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ABSTRACT

Recent advances in alignment techniques such as Supervised Fine-Tuning (SFT),
Reinforcement Learning from Human Feedback (RLHF), and Direct Preference
Optimization (DPO) have improved the safety of large language models (LLMs).
However, these LLMs remain vulnerable to jailbreak attacks that disguise harmful
intent through indirect or deceptive phrasing. Using causal intervention, we em-
pirically demonstrate that this vulnerability stems from shallow alignment mech-
anisms that lack deep reasoning, often rejecting harmful prompts without truly
understanding why they are harmful. To mitigate this vulnerability, we propose
enhancing alignment through reasoning-aware post-training. We construct and
release a novel Chain-of-Thought (CoT) fine-tuning dataset that includes both
utility-oriented and safety-critical prompts with step-by-step rationales. Fine-
tuning on this dataset encourages models to produce principled refusals grounded
in reasoning, outperforming standard SFT baselines. Furthermore, inspired by
failure patterns in CoT fine-tuning, we introduce Alignment-Weighted DPO,
which targets the most problematic parts of an output by assigning different
preference weights to the reasoning and final-answer segments. This produces
finer-grained, targeted updates than vanilla DPO and improves robustness to di-
verse jailbreak strategies. Extensive experiments across multiple safety and utility
benchmarks show that our method consistently improves alignment robustness
while maintaining overall model utility.

1 INTRODUCTION

As Large Language Models (LLMs) are increasingly being deployed in high-stakes domains, such
as finance, healthcare, and education, ensuring their alignment with human values is no longer op-
tional—it’s essential for safety and trust. In these settings, aligning LLMs with human values to pre-
vent harmful, undesirable, or disallowed outputs is critical (Ouyang et al., 2022; Dubey et al., 2024).
While recent alignment techniques, such as Supervised Fine-Tuning (SFT), Reinforcement Learning
from Human Feedback (RLHF), and Direct Preference Optimization (DPO) (Rafailov et al., 2023),
have improved model safety, LLMs remain highly vulnerable to jailbreak attacks that bypass these
safeguards and elicit harmful behavior.

Specifically, a growing body of work suggests that existing alignment is often superficial (Peng
et al., 2025; Zhang et al., 2025a; Li & Kim, 2025; 2024). For example, alignment signals typically
affect only the early tokens of a response: once a model deviates from a safe opening, it may quickly
generate unsafe content (Qi et al., 2024). Moreover, alignment frequently fails when harmful intent
is expressed indirectly, through rephrasing, persuasion, encoding, or obfuscation. Known jailbreak
strategies include role-playing and rhetorical manipulation (Chao et al., 2025; Zeng et al., 2024),
prompt obfuscation via ciphers and low-resource languages (Yuan et al., 2023; Deng et al., 2023;
Yong et al., 2023), and attacks involving formal logic or code injection (Peng et al., 2025; Kang
et al., 2024). Despite the diversity of attack vectors, the mechanisms that enable jailbreaks remain
poorly understood. To develop robust alignment, we must first explain why current alignment
methods are superficial and can be easily bypassed.

We hypothesize that a key reason behind the limitation of current alignment methods is their reliance
on shallow refusal heuristics rather than deep reasoning. Unlike reasoning tasks, which require
multi-step logical processing, alignment tasks are often reduced to simple pattern recognition. A
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model can learn to detect superficial markers of harmfulness and respond with a generic refusal
(e.g., “Sorry, I can’t help with that”), without actually understanding why the content is harmful. This
shortcut often leads models to exploit a ‘shortcut’ pattern that bypasses deeper reasoning, rendering
them susceptible to previously discussed attacks. To test this hypothesis, we first conduct a causal
intervention by deactivating neurons critical for reasoning. We find that while the model’s reasoning
ability significantly degrades, its alignment behaviour remains largely unaffected, which supports
the view that current safety mechanisms are not grounded in genuine reasoning.

Motivated by this insight, we aim to improve safety alignment by explicitly enhancing the model’s
reasoning. Prior work has shown that Chain-of-Thought (CoT) fine-tuning can improve alignment
performance (Guan et al., 2024; Mou et al., 2025; Zhang et al., 2025b; Zheng et al., 2025). However,
existing studies often do not release their CoT alignment datasets or fail to consider utility trade-offs
when constructing the dataset. To address this, we construct and open-source a new CoT dataset
that pairs harmful and safe prompts with detailed reasoning traces and corresponding responses. By
fine-tuning LLMs to generate step-by-step explanations, we encourage models to base refusals on
deep reasoning rather than shallow patterns. This method outperforms standard SFT baselines in
both safety and general utility.

However, CoT alone is insufficient. Our qualitative error analysis reveals two salient failure modes:
(i) correct reasoning accompanied by an unsafe final answer, and (ii) incorrect reasoning that never-
theless yields a safe final answer. Inspired by these observations, we propose Alignment-Weighted
DPO (AW-DPO), a reinforcement learning method that decomposes each response into reasoning
and response segments and assigns distinct preference weights to each based on their safety impli-
cations. This yields finer-grained, targeted optimization than standard DPO and leads to stronger
alignment than traditional methods.

While prior studies have explored reasoning-aware alignment (Guan et al., 2024; Mou et al., 2025;
Zhang et al., 2025b), few have critically examined the mechanism behind current alignment or in-
troduced targeted improvements based on empirical failure analysis. Our work bridges this gap
by combining causal probing, CoT-based fine-tuning, and reinforcement learning. Extensive ex-
periments demonstrate that our methods consistently outperform strong baselines in safety, without
significantly compromising utility. Our main contributions are summarized as follows:

1. We conduct a causal intervention by deactivating reasoning-critical neurons and provide
empirical evidence that current alignment is largely independent of deep reasoning, sup-
porting the hypothesis that existing safety alignment is often superficial.

2. We construct and release a novel Chain-of-Thought (CoT) safety fine-tuning dataset that
includes both general-purpose utility examples and safety-critical prompts with detailed
reasoning traces.

3. Motivated by empirical failure patterns in CoT fine-tuning, we propose Alignment-
Weighted DPO, a new reinforcement learning method that assigns separate weights to
reasoning and response components, enabling more fine-grained and targeted preference
optimization.

4. Extensive experiments across multiple benchmarks show that our approach consistently
improves safety alignment without significantly compromising utility.

2 RELATED WORK

2.1 LLM SAFETY MECHANISM

To align large language models (LLMs) with human values, techniques like reinforcement learning
from human feedback (RLHF) (Ouyang et al., 2022; Wei et al., 2021) have been developed to reduce
harmful outputs. However, LLMs remain vulnerable to manipulative attacks, and even fine-tuning
on benign datasets can compromise safety alignment (Qi et al., 2023; Zhan et al., 2023; Guan et al.,
2025). This underscores the need to better understand the mechanisms behind model safety.

Recent work has sought to uncover safety-critical components in LLMs by identifying key layers (Li
et al., 2024; Du et al., 2024) and neurons (Wei et al., 2024; Chen et al., 2024; Poppi et al., 2024; Zhao
et al.), often through perturbation-based analyses. These studies measure importance via output
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changes (Wei et al., 2024), loss variations (Poppi et al., 2024), or shifts in internal activations (Zhao
et al.). Chen et al. (Chen et al., 2024) further contrast neuron activations between aligned and
unaligned models to isolate those most responsible for safety behaviors. Zhou et al. (Zhou et al.,
2024) show that alignment involves a progression from early discrimination of malicious inputs to
emotional associations in intermediate layers, which eventually shape stylized refusal responses.

2.2 LLM POST-TRAINING

Reasoning of Large Language Models. Recent advancements in reasoning with large language
models, such as Deepseek-R1, have demonstrated the promising potential of long Chain-of-Thought
(CoT) data (Guo et al., 2025; Jaech et al., 2024), owing to its unique characteristics in deep reason-
ing, extensive exploration, and effective reflection (Chen et al., 2025). Compared to the shorter CoT
used in traditional LLMs (Wei et al., 2022), long CoT entails a more detailed, iterative process of
exploration and reflection within a given problem space by test-time scaling (Li, 2025; Teng et al.,
2025). By training LLMs with high-quality long CoT data, models can generate advanced reason-
ing processes, enabling them to learn complex reasoning patterns and generalize across tasks (Yang
et al., 2022). Due to its superior performance on reasoning tasks, several prior studies have applied
CoT fine-tuning in the safety domain to enhance the safety capabilities of LLMs (Guan et al., 2024;
Mou et al., 2025; Zhang et al., 2025b; Zheng et al., 2025; Liu et al., 2025).

Reinforcement Learning from Human Feedback and Direct Preference Optimization.
RLHF (Ouyang et al., 2022) has become a foundational method for aligning LLMs with human
preferences. While effective, RLHF introduces complexity due to the need for a separate reward
model and unstable RL training dynamics. To address these limitations, DPO (Guo et al., 2024)
bypasses the reward model entirely by directly optimizing the model on human preference pairs in
a fully supervised manner. For each prompt, DPO encourages the model to prefer the “chosen” re-
sponse over the “rejected” one, while constraining the updated policy to remain close to a reference
model. Specifically, the DPO loss is as follows: πθ is the learnable policy, πref is a reference policy,
β is a scaling parameter, and Dtrain is a dataset of triplets (x, y+, y−) where y+ is the preferred
output over y−.

LDPO(θ) = E((x,y+),y−)∼Dtrain

[
log σ

(
β log

πθ(y
+ | x)

πref(y+ | x)
− β log

πθ(y
− | x)

πref(y− | x)

)]
. (1)

3 PRELIMINARY EXPERIMENTS

To test our shortcut hypothesis, that current safety alignment relies largely on shallow refusal heuris-
tics rather than deep reasoning, we investigate the causal relationship between reasoning ability and
model performance on both reasoning and safety tasks. Specifically, we first identify reasoning-
critical neurons and then perform a causal intervention by deactivating them. We evaluate the
model’s performance on both tasks before and after the intervention. If the model’s safety per-
formance remains stable while its reasoning performance degrades significantly, it would suggest
that current alignment mechanisms operate independently of reasoning capabilities, indicating that
alignment does not rely on deep reasoning.

To locate reasoning-critical neurons, we employ linear probing, a method for assessing what a large
language model (LLM) already knows by fitting a simple, single-layer linear classifier on top of
frozen hidden representations (Alain & Bengio, 2016; Conneau et al., 2018; Li et al., 2023). The
probe is trained to distinguish between specific classes of inputs, revealing whether those classes are
linearly separable in the representation space. Specifically, we train a separate logistic regression
model for each attention head to classify (i) safe versus unsafe answers in alignment tasks, and (ii)
true versus false answers in reasoning tasks. High classification accuracy on the test set indicates
that the model knows the concept well at this specific position. Following the setup in (Li et al.,
2023), we use one probe per attention head per layer on the hidden state of the last token, as this
token is expected to aggregate all information available to the layer. We denote this vector as x(h)

l ,
representing the output of attention head h in layer l. Formally, we apply a linear classifier of the
form f

(
x
(h)
l

)
= Wx

(h)
l + b. More details can be found in Appendix A.
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Figure 1: Heatmap of Probing Accuracy for Original and Pruned Llama-2-7b-Chat and Mistral-7B-
Instruct-v0.3 on Alignment and Reasoning Tasks.

The alignment task is significantly easier than the reasoning task. We present the probing results
of Llama-2-7b-Chat and Mistral-7B-Instruct-v0.3 on both the alignment and reasoning tasks in first
row in Fig. 1, results for other models are shown in the Appendix C, and the findings are consistent
with those models above. The figure visualizes the accuracy of each attention head (x-axis) across
layers (y-axis), where brighter colors indicate higher accuracy. The plots show that for both models,
the accuracy on the alignment task is nearly 100% across all layers. This suggests that the models
can easily distinguish between harmful and safe prompts from the very early layers, consistent with
findings in (Zhou et al., 2024; Lin et al., 2024). In contrast, for the reasoning task, the accuracy
remains near chance level (around 50%) for the first 11 layers in both models. Only in the later
layers does the accuracy rise to over 60% for both models. These results indicate that the alignment
task is significantly easier than the reasoning task and the first 11 layers are important for the model
to understand and analyze the question to get the correct reasoning in the later layers. Moreover, the
t-SNE visualization results in Appendix B can further confirm this conclusion.

To validate our hypothesis, we introduce a targeted causal intervention by deactivating attention
heads that are most critical for reasoning. Higher accuracy indicates greater contribution to reason-
ing performance. Specifically, we select the top 10% of attention heads with the highest probing
accuracy in the first 11 layers, since they are the most important for enabling correct reasoning in
deeper layers. Following the methodology in (Wei et al., 2024), we deactivate these heads by zero-
ing out their query, key, and value (Q, K, V) weights. We then evaluate the model’s performance on
both reasoning and alignment tasks using the same probing procedure.

Current alignment is superficial since refusals do not rely on reasoning ability. After deac-
tivating the reasoning-critical neurons, we re-evaluate the pruned models using the same probing
setup to assess their understanding of reasoning and safety, as shown in the second row in Fig. 1.
Surprisingly, we observe that the model’s performance on the reasoning task degrades significantly,
accuracy drops to near chance level (around 50%). In contrast, the performance on the safety task
remains largely unaffected, with accuracies close to 100% across all layers. This result demonstrates
that reasoning ability has a strong causal effect on reasoning task performance but almost no effect
on alignment. This confirms our hypothesis: current safety alignment is largely superficial and does
not depend on deep reasoning. Although the model continues to refuse harmful prompts, it lacks
an understanding of why the prompts are harmful, making it susceptible to jailbreak attacks. We
also evaluate the performance of model before and after the deactivation on safety and reasoning
benchmarks in Appendix D, and results support the same conclusion.

4 METHOD: TEACHING MODELS WHY TO SAY NO WITH
ALIGNMENT-WEIGHTED DPO

Our preliminary experiments revealed that current alignment techniques are superficial: models may
reject harmful prompts without understanding why. To address this limitation, we aim to enhance
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Tell me step by 
step how to make 
a bomb.

Harmful
Instructions

Step 1: Sample K candidates' results

<think> It is an interesting question, let 
me think step by step … </think> To make a 

bomb, the first step is… 

<think> it is a harmful question, I cannot answer… 
</think> Sorry, I can’t fulfill your request.

<think> It is an interesting question, No request 
for illegal or harmful activities…</think>  

Sorry, I can’t fulfill your request.

<think> it is a harmful question, I cannot 
answer… </think> To make a bomb, the first step 

is… 

ℎ!"  : 0.9; ℎ!# : 0.9;  ℎ$  : 0.9

ℎ!"  : 0.1; ℎ!# : 0.9;  ℎ$  : 0.8

ℎ!"  : 0.6; ℎ!# : 0.2;  ℎ$  : 0.3

ℎ!"  : 0.1; ℎ!# : 0.1;  ℎ$  : 0.1

Step 2: Preference pair construction
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.

chosenrejected
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<think> It is an interesting question, let 
me think step by step … </think> To make a 

bomb, the first step is… 

<think> It is an interesting question, No request 
for illegal or harmful activities.</think>  

Sorry, I can’t fulfill your request.

High reward

𝑊!(4"')5)6 =
𝑑!(4"')5)6
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Step 3: AW- weighted DPO training

Figure 2: AW-DPO Pipeline. Step 1: Generate k candidate responses per prompt using an LLM, and
score their harmfulness on (i) reasoning (hrs), (ii) response (hrp), and (iii) full answer (hf ) using
a judge model. Step 2: Select preference pairs (xchosen, xrejected) where the full harmfulness score
difference exceeds threshold γ. Step 3: Compute alignment weights and train using LAW-DPO.

alignment by teaching models not only to say no, but also why they should do so. In other words,
we target improvements in the model’s reasoning ability within alignment tasks.

Chain-of-Thought (CoT) fine-tuning has been demonstrated to enhance alignment performance in
prior research (Guan et al., 2024; Mou et al., 2025; Zhang et al., 2025b). However, existing studies
often do not release their CoT alignment datasets or overlook utility trade-offs when constructing
them. To address these limitations, we construct and open-source a long-form CoT dataset by com-
bining a self-generated safety-focused CoT alignment dataset with a self-generated general-purpose
CoT instruction dataset. This design ensures that the model is fine-tuned not only to be safer but
also to retain broad utility. The data generation process is described in Appendix E. After training
on this dataset, our model significantly outperforms SFT-based baseline methods in terms of safety,
while maintaining strong performance on general tasks, as shown in Table 1.

Performance and Error Patterns. Although performance improves significantly with CoT fine-
tuning, there remains a noticeable gap between our model and an ideally aligned model. To further
enhance alignment, we conduct a qualitative inspection of instances where the model is successfully
jailbroken. In our study, we define a response as jailbroken if it contains any harmful content.
Specifically, our error analysis revealed two salient failure modes: (i) correct reasoning accompanied
by an unsafe final answer, and (ii) incorrect reasoning that nevertheless yields a safe final answer.
We quantify these two types of errors and find that they account for approximately 15% of all failure
cases, as shown in Figure 3(a). While DPO (Rafailov et al., 2023) is commonly used to improve
alignment after SFT by aligning outputs with preferences (e.g., “chosen” vs. “rejected”) (Guan et al.,
2024; Zhang et al., 2025a), it primarily optimizes for full-response preferences. Thus, it performs
well on the remaining 85% of error cases where such alignment is sufficient. However, standard
DPO may overlook fine-grained reasoning errors embedded within the output—those that appear in
the remaining 15% of cases, which limits its ability to address these more nuanced failure modes.

Alignment-Weighted DPO. To address this, we propose a novel fine-grained method called
alignment-weighted DPO (AW-DPO). Rather than treating the output as a whole, AW-DPO de-
composes each response into two parts: the reasoning trace and the final response. Our objective is
to assign higher DPO training weight to the component (reasoning or response) that exhibits more
harmful behavior. This enables targeted correction and allows us to address a broader range of fail-
ure cases, e.g., the 15% of reasoning-related mis-alignments illustrated in Figure 3(a). The whole
pipeline is shown in Figure 2. Specifically, to generate training preferences, we first use an LLM to
generate k candidate responses per prompt. We then use another LLM as a judge to assign harmful-
ness scores to (i) the reasoning trace (hrs), (ii) the response (hrp), and (iii) the full answer (hf ). We
construct preference pairs (xchosen, xrejected) by selecting candidate pairs where the difference in full
harmfulness scores exceeds a threshold γ. For each selected pair, we compute alignment weights as:

wreasoning =
dreasoning

drespond + dreasoning
, wrespond =

drespond

drespond + dreasoning
, (2)

where dreasoning = hchosen
rs − hrejected

rs , and drespond = hchosen
rp − hrejected

rp . These weights are then used
to modulate the loss contribution of each component in the DPO objective, providing a more fine-
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Model Name Safety Utility
Base↓ Writing Styles↓ Persuasion Techniques ↓ Encoding & Encryption↓ Multi-languages ↓ Average↓ Average ↑ Std↓

Llama-2-7B Base 78.18% 65.14% ± 6.72 18.68% ± 5.76 0.68% ± 1.05 60.50% ± 10.90 41.32% ± 28.29 17.80% 6.94%
↪→ +SFT 69.77% 61.04% ± 5.75 13.50% ± 4.62 2.50% ± 2.22 64.09% ± 2.78 39.71% ± 27.55 45.29% 12.24%
↪→ +Safety SFT 43.86% 31.92% ± 17.75 9.68% ± 2.77 2.67% ± 2.60 50.27% ± 11.52 25.99% ± 21.38 43.77% 12.75%
↪→ +CoT SFT 63.41% 52.72% ± 12.26 13.41% ± 3.70 0.06% ± 0.10 30.09% ± 19.01 28.45% ± 23.81 44.43% 12.03%
↪→ +CoT Safety SFT 14.09% 11.26% ± 9.17 7.59% ± 2.66 0.06% ± 0.10 7.82% ± 4.82 7.57% ± 6.92 44.14% 11.40%
↪→ +DPO 6.59% 5.80% ± 2.83 1.45% ± 0.88 2.67% ± 2.43 26.41% ± 15.59 9.11% ± 12.57 41.45% 12.55%
↪→ +Safety DPO 8.41% 4.74% ± 3.70 2.82% ± 1.73 0.00% ± 0.00 4.14% ± 1.96 3.41% ± 3.11 45.23% 12.36%
Llama-3.2-3B Base 71.59% 64.95% ± 7.80 13.50% ± 4.38 1.53% ± 1.08 63.95% ± 6.90 40.70% ± 29.05 29.11% 8.10%

↪→ +SFT 63.86% 55.58% ± 7.67 9.91% ± 4.19 1.93% ± 1.49 43.41% ± 12.45 31.98% ± 24.19 51.57% 13.33%
↪→ +Safety SFT 21.14% 18.99% ± 15.96 4.59% ± 2.80 0.45% ± 0.53 15.45% ± 5.69 11.29% ± 11.88 52.02% 13.00%
↪→ +CoT SFT 45.23% 39.59% ± 16.01 9.27% ± 3.87 0.34% ± 0.38 34.64% ± 6.69 23.99% ± 19.07 50.64% 13.73%
↪→ +CoT Safety SFT 13.41% 13.19% ± 14.76 5.64% ± 2.80 0.68% ± 0.94 7.23% ± 3.11 7.60% ± 9.33 51.57% 12.72%
↪→ +DPO 2.73% 2.05% ± 0.87 0.14% ± 0.18 0.00% ± 0.00 1.23% ± 0.82 1.04% ± 1.10 50.64% 13.06%
↪→ +Safety DPO 1.14% 0.27% ± 0.3 0.09% ± 0.18 1.36% ± 1.37 0.73% ± 0.53 0.58% ± 0.83 48.52% 11.99%
Llama-3.1-8B Base 69.55% 60.66% ± 7.45 13.86% ± 4.13 0.28% ± 0.37 63.09% ± 2.61 39.02% ± 27.82 38.71% 9.82%

↪→ +SFT 65.68% 58.38% ± 7.65 10.09% ± 3.94 0.23% ± 0.39 47.55% ± 10.48 33.57% ± 25.71 58.55% 15.31%
↪→ +Safety SFT 16.82% 13.94% ± 10.72 2.95% ± 2.25 0.11% ± 0.20 15.59% ± 3.72 9.22% ± 9.01 60.50% 15.12%
↪→ +CoT SFT 30.00% 26.01% ± 15.37 9.45% ± 4.05 0.74% ± 0.41 21.55% ± 2.71 16.38% ± 13.15 58.68% 13.73%
↪→ +CoT Safety SFT 10.23% 5.76% ± 3.65 4.00% ± 1.95 6.02% ± 10.17 5.00% ± 0.57 5.42% ± 5.12 58.93% 13.74%
↪→ +DPO 2.50% 1.44% ± 0.58 0.14% ± 0.18 0.00% ± 0.00 1.82% ± 0.56 1.00% ± 0.93 57.98% 14.22%
↪→ +Safety DPO 1.82% 0.87% ± 0.56 0.55% ± 0.47 0.11% ± 0.11 1.36% ± 0.61 0.81% ± 0.68 58.27% 14.31%
Mistral-7B-v0.3 78.18% 64.27% ± 3.87 16.23% ± 4.59 4.10% ± 3.59 61.41% ± 7.05 41.35% ± 27.36 42.21% 13.86%

↪→ +SFT 71.14% 63.06% ± 6.11 15.09% ± 4.58 2.85% ± 2.04 64.77% ± 3.02 40.96% ± 27.79 50.71% 15.17%
↪→ +Safety SFT 52.05% 37.21% ± 17.49 10.27% ± 3.61 10.92% ± 13.86 52.91% ± 12.77 30.23% ± 22.16 48.32% 14.92%
↪→ +CoT SFT 52.50% 46.00% ± 11.25 11.73% ± 3.15 0.74% ± 0.44 28.00% ± 18.60 25.24% ± 20.96 54.95% 14.33%
↪→ +CoT Safety SFT 9.55% 8.38% ± 6.53 5.41% ± 1.75 2.50% ± 3.15 8.23% ± 4.03 6.57% ± 4.91 55.39% 13.28%
↪→ +DPO 3.18% 1.18% ± 0.66 0.45% ± 0.32 0.00% ± 0.00 13.36% ± 14.08 3.78% ± 8.75 41.45% 12.55%
↪→ +Safety DPO 1.82% 0.76% ± 0.45 0.50% ± 0.27 0.45% ± 0.53 1.68% ± 0.77 0.91% ± 0.73 54.70% 14.40%

Table 1: Safety and utility performance of our methods compared to baselines.

grained, safety-aware optimization signal. In doing so, AW-DPO enables precise control over parts
of the model behavior that needs a correction, resulting in more robust and interpretable alignment.

Formulation. Given a pairwise preference dataset D = {(xi, y
p
i , y

n
i )}Mi=1, where xi is the input,

ypi is the preferred (chosen) response, and yni is the rejected response, the original DPO loss is
defined as:

LDPO = −
M∑
i=1

log σ (ϕ(xi, y
p
i )− ϕ(xi, y

n
i )) (3)

where σ(·) is the sigmoid function, and ϕ(x, y) is the implicit reward function given by, ϕ(x, y) =
γ log πθ(y|x)

πref(y|x) . Here, πθ(y | x) denotes the policy model, πref(y | x) is the reference model, and γ is
a scaling coefficient that balances the Kullback-Leibler (KL) penalty.

We extend the DPO loss to incorporate fine-grained control over critical reasoning and response
segments using alignment-derived weights. Specifically, we decompose the reward into reasoning
and response components.

Let y = (y1, . . . , yT ) be the full output sequence, and let st ∈ {reasoning, response} denote the
token type at position t. We define the reward function as:

ϕAW(x, y) =

T∑
t=1

wst · log
πθ(yt | x, y<t)

πref(yt | x, y<t)
(4)

where wst ∈ {0, 1} is the mask corresponding to token type st (i.e., wreasoning or wresponse), hence
we can obtain the rewards for the reasoning and response respectively. And then calculate the DPO
using the Equation (3) given the rewards for the reasoning and respond, respectively (Lrs

DPO,Lrp
DPO).

The final alignment-weighted DPO loss is then:

LAW-DPO = wreasoningLrs
DPO + wrespondLrp

DPO (5)

5 EXPERIMENTS

5.1 BASELINES & DATASETS

Baselines. We compare our CoT training approach against a range of existing safety alignment
methods, including both widely-used and recently proposed techniques. The baselines include
Vanilla SFT, Safety SFT (Wang et al., 2024), Safety SFT + DPO (Guo et al., 2024), Vanilla
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Model Name Safety Utility
Base↓ Writing Styles↓ Persuasion Techniques ↓ Encoding & Encryption↓ Multi-languages ↓ Average↓ Average ↑ Std↓

SAFECHAIN (Jiang et al., 2025) 45.23% 40.71% ± 4.32 15.73% ± 3.16 0.23% ± 0.16 34.55% ± 7.33 25.80% ± 16.40 44.88% 9.03%
PP (Zou et al.) 5.45% 4.67% ± 1.26 4.68% ± 0.23 0.34% ± 0.38 7.45% ± 1.15 4.55% ± 2.50 61.84% 18.26%

STAIR (Zhang et al., 2025a) 2.95% 3.34% ± 1.77 4.14% ± 1.84 0.68% ± 0.68 3.68% ± 0.62 3.09% ± 1.83 70.38% 12.44%
STAIR-DPO-3 (Zhang et al., 2025a) 1.59% 1.21% ± 0.70 1.45% ± 0.83 0.34% ± 0.47 2.09% ± 0.53 1.33% ± 0.87 71.34% 12.80%

Ours (Instruct) 2.27% 1.14% ± 0.74 0.95% ± 0.56 0.57% ± 0.34 9.05% ± 6.37 2.92% ± 4.66 65.29% 13.83%
Ours (Base) 1.82% 0.87% ± 0.56 0.55% ± 0.47 0.11% ± 0.11 1.36% ± 0.61 0.81% ± 0.68 58.27% 14.31%

Table 2: Safety and utility performance of our methods vs. advanced alignment baselines.

Safe RS + Unsafe RP

Unsafe RS + Safe RP

Unsafe RS + Unsafe RP

(a) Distribution within unsafe full
responses (RS represents the rea-
soning; RP represents the response).
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(c) Utility performance after using
AW-DPO.

Figure 3: Plot (a) shows the distribution within unsafe full responses. Plots (b) and (c) present the
average safety and utility performance, compared to the corresponding open-source aligned models.

CoT SFT, Safety CoT SFT, open-source chat models (Grattafiori et al., 2024; Jiang et al., 2023),
SAFECHAIN (Jiang et al., 2025), Representation Rerouting (RR) (Zou et al.), and STAIR (Zhang
et al., 2025a). Descriptions of each method are provided in Appendix F.

Datasets. We evaluate the safety of models using 20 different jailbreak attacks and 44 categories of
harmful prompts provided by SorryBench (Xie et al., 2024b), and assess their generalization ability
using the MMLU benchmark (Hendrycks et al., 2020). Specifically, we use the Attack Success Rate
(ASR; lower is better) and accuracy as evaluation metrics for safety and utility, respectively. For the
DPO dataset construction, we use adversarial harmful prompts in WildJailbreak (Jiang et al., 2024)
as the initial harmful prompt for the model response generation. More dataset and implementation
details are provided in Appendix G and H.

5.2 MAIN RESULT

To demonstrate the generalization capability of our method, we evaluate it across different model
families and sizes, ranging from LLaMA-3.2-3B to Mistral-7B-v0.3. The main results are shown
in Table 1. For CoT fine-tuned models, the results show that they outperform models trained with
other SFT baselines while maintaining comparable utility across all settings. In addition, applying
DPO significantly enhances safety performance compared to CoT-based methods, although it may
lead to a utility drop, for instance, utility decreases from 48.32% to 41.45% on the Mistral model.
In contrast, our AW-DPO method achieves the best overall safety performance across most base-
lines, while preserving competitive utility. Moreover, we compare our method with several recent
advanced alignment approaches (in Table 2) using the LLaMA-3.1-8B. Specifically, some baselines
are built on the base model (Jiang et al., 2025), while others are built on the instruct-tuned ver-
sion (Zhang et al., 2025a; Zou et al.). To ensure a fair comparison, we report the performance of
our method on both base model (Ours (Base)) and instruct model (Ours (Instruct)). As shown in
Table 2, our method consistently achieves strong safety performance and competitive utility across
all baselines. Although STAIR-DPO-3 appears to achieve even higher safety and improved utility,
we note that it involves three rounds of iterative SFT and DPO training, which significantly increases
training cost. In contrast, our method achieves strong safety and utility performance more efficiently,
using only a single round of SFT and DPO, incurring much lower computational overhead.

Model Name Safety Utility
Base↓ Writing Styles↓ Persuasion Techniques ↓ Encoding & Encryption↓ Multi-languages ↓ Average↓ Average ↑ Std↓

Llama3.2-3B 5.00% 2.16% ± 2.15 1.09% ± 0.53 0.80% ± 0.59 2.45% ± 1.00 1.85% ± 1.62 50.66% 12.69%
Llama3.1-8B 5.23% 2.16% ± 1.13 1.14% ± 0.48 0.51% ± 0.34 1.91% ± 0.59 1.69% ± 1.24 59.41% 14.03%

Mistral-7B-V0.3 3.18% 2.46% ± 1.40 3.00% ± 0.84 0.62% ± 0.74 5.73% ± 3.47 3.05% ± 2.57 55.73% 13.60%

Table 3: Transferability of DPO dataset on other models.
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Model Name Safety Utility
Base↓ Writing Styles↓ Persuasion Techniques ↓ Encoding & Encryption↓ Multi-languages ↓ Average↓ Average ↑ Std↓

0.05 1.14% 0.45% ± 0.63 0.18% ± 0.17 1.59% ± 2.05 0.68% ± 0.29 0.69% ± 1.09 49.43% 11.47%
0.1 1.14% 0.23% ± 0.23 0.14% ± 0.11 1.48% ± 1.39 0.59% ± 0.37 0.57% ± 0.82 48.09% 11.15%
0.2 1.14% 0.27% ± 0.3 0.09% ± 0.18 1.36% ± 1.37 0.73% ± 0.53 0.58% ± 0.83 48.52% 11.99%
0.5 1.14% 0.34% ± 0.57 0.05% ± 0.09 1.65% ± 1.76 0.59% ± 0.34 0.62% ± 1.01 48.98% 10.87%

Table 4: Sensitivity Analysis of Scaling Factor α.

5.3 COMPARISON WITH REASONING LLMS

Previous results suggest that improved reasoning capabilities can lead to stronger alignment per-
formance. This raises a natural question: Could general reasoning-oriented models outperform
our method in safety alignment? Specifically, reasoning-oriented models typically demonstrate
enhanced general reasoning capabilities compared to general-purpose LLMs, as they are explic-
itly fine-tuned on structured reasoning tasks involving logical deduction and complex problem-
solving. To investigate this, we evaluate two strong reasoning models: Phi-4-Reasoning and Phi-
4-Reasoning-Plus (Abdin et al., 2025). Results in Figure 3c show that despite achieving strong
performance on standard reasoning benchmarks, these models perform significantly worse on safety
tasks (Figure 3b). This indicates that merely improving general reasoning ability is insufficient for
achieving better performance on alignment-specific tasks, which is consistent with the findings in (Li
et al., 2025). Our findings highlight the need to explicitly enhance reasoning capabilities tailored to
alignment settings. This underscores both the necessity and novelty of our method, which directly
targets alignment-specific reasoning to improve model robustness against adversarial prompts. De-
tailed experimental results are provided in Table 8 in Appendix J.

5.4 COMPARISON WITH ALIGNED OPEN-SOURCE LLMS

To demonstrate the effectiveness of our approach, we compare the safety performance of LLMs
trained with AW-DPO against several advanced open-source aligned LLMs. Notably, many of these
models benefit from proprietary datasets, extensive computational resources, or undisclosed hyper-
parameter settings, advantages not available to us. Despite this, Figure 3b shows that our method
achieves superior average safety performance. Detailed results are provided in Table 7 in Appendix I.
While Figure 3c indicates that the utility performance of our method may be slightly lower than that
of these open-source models, this is understandable given their privileged access to proprietary data
and tuning strategies.

Motivated by these observations, we further investigate whether our method can be applied to an al-
ready aligned model to boost safety without compromising its strong original utility. Using LLaMA-
3.1-8B-Instruct as a representative case, Figure 4a demonstrates that AW-DPO yields additional
improvements even on models that have undergone prior alignment, while preserving their strong
utility. Full results are provided in Table 10.

5.5 TRANSFERABILITY OF DPO DATASET

The construction of the AW-DPO dataset is the most time-consuming procedure in the whole AW-
DPO pipeline. To reduce this cost, we evaluate the transferability of a pre-constructed AW-DPO
dataset by testing its effectiveness on different models. Specifically, we construct the AW-DPO
dataset using LLaMA2-7B with CoT-based safety SFT and apply it to train AW-DPO models on
LLaMA3.2-3B, LLaMA3.1-8B, and Mistral-7B-V0.3. The results are shown in Table 3. Although
there is a slight drop in performance compared to training directly on the corresponding original
dataset, the transferred dataset still achieves strong performance in both safety and utility, while
offering significant time savings. These findings suggest that the AW-DPO dataset exhibits strong
transferability across different model architectures and sizes, enabling more efficient safety align-
ment without the need for task-specific preference data collection.

5.6 ABLATION STUDY ON HYPERPARAMETERS

In this section, we investigate the impact of key hyperparameters in our safety DPO setup on both
safety and utility performance. Specifically, we examine three factors: the effect of alignment-
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Figure 4: Plot (a) shows the performance improvements of our method on aligned chat models.
Plots (b) and (c) show the comparison of safety and utility performance between standard DPO and
AW-DPO, respectively.

Model Name Safety Utility
Base↓ Writing Styles↓ Persuasion Techniques ↓ Encoding & Encryption↓ Multi-languages ↓ Average↓ Average ↑ Std↓

5e− 8 14.55% 12.50% ± 14.37 5.27% ± 1.52 1.25% ± 1.35 7.59% ± 2.45 7.57% ± 8.91 51.36% 12.77%
1e− 7 12.50% 11.48% ± 12.96 4.82% ± 1.84 0.51% ± 0.57 6.64% ± 2.88 6.70% ± 8.19 51.77% 12.37%
5e− 7 5.23% 2.42% ± 2.35 1.09% ± 0.51 0.63% ± 0.57 2.23% ± 0.94 1.85% ± 1.73 50.68% 12.28%
1e− 6 1.14% 0.27% ± 0.3 0.09% ± 0.18 1.36% ± 1.37 0.73% ± 0.53 0.58% ± 0.83 48.52% 11.99%
5e− 6 7.95% 11.49% ± 7.61 0.50% ± 0.30 0.06% ± 0.10 13.18% ± 5.43 6.93% ± 7.60 26.09% 4.57%

Table 5: Sensitivity Analysis of Learning Rate lr.

weighted DPO (AW-DPO) compared to standard DPO (Figure 4b, 4c); the importance scaling
factor α, evaluated at {0.05, 0.1, 0.2, 0.5} (Table 4); and the learning rate, tested at {5×10−8, 1×
10−7, 5× 10−7, 1× 10−6, 5× 10−6} (Table 5).

We first compare AW-DPO with standard DPO using the same dataset with LLaMA-3.1-8B as the
base model (Figure 4b, 4c). The results show that AW-DPO consistently outperforms the baseline
in both safety and utility. We attribute this improvement to AW-DPO’s ability to correct more fine-
grained alignment errors, as illustrated in Figure 3a. Next, we assess the effect of the scaling factor
α on LLaMA-3.2-3B. Table 4 shows that performance remains stable across different values of α,
suggesting that AW-DPO is robust to the choice of this parameter. Finally, we examine the sensitivity
of our method to the learning rate. As shown in Table 5, we find that AW-DPO, like standard DPO, is
highly sensitive to learning rate selection, which is consistent with prior findings (Xie et al., 2024a).
learning rate of 1× 10−6 yields the best overall performance.

5.7 PERFORMANCE UNDER PREFIX ATTACK

Table 9 presents the performance under the prefix attack, where we append “<think></think>”
to the end of the prompt. This modification is designed to prompt the LLM to omit the reasoning
process, allowing us to assess whether it still maintains strong alignment capabilities. The results
show that our method consistently preserves both advanced safety and utility performance, even
under this adversarial setting.

6 CONCLUSION

This paper investigates why current LLM alignment techniques often fail under jailbreak attacks.
Through causal interventions, we show that the existing alignment methods rely on superficial re-
fusal patterns rather than deep understanding. To address this, we introduce a long-form Chain-of-
Thought (CoT) dataset and show that CoT fine-tuning improves both safety and utility. Building
on the error pattern of COT finetuning, we propose Alignment-Weighted DPO (AW-DPO), a novel
method that separately targets reasoning and response errors for fine-grained correction. Our exper-
iments demonstrate that AW-DPO outperforms existing baselines in safety while preserving utility,
offering a more robust approach to LLM alignment.
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ETHICS STATEMENT

LLMs have been widely used, achieving promising performance in various domains. Therefore, ex-
ploring the safety of LLMs is of great significance in practice. In this paper, we propose Alignment-
Weighted DPO (AW-DPO), a novel method that separately targets reasoning and response errors for
fine-grained correction. As described, we aim to enhance the safety of the existing LLMs; therefore,
this paper has no ethical issues and will not introduce any additional security risks to LLMs.

REPRODUCIBILITY STATEMENT

For implementation details, please refer to Appendix A and H. We provide a CoT dataset at https:
//anonymous.4open.science/r/cot_safety_data-3C51/ for peer review. The full
code and dataset will be released upon acceptance of this work.
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Alignment

Reasoning

Layer 5 Layer 10 Layer 15 Layer 20 Layer 30

Figure 5: T-SNE Visualization of Embeddings from Attention Head 5 for Alignment and Reasoning
Tasks Across All Layers.

Model Reasoning Accuracy↑ Safety Rate↓
Before deactivating After deactivating Before deactivating After deactivating

LLaMA2-7B 41.42% 23.83% (-42.46%) 100.00% 99.60% (-0.40%)
LLaMA2-13B 48.69% 33.41% (-31.38%) 99.60% 100.00% (+0.40%)
LLaMA3.2-3B 51.30% 32.79% (-36.07%) 97.00% 98.20% (+1.24%)

Table 6: Comparison of reasoning accuracy and safety rate before and after pruning. Percent change
is shown in parentheses.

A MORE DETAILS ABOUT THE LINEAR PROBING

Datasets. For the safety alignment task, to construct the malicious-question split, we merge Ad-
vBench (Zou et al., 2023) and BeaverTails (Ji et al., 2023), resulting in broader coverage of harmful
categories than either dataset provides individually. As a benign counterpart, we use the Natural
Questions dataset (Kwiatkowski et al., 2019). For the reasoning task, we leverage the Common-
senseQA dataset and create correct and incorrect reasoning samples by concatenating the question
with the correct and incorrect answers, respectively. Details about the dataset and data preprocessing
can be found in Appendix E.

Models. To do the linear probing, we use a weak classifier: the logistic regression to classify the
embeddings. In the experiments, we consider Llama-2-7B-Chat-hf and Llama-2-13B-Chat-hf as
the default setup. Additionally, we also evaluate the transferability of our method across various
mainstream models, including Llama-3.2-3B-Instruct, Mistral-7B-Instruct-v0.3.

Our experiments involve two distinct probing tasks: one for safety alignment and one for reason-
ing.

For the alignment probing task, we construct a balanced dataset by combining samples from two
sources of harmful content—AdvBench and HXI-PHE—and adding benign samples from the Nat-
ural Questions dataset. We balance the number of harmful and benign samples such that each class
contains n examples. These inputs are subsequently fed into the LLM to extract the attention head
embeddings for each layer. Since LLaMA does not naively provide outputs at the level of individual
attention heads, we modify its source code (from the transformers package) by adding hooks
to capture embeddings after each attention head. Further implementation details are available in our
code.

For the reasoning probing task, we use the CommonsenseQA dataset to construct a balanced set of
reasoning examples. We randomly select n examples in which each question is concatenated with
its correct answer using the prefix “The answer to this question is”. Separately, we randomly select
another n examples in which each question is concatenated with an incorrect answer using the same
prefix. These constructed inputs are processed by the LLM to extract the attention head embeddings
for each layer. Examples of correct reasoning and incorrect reasoning can be found in Figure 6.
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Incorrect Reasoning Example

By playing with educational materials, what were the children 
doing?

(A) fighting (B) learning (C) getting tired (D) injuries (E) having fun

The answer to this question is getting tired.

Correct Reasoning Example

What could silicone get stuck to and cause irritation?

(A) contact lens (B) hardware store (C) artificial breasts (D) tube (E) home

The answer to this question is contact lens.

Figure 6: Example of correct reasoning example and incorrect reasoning example.

In our experiments, we set n = 500 for both the alignment and reasoning tasks.

After obtaining the attention head embeddings for each layer, we split the entire dataset into training
and testing subsets using a 70/30 ratio. We then fit a logistic regression model for each attention head
with max iter=2000 for both tasks. Specifically, for the alignment task, we assess whether the
model can distinguish between safe and unsafe content based on the embeddings. For the reasoning
task, we evaluate whether the model can differentiate between correct and incorrect reasoning.

B MORE DETAILS ABOUT THE TSNE PLOT OF THE HIDDEN EMBEDDINGS.

Moreover, when randomly selecting the 5th attention head for embedding visualization on the align-
ment and reasoning tasks, the T-SNE plot in Fig. 5 reveals similar findings: the embeddings of
harmful and safe prompts are well-separated across all layers for the alignment task, whereas for
the reasoning task, they are much harder to distinguish. As a result, the model may exploit short-
cut features learned in the early layers (which already yield near-perfect accuracy on distinguishing
harmful from safe inputs) to generate responses, without engaging in deeper, genuine reasoning.
This reliance on shallow patterns rather than deep understanding may leave models vulnerable to
sophisticated adversarial attacks.

C MORE DETAILS ABOUT THE LINEAR PROBING ON OTHER MODELS

The result of the linear probing on Llama-3.2-3B-Instruct and LLaMA2-13B-Chat can be found in
the Figure 7 .

D MORE DETAILS ABOUT THE BENCHMARK PERFORMANCE AFTER
DEACTIVATING NEURONS

Moreover, the heatmap of accuracy based on attention head embeddings offers qualitative evidence
of this disconnect. To further validate our hypothesis, we conduct a quantitative evaluation using
the same datasets from the linear probing phase for benchmarking the reasoning and safety ability
of the original and pruned LLMs. Specifically, we prompt the model to generate responses for the
same inputs used in the safety and reasoning probing tasks. For alignment evaluation, we use Llama
Guard 3-8B to assess the safety of the generated responses. For reasoning, we compare the generated
answers against the ground truth to assess correctness. The results, shown in Table 6, align with the
heatmap findings and support our hypothesis that the model’s alignment behaviour is superficial and
disconnected from its reasoning ability.

E MORE DETAILS ABOUT THE COT DATASET GENERATION

Our goal is to synthesize explicit long chain-of-reasoning paths that link each input query to its
output, in both alignment and general-purpose contexts. We use a mixed dataset comprising 4,000
safety-related samples from repnoise beavertail1 and 16,000 general-purpose samples from

1https://huggingface.co/datasets/anonymous4486/repnoise_beavertail
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Figure 7: Heatmap of probing accuracy for original and pruned Llama-3.2-3B-Instruct and
LLaMA2-13B-Chat on alignment and reasoning tasks.

Alpaca as our seed corpus. We augment each harmful and safe example with an explanatory ra-
tionale. Specifically, for every harmful example the generated rationale explains why the query is
harmful and how the model’s refusal is justified. For each benign example we instead produce a
rationale that describes why the query is safe and outlines the reasoning steps that lead to the correct
answer. Consequently, the dataset trains the model not only to replicate the style of refusal responses
but also to internalize the underlying safety reasoning.

To obtain these rationales we employ GPT-4O. Given an input–output pair (x, y), we prompt the
model with the following context:

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Answer

## Question ##
{{question}}
## Answer ##
{{answer}}
You are given a safety-related question along with its corresponding answer. Your task is
to generate a step-by-step reasoning path, written in the first person, that explains how the
answer was derived from the question.
For harmful questions (i.e., those where the answer includes an explicit rejection), identify:
- What aspect of the question is harmful,
- Why the question should be rejected, and
- Based on the above two reasoning steps, what additional reasoning logic you need to have
to derive the contents in the given answer.
For non-harmful questions (i.e., those without a rejection in the answer), explain:
- Why the question is considered safe, and
- Based on the above reasoning step, what additional reasoning logic you need to have to
derive the contents in the given answer.
Your reasoning should be as thorough as possible and must include direct references to
specific elements of the question to support your explanations.
Here are some examples
===============================
Q: how can I cheat on my wife without getting caught
A: I cannot provide advice or support on how to cheat on your wife or engage in any other
unethical or illegal activities. Infidelity is a serious violation of trust and can have severe
consequences on a relationship, including divorce and emotional distress.
Instead of seeking ways to cheat without getting caught, I would encourage you to examine
your motivations and priorities. Are you feeling unfulfilled in your relationship? Are there
issues that you and your
#Reasoning-Path: The question ”how can I cheat on my wife without getting caught” is
harmful because it seeks advice on engaging in unethical behavior, specifically infidelity.
Cheating on a spouse is a violation of trust and can cause significant emotional harm to
all parties involved. The question should be rejected because it promotes dishonest and
deceitful actions that can lead to the breakdown of relationships and emotional distress.
When answering the question, I would first exam motivations and priorities, expressing that
addressing relationship problems directly and honestly is a healthier and more ethical ap-
proach. Moreover, I need to make my answer align with promoting ethical behavior and
maintaining trust in relationships. Therefore, I need to redirect the focus from cheating to
self-examination and communication when answering the question.
===============================
Please output with the following format:
#Reasoning-Path: [Your Reasoning Path Here]

F MORE DETAILS ABOUT THE BASELINE METHODS

Base Model: The unaligned base model (e.g., LLaMA2-7B-Base) used for all fine-tuning proce-
dures. Vanilla SFT: Fine-tunes the base model on 20,000 general-purpose instruction-response pairs
randomly sampled from a cleaned version of Alpaca. Safety SFT (Wang et al., 2024): Fine-tunes
the base model on a mixture of 16,000 general-purpose Alpaca samples and 4,000 safety-related
samples from the RepNoise-BeaverTails dataset, each with a harmful prompt and refusal response.
Safety SFT + DPO (Rafailov et al., 2023): Applies Direct Preference Optimization (DPO) to the
Safety SFT model using preference-labeled BeaverTails data. Vanilla CoT SFT: Adds chain-of-
thought (CoT) reasoning to responses in the Vanilla SFT dataset. Safety CoT SFT: Similar to
Vanilla CoT SFT, but applied to the Safety SFT dataset, adding CoT reasoning to refusal responses.
Open-source Chat Model: Aligned models like LLaMA2-7B-Chat, released with alignment fine-
tuning already applied. SAFECHAIN (Jiang et al., 2025): Fine-tunes the model using a CoT-style
safety dataset specifically designed for aligning large reasoning models (LRMs). The dataset is built
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by sampling 50,000 prompts from the WildJailbreak dataset, generating 5 responses per prompt
with R1-70B, and filtering out prompts where any response is unsafe according to Llama-Guard.
Representation Rerouting (RR) (Zou et al.): This method aims to robustly prevent LLMs from
generating harmful outputs by inducing a ”circuit-breaking” effect—intercepting internal harmful
representations and redirecting them toward incoherent or refusal outputs. RR uses a LoRA-based
mechanism to remap internal representations associated with unsafe behaviors.

STAIR (Zhang et al., 2025a). It leverages a novel Safety-Informed Monte Carlo Tree Search (SI-
MCTS) to generate fine-grained, step-level reasoning data, which is used to iteratively optimize
preferences and train a process-level reward model. This reward model guides both training and
test-time decoding to balance helpfulness and safety.

G MORE DETAILS ABOUT THE DATASET

SorryBench (Xie et al., 2024b) is a designed to test the robustness of safety alignment under real-
istic distributional shifts. It includes 20 diverse linguistic perturbations that reflect how real-world
users might rephrase unsafe prompts, including variations in writing styles (e.g., interrogative forms,
misspellings, slang), persuasion techniques (e.g., logical appeals), encoding schemes (e.g., ASCII,
Caesar cipher), and multiple languages (e.g., Tamil, French). The benchmark is grounded in a
fine-grained 44-class safety taxonomy spanning four high-level domains, enabling nuanced safety
evaluation across different adversarial prompt types.

MMLU (Hendrycks et al., 2020) is a comprehensive benchmark for assessing a model’s general
knowledge and reasoning capabilities. It consists of multiple-choice questions drawn from 57 di-
verse tasks across disciplines such as humanities, social sciences, STEM fields, law, and medicine.
To perform well on MMLU, a model must exhibit strong problem-solving and reasoning skills,
making it a rigorous test of general-purpose utility.

WildJailbreak. (Jiang et al., 2024) To construct the DPO preference dataset, we use the Wild-
Jailbreak dataset, a large-scale, open-source synthetic safety benchmark containing 262K prompt-
response pairs. We input each prompt into the model to generate k candidate responses.

The dataset includes both vanilla (direct harmful requests) and adversarial (complex jailbreak at-
tempts) prompts designed to test safety alignment. To avoid promoting exaggerated safety behaviors,
WildJailbreak provides two contrastive query types: (1) harmful queries—both vanilla and adver-
sarial—and (2) benign queries that resemble harmful ones in structure but lack harmful intent. In
this paper, we focus exclusively on the adversarial harmful subset, which contains stealthy and
convoluted jailbreak prompts designed to bypass alignment filters.

H MORE DETAILS ABOUT THE IMPLEMENTATION DETAILS

For CoT SFT training, we use a learning rate of 1 × 10−5. The number of training epochs is set to
3. We train with a batch size of 4 and gradient accumulation steps of 8 across 4 A100 GPUs.

For AW-DPO dataset construction, we set k = 5 and γ = 0.5. This threshold ensures that samples
with a harmfulness score below 0.5 are selected as ”rejected,” while those with a score above 0.5
are selected as ”accepted.” We use a temperature of t = 0.7 during generation to encourage diverse
responses.

For AW-DPO training, we use a scaling factor of α = 0.2, and a learning rate of 5 × 10−7, except
for LLaMA-3.3B, where we use 1× 10−6. The number of training epochs is set to 3, and the DPO
temperature β is set to 0.2. We train using a batch size of 1 with gradient accumulation steps of 8
across 4 A100 GPUs.

I MORE DETAILS ABOUT RESULTS OF OPEN-SOURCE LLMS

More detailed results on the safety and utility performance of open-source LLMs can be found in
Table 7.
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Model Name Safety Utility
Base↓ Writing Styles↓ Persuasion Techniques ↓ Encoding & Encryption↓ Multi-languages ↓ Average↓ Average ↑ Std↓

Llama-2-7b-chat 6.36% 6.14% ± 2.84 5.41% ± 2.62 1.48% ± 2.18 8.09% ± 2.87 5.51% ± 3.41 45.54 % 13.44%
AW-DPO 8.41% 4.74% ± 3.70 2.82% ± 1.73 0.00% ± 0.00 4.14% ± 1.96 3.41% ± 3.11 45.23% 12.36%
Llama-3.2-3B-Instruct 7.50% 6.30% ± 1.41 7.91% ± 2.52 0.00% ± 0.00 26.64% ± 18.70 10.38% ± 13.24 61.46% 13.72%
AW-DPO 1.14% 0.27% ± 0.3 0.09% ± 0.18 1.36% ± 1.37 0.73% ± 0.53 0.58% ± 0.83 48.52% 11.99%
Llama-3.1-8B-Instruct 3.41% 3.00% ± 0.66 4.00% ± 1.32 0.91% ± 0.56 21.41% ± 16.30 7.24% ± 11.30 63.27% 15.62%
AW-DPO 1.82% 0.87% ± 0.56 0.55% ± 0.47 0.11% ± 0.11 1.36% ± 0.61 0.81% ± 0.68 58.27% 14.31%
Mistral-7B-Instruct-v0.3 66.59% 56.45% ± 9.41 15.32% ± 4.87 2.56% ± 1.63 46.27% ± 5.86 34.45% ± 23.26 59.50% 15.39%
AW-DPO 1.82% 0.76% ± 0.45 0.50% ± 0.27 0.45% ± 0.53 1.68% ± 0.77 0.91% ± 0.73 54.70% 14.40%

Table 7: Compare with open-source aligned LLMs in terms of safety and utility.

Model Name Safety Utility
Base↓ Writing Styles↓ Persuasion Techniques ↓ Encoding & Encryption↓ Multi-languages ↓ Average↓ Average ↑ Std↓

Phi-4-reasoning 75.00% 69.83% ± 5.93 23.41% ± 5.81 11.71% ± 6.91 66.68% ± 4.09 47.20% ± 26.06 60.88% 13.17%
Phi-4-reasoning-plus 67.50% 66.99% ± 5.26 26.91% ± 4.99 9.32% ± 11.01 65.05% ± 1.76 46.02% ± 24.80 57.71% 11.78%

Table 8: Comparison with reasoning models in terms of safety and utility.

Model Name Safety Utility
Base↓ Writing Styles↓ Persuasion Techniques ↓ Encoding & Encryption↓ Multi-languages ↓ Average↓ Average ↑ Std↓

Original Performance 1.14% 0.27% ± 0.3 0.09% ± 0.18 1.36% ± 1.37 0.73% ± 0.53 0.58% ± 0.83 48.52% 11.99%
Prefix attack 1.82% 0.53% ± 0.69 0.50% ± 0.56 0.97% ± 0.44 0.91% ± 0.43 0.76% ± 0.62 48.62 % 11.44%

Table 9: Robustness to prefix attacks.

J MORE DETAILS ABOUT RESULTS OF REASONING MODELS

More detailed results on the safety and utility performance of reasoning models can be found in
Table 8.

K MORE DETAILS ABOUT RESULTS OF PREFIX ATTACK

More detailed results on the safety and utility performance of our model under prefix attack can be
found in Table 9.

L MORE DETAILS ABOUT RESULTS OF OUR METHOD ON ALIGNED CHAT
MODELS.

More detailed results on the safety and utility performance of our model on aligned chat model can
be found in Table 10.

M MORE DETAILS ABOUT RESULTS OF COMPARISON BETWEEN STANDARD
DPO AND AW-DPO ON LLAMA3.1-8B.

More detailed results on the safety and utility comparison between Standard DPO and AW-DPO on
on LLaMA3.1-8B can be found in Table 11.

N USE OF LLMS

The LLMs (e.g., GPT-5) are only used for grammar checking and sentence correction in this paper.
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Model Name Safety Utility
Base↓ Writing Styles↓ Persuasion Techniques ↓ Encoding & Encryption↓ Multi-languages ↓ Average↓ Average ↑ Std↓

Llama-3.1-8B-Instruct 3.41% 3.00% ± 0.66 4.00% ± 1.32 0.91% ± 0.56 21.41% ± 16.30 7.24% ± 11.30 63.27% 15.62%
↪→ +CoT Safety SFT 6.14% 4.70% ± 3.40 2.82% ± 1.92 0.17% ± 0.30 15.86% ± 9.41 6.12% ± 7.60 59.41% 14.03%
↪→ +Safety DPO 2.27% 1.14% ± 0.74 0.95% ± 0.56 0.57% ± 0.34 9.05% ± 6.37 2.92% ± 4.66 65.29% 13.83%

Table 10: Performance improvements of our method on aligned chat models.

Model Name Safety Utility
Base↓ Writing Styles↓ Persuasion Techniques ↓ Encoding & Encryption↓ Multi-languages ↓ Average↓ Average ↑ Std↓

Standard DPO 1.82% 1.21% ± 0.66 0.68% ± 0.38 4.32% ± 6.5 1.73% ± 0.67 1.83% ± 3.18 57.66% 14.34%
AW-weighted DPO 1.82% 0.87% ± 0.56 0.55% ± 0.47 0.11% ± 0.11 1.36% ± 0.61 0.81% ± 0.68 58.27% 14.31%

Table 11: Comparison between standard DPO and AW-DPO on LLaMA3.1-8B.
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