)
i

2γ
) (23)
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A.3 Additional implementation details

A.3.1 Applying class-conditional diffusion models as diffusion priors

We note that [9] only provides the 256 × 256 unconditional diffusion model ϵθ(xt, t) trained on
ImageNet, and the remaining diffusion models are class-conditional, i.e., ϵθ(xt, c, t) with the class
label c. There are two ways to utilize these class-conditional diffusion priors for image denoising.
Regarding each noisy image, we first sample a class label c from randint(0, 1000) and input it to
the ϵθ(xt, c, t) combined with xt and t. One way is then ignoring the guidance from the pre-trained
classifier during the generation process and directly computing µθ(xt, t) based on ϵθ(xt, c, t) and Eq.
(4). The other way is further updating µθ(xt, t) to µθ(xt, t)+ gsσ

2
t∇xt

log pψ(c|xt), where pψ(c|xt)
is the classifier and gs is the guidance scale. Basically, we found these two ways resulted in similar
denoising performance, and Table 6 used the first way.

A.3.2 Experiments on denoising non-Gaussian synthetic noises

Synthesis of noisy images. Regarding Bernoulli noise, we obtain the noisy image by y0 = x0 ⊙
M,M = torch.bernoulli(torch.ones_like(x0) ∗ p), p = 0.2; Regarding Poisson noise, we obtain the
noisy image by y0 = torch.poisson(λ ∗ x0)/λ, λ = 30.

Hyperparameters. For our method, we set β = 1e−2 and β = 8e−3 for Bernoulli noise and
Poisson noise removal, respectively. The remaining hyperparameters are identical to those of our
main experiments.

A.4 Visual comparisons of denoising results on real-world datasets
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(a) Denoising result of 34_14.png
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(b) Denoising result of 10_6.png

Figure 5: Visual comparison of different denoising methods in SIDD validation dataset.

A.5 Visual comparisons of denoising results on synthetic noises
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Figure 6: Visual comparison of different denoising methods in PolyU.Confocal_FISH_1
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Figure 7: Visual comparison of different denoising methods in FMDD.
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Figure 8: Visual comparison of denoising results on Poisson denoising (λ = 30)
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Figure 9: Visual comparison of denoising results on Bernoulli denoising (p = 0.2)
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: see the abstract and introduction in the main text

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discussed the limitation of our method in the main paper

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: We provided the derivations of related equations in ??
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We presented detailed experimental settings in Section 4.1
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The source code is provided at https://github.com/HUST-Tan/
DiffusionVI
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We presented detailed experimental settings in Section 4.1
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We did not report the statistical significance as our method mainly used
real-world datasets rather than synthetic datasets.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provided them in Section 4.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conforms the Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Image denoising is a basic image processing task.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cited the paper that provided pre-trained diffusion models and we also
included the corresponding URL.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our paper did not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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