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ABSTRACT

Parities have become a standard benchmark for evaluating learning algorithms.
Recent works show that regular neural networks trained by gradient descent can
efficiently learn degree k parities on uniform inputs for constant k, but fail to do so
when k and d−k grow with d (here d is the ambient dimension). However, the case
where k = d−Od(1), including the degree d parity (the full parity), has remained
unsettled. This paper shows that for gradient descent on regular neural networks,
learnability depends on the initial weight distribution. On one hand, the discrete
Rademacher initialization enables efficient learning of almost-full parities, while
on the other hand, its Gaussian perturbation with large enough constant standard
deviation σ prevents it. The positive result for almost-full parities is shown to hold
up to σ = O(d−1), pointing to questions about a sharper threshold phenomenon.
Unlike statistical query (SQ) learning, where a singleton function class like the
full parity is trivially learnable, our negative result applies to a fixed function and
relies on an initial gradient alignment measure of potential broader relevance to
neural networks learning.

1 INTRODUCTION

Initialization plays a crucial role in the performance of neural network training algorithms. It has
been shown that a proper initialization can help avoiding issues such as vanishing or exploding
gradients, or set the foundation for efficient convergence and improved generalization (He et al.
(2015); Glorot & Bengio (2010); Sutskever et al. (2013); Kumar (2017)). In this work, we show
that the choice of initialization can be critical when learning complex functions, such as high-degree
parities.

Parity functions are a well-known class of challenging problems for differentiable learning models,
where the task is to determine the parity of bits belonging to an unknown subset of input coordinates.
Due to their inherent non-linearity and extreme sensitivity to small input changes, parity functions
often serve as a challenging benchmark for evaluating and comparing learning algorithms, including
gradient descent on neural networks (Abbe & Sandon (2020); Daniely & Malach (2020)). For
instance, they have been used for showing the advantages of using convolutional architectures over
fully connected ones (Malach & Shalev-Shwartz (2020)), the superiority of differentiable models
compared to kernel methods (Abbe et al. (2021)), and the efficacy of curriculum learning in contrast
to standard training (Abbe et al. (2024b); Cornacchia & Mossel (2023)).

Previous research has mainly focused on the family of sparse parities, also known as k-parities,
where the size of the support of the target parity, k, is bounded, i.e., it does not grow with input
dimension d. It has been shown that on uniform inputs, k-parities can be learned by gradient descent
algorithms (GD/SGD) on standard architectures, such as 2-layer fully connected (Barak et al. (2022);
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Abbe & Boix-Adsera (2022); Glasgow (2023); Kou et al. (2024)), with a sample complexity of
Õ(dk−1)1 (Kou et al. (2024)).

In contrast, for dense parities, where the support of the target parity is unbounded (k = ωd(1)),
the picture is less clear. It has been shown that when both k and d − k are unbounded, stochastic
gradient descent (SGD) with large batch size and limited gradient precision on fully connected
architectures cannot learn dense parities with any initialization2 (Abbe & Sandon (2020)). The
difficulty in learning parities stems from their orthogonality on uniform inputs, leading to a low
cross-predictability (CP) (Abbe & Sandon (2020)). However, this only occurs if a given class of
k-parities is sufficiently large. Since the cardinality of this class is

(
d
k

)
=
(
d

d−k
)
, this hardness result

does not extend to almost-full parities, where k = d−Od(1), including the special case of the single
d-parity (the full parity).

In fact, it is known that the full parity, as a symmetric function, is learnable by gradient descent
methods with specific initialization (Nachum & Yehudayoff (2020)), such as setting all first layer
weights to 1. For random and symmetric initializations, Abbe & Boix-Adsera (2022) showed that
almost-full parities are weakly-learnable3 by gradient descent on a two-layer fully connected net-
work with discrete Rademacher initialization.

In this paper, we focus on almost-full parity functions and provide a deeper understanding of how
the initialization impacts their learning. First, we show that SGD on a two-layer fully connected
ReLU network with Rademacher initialization can achieve perfect accuracy for k = d − Od(1),
thus going beyond weak learning. Next, we investigate the robustness of this positive result and
argue that it is a special case. In particular, we prove that with Gaussian initialization GD with
limited gradient precision with the correlation loss cannot learn high degree parities on two layer
ReLU networks. We then introduce an intermediate case of perturbed-Rademacher initialization,
where the weights are initialized from a mixture of two Gaussian distributions with means +1 and
−1 and a standard deviation of σ. In the case of full parity we prove that when σ = O(d−1),
the positive result still holds, while if σ is a large enough constant, learning does not occur. We
leave the analysis for the remaining range of σ and the investigation of a potential threshold to
future work. While our theoretical analysis focuses on Gaussian perturbations, our experiments also
explore other perturbations, both discrete and continuous, supporting our claim that the success of
the Rademacher initialization is a special case. In our experiments, we also explore other settings
beyond our theoretical analysis in order to justify the robustness of our findings.

Crucially, the proof technique for our negative result does not rely on constructing an orbit class
or using measures for function classes (as in the cross-predictability case). Instead, it introduces a
new approach centered on a novel measure, the initial gradient alignment, which may be relevant
for evaluating the suitability of an initialization for a target distribution beyond the specific parity
setting discussed in this paper.

2 RELATED WORK

Learning Parities. Learning parities on uniform inputs is easy with specialized techniques like
Gaussian elimination over two-element fields or through emulation networks trained with Stochastic
Gradient Descent (SGD) using small batch sizes (Abbe & Sandon (2020)). However, in the statistical
query (SQ) setting (Kearns (1998)) and with gradient descent methods that have limited gradient
precision (Abbe & Sandon (2020)), learning parities presents computational barriers. Recent works
have focused on sparse parities, or k-parities (where k = Od(1)), as a classical benchmark for
evaluating learning algorithms (Suzuki et al. (2024); Edelman et al. (2023); Barak et al. (2022);
Daniely & Malach (2020); Malach et al. (2021); Abbe & Boix-Adsera (2022); Malach & Shalev-
Shwartz (2020); Abbe et al. (2024b); Cornacchia & Mossel (2023); Wei et al. (2019); Ji & Telgarsky
(2019)). In particular, in the special case of k = 2 (i.e. the XOR problem), Glasgow (2023) proved
a sample complexity upper bound of Õ(d) on a 2-layer network of logarithmic width, while for
general k, Kou et al. (2024) proved a sample complexity of Õ(dk−1), matching the SQ lower bounds
in both cases. For dense parities, it has been established that if both k and d− k grow with d, SGD

1Where Õ(dc) = O(dc poly log(d)), for c ∈ R.
2Assuming the initialization is invariant to permutation of the input neurons.
3i.e., an inverse polynomial edge over the trivial estimator is achieved with constant probability.
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with large batch sizes fail at learning in polynomial time (Abbe & Sandon (2020)). We build on
top of Abbe & Boix-Adsera (2022), which showed that almost-full parities are weakly-learnable by
gradient descent on a two-layer fully connected network with Rademacher initialization. We provide
a more complete picture on the role of the initialization for learning the full parity, and we argue that
the Rademacher initialization is in some sense a special case.

The Role of the Initialization. Several studies have shown that initialization is crucial for optimiz-
ing neural networks, preventing vanishing or exploding gradients (Glorot & Bengio (2010)), speed-
ing up convergence (He et al. (2015)), ensuring informative gradient flow in early layers (Sutskever
et al. (2013)), and enabling learning challenging targets (Zhang et al. (2019); Hanin & Rolnick
(2018)). While these works focus on improving learning through tailored initializations, our paper
addresses the more fundamental question of what can gradient descent learn with standard initial-
izations. Thus, our work aligns more closely with (Abbe & Boix-Adsera (2022); Abbe & Sandon
(2020)), which characterize functions learnable by gradient descent on shallow networks, but with-
out exploring initialization. Another work (Edelman et al. (2023)) shows that sparse initialization
aids in learning sparse parities. However, the main challenge in their case is identifying the sup-
port of the sparse parity. In contrast, when learning the full parity, sparsifying the Rademacher
initialization does not aid in learning the full parity (see Figure 3, Section 6).

Complexity Measures. Previous works have studied the sample and time complexity of learning
with SGD on neural networks, proposing various measures, such as: the noise sensitivity (O’Donnell
(2014); Zhang et al. (2021); Abbe et al. (2022b); Hahn & Rofin (2024)), which applies mostly to
settings with i.i.d. inputs and is related to the degree of the functions, is known to be loose for strong
learning (Abbe et al. (2022a; 2023)); the globality degree (Abbe et al. (2024a)), which general-
izes the degree and sensitivity notions to non-i.i.d. settings but remains focused on weak rather than
strong learning; the statistical query (SQ) dimension (Kearns (1998); Feldman (2016)) and the cross-
predictability (Abbe & Sandon (2020)), which are usually defined for a class of targets/distributions
rather than a single distribution (in particular the full parity is efficiently SQ learnable since there is a
single function); the neural tangent kernel (NTK) alignment (Jacot et al. (2018); Cortes et al. (2012))
that are limited to the NTK framework; the information exponent (Arous et al. (2021); Bruna et al.
(2023)), generative exponent (Damian et al. (2024); Dandi et al. (2024)), leap (Abbe et al. (2023))
and Approximate Message Passing (AMP) complexity (Troiani et al. (2024)), which measure when
fully connected neural networks can strongly learn target functions on i.i.d. or isotropic input distri-
butions and sparse or single/multi-index functions. In particular, few works studied measures based
on the alignment between the networks initialization and the target distribution, as in this paper.
(Mok et al. (2022); Ortiz-Jiménez et al. (2021)) studied the label-gradient-alignment (LGA), de-
fined as the norm of the target function in the RKHS induced by the NTK (Jacot et al. (2018)) at
initialization, showing its empirical relevance for predicting network performance. In contrast, we
focus on a theoretical analysis, with our measure of initial gradient alignment being loss-dependent.
Abbe et al. (2022c) defined the initial alignment (INAL) as the maximum average correlation of any
neuron with the target, providing a lower bound for functions with small INAL, though their result
relies on input embedding and orbit hardness, which does not apply to almost-full parities.

3 SETTING AND INFORMAL CONTRIBUTIONS

We consider learning with a neural network of P parameters, NN(x; θ), θ ∈ RP , initialized as
θ0 ∼ D0, for some distribution D0, and trained using noisy stochastic gradient descent (noisy-SGD,
see Def. 3). We assume that the network has access to data samples (x, f(x)), where x ∼ D, for D
being a distribution in Rd and f : Rd → {±1} is an unknown target function. We focus on learning
parity functions on uniform inputs (D = Unif{±1}d). A parity function over a subset S of the input
coordinates [d] := {1, 2, . . . , d} is a function χS : {±1}d → {±1}, defined as χS(x) :=

∏
i∈S xi,

where S ⊆ [d]. We will focus on the case where S = [d] (full parity) or |S| = d − Od(1) (almost
full parity). Let us define our notion of perturbed initialization.

Definition 1 (Perturbed Initialization). Consider a neural network with parameters θ ∈ RP and
two independent random vectors A,Hσ ∈ RP with independent coordinates where A is arbitrary
and Hσ has independent entries (Hσ)p ∼ N (0, σ2 · IP ). We say that a neural network NN(x; θ)

3



Published as a conference paper at ICLR 2025

has a (A, σ)-perturbed initialization with noise level σ if its parameters are initialized to θ0p =

Ap +
√
VarAp(Hσ)p.

We will mostly consider the case where A ∼ Unif{±1}P (Rademacher initialization). In this
scenario, we refer to the initialization as σ-perturbed Rademacher.

Theorem 1 (Informal, Positive Almost-Full Parities). Let f(x) = χS(x), with S ⊆ [d], |S| =
d−Od(1). A two-layer ReLU network with some poly(d) hidden units and σ-perturbed Rademacher
initialization with σ = O(d−1), trained by GD or SGD with any batch-size with the correlation4 or
the hinge loss, will learn f to perfect accuracy in poly(d) steps.

For our negative result, we introduce the following notion of Gradient Alignment.

Definition 2 (Gradient Alignment). For a neural network NN(x; θ), an input distribution D, a target
function f : Rd → R, and a loss function L : R× R → R, we denote the population gradient as

Γf (θ) := Ex [∇θL(NN(x; θ), f(x))] . (1)

If θ is a random initialization then we define the gradient alignment of θ as

GALf (θ) := Eθ∥Γf (θ)− Γr(θ)∥22 , (2)

where Γr(θ) := Ex,y[∇θL(NN(x; θ), y)] for y ∼ Rad(1/2) and independent of x. That is, Γr(θ) is
the gradient of a random classification task.

We remark that for the squared and the correlation loss, the Gradient Alignment at initialization
corresponds to the Label-Gradient-Alignment (LGA) of Ortiz-Jiménez et al. (2021); Mok et al.
(2022), thus our GAL generalizes LGA to other losses.

We first prove that, under some conditions, if the Gradient Alignment at initialization is small, the
network does not learn. We remark that this result holds for general input distributions (beyond
Boolean and uniform) and for all networks with a linear output layer (see Section 5.1 for details).

Theorem 2 (Informal, Negative General). Let f : Rd → {±1} be a target function, and let
NN(x; θ) be a neural network with a linear output layer, trained by noisy-GD with noise level τ and
the correlation loss. Assume either: 1) Gaussian initialization of the weights and homogeneous ac-
tivation, or 2) (A, σ)-perturbed initialization, polynomially bounded gradients, and τ small enough
(see details in Corollary 3). If GALf (θ

0) < exp(−Ω(d)), then after poly(d) training steps, the
network will achieve an accuracy of at most 1

2 +O(exp(−Ω(d))).

We then apply this result to the case of almost-full parities on uniform inputs.

Theorem 3 (Informal, Negative Almost-Full Parities). Let f(x) = χS(x), for S ⊆ [d] such that
|S| ≥ d/2. Noisy-GD with correlation loss and any noise level τ = Ω(1/ poly(d)) on any two-
layer fully connected ReLU network of poly(d) size, initialized with Gaussian initialization will not
achieve accuracy better than random guessing in poly(d) training steps.

We expect Theorem 3 to hold also in case of σ-perturbed Rademacher initialization for σ > σ∗

for some fixed σ∗ > 0. To that end in Section 5.2.2 we prove the gradient alignment bound for
the hidden layer weights in the perturbed case. Together with a similar bound for the output layer
weights (which we omit from this version of the paper) that would give the statement of Theorem 3
also for the σ-perturbed initialization, with σ > σ∗.

Full versions of Theorems 1 and 3 presented in the following sections provide the following rigorous
separation between Rademacher and Gaussian initializations: Noisy-GD for correlation loss, when
applied to a two-layer fully connected ReLU network with some poly(d) hidden neurons, can learn
the full parity function in poly(d) steps if the network is initialized with Rademacher weights.
However, using Gaussian initialization while leaving all other aspects of the algorithm unchanged
requires exponential time to learn. Furthermore, the negative result is robust to details like changing
hyperparameters, and as discussed above, both positive and negative results are also valid for some
ranges of σ-perturbed Rademacher initializations.

4The correlation loss is defined as Lcorr(y, ŷ) = −yŷ.
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4 POSITIVE RESULT FOR RADEMACHER INITIALIZATION

In both positive and negative results we will be working with the noisy SGD and GD algorithm
specified below:
Definition 3 (Noisy-(S)GD). Consider a neural network NN(.; θ), with initialization of the weights
θ0. Let f : X → R be a target function defined on an input space X . Assume we are given fresh
samples x ∼ D, for some input distribution D defined on X . Given a weakly differentiable loss
function L, the updates of the noisy-SGD algorithm with learning rate γ are defined by

θt+1 = θt − γ

(
1

B

B∑
s=1

∇θtL(NN(xs; θt), f(xs)) + Zt

)
, (3)

where for all t ∈ {0, . . . , T − 1}, Zt are i.i.d. N (0, τ2), for some noise level τ ,
and they are independent from other variables, and B is the batch size. If the average
over the batch size 1

B

∑B
s=1 ∇θtL(NN(xs; θt), f(xs)) is replaced by the population mean

Ex∼D [∇θtL(NN(x; θt), f(x))], we refer to the algorithm as (full batch) noisy-GD.

In this section we consider two layer neural networks with Rademacher initialization for the hidden
layer weights. Our results imply that with large enough poly(d) number of hidden neurons, the
hidden layer embedding induced by the Rademacher distribution makes the almost-full parities for
k = d−Od(1) linearly separable. Then:

1. When trained with the correlation loss on the uniform input distribution, the network
achieves perfect accuracy in one step of full GD or in poly(d) steps of SGD.

2. When trained with the hinge loss on any input distribution, the neural network achieves
classification error ϵ in poly(d)/ϵ steps of SGD. (For simplicity we restrict this result to
full parity.)

As mentioned, our positive result for the full parity holds also for a perturbed Rademacher initial-
ization with deviation up to C/d for some constant C > 0. We demonstrate this for hinge loss, see
Section 4.2.

4.1 GD AND SGD WITH CORRELATION LOSS

We consider a fully connected network N(x) =
∑n
i=1 viσ(wi.x + bi), where σ is an arbitrary

activation function. In the corollaries we will take σ to be either ReLU or its clipped version. The
network is trained with correlation loss L(y, ŷ) = −yŷ where only the output layer weights v are
trained. This is in contrast to the hinge loss result in Section 4.2 where we allow training of both
layers. The gradient of output weights on input x ∈ {±1}d is given by ∇vL = −fa(x)σ(Wx+ b),

where W is an n × d matrix with rows w1, . . . , wn and fa(x) =
∏d−a
i=1 xi is the almost full parity

function. During training, the inputs are sampled from the uniform distribution on {±1}d.

The hidden layer weights wi are initialized as i.i.d. Rademacher and the output weights as vi = 0.
The biases are i.i.d. according to some distribution bi ∼ B. Our result depends on the following
quantity:

∆
(a)
d,b,σ := Ex∼{±1}d

(−1)(d−a−
∑d−a

j=1 xj)/2σ

 d∑
j=1

xj + b

 . (4)

In the following, let us assume that Eb∼B

(
∆

(a)
d,b,σ

)2
= ∆2 and |σ(w · x+ b)| ≤ R, where both ∆2

and R can vary with d. Furthermore, we assume that there exists a constant C not depending on d
such that for every b in the support of B it holds |∆d,b,σ| ≤ C∆. (The last assumption is satisfied for
any distribution B with a support of constant size. The distributions we consider in the corollaries
have this property.)
Theorem 4. Consider a network as above trained for one step with the GD algorithm. If n ≥
Ω(dR

2

∆2 ), then, except with probability at most 2 exp(−d) over the choice of initialization, we have
sign(N1(x)) = fa(x) for every x ∈ {±1}d, where N t(x) denotes the output of the network at time
t. This conclusion holds also in the presence of GD noise of magnitude τ up to O(∆2/R).
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Theorem 5. Consider the above network trained with SGD of any batch size. Let n ≥ Ω(dR
2

∆2 ).
Then, except with probability 3 exp(−d), after T ≥ Ω(R

4

∆4 (d + log n)) steps, the network predicts
correctly sign(NT (x)) = fa(x) for every x ∈ {±1}d in the presence of GD noise of magnitude τ
up to O(

√
T∆2

R ).

We present an application of Theorem 4 to a specific setting. By estimating ∆, we prove a corollary
for the full parity function for ReLU activation and its bounded variant, i.e., clipped ReLU. For
clipped ReLU, order of d2 neurons are sufficient for learning with high probability. We also provide
a result for the almost full (d− a)-parities for ReLU activation and any a = O(1):
Corollary 1. In case of the full parity a = 0 and σ = ReLU, let bi = 0 if d is even or bi = −1 if d
is odd. Then, we have ∆2 = Θ(1/d) andR = d+1. Hence, Ω(d4) hidden neurons are sufficient for
strong learning in one step of GD. In the case of clipped ReLU σ(x) = max(0,min(x, 5)) it holds
∆2 = Θ(1/d) and R = 5, hence Ω(d2) hidden neurons are sufficient.
Corollary 2. Let a ∈ N. Take b ∼ B such that bi = a+2 with probability 1/2 and bi = a+2+0.1
with probability 1/2. Then, for σ = ReLU it holds ∆2 ≥ Ω(d−1−2⌈a/2⌉]). Accordingly, n ≥
Ω(d4+2⌈a/2⌉) hidden neurons are sufficient for strong learning in one GD step.

In the corollaries above, we have chosen convenient bias values for simplicity, but the precise values
are not crucial except for “unlucky” choices where ∆ can become too small. In particular learning
should hold for random biases for most reasonable distributions. For the clipped ReLU activation,
we expect (but do not prove) that the bound on the number of neurons in Corollary 2 could be
improved to n ≥ Ω(d2+2⌈a/2⌉) using a similar modification as in Corollary 1.

4.2 SGD ANALYSIS FOR HINGE LOSS

One of the implications of Theorem 4 is that under Rademacher initialization, with high probability
the hidden layer embeddings of the parity function are linearly separable. We use known techniques
(in particular, we borrow parts of the analysis from Nachum & Yehudayoff (2020)) to show that this
implies learning for SGD under the hinge loss. For simplicity in this section we restrict ourselves to
the ReLU activation and full parity. We refer to Appendix A.5 for details.

5 NEGATIVE RESULTS

5.1 NEGATIVE RESULTS FOR GENERAL TARGETS

In this section we prove a negative result that holds for all neural networks with a linear output layer:
Definition 4 (Linear Output Layer). We say that a neural network NN(x; θ) has linear output layer
if its output can be written as NN(x; θ) =

∑n
i=1 viNNi(x;ψ), where θ = (v, ψ) are the trainable

weights of the network, and n denotes the number of neurons in the last hidden layer.

In the context of binary classification, the network’s ±1 label prediction is given by sign(NN(x; θ)).
Let us state our main negative result.
Theorem 6 (Negative Result for General Targets). Let NN(x; θ) be a network with a linear output
layer. Let the weights θ0 be initialized according to an (A, σ)-perturbed initialization (Def. 1), for
A ∈ RP with independent coordinates with distributions symmetric around 0. Assume the network
is given samples (x, f(x)) where x ∼ D, for D being a distribution on Rd. Let NN(x; θT ) be the
output of the noisy-GD algorithm with noise level τ and learning rate γ after T steps of training with
the correlation loss. Assume that there exists some bound ε > 0 such that for every 0 ≤ λ2 ≤ Tγ2τ2

we have
GALf (θ

0 + λH) ≤ ε , (5)

where H ∼ N (0, IP ). Then, P
[
sign(NN(x; θT )) = f(x)

]
≤ 1

2 + T
√
ε

2τ .

In words, this theorem states that if equation 5 holds for ε which is small compared to the noise level
τ , then noisy gradient descent will require a large number of training steps to achieve performance
better than random guessing. Therefore, even the weakest form of learning is impossible. We
provide here a brief outline of the proof, and refer to Appendix B for the full proof.
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Proof Outline of Theorem 6. Our proof is composed of three steps: 1) We define the ‘junk-flow’,
i.e. the training dynamics of a network trained on random noise (Definition 6); 2) We show that
if the GAL remains small along the junk-flow, then the noisy-GD dynamics stay close to the junk
flow in total variation (TV) distance, meaning that the network does not learn (Lemma 5); 3) For
correlation loss, we demonstrate that if equation 5 holds, then the GAL remains small along the
junk flow. Notably, steps (1) and (2) apply to any architecture with a linear output layer, symmetric
initialization, and any loss function. However, step (3) is currently limited to the correlation loss, as
tracking junk-flow dynamics for other losses is more complex.

Let us make a few remarks.
Remark 1. For simplicity, we present Theorem 6 in the context of full batch noisy-GD. However, we
note that the proof can be extended to noisy-SGD with a sufficiently large batch size, by leveraging
the concentration of the effective gradient around the population mean, similarly to e.g. (Abbe &
Sandon (2020), Theorem 3).
Remark 2. We propose using GALf as a measure for hardness of learning. However, the condition
in equation 5 requires verifying that GALf remains small for all Gaussian perturbations of the
initialization, with variance within the specified range. In Corollaries 3 and 4, we demonstrate that,
in some settings, the condition in equation 5 can be simplified and expressed uniquely in terms of
GALf (θ

0).
Remark 3. We emphasize that Theorem 6 applies to any binary classification task and network
architecture with a linear output layer, unlike, for example, Abbe et al. (2022c), which is specific to
Boolean functions and product measures. Importantly, our result is restricted to the correlation loss,
as the proof relies on coupling the gradient descent dynamics with the ’junk flow’, as mentioned in
the proof outline. We empirically observe that also for hinge loss, the GALf remains small along
the junk flow over time (see Figure 2 in Section 6).

As a first corollary, we show that when the GD noise level τ is small compared to the variances in
the initial Hσ , the distributions of Hσ and Hσ + λH are similar. As a result, equation 5 can be
expressed in terms of GALf (θ

0).
Corollary 3. Let f : Rd → {±1} be a target function under a given input distribution D. Let
NN(x; θ) be network with linear output layer, with weights initialized according to an (A, σ)-
perturbed initialization, for 0-symmetric independent A ∈ RP . Assume that ∥Ex|∇NN(x; θ)|∥22 ≤
R for all θ.5 Let NN(x; θT ) be the output of the noisy-GD algorithm with noise level τ and learning
rate γ such that τ2 ≤ σ2 minp VarAp

PTγ2 , after T steps with the correlation loss. Then,

P(NN(x; θT ) = f(x)) ≤ 1

2
+
T
√
4R+ 1

2τ
·GALf (θ

0)1/18. (6)

The proof of Corollary 3 is deferred to Appendix B.3. While the above corollary applies to gen-
eral perturbed initializations, it relies on the assumption that the GD noise level τ is sufficiently
small. However, we also show that in the specific case of Gaussian initialization and assuming a
homogeneous architecture, this assumption can be removed.

Gaussian Initialization. Let us restrict ourselves to the special case of Gaussian initialization, i.e.
when A = 0P . We assume that the activation h satisfies the following homogeneity property.
Definition 5 (H-Weakly Homogeneous.). Let h : R → R be an activation function. We say that h
is H-weakly homogeneous if for all x ∈ R and C ≥ 0, h(Cx) = CHh(x).

For example, ReLU(x) = max{0, x} is 1-weakly homogeneous. xk is k-weakly homogeneous, for
all k ∈ N. We prove the following result.
Corollary 4. Let NN(x; θ) be a fully connected network of depth L, with H-weakly homogeneous
activation and with weights initialized as θ0p ∼ N (0, σ2

lp
) where lp denotes the layer of parameter

θp, for p ∈ [P ]. Let f : Rd → {±1} be a balanced target function. Let NN(x; θT ) be the output of
the noisy-GD algorithm with noise-level τ , after T steps of training with the correlation loss. Then,

P(NN(x; θT ) = f(x)) ≤ 1

2
+
T

2τ

L∏
l=1

(
1 +

Tγ2τ2

σ2
l

)H
·GALf (θ

0)1/2. (7)

5This always holds if we assume gradient clipping.
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5.2 NEGATIVE RESULTS FOR HIGH-DEGREE PARITIES

5.2.1 SMALL ALIGNMENT FOR GAUSSIAN INITIALIZATION

In this section we state a rigorous lower bound for learning of large degree parities with pure Gaus-
sian initialization. This is in the setting of two layer ReLU neural networks. Then we will discuss
extending this result to a perturbed Rademacher initialization for a large enough constant perturba-
tion.
Theorem 7. Let θ = (w, b, v) for w ∈ Rn×d, b ∈ Rn, v ∈ Rn and NN(x; θ) =

∑n
i=1 viReLU(wi ·

x + bi). Let a = a(d) ≤ d/2 and fa(x) =
∏d−a
i=1 xi. Consider the i.i.d. initialization w ∼

N
(
0, 1d Idn×d

)
, b ∼ N (0, σ2 Idn) for any σ2 = O(1), v ∼ N

(
0, 1

n Idn
)
.

Then, for any number of hidden neurons n = exp(o(d)), any number of time steps T = exp(o(d)),
any learning rate 0 ≤ γ ≤ exp(o(d)), any noise level exp(−o(d)) ≤ τ ≤ exp(o(d)), after T steps
of the noisy GD algorithm with correlation loss,

Pr
[
sign(NNT (x; θ)) = fa(x)

]
≤ 1

2
+ exp(−Ω(d)) . (8)

Theorem 7 follows from Theorem 6 and the following bound on the gradient alignment:
Proposition 1. Let a neural network be as in Theorem 7. Then, for every σ2

0 > 0, there exists
C,C ′ > 0 such that for any network with σ2 ≤ σ2

0 we have a gradient alignment bound
GALfa(θ) ≤ PC ′ exp(−Cd) , (9)

where P := nd+ 2n is the total number of parameters.

5.2.2 SMALL ALIGNMENT FOR PERTURBED INITIALIZATION

Consider the perturbed Rademacher initialization 1√
d
(r + g) for g ∼ N (0, σ2) for some constant

σ > 0. In order to prove a rigorous lower bound like in Theorem 7 for this initialization, we need to
establish the alignment bound for GALf (r + g). Once this bound is proved, the remaining steps of
the proof are similar as for Theorem 7.
Theorem 8. There exists σ0 > 0 such that for all σ = σ(d) such that σ0 ≤ σ ≤ exp(o(d)) the
following holds:

Let θ = (w, v) forw ∈ Rn×d, v ∈ Rn and NN(x; θ) =
∑n
i=1 viReLU(wi·x). Let f(x) =

∏d
i=1 xi.

Consider the i.i.d. initialization w = 1√
d
(r + g) where r ∼ Rad(1/2), g ∼ N (0, σ2) with all

coordinates independent, v ∼ N
(
0, 1

n Idn
)
.

Then, for any number of hidden neurons n = exp(o(d)), any number of time steps T = exp(o(d)),
any learning rate 0 ≤ γ ≤ exp(o(d)), any noise level exp(−o(d)) ≤ τ ≤ exp(o(d)), after T steps
of the noisy GD algorithm with correlation loss,

Pr
[
sign(NNT (x; θ)) = f(x)

]
≤ 1

2
+ exp(−Ω(d)) . (10)

Proposition 2. There exists σ0, C, C ′ > 0 such that the following holds: Let the setting be as in
Theorem 8. For any network with perturbed initialization with σ ≥ σ0 we have a gradient alignment
bound

GALf (θ) ≤ σ2PC ′ exp(−Cd) , (11)
where P := nd+ n is the total number of parameters.

The proofs for this section can be found in Appendices C and D.

6 EXPERIMENTS

In this section, we show empirical results on the impact of the initialization in learning the full parity.
As our model, we use a multi-layer perceptron (MLP) with 3 hidden layers of neurons sizes 512,
512 and 64 with ReLU activation, and we train it with SGD with batch size 64 on the hinge loss,
training all layers simultaneously. Each experiment is repeated for 7 random seeds and we report the
95% confidence intervals. In Appendix E, we report further experiment details, as well as additional
experiments.
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Figure 1: Learning the full parity with σ-perturbed initialization by SGD with the hinge loss on a
4-layer MLP, with d = 50, with online fresh samples (left) and with an offline fixed dataset (right).
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Figure 2: Computing numerically the alignment GALf with the hinge loss (left) and the correlation
loss (right), for a one-neuron network.

σ-Perturbed Initialization. We first consider learning the full parity function with σ-perturbed
initializations and investigate the effect of varying σ (Figure1). To make different initializations
comparable, we normalize them such that the variance entering each neuron is 1 (see Appendix E for
details). We observe that the test accuracy after training decreases as σ increases. This pattern is seen
in both the online setting (left plot), where fresh batches are sampled at each iteration, and the offline
setting (right plot), where the network is trained on a fixed dataset until the training loss decreases to
10−2, and evaluated on a separate test set. For input dimension d = 50, as in Figure 1, we find that
some learning occurs for σ ∈ {0.1, 0.2}. However, in the Appendix, we report experiments with
larger input dimensions, where learning does not occur for these values of σ (Figure5).

Gradient Alignment. In Figure 2 we compute the gradient alignment for a one-neuron ReLU
network under different initializations and losses, which are not covered by our theoretical results.
The left plot shows the GALf at initialization for the hinge loss with Rademacher, σ-perturbed
Rademacher and Gaussian initializations, across input dimensions up to d = 40. We observe that
GALf seems to decrease at an inverse-polynomial rate for Rademacher, but super-polynomially fast
for Gaussian and σ-perturbed initializations for large σ (e.g. σ ∈ {0.8, 0.99}). The case of smaller
σ ∈ {0.1, 0.3} is less conclusive. We also estimate, with Montecarlo, the GALf after training the
neuron for a few steps (t = 2 and t = 5) on random labels (dots). We observe that training on
random labels does not increase the GALf . A theoretical understanding of this observation would
allow to extend our negative result to the hinge loss.

In the right plot, we estimate numerically the initial GALf for the correlation loss for a single
threshold neuron. We consider σ-perturbed initializations with small σ, contrasting Theorem 8 and
Proposition 2, which apply only for large σ. For small σ, GALf deviates from the Rademacher case,
suggesting that it could be super-polynomially small for all constants σ > 0. Further investigation
for small σ is left for future work, and Appendix E shows that GALf remains super-polynomially
small for larger values of σ, confirming our theory.
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Figure 3: Learning the full parity with perturbations of the Rad. initialization by SGD with the
hinge loss on a 4-layer MLP, with d = 50, with online fresh samples (left) and with an offline
dataset (right).

Other Perturbed Initializations. We next explore perturbations beyond mixtures of Gaussians.
In Figure 3, we consider three types: 1) a mixture of two continuous uniform distributions with
means +1 and −1, and standard deviations σ ∈ {0.1, 1.0}; 2) a sparsified Rademacher initialization,
where a fraction s ∈ {1/2, 1/3, 1/5} of the weights are set to 0, and the rest follow a Rad(1/2)
distribution; and 3) a symmetric discrete initialization, where the weights are randomly chosen from
{−2,−1, 1, 2}. We find that the mixture of continuous uniforms behaves similarly to the mixture of
Gaussians: for σ = 0.1 and input dimension d = 50, the network successfully learns, but learning
is prevented at larger σ. Additionally, we observe that all other discrete initializations fail to enable
learning, suggesting that the Rademacher initialization is a special case.

7 CONCLUSION

In this paper, we advance the understanding of whether high degree parities can be learned using
noisy-GD on standard neural networks with i.i.d. initializations. Specifically, we show that while the
full parity is easily learnable with Rademacher initialization, it becomes challenging when Gaussian
perturbations with large variance are introduced. This constitutes a separation between SQ algo-
rithms and gradient descent on neural networks: the full parity is an example of a function that
is trivially learnable in the statistical query (SQ) framework but difficult for noisy-GD on neural
networks with most typical initializations, with the Rademacher being a special case. It raises inter-
esting questions about a threshold where learning behavior changes based on the perturbation level
σ. result, e.g., to hinge loss and/or deeper architectures.

Additionally, we propose a novel, loss-dependent measure for assessing alignment between the ini-
tialization and the target distribution, and prove a negative result for the correlation loss that applies
to general input distributions, beyond the specific case of full parity and Boolean inputs. We leave
to future work investigating if this technique can be applied more generally, especially in other
scenarios where the dynamics remain stuck near initialization for a significant time (hardness of
weak-learning). For example, such behavior is plausible for targets presenting symmetries and re-
quiring some level of ‘logical reasoning’ (e.g. arithmetic, graphs, syllogisms), for which parities are
a simple model. Similarly, we leave open strengthening of the negative result, e.g., to hinge loss
and/or deeper architectures.
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A PROOFS AND DETAILS FOR SECTION 4

A useful identity to be remembered for later is, for every x,w ∈ {±1}d:

d∏
j=1

xjwj = (−1)(d−w·x)/2 . (12)
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A.1 PROOF OF THEOREM 4

First, consider the case without GD noise. One step of GD with learning rate γ results in the
following update:

vt+1
i = vti + γEx∼{±1}d

d−a∏
j=1

xj

σ(wi · x+ bi) (13)

= vti + γEx∼{±1}d

d−a∏
j=1

wij

 (−1)(d−a−
∑d−a

j=1 wijxj)/2σ(

d∑
j=1

wijxj + bi) (14)

= vti + γ

d−a∏
j=1

wij

∆
(a)
d,bi,σ

, (15)

keeping in mind from equation 4 that

∆
(a)
d,b,σ = Ex∼{±1}d

(−1)(d−a−
∑d−a

j=1 xj)/2σ

 d∑
j=1

xj + b

 . (16)

Since wi · x is distributed as a sum of i.i.d. Rademachers regardless of wi, the value in equation 14
indeed can be replaced with the factor ∆(a)

d,bi,σ
which does not depend on wi.

Accordingly, after one step of GD for starting zero weights v0 = 0, the output of the network is
given by

N1(x) =

n∑
i=1

γ∆
(a)
d,bi,σ

d−a∏
j=1

wijσ(wi · x+ bi) . (17)

For fixed x ∈ {±1}d and in expectation over w and b, this is, using equation 12,

Ew,bN1(x) = γ

n∑
i=1

Ebi

∆(a)
d,bi,σ

Ew∼{±1}d

d−a∏
j=1

wijσ(wi · x+ bi)

 (18)

= γ

d−a∏
j=1

xj

 n∑
i=1

Ebi
[
∆

(a)
d,bi,σ

Ew∼{±1}d

[
(−1)(d−a−

∑d−a
j=1 wijxj)/2σ(wi · x+ bi)

]]
(19)

= γ

d−a∏
j=1

xj

 n∑
i=1

Ebi
[
[∆

(a)
d,bi,σ

]2
]
= γ

d−a∏
j=1

xj

n∆2 . (20)

Let us come back to the expression fa(x)N1(x) for a fixed x ∈ {±1}d. Its value is a random
variable depending on the hidden layer initialization W . By equation 17, it can be written as a sum
of n i.i.d. random variables, and each of them has absolute value at most γRC∆. Furthermore,
it follows from equation 20 that Ewfa(x)N1(x) = γn∆2. Therefore, we can upper bound the
prediction error probability by Hoeffding’s inequality:

Pr
w,b

[fa(x)N
1(x) ≤ 0] ≤ Pr

w,b

[
fa(x)N

1(x) ≤ γn∆2

2

]
≤ exp

(
− n∆2

8R2C2

)
≤ exp(−2d) , (21)

where the last inequality holds for n ≥ Ω(dR
2

∆2 ). Therefore, by union bound, the network will make
correct predictions fa(x)N1(x) > 0 for all x ∈ {±1}d except with probability exp(−d).
In the presence of gradient noise, the weights are given as ṽ1 = v1 + γξ, where ξ ∼ N (0, τ2 Id).
Then,

fa(x)Ñ
1(x) = fa(x)N

1(x) + γfa(x)

n∑
i=1

ξiσ(wi · x+ bi) ≥ fa(x)N
1(x)− γR

n∑
i=1

|ξi| . (22)
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Using equation 21, except with probability exp(−d), we will have fa(x)Ñ1(x) > 0 for every x
as long as γR

∑
i |ξi| ≤

γn∆2

2 , or equivalently
∑
i |ξi| ≤

n∆2

2R . Note that E|ξi| = τ
√
2/π, so by

assumption τ ≤ O(∆
2

R ) we have E
∑
i |ξi| ≤

n∆2

4R .

Furthermore, as ξi has Gaussian distribution, its absolute value |ξi| is sub-Gaussian (see, e.g., Propo-
sition 2.5.2 in Vershynin (2018)). Therefore, by sub-Gaussian concentration, we can estimate

Pr

[
n∑
i=1

|ξi| ≥
n∆2

2R

]
≤ Pr

[
n∑
i=1

|ξi| − E|ξi| ≥
n∆2

4R

]
≤ exp

(
−Ω

(
n∆4

R2τ2

))
≤ exp(−d) ,

(23)

where the last inequality holds as n ≥ Ω(dR
2

∆2 ) and τ2 = O(∆
4

R2 ). All in all, the noisy network
classifies all inputs correctly except with probability at most 2 exp(−d).

A.2 PROOF OF THEOREM 5

In the general case of noisy SGD, let v = v1 ∈ Rn be the update given by GD, that is vi =
Exfa(x)σ(wi · x+ bi). The SGD update can be written as

v̂t+1
i = v̂ti + γeti + γξti , (24)

where: (a) eti for 1 ≤ i ≤ n is a random variable with expectation Eeti = vi and bounded by
|eti| ≤ R; (b) ξt ∼ N (0, τ2 Id); and where those random variables are independent across time.

From equation 21, if n > Ω(dR
2

∆2 ), except with probability exp(−d) over the choice of hidden layer
weights w and biases b, for every x ∈ {±1}d it holds

fa(x)

n∑
i=1

viσ(wi · x+ bi) >
γn∆2

2
. (25)

Let x ∈ {±1}d. We estimate

fa(x)N̂
T (x) = fa(x)γ

n∑
i=1

(
Tvi +

T∑
t=1

eti − vi + ξti
)
σ(wi · x+ bi) (26)

>
γTn∆2

2
− γR

(
n∑
i=1

∣∣∣∣∣
T∑
t=1

eti − vi

∣∣∣∣∣+
n∑
i=1

∣∣∣∣∣
T∑
t=1

ξti

∣∣∣∣∣
)
. (27)

Accordingly, if
∑
i |
∑
t ξ
t
i | ≤ Tn∆2

8R and |
∑
t e
t
i − vi| ≤ Tn∆2

8R for every 1 ≤ i ≤ n, then
fa(x)N̂

T (x) > 0. We now show that each of those two events fails to occur with only exponentially
small probability.

First, recall that we have almost surely |eti| ≤ R. By Hoeffding’s inequality,

Pr

[
T∑
t=1

|eti − vi| ≥
Tn∆2

8R

]
≤ 2 exp

(
− T∆4

27 ·R4

)
≤ exp(−d)/n ,

as soon as T ≥ Ω(R
4

∆4 (d+log n)). By union bound, |
∑
t e
t
i−vi| ≤ Tn∆2

8R holds for every 1 ≤ i ≤ n,
except with probability exp(−d).

As for the additional Gaussian noise, observe that for τ = O(
√
T∆2

R ) we have

E

[
n∑
i=1

∣∣∣∣∣
T∑
t=1

ξti

∣∣∣∣∣
]
= nτ

√
T
√
2/π ≤ Tn∆2

16R
. (28)
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Similarly as in the GD case,
∣∣∣∑t

ξti√
Tτ

∣∣∣ is a sub-Gaussian random variable. Therefore, we have
concentration

Pr

[
n∑
i=1

∣∣∣∣∣
T∑
t=1

ξti

∣∣∣∣∣ ≥ Tn∆2

8R

]
≤ Pr

[
n∑
i=1

∣∣∣∣∣
T∑
t=1

ξti

∣∣∣∣∣− nτ
√
T
√
2/π ≥ Tn∆2

16R

]
(29)

≤ exp

(
−Ω

(
Tn∆4

τ2R2

))
(30)

≤ exp(−d) , (31)

since τ = O(
√
T∆2/R) and n = Ω(dR

2

∆2 ).

A.3 PROOFS OF COROLLARY 1 AND COROLLARY 2

Let ∆d,b,σ := ∆
(0)
d,b,σ . We need to find asymptotic bounds on |∆d,b,σ| for σ = ReLU and σ =

clipped-ReLU (let’s denote it as CReLU) and |∆(a)
d,b,ReLU| for a > 0. We therefore turn to de-

veloping formulas for ∆d,b,CReLU and ∆
(a)
d,b,ReLU. Let’s first consider the following combinatorial

claim:
Claim 1. For any integer d, c > 1 and c′ such that c ≤ c′:

1.
∑d
k=c(−1)k

(
d
k

)
= (−1)c

(
d−1
c−1

)
2.
∑d
k=c(−1)kk

(
d
k

)
= (−1)cd

(
d−2
c−2

)
3.
∑c′

k=c(−1)k
(
d
k

)
= (−1)c

(
d−1
c−1

)
+ (−1)c

′(d−1
c′

)
4.
∑c′

k=c(−1)kk
(
d
k

)
= (−1)cd

(
d−2
c−2

)
+ (−1)c

′
d
(
d−2
c′−1

)
.

Proof. Here and below, we follow the convention
(
d
k

)
= 0 for k < 0 or k > d.

1. This follows by observing that it is a telescopic sum, with the term (−1)d
(
d−1
d

)
= 0 by

convention:
d∑
k=c

(−1)k
(
d

k

)
=

d∑
k=c

(−1)k
((

d− 1

k

)
+

(
d− 1

k − 1

))
= (−1)c

(
d− 1

c− 1

)
. (32)

2. Here we use the above and the fact that k
(
d
k

)
= d
(
d−1
k−1

)
,

d∑
k=c

(−1)kk

(
d

k

)
= d

d∑
k=c

(−1)k
(
d− 1

k − 1

)
= (−1)cd

(
d− 2

c− 2

)
. (33)

3. This follows from equation 32, indeed
c′∑
k=c

(−1)k
(
d

k

)
=

d∑
k=c

(−1)k
(
d

k

)
−

d∑
k=c′+1

(−1)k
(
d

k

)
(34)

= (−1)c
(
d− 1

c− 1

)
+ (−1)c

′
(
d− 1

c′

)
(35)

4. Similarly this follows from equation 33,
c′∑
k=c

(−1)kk

(
d

k

)
=

d∑
k=c

(−1)kk

(
d

k

)
−

d∑
k=c′+1

(−1)kk

(
d

k

)
(36)

= (−1)cd

(
d− 2

c− 2

)
+ (−1)c

′
d

(
d− 2

c′ − 1

)
.

16



Published as a conference paper at ICLR 2025

Lemma 1. Let d > 1, b ∈ R, c = c(d, b) := ⌈(d− b)/2⌉ and c′ = ⌊(d− b+ 5)/2⌋. Then,

∆d,b,ReLU =
(−1)d+c

2d

[
(d+ b)

(
d− 2

c− 2

)
− (d− b)

(
d− 2

c− 1

)]
, (37)

∆d,b,CReLU =
(−1)d+c

2d

[
(d+ b)

(
d− 2

c− 2

)
− (d− b)

(
d− 2

c− 1

)]
(38)

+
(−1)d+c

′

2d

[
(d+ b− 5)

(
d− 2

c′ − 1

)
− (d− b+ 5)

(
d− 2

c′

)]
. (39)

Proof. Recall that x in the definition of ∆d,b,σ is distributed as i.i.d. uniform Rademachers. There-
fore, we can write xj = −1 + 2zj , where z are i.i.d uniform Bernoullis. Using Claim 1 and the
definition of ∆d,b,σ:

∆d,b,ReLU = (−1)dEz

(−1)
∑

j zj ReLU

b− d+ 2

d∑
j=1

zj

 (40)

= (−1)d2−d
d∑
k=c

(−1)k
(
d

k

)
(b− d+ 2k) , (41)

= (−1)d+c2−d
(
(b− d)

(
d− 1

c− 1

)
+ 2d

(
d− 2

c− 2

))
(42)

= (−1)d+c2−d
(
d

(
d− 2

c− 2

)
− d

(
d− 2

c− 1

)
+ b

(
d− 1

c− 1

))
(43)

=
(−1)d+c

2d

[
(d+ b)

(
d− 2

c− 2

)
− (d− b)

(
d− 2

c− 1

)]
. (44)

Similarly we have,

∆d,b,CReLU = (−1)dEz

(−1)
∑

j zj CReLU

b− d+ 2

d∑
j=1

zj

 (45)

= (−1)d2−d
d∑
k=c

(−1)k
(
d

k

)
min(5, b− d+ 2k) , (46)

= (−1)d2−d
c′∑
k=c

(−1)k
(
d

k

)
(b− d+ 2k) + 5(−1)d2−d

d∑
k=c′+1

(−1)k
(
d

k

)
, (47)

= (−1)d+c2−d
[
(b− d)

(
d− 1

c− 1

)
+ 2d

(
d− 2

c− 2

)]
(48)

+ (−1)d+c
′
2−d

[
(b− d− 5)

(
d− 1

c′

)
+ 2d

(
d− 2

c′ − 1

)]
, (49)

= (−1)d+c2−d
[
d

(
d− 2

c− 2

)
− d

(
d− 2

c− 1

)
+ b

(
d− 1

c− 1

)]
(50)

+ (−1)d+c
′
2−d

[
d

(
d− 2

c′ − 1

)
− d

(
d− 2

c′

)
+ (b− 5)

(
d− 1

c′

)]
, (51)

=
(−1)d+c

2d

[
(d+ b)

(
d− 2

c− 2

)
− (d− b)

(
d− 2

c− 1

)]
(52)

+
(−1)d+c

′

2d

[
(d+ b− 5)

(
d− 2

c′ − 1

)
− (d− b+ 5)

(
d− 2

c′

)]
.
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A.3.1 PROOF OF COROLLARY 1

Recall the value c = ⌈(d− b)/2⌉ from Lemma 1. For ReLU activation, in the case of even d (recall
that the bias is bi = 0), we have c = d/2 and:

|∆d,0,ReLU| =
d

2d

∣∣∣∣( d− 2

d/2− 2

)
−
(
d− 2

d/2− 1

)∣∣∣∣ = 4

2d

(
d− 3

d/2− 1

)
(53)

= Θ

(
1√
d

)
, (54)

where in the last line we applied an estimate 2d

8
2

3
√
d
≤
(
d−3
d/2−1

)
≤ 2d

8
2√
d

. In the case of odd d (with
bias bi = −1) it holds c = (d+ 1)/2, and we proceed similarly

|∆d,−1,ReLU| =
1

2d

(
d− 1

(d− 1)/2

)
= Θ

(
1√
d

)
. (55)

For the CReLU activation, in the even case, c = d/2 and c′ = d/2 + 2

|∆d,0,CReLU| =
1

2d

∣∣∣∣d(d− 2
d
2 − 2

)
− d

(
d− 2
d
2 − 1

)
+ (d− 5)

(
d− 2

d/2 + 1

)
− (d+ 5)

(
d− 2

d/2 + 2

)∣∣∣∣ ,
(56)

=
1

2d

∣∣∣∣−4

(
d− 3

d/2− 1

)
+

5

d− 1

(
d− 1

d/2 + 2

)∣∣∣∣ , (57)

= Θ

(
1√
d

)
. (58)

The last equality holds because as d grows
(
d−3
d/2−1

)
dominates over 1

d−1

(
d−1
d/2+2

)
. In the case d odd

we have c = (d+ 1)/2, c′ = (d+ 1)/2 + 2 and we proceed similarly to get

|∆d,−1,CReLU| =
1

2d

∣∣∣∣−( d− 1

(d− 1)/2

)
+

6

d− 1

(
d− 1

(d− 5)/2

)∣∣∣∣ = Θ

(
1√
d

)
. (59)

The rest of the corollary is an application of Theorem 4.

A.3.2 PROOF OF COROLLARY 2

Let b ∈ R, by a straightforward calculation we have

∆
(a)
d,b,σ = Ex∼{±1}d

(−1)(d−a−
∑d−a

j=1 xj)/2σ

 d∑
j=1

xj + b

 ,

= Ex∼{±1}d

(−1)(d−a−
∑d−a

j=1 xj)/2σ

d−a∑
j=1

xj +

d∑
j=d−a+1

xj + b

 ,

= Ez∼{0,1}aEx∼{±1}d−a

(−1)(d−a−
∑d−a

j=1 xj)/2σ

d−a∑
j=1

xj − a+ 2

d∑
j=d−a+1

zj + b

 ,

=

a∑
ℓ=0

(
a
ℓ

)
2a

Ex∼{±1}d−a

(−1)(d−a−
∑d−a

j=1 xj)/2σ

d−a∑
j=1

xj − a+ 2ℓ+ b

 ,

=

a∑
ℓ=0

(
a
ℓ

)
2a

∆
(0)
d−a,b−a+2ℓ,σ .
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Recall that σ = ReLU. Applying Lemma 1, where c = c(d, b) = ⌈d−b2 ⌉ and consequently c(d −
a, b− a+ 2ℓ) = c− ℓ, we have

∆
(a)
d,b,σ =

1

2a

a∑
ℓ=0

(
a

ℓ

)
∆d−a,b−a+2ℓ,σ , (60)

=
1

2a

a∑
ℓ=0

(
a

ℓ

)
(−1)d−a+c−ℓ

2d−a

[
(d+ b+ 2(ℓ− a))

(
d− a− 2

c− ℓ− 2

)
(61)

− (d− b− 2ℓ)

(
d− a− 2

c− ℓ− 1

)]
, (62)

=: dT (d, c, a) + C(d, c, a) + bB(d, c, a) , (63)

where

B(d, c, a) =
(−1)d−a+c

2a

a∑
ℓ=0

(
a

ℓ

)
(−1)ℓ

2d−a

[(
d− a− 2

c− ℓ− 2

)
+

(
d− a− 2

c− ℓ− 1

)]
. (64)

The following claim shows that a suitable lower bound for |B(d, c, a)| is sufficient to obtain a lower
bound for |∆(a)

d,b,σ|.
Claim 2. Let us assume that b ∈ Z. If |B(d, c, a)| > Cd−α (for some C,α > 0), then either
|∆(a)

d,b,σ| >
C
100d

−α or |∆(a)
d,b+0.1,σ| >

C
100d

−α.

Proof. Let us suppose there exist C and α > 0 such that |B(d, c, a)| > Cd−α. If |∆(a)
d,b,σ| >

C
100d

−α, then we are done with the proof. On the other hand, if |∆(a)
d,b,σ| ≤

C
100d

−α, then we have

|∆(a)
d,b+0.1,σ| = |dT (d, c, a) + C(d, c, a) + (b+ 0.1)B(d, c, a)| , (65)

= |∆(a)
d,b,σ + 0.1B(d, c, a)| , (66)

≥ 0.1|B(d, c, a)| − |∆(a)
d,b,σ| , (67)

≥ 0.1Cd−α − 0.01Cd−α , (68)

>
C

100
d−α . (69)

Equation 65 holds because for every d, c(d, b) = ⌈d−b2 ⌉ = ⌈d−(b+0.1)
2 ⌉ = c(d, b + 0.1), so the

values of T (d, c, a), C(d, c, a) and B(d, c, a) (see equation 63) are the same for b and b+ 0.1.

It remains to find the order of magnitude for |B(d, c, a)|, in order to do so, let us consider a certain
recursive sequence of differences of binomial coefficients.

Let d ∈ N and let n = n(d) := ⌊d/2⌋. For n− d ≤ k ≤ n− a let

A0(d, k) := 2−d
(

d

n− k

)
, (70)

Aa(d, k) := Aa−1(d, k)−Aa−1(d, k + 1) for a > 0. (71)

The main lemma that we will need is the following combinatorial bound:
Lemma 2. Let a ∈ N and k ∈ Z such that either a is even or k ≥ 0. Then,

|Aa(d, k)| = Θ
(
d−1/2−⌈a/2⌉

)
. (72)

Furthermore, for large enough d, it holds sign(Aa(d, k)) = (−1)⌊a/2⌋.

We will prove the lemma only for the case of even d, as the calculations for d odd are analogous. To
that end, first let’s give another formula for Aa(d, k). Let

P0(n, k) := 1 , (73)
Pa(n, k) := (n+ k + a)Pa−1(n, k)− (n− k)Pa−1(n, k + 1) for a > 0. (74)
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Claim 3. For every a ∈ N, even d, and −n ≤ k ≤ n− a:

Aa(d, k) = 2−d
(

d

n− k

)( a∏
i=1

1

n+ k + i

)
Pa(n, k) . (75)

Proof. By induction on a. The base case a = 0 is clear. For a > 0 we use induction and the
definitions of Aa and Pa:
Aa(d, k) = Aa−1(d, k)−Aa−1(d, k + 1) (76)

= 2−d
(

d

n− k

)(a−1∏
i=1

1

n+ k + i

)
Pa−1(n, k) (77)

− 2−d
(

d

n− k − 1

)(a−1∏
i=1

1

n+ k + 1 + i

)
Pa−1(n, k + 1) (78)

= 2−d
(

d

n− k

)( a∏
i=1

1

n+ k + i

)(
(n+ k + a)Pa−1(n, k)− (n− k)Pa−1(n, k + 1)

)
(79)

= 2−d
(

d

n− k

)( a∏
i=1

1

n+ k + 1

)
Pa(n, k) .

We will say that a degree t polynomial of one variable Q(k) has positive coefficients if all its coef-
ficients until degree t are positive. We state without proof a self-evident claim:
Claim 4. LetQ(k) be a polynomial with positive coefficients of degree t > 0. Then,Q(k+1)−Q(k)
is a polynomial with positive coefficients of degree t− 1.
Claim 5. Let a ≥ 0. Then, there exist some polynomials Qa,i(k) such that

Pa(n, k) =

⌊a/2⌋∑
i=0

(−1)iQa,i(k) · ni (80)

and Qa,i(k) is a degree a− 2i polynomial with positive coefficients.

Proof. We proceed by induction on a. For a = 0, the statement is clear with Q0,0(k) = 1. Let
a > 0. By equation 74,
Pa(n, k) = (n+ k + 1)Pa−1(n, k)− (n− k)Pa−1(n, k + 1) (81)

= n
(
Pa−1(n, k)− Pa−1(n, k + 1)

)
+ (k + a)Pa−1(n, k) + kPa−1(n, k + 1) . (82)

By induction, the degree in n of Pa−1 is t := ⌊a−1
2 ⌋, and therefore the degree of Pa is at most t+1.

From equation 82, and assuming for convenience Qa−1,−1(k) = Qa−1,t+1(k) = 0, we have for
every 0 ≤ i ≤ t+ 1:

(−1)iQa,i(k) = (−1)i−1Qa−1,i−1(k)− (−1)i−1Qa−1,i−1(k + 1) (83)

+ (−1)i(k + a)Qa−1,i(k) + (−1)ikQa−1,i(k + 1) (84)
and hence

Qa,i(x) = Qa−1,i−1(k + 1)−Qa−1,i−1(k) + (k + a)Qa−1,i(k) + kQa−1,i(k) . (85)
For 0 ≤ i ≤ t, by induction it holds that (k+a)Qa−1,i(k)+kQa−1,i(k) is a polynomial with positive
coefficients of degree a− 2i. On the other hand Qa−1,i−1(k + 1)−Qa−1,i−1(k) is either zero (for
i = 0 or when Qa−1,i−1 has degree 0) or, by Claim 4, a polynomial with positive coefficients of
degree a− 2i. Either way, Qa,i(k) is a polynomial with positive coefficients of degree a− 2i.

It remains to consider
Qa,t+1(x) = Qa−1,t(k + 1)−Qa−1,t(k) (86)

If a is even, then ⌊a/2⌋ = t + 1. Then, Qa−1,t(k) is a polynomial of degree 1 with positive
coefficients and the right-hand side of equation 86 is a positive constant. If a is odd (hence ⌊a/2⌋ =
t), then Qa−1,t(k) is a constant and therefore Qa,t+1(k) = 0. In either case, we get that Pa(n, k)
has the decomposition according to equation 80.
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Proof of Lemma 2. Let d be even, a ∈ N and k ∈ Z. Recall that by Claim 3,

Aa(d, k) = 2−d
(

d

n− k

)( a∏
i=1

1

n+ k + i

)
Pa(n, k) . (87)

By Claim 5, the degree of n in Pa(n, k) is t := ⌊a/2⌋.

Furthermore, if a is even, then the coefficient of Pa at nt is equal to (−1)a/2 multiplied by a pos-
itive constant. If a is odd, the leading coefficient is (−1)⌊a/2⌋ multiplied by a linear function in k
with positive coefficients. It is easy to see that for a even or k ≥ 0, the leading coefficient of Pa
evaluated at k is equal to (−1)⌊a/2⌋ multiplied by a positive constant. From this indeed it follows
sign(Aa(d, k)) = sign(Pa(n, k)) = (−1)⌊a/2⌋ for d large enough.

Furthermore, using known bounds on binomial coefficients∣∣Aa(d, k)∣∣ = Θ
(
d−1/2−a+t

)
= Θ

(
d−1/2−⌈a/2⌉

)
. (88)

As mentioned, the case of odd d is proved by an analogous calculation.

Expanding the recursive definition, we can also write Aa(d, k) as follows:
Claim 6. Let a, n ∈ N, and k ∈ Z,

Aa(d, k) =

a∑
ℓ=0

(−1)ℓ
(
a

ℓ

)
A0(d, k + ℓ) =

1

2d

a∑
ℓ=0

(−1)ℓ
(
a

ℓ

)(
d

n− k − ℓ

)
. (89)

Proof. The proof proceeds by induction on a.

For a = 0, there is nothing to prove. Let a > 0,
a∑
ℓ=0

(−1)ℓ
(
a

ℓ

)
A0(d, k + ℓ) =

a∑
ℓ=0

(−1)ℓ
(
a− 1

ℓ

)
A0(d, k + ℓ) +

a∑
ℓ=0

(−1)ℓ
(
a− 1

ℓ− 1

)
A0(d, k + ℓ) ,

(90)

=

a−1∑
ℓ=0

(−1)ℓ
(
a− 1

ℓ

)
A0(d, k + ℓ) +

a∑
ℓ=1

(−1)ℓ
(
a− 1

ℓ− 1

)
A0(d, k + ℓ) ,

(91)

=

a−1∑
ℓ=0

(−1)ℓ
(
a− 1

ℓ

)
A0(d, k + ℓ) (92)

+

a−1∑
ℓ=0

(−1)ℓ+1

(
a− 1

ℓ

)
A0(d, k + ℓ+ 1) , (93)

= Aa−1(d, k)−Aa−1(d, k + 1) , (94)
= Aa(d, k) . (95)

Equation 91 holds by the convention
(
a−1
a

)
=
(
a−1
−1

)
= 0.

Recall that equation 64 can be rewritten as

B(d, c, a) =
(−1)d−a+c

2d

a∑
ℓ=0

(−1)ℓ
(
a

ℓ

)[(
d− a− 2

c− ℓ− 2

)
+

(
d− a− 2

c− ℓ− 1

)]
. (96)

Comparing this with Claim 6, we have

B(d, c, a) =
(−1)d−a+c

2a+2

(
Aa(d− a− 2, n− c+ 2) +Aa(d− a− 2, n− c+ 1)

)
, (97)

where n = n(d− a− 2) = ⌊d−a−2
2 ⌋ and c = ⌈d−b2 ⌉.
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From this point we can conclude the proof of Corollary 2. Recall that we choose the biases bi
uniformly from the set {a+ 2, a+ 2 + 0.1}. In particular, taking b = a+ 2,

n− c+ 1 = ⌊d− a− 2

2
⌋ − ⌈d− a− 2

2
⌉+ 1 ≥ 0 . (98)

Furthermore, it is easy to see that {n− c+1, n− c+2} ⊆ {0, 1, 2}. Therefore, applying Lemma 2
with k = 0, 1, 2 we get, for large enough d,

|B(d, c, a)| = 1

2a+2

(∣∣Aa(d− a− 2, n− c+ 2)
∣∣+ ∣∣Aa(d− a− 2, n− c+ 1)

∣∣) , (99)

= Θ
(
d−

1
2−⌈ a

2 ⌉
)
. (100)

Equation 100 holds because a is a fixed natural number and from Lemma 2, for d large enough,
sign(Aa(d− a− 2, n− c+ 2)) = sign(Aa(d− a− 2, n− c+ 1)).

From equation 100 and Claim 2, we get that ∆2 = Eb∼B

[
(∆

(a)
d,b,σ)

2
]
≥ Cd−1−2⌈ a

2 ⌉, for some
C > 0. The rest of the proof of Corollary 2 follows from Theorem 4.

A.4 ALMOST FULL PARITIES d− 1 AND d− 2

Here, we provide a simpler calculation for the specific cases of almost full-parities, namely k = d−1
and k = d− 2.
Corollary 5. In the cases of almost full parities a = 1 and a = 2, let b = −2 if d is even and
b = −1 for d odd. For σ = ReLU it holds ∆2 = Θ(d−3). Accordingly, n ≥ Ω(d6) hidden neurons
are sufficient for strong learning in one GD step.

Let c := c(d, b) = ⌈d−b2 ⌉, thus c(d− 1, b− 1) = c and c(d− 1, b+ 1) = c− 1. Using equation 37
and equation 60, we have:

∆
(1)
d,b,ReLU =

1

2
∆d−1,b−1,ReLU +

1

2
∆d−1,b+1,ReLU , (101)

=
1

2

[
(−1)d−1+c

2d−1

(
(d+ b− 2)

(
d− 3

c− 2

)
− (d− b)

(
d− 3

c− 1

)) ]
(102)

+
1

2

[
− (−1)d−1+c

2d−1

(
(d+ b)

(
d− 3

c− 3

)
− (d− b− 2)

(
d− 3

c− 2

)) ]
, (103)

=
(−1)d+c

2d

[
(d− b)

(
d− 3

c− 1

)
− 2(d− 2)

(
d− 3

c− 2

)
+ (d+ b)

(
d− 3

c− 3

)]
. (104)

Then for d even i.e. b = −2 and c = d+2
2 , we obtain

|∆(1)
d,−2,ReLU| =

1

2d

∣∣∣∣(d+ 2)

(
d− 3
d+2
2 − 1

)
− 2(d− 2)

(
d− 3
d+2
2 − 2

)
+ (d− 2)

(
d− 3
d+2
2 − 3

)∣∣∣∣ ,
=

1

2d
(d− 3) !

(d+2
2 − 1) !(d− d+2

2 ) !

∣∣∣(d+ 2)(d− d+ 2

2
− 1)(d− d+ 2

2
)

− 2(d− 2)(
d+ 2

2
− 1)(d− d+ 2

2
) + (d− 2)(

d+ 2

2
− 2)(

d+ 2

2
− 1)

∣∣∣ ,
=

1

2d(d− 1)(d− 2)

(
d− 1
d+2
2 − 1

) ∣∣∣∣ (d− 2) [(d+ 2)(d− 4)− d(d− 2)]

4

∣∣∣∣ ,
=

2

2d(d− 1)

(
d− 1
d+2
2 − 1

)
,

= Θ

(
1

d
√
d

)
.

Similarly, for d odd i.e. b = −1 and c = d+1
2 , we have
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|∆(1)
d,−1,ReLU| =

1

2d(d− 2)

(
d− 1
d+1
2 − 1

)
= Θ(

1

d
√
d
) . (105)

Let’s provide a similar analysis for ∆(2)
d,b,ReLU. We have c(d− 2, b− 2) = c, c(d− 2, b) = c− 1 and

c(d− 2, b+ 2) = c− 2, so

∆
(2)
d,b,ReLU =

1

4
∆d−2,b−2,ReLU +

1

2
∆d−2,b,ReLU +

1

4
∆d−2,b+2,ReLU ,

=
(−1)d+c

2d

[
(d+ b− 4)

(
d− 4

c− 2

)
− (d− b)

(
d− 4

c− 1

)
− 2(d+ b− 2)

(
d− 4

c− 3

)
+ 2(d− b− 2)

(
d− 4

c− 2

)
+ (d+ b)

(
d− 4

c− 4

)
− (d− b− 4)

(
d− 4

c− 3

)]
,

=
(−1)d+c

2d

[
− (d− b)

(
d− 4

c− 1

)
+ (3d− b− 8)

(
d− 4

c− 2

)
− (3d+ b− 8)

(
d− 4

c− 3

)
+ (d+ b)

(
d− 4

c− 4

)]
.

Then for d even i.e. b = −2 and c = d+2
2 , and observing that

( d−4
d+2
2 −2

)
=
( d−4

d+2
2 −4

)
, we get

|∆(2)
d,−2,ReLU| =

1

2d

∣∣∣∣−(d+ 2)

(
d− 4
d+2
2 − 1

)
+ (4d− 8)

(
d− 4
d+2
2 − 2

)
− (3d− 10)

(
d− 4
d+2
2 − 3

)∣∣∣∣ ,
=

2(d− 6)

2d(d− 3)(d− 2)

(
d− 2
d+2
2 − 1

)
,

= Θ

(
1

d
√
d

)
.

With the same procedure we can show that for d odd i.e. b = −1 and c = d+1
2 we have∣∣∣∆(2)

d,−1,ReLU

∣∣∣ = 2

2d(d− 2)

(
d− 2
d+1
2 − 1

)
= Θ

(
1

d
√
d

)
.

The rest of Corollary 5 follows easily from Theorem 4.

A.5 POSITIVE RESULT: SGD FOR HINGE LOSS

As in Section 4.1, we consider the two layer architecture, this time with possibly perturbed
Rademacher hidden layer initialization N(x) =

∑n
i=1 viReLU((wi + gi) · x + bi), that is

wij ∼ Rad(1/2) and gij ∼ N (0, σ2). Other weights are initialized as before, i.e., hidden layer
biases are bi = 0 for d even and bi = −1 for d odd, and output layer weights are vi = 0. As in the
case of the correlation loss, the exact bias values are not crucial.

The training is with hinge loss Lβ(y, ŷ) = max(0, β−yŷ) for some β ≥ 0 under i.i.d. samples from
any fixed probability distribution on {±1}d. For simplicity we consider batch size 1 SGD, though
larger batches could also be used. This time we allow a more realistic setting where both layers are
trained.

Theorem 9. For the network described above, for σ ≤ C/d for sufficiently small C > 0, except
with probability 3 exp(−d) over the choice of initialization the following holds:

Let D be a distribution on {±1}d, ϵ > 0 and 0 < δ ≤ 1/2. If n ≥ Ω(d4) and n ≤ poly(d), then
after training with batch size one SGD for some choices of T = poly(d) 1ϵ ln

1
δ and learning rate

γ = 1/poly(d), using hinge loss Lβ for 0 ≤ β ≤ O(d2nγ), except with probability δ over the
choice of i.i.d. training samples from D, it holds Prx∼D

[
sign(NT (x)) ̸= f(x)

]
≤ ϵ .

Theorem 9 follows from the bound on the number of nonzero SGD updates:
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Theorem 10. If σ ≤ C/d for sufficiently small C > 0, n ≥ Ω(d4) and n ≤ poly(d), then, except
with probability 3 exp(−d) over the choice of initialization, the above network trained with batch
size one SGD algorithm on the full parity function on any sequence of samples from {±1}d with
learning rate 0 < γ ≤ O(d−3.5) and the hinge loss Lβ for 0 ≤ β ≤ 16d2nγ, will perform at most
O(d3) nonzero updates.

A crucial consequence of Theorem 4 is that the full parity is linearly separable at initialization:
Lemma 3. If v1 are the output weights after one step of noiseless GD correlation loss algorithm,
and we take v∗ = v1/∥v1∥, then, |v∗i | = 1√

n
for every 1 ≤ i ≤ n and, except with probability

exp(−d), for all x ∈ {±1}d,

fa(x)

n∑
i=1

v∗i σ(wi · x+ bi) ≥
√
n∆

2
. (106)

Proof. By equation 21, except with probability exp(−d) for every x ∈ {±1}d we have

fa(x)N
1(x) = fa(x)

n∑
i=1

v1i σ(wi · x+ bi) ≥
γn∆2

2
.

Recall that v1i = γ∆
(a)
d,bi,σ

∏d−a
j=1 wij and let v∗ = v1/∥v1∥. In particular, it follows |v∗i | = 1/

√
n

for every i. We also have ∥v1∥ ≤ γ∆
√
n

fa(x)

n∑
i=1

v∗i σ(wi · x+ bi) ≥
γn∆2

2∥v1∥
≥

√
n∆

2
.

A.6 PROOF OF THEOREM 9

In this proof we will apply the following result about hinge loss SGD:
Lemma 4 (Lemma 4 in Nachum & Yehudayoff (2020)). Let f : X → {−1, 1} be a function from
some finite domain X ⊆ Rd such that ∥x∥ ≤ R for every x ∈ X and some R ≥ 1. Consider a
one layer ReLU neural network at initialization. For x ∈ X , let zx ∈ Rn be the embedding vector
zx,i = ReLU(wi · x+ bi) and assume that ∥zx∥ ≤ Rz for every x ∈ X .

Furthermore, assume that there exists c > 0 and a choice of output layer weights v∗ ∈ Rn with
∥v∗∥ = 1 such that f(x)

∑n
i=1 v

∗
i ReLU(wi · x+ bi) ≥ c for every x ∈ X .

Then, using learning rate 0 < γ ≤ 1
500R · c

2

R2
z

and 0 ≤ β ≤ 4R2
zγ, the batch size one SGD algorithm

using hinge loss L(x, y) = max(0, β−N(x)y) run on any sequence of samples from X will perform
at most 20R2

z/c
2 nonzero updates.

Let X := {±1}d, for all x ∈ X we have ∥x∥ =
√
d. First, let us consider the case of non-perturbed

Rademacher initialization.

For x ∈ X , let zx ∈ Rn be its embedding vector i.e., zx,i = ReLU(wi · x + bi), we have ∥zx∥ ≤
(d + 1)

√
n ≤ 2d

√
n. By Lemma 3 applied for a = 0, (see equation 106), except with probability

exp(−d) over the choice of w, there exists v∗ ∈ Rn with |v∗i | = 1/
√
n such that, for all x ∈ X we

have

f(x)

n∑
i=1

v∗i ReLU(wi · x+ bi) ≥
√
n

18
√
d
. (107)

Now consider the perturbed initialization ReLU((wi + gi) · x + bi), where g ∼ N
(
0, C

2

d2 · I
)

for

some C ≤ 1
72 . Let E1 be the event that there exists 1 ≤ i ≤ n such that ∥gi∥ ≥

√
d and E2 that there

exists x such that
∑n
i=1 |gi · x| ≥

n
36

√
d

. First, let us establish that each of these events occurs with
probability at most exp(−d).
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Let us start with E1. Since E∥gi∥2 = C2

d , by subgaussian concentration we have

Pr

[
∥gi∥2 ≥ C2

d
+ t

]
≤ exp

(
−Ω

(
d2t2

C4

))
. (108)

Substituting t = d/2, we have in particular Pr[∥gi∥2 ≥ d] ≤ exp(−Ω(d4)). Taking union bound
over n = poly(d), we have Pr[∃i : ∥gi∥2 ≥ d] ≤ exp(−d).

As for E2, note that E|gi · x| =
√
2C√
πd

≤ 1
72

√
d

. Therefore, again by subgaussian concentration, for
any fixed x,

Pr

[
n∑
i=1

|gi · x| ≥
n

36
√
d

]
≤ Pr

[
n∑
i=1

|gi · x| ≥ E

[
n∑
i=1

|gi · x|

]
+

n

72
√
d

]
≤ exp(−Ω(n)) ,

(109)

which is smaller than exp(−d) for n ≥ Ω(d4).

If neither E1 or E2 happens, then for every x we have

f(x)

n∑
i=1

v∗i ReLU((wi + gi) · x+ bi) ≥ f(x)

n∑
i=1

v∗i ReLU(wi · x+ bi)−
1√
n

n∑
i=1

|gi · x| (110)

≥
√
n

36
√
d
. (111)

Furthermore, for every x and i it holds |(wi + gi) · x + bi| ≤ (∥wi∥ + ∥gi∥)
√
d + 1 ≤ 3d and

consequently ∥zx∥ ≤ 3d
√
n.

Therefore by applying Lemma 4 with R :=
√
d,Rz := 3d

√
n and c :=

√
n

36
√
d

, we conclude that
using learning rate 0 < γ ≤ 1

500
√
d
· 1
9·362d3 = O

(
1
d3.5

)
, the SGD algorithm using the hinge loss

L(y, ŷ) = max{0, β − yŷ}, with 0 ≤ β ≤ 36d2nγ, will perform at most O(d3) nonzero updates
after which all samples will be classified correctly.

A.7 PROOF OF THEOREM 9

First, note that we can choose values of γ = 1/ poly(d) and 0 ≤ β ≤ O(d2nγ) such that Theo-
rem 10 applies. In line with Theorem 10, fix an initialization such that the SGD algorithm running
on i.i.d. samples from D performs at most C0 := Cd3 nonzero updates, where C is a universal
constant.

Let us run the training until there are K := 1
ϵ (ln 1/δ + lnC0) zero updates in a row. As the number

of nonzero updates is at most C0, the algorithm runs for at most C0(1 +K) = poly(d) 1ϵ ln
1
δ steps.

Finally, let us argue that that the classification error does not exceed ϵ except with probability δ. To
that end, define a “bad event” E as follows: There exists t such that:

1. A nonzero update occurs at time t.

2. There are K zero updates in a row immediately following t.

3. Prx∼D[sign(N
t+1(x)) ̸= f(x)] > ϵ.

It should be clear that if E does not occur, then at the final time T it holds Prx∼D[sign(N
T (x)) ̸=

f(x)] ≤ ϵ.

Fix some time t such that the first and third condition above are satisfied. Clearly, if the error
probability exceeds ϵ, then so does the probability of a nonzero update. By independence (and the
fact that only a nonzero update can change the network), the probability that there will be K zero
updates in a row is at most (1− ϵ)K . By union bound over at most C0 nonzero updates,

Pr[E ] ≤ C0(1− ϵ)K ≤ δ .
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B PROOFS FOR SECTION 5.1

B.1 PROOF OF THEOREM 6

For brevity, we denote the population gradient at θ for a target function f by

Γf (θ) := Ex [∇θL(f(x), θ, x)] . (112)

To prove our results we couple the dynamics of the network’s weights θt with the dynamics of
the ‘Junk-Flow’. The junk-flow is the dynamics of the parameters of a network trained on random
labels. For that purpose let

Γr(θ) := Ex
[
1

2
(∇θL(1, θ, x) +∇θL(−1, θ, x))

]
. (113)

In other words, Γr(θ) is the expected population gradient of random classification problem where
r(x) ∼ Rad(1/2) independently for every input x.
Definition 6 (Junk-Flow). Let us define the junk-flow as the sequence ψt ∈ RP that satisfies the
following iterations:

ψ0 = θ0, (114)

ψt+1 = ψt − γ
(
Γr(ψ

t) + ξt
)
, (115)

where ξt iid∼ N (0, Iτ2) We call γ the learning rate and τ the noise-level of the noisy-GD algorithm
used to train the network NN(x; θ).

We show that θT and ψT are close in terms of the total variation distance. Let us look at the
total variation distance between the law of θT and ψT , which, by abuse of notation, we denote by
TV(θT ;ψT ).
Lemma 5. Let TV(θT ;ψT ) be the total variation distance between the law of θT and ψT . Then,

TV(θT ;ψT ) ≤ 1

2τ

T−1∑
t=0

√
GALf (ψt). (116)

The proof of Lemma 5 can be found in Section B.2.

Recalling that f : RP → {±1}, we have

P
[
sign(NN(x; θT )) = f(x)

]
≤ P

[
sign(NN(x;ψT )) = f(x))

]
+TV(θT ;ψT ) (117)

≤ 1

2
+ TV(θT ;ψT ), (118)

≤ 1

2
+

1

2τ

T−1∑
t=0

√
GALf (ψt) . (119)

In equation 118 we used the fact that the initialization is symmetric around 0. Since for the corre-
lation loss Γr(θ) = 0, the junk flow just adds independent Gaussian noise and the distribution of
the output layer weights ψT is also symmetric around 0 (and independent of other weights). There-
fore, the distribution of sign(NN(x;ψT )) is also symmetric around 0 for every fixed x. Finally,
in equation 119 we used Lemma 5.

We are now left with showing that the right-hand-side of equation 116 is small, i.e. that the junk-
flow dynamics does not pick correlation with f along its trajectory. Again, for the correlation loss,
Γr(ψ

t) = 0 for all t, thus for all t, ψt = A+Hσ +
√
tγτH , where H ∼ N (0, IP ). Thus, the result

follows by the assumption in equation 5.

B.2 PROOF OF LEMMA 5

This proof follows a similar argument that is used in (Abbe & Sandon (2020); Abbe & Boix-Adsera
(2022)). In the following let us write θ := θT−1 and ψ := ψT−1 for readability. The total variation
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distance TV(θT ;ψT ) can be bounded in terms of θ and ψ as follows:

TV(θT ;ψT ) = TV
(
θ − γ(Γf (θ) + Zt);ψ − γ(Γr(ψ) + ξt)

)
(120)

a)

≤ TV
(
θ − γ(Γf (θ) + Zt);ψ − γ(Γf (ψ) + Zt)

)
(121)

+TV
(
ψ − γ(Γf (ψ) + Zt);ψ − γ(Γr(ψ) + ξt)

)
(122)

b)

≤ TV (θ;ψ) (123)

+ Eψ TV
(
ψ − γ(Γf (ψ) + Zt);ψ − γ(Γr(ψ) + ξt) | ψ

)
(124)

c)

≤ TV(θ;ψ) (125)

+ Eψ

√
1

2
DKL (ψ − γ(Γf (ψ) + Zt)||ψ − γ(Γr(ψ) + ξt) | ψ) (126)

d)

≤ TV
(
θT−1;ψT−1

)
+

1

2τγ
Eψ∥γΓf (ψ)− γΓr(ψ)∥2 (127)

= TV
(
θT−1;ψT−1

)
+

1

2τ
Eψ∥Γf (ψ)− Γr(ψ)∥2 (128)

where in a) we used the triangle inequality, in b) the data processing inequality (DPI) and
triangle inequality again, in c) Pinsker’s inequality. Finally, d) follows since, conditional
on ψ, both distributions in the KL divergence are Gaussian, and due to the known formula
DKL(N (µ, σ Id),N (µ′, σ Id)) = ∥µ−µ′∥2

2σ2 . Thus,

TV(θT ;ψT ) ≤ 1

2τ

T−1∑
t=0

Eψt∥Γf (ψt)− Γr(ψ
t)∥2 (129)

(a)

≤ 1

2τ

T−1∑
t=0

√
GALf (ψt), (130)

where in (a) we used Cauchy-Schwartz.

B.3 PROOF OF COROLLARY 3

Let us state a claim about Gaussians with slightly different variances:

Claim 7. Let F : RP → R be a function such that 0 ≤ F (x) ≤ R for all x ∈ RP . Let θ ∼
N (µ,D), for some µ ∈ RP and D a diagonal matrix with diagonal entries (σ2

1 , . . . , σ
2
P ), and

let ψ ∼ N (µ,D′) for some other diagonal D′ with entries ((σ′
1)

2, . . . , (σ′
P )

2) such that (σ′
i)

2 ≤
σ2
i (1 + 1/P ) for every 1 ≤ i ≤ P .

If EF (θ) ≤ ϵ, for some ϵ, then EF (ψ) ≤ (4R+ 1)ϵ1/9.

Proof. LetM > 0 and define the event EM as

√∑P
i=1

(
ψi−µi

σi

)2
> M . By Gaussian concentration

(formula (3.5) in Ledoux & Talagrand (2013), see also MO2 (2020)):

Pr [EM ] ≤ 4 exp

− M2

8E
∑P
i=1

(
ψi−µi

σi

)2
 ≤ 4 exp

(
−M2

16P

)
. (131)
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At the same time, if
∑P
i=1

(
xi−µi

σi

)2
≤M2, then the density functions φθ and φψ satisfy

φψ(x) =

P∏
i=1

1√
2πσ′

i

exp

(
− (xi − µi)

2

2(σ′
i)

2

)
(132)

≤ exp

(
P∑
i=1

(xi − µi)
2

2σ2
i

· (σ
′
i)

2 − σ2
i

(σ′
i)

2

)
P∏
i=1

1√
2πσi

exp

(
− (xi − µi)

2

2σ2
i

)
(133)

≤ exp

(
M2

2P

)
φθ(x) . (134)

So,

EF (ψ) =
∫
x∈EM

F (x)φψ(x) +

∫
x/∈EM

F (x)φψ(x) (135)

≤ exp

(
M2

2P

)
ϵ+ 4R exp

(
−M2

16P

)
. (136)

Substituting M :=
√

16P
9 ln 1/ϵ, we get the bound.

Let F (θ) := ∥Γf (θ) − Γr(θ)∥22. Conditional on the value of A, the distribution of θ0 is Gaussian
θ0 ∼ N (A, σ2DA) where DA is diagonal with entries (DA)pp = VarAp. Let 0 ≤ λ ≤ γ2τ2T .
Then, the distribution of θ0 + λH for H standard gaussian is θ0 + λH ∼ N (A, σ2DA + λ2IP ).
Therefore, by assumption for every 1 ≤ p ≤ P it holds

σ2VarAp + λ2 ≤ σ2VarAp + γ2τ2T ≤ σ2VarAp

(
1 +

1

P

)
. (137)

By Claim 7 (and averaging over A), it follows

GALf (θ
0 + λH) = EF (σ0 + λH) ≤ (4R+ 1)EF (θ0)1/9 = (4R+ 1)GALf (θ

0)1/9 . (138)

Equation 6 now follows directly by applying Theorem 6.

B.4 PROOF OF COROLLARY 4

For Corollary 4 we focus on fully-connected networks of bounded depth. For simplicity, we consider
fully connected networks with one bias vector in the first layer, but we believe that, with a more
involved argument, one could extend the proof and include bias vectors in all layers. In particular,
we use the following notation:

x(1)(θ) =W (1)x+ b(1) (139)

x(l)(θ) =W (l)σ(x(l−1)(θ)), l = 2, ..., L, (140)

and we denote the network function as NN(x; θ) = x(L)(θ). We assume that the activation σ
satisfies the H-weak homogeneity assumption of Def. 5. We assume that each parameter of the
network is independently initialized as θ0p ∼ N (0, v2lp), where lp denotes the layer of parameter θp,
for p ∈ [P ].

Corollary 4 follows from the following Proposition.

Proposition 3. Let NN(x; θ) be a network that satisfies the assumptions of Corollary 4. Then, if
GALf (θ

0) < ϵ,

GALf (θ
0 + γλH) ≤

L∏
l=1

(
1 +

γ2λ2

v2l

)H
ϵ, (141)

where H ∼ N (0, IP ).
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B.5 PROOF OF PROPOSITION 3

Recall, that θ0 ∼ N (0, V ), where V is a P × P diagonal matrix such that Vpp = v2lp , where lp
is the layer of parameter p, and ψtp ∼ N (0, U), where U is a P × P diagonal matrix such that

Upp = v2lp + tγ2τ2. Thus, U = CV C
T

, where C is a P × P diagonal matrix such that

Cpp =

√
1 +

tγ2τ2

v2lp
. (142)

Definition 7 (C-Rescaling). Let NN(x; θ) be an L-layers network, with parameters θ ∈ RP . Let
C(1), ..., C(L) be L positive constants, and let C be a P ×P diagonal matrix such that Cpp = C(lp)

where lp is the layer of parameter θp. We say that the vector C · θ is a C-rescaling of θ.
Definition 8 (Weak Positive Homogeneity (SPH)). We say that an architecture is H-weakly homo-
geneous (H-SPH) if for all C-rescaling such that minp∈[P ] Cpp > 1, it holds:

NN(x;C · θ) =
L∏
l=1

(C(l))H ·NN(x; θ), (143)

∂(Cθ)p NN(x;C · θ) = Dp,H · ∂θp NN(x; θ), (144)

where Dp,H is such that Dp,H ≤
∏lp
l=1

(
C(l)

)H
.

Lemma 6. Let NN(x; θ) be a fully connected network as in equation 139-equation 140. Assume
that the activation σ is H-weakly homogeneous (as defined in Def. 5), with H ≥ 1. Then, NN(x; θ)
is H-SPH.

The proof of Lemma 6 is in Appendix B.6.

If we optimize over the Correlation Loss, i.e. Lcorr(y, ŷ) := −yŷ, then the gradients of interest are
given by:

Γf (θ) = −Ex [f(x) · ∇θ NN(x; θ)] ; (145)
Γr(θ) = 0. (146)

Thus,

Eψt∥Γf (ψt)− Γr(ψ
t)∥22 =

P∑
p=1

EψtEx
[
∂ψt

p
NN(x;ψt) · f(x)

]2
Let C be a P × P matrix such that Cpp =

√
1 + tγ2τ2

v2lp
, where lp is the layer of θ0p. One can verify

that the C-rescaling of θ0 has the same distribution as ψt. We can thus rewrite each term in the sum
above as:

EψtEx
[
∂ψt

p
NN(x;ψt) · f(x)

]2
= ECθ0Ex

[
∂(Cθ0)p NN(x;Cθ0) · f(x)

]2
(a)
= D2

p,H · Eθ0Ex
[
∂θ0p NN(x; θ0) · f(x)

]2
where in (a) we used Lemma 6. Thus,

Eψt∥Γf (ψt)− Γr(ψ
t)∥22 = Eθ0

P∑
p=1

D2
p,HEx

[
∂θ0p NN(x; θ0) · f(x)

]2
(a)

≤ K · Eθ0∥Gf (θ0)∥22,

where K =
∏L
l=1

(
1 + tγ2τ2

v2l

)H
, and where in (a) we used that |Dp,H | ≤ Cp,H .
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B.6 PROOF OF LEMMA 6

We proceed by induction on the network depth. As a base case, we consider a 2-layer network. Let
us write explicitly the gradients of the network.

∇
W

(2)
i

NN(x; θ) = σ(x
(1)
i (θ)), (147)

∇
W

(1)
ij

NN(x; θ) =W
(2)
i σ′(x

(1)
i (θ))xj , (148)

∇
b
(1)
i

NN(x; θ) =W
(2)
i σ′(x

(1)
i (θ)). (149)

Notice that the weak homogeneity assumption on the activation σ (Def. 5), we have for l ∈ {1, 2}:

x
(l)
i (C · θ) =

l∏
h=1

(C(h))H · x(l)i (θ), (150)

thus equation 143 holds. Moreover,

∂
W

(2)
i

NN(x;C · θ) = (C(1))H∂
W

(2)
i

NN(x; θ), (151)

∂
W

(1)
ij

NN(x;C · θ) = (C(2))H∂
W

(1)
ij

NN(x; θ), (152)

∂
b
(1)
i

NN(x;C · θ) = (C(2))H∂
b
(1)
i

NN(x; θ). (153)

Therefore, for any parameter θp, p ∈ [P ],

∂θp NN(x;C · θ) = Dp,H∂θp NN(x; θ), (154)

with 1 < Dp,H ≤ max{(C(1))H , (C(2))H} ≤
∏2
l=1(C

(l))H .

For the induction step, assume that for a network of depth L− 1, for all parameters θp,

∂θp NN(x;C(θ)) = Dp,H · ∂θp NN(x; θ), (155)

with 1 < Dp,H ≤
∏L−1
l=1 (C(l))H . Let us consider a neural network of depth L, and let us write the

gradients,

∂
W

(L)
i

NN(x; θ) = σ(x
(L−1)
i (θ)), (156)

∂
W

(l)
ij

NN(x; θ) =

NL−1∑
k=1

W
(L)
k σ′(x

(L−1)
k (θ)) · ∂

W
(l)
ij
x
(L−1)
k (θ), l = 1, ..., L− 1, (157)

∂
b
(1)
i

NN(x; θ) =

NL−1∑
k=1

W
(L)
k σ′(x

(L−1)
k (θ)) · ∂

b
(1)
i
x
(L−1)
k (θ), (158)

where NL−1 denotes the width of the (L − 1)-th hidden layer. One can observe that x(L−1)
k (θ)

corresponds to the output of a fully connected network of depth L − 1, and thus we can use the
induction hypothesis for bounding ∂θpx

(L−1)
k (θ), for all parameters θp in the first L − 1 layers.

Thus,

∂
W

(L)
i

NN(x;C(θ)) = (C(L−1))H ·D
W

(L)
i ,H

· ∂
W

(L)
i

NN(x; θ), (159)

∂
W

(l)
ij

NN(x;C(θ)) =

NL−1∑
k=1

C(L)W
(L)
k σ′(x

(L−1)
k (θ)) ·D

W
(l)
ij ,H

∂
W

(l)
ij
x
(L−1)
k (θ), (160)

l = 1, ..., L− 1, (161)

∂
b
(1)
i

NN(x;C(θ)) =

NL−1∑
k=1

C(L)W
(L)
k σ′(x

(L−1)
k (θ)) ·D

b
(1)
i ,H

∂
b
(l)
i
x
(L−1)
k (θ). (162)

Thus, the result follows.
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C SMALL ALIGNMENT FOR GAUSSIAN INITIALIZATION: PROOFS OF
THEOREM 7 AND PROPOSITION 1

In order to establish Proposition 1 and subsequently Theorem 7, we will need two calculations
arising from the gradient formulas.
Definition 9. Let d ∈ N and α ≥ 0 and β be such that α+ |β| ≤ 1. We say that random variables
(k,G1, G2) are (d, α, β)-alternating Gaussians if:

• k ∼ Bin(d, 1/2).

• Conditioned on k, the pair (G1, G2) are joint centered unit variance Gaussians with co-
variance (1− 2k/d)α+ β.

Lemma 7. For each α0 > 0 there exist C ′, C > 0 such that if (k,G1, G2) are (d, α, β)-alternating
Gaussians for α ≥ α0, then

E
[
(−1)k1(G1 ≥ 0)1(G2 ≥ 0)

]
≤ C ′ exp(−Cd) . (163)

Lemma 8. For each α0 > 0 there exist C ′, C > 0 such that if (k,G1, G2) are (d, α, β)-alternating
Gaussians for α ≥ α0, then

E
[
(−1)k ReLU(G1)ReLU(G2)

]
≤ C ′ exp(−Cd) . (164)

A crucial element of both calculations is the following claim:
Claim 8. Let d ∈ N. For all n < d, for any polynomial P of degree n,

d∑
k=0

(−1)k
(
d

k

)
P (k) = 0. (165)

Proof. We prove the statement by induction on n. If n = 0, then
d∑
k=0

(−1)k
(
d

k

)
= (1− 1)d = 0 , (166)

and therefore the sum equation 165 indeed vanishes for every constant polynomial. Assume that the
claim holds for some n ≥ 0. By linearity, it is enough that we only prove

d∑
k=0

(−1)k
(
d

k

)
kn+1 = 0 . (167)

To that end, calculate
d∑
k=0

(−1)k
(
d

k

)
kn+1 =

d∑
k=1

(−1)k
(
d

k

)
k · kn (168)

(a)
= d

d∑
k=1

(−1)k
(
d− 1

k − 1

)
kn (169)

(b)
= −d

d−1∑
k=0

(−1)k
(
d− 1

k

)
(k + 1)n = 0, (170)

where (a) applied
(
d
k

)
·k =

(
d−1
k−1

)
·d and (b) is a change of variables and applying the induction.

C.1 PROPOSITION 1 IMPLIES THEOREM 7

Let 0 ≤ λ2 ≤ γ2τ2T . In order to apply Theorem 6 for A = 0, we need to check the gradient
alignment for initializations θ + λH , where H ∼ N (0, IdP ). More precisely, that means we have
initialization with independent coordinates where

wij ∼ N
(
0,

1

d
+ λ2

)
, bi ∼ N

(
0, σ2 + λ2

)
, vi ∼ N

(
0,

1

n
+ λ2

)
. (171)
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Let us normalize by dividingw and b by
√
1 + dλ2 and v by

√
1 + nλ2. That gives new initialization

θ̃λ = (w̃, b̃λ, ṽ) such that

w̃ij ∼ N
(
0,

1

d

)
, b̃λ,i ∼ N

(
0,
σ2 + λ2

1 + dλ2

)
, ṽi ∼ N

(
0,

1

n

)
. (172)

In particular, the variance of b̃λ,i is σ2+λ2

1+dλ2 ≤ σ2 + λ2

1+λ2 ≤ σ2 +O(1). By Proposition 1, we have a
uniform bound

GALfa(θ̃λ) ≤ 2C ′nd exp(−Cd) . (173)
By homogenity ReLU(cx) = cReLU(x) for c ≥ 0, it is easy to check that

GALfa(θ + λH) ≤ (1 + dλ2)(1 + nλ2)GALfa(θ̃λ) ≤ exp(−Ω(d)) . (174)
The result now follows directly from Theorem 6.

C.2 LEMMA 7 AND LEMMA 8 IMPLY PROPOSITION 1

Recall that GALfa = Eθ
∥∥ (Exfa(x)∇θ NN(x; θ))

2 ∥∥2. We will estimate the expectation of each
squared coordinate of this vector by O(exp(−Cd)). Then, equation 9 follows by summing up. Let
us first write the neural network gradients for all types of weights θ = (w, b, v):

∇wij NN = vi1(wi · x+ bi ≥ 0)xj , (175)

∇bi NN = vi1(wi · x+ bi ≥ 0) , (176)
∇vi NN = ReLU(wi · x+ bi) . (177)

The square of the expected gradient (Exfa(x)∇θiNN(x; θ)2 can be also written as the expectation
over two independent input samples x, x′. In particular, in the case of wij from equation 175, we
have

Eθ
(
Exfa(x)∇wij NN

)2
= Ex,x′

(
d−a∏
ℓ=1

xℓx
′
ℓ

)(
Eviv2i

)
(178)

· (Ewi,bi1(wi · x+ bi ≥ 0)1(wi · x′ + bi ≥ 0))xjx
′
j . (179)

Consider the set S := {1, . . . , d − a}△{j}, where △ denotes the symmetric difference. Abusing
notation, let us write x = (y, z) and x′ = (y′, z′) where y, y′ containt the coordinates in S and
z, z′ the coordinates from [d] \ S. Let k be the Hamming distance k := dH(y, y′). Note that the
distribution of k is binomial k ∼ Bin(|S|, 1/2). Then, continuing from equation 179,

Eθ
(
Exfa(x)∇wij NN

)2
=

1

n
Ez,z′,k

[
(−1)kEwi [1(wi · x+ bi ≥ 0)1(wi · x′ + bi ≥ 0)]

]
.

(180)

Fix some values of z, z′ and k. LetG1 := wi ·x+bi andG2 := wi ·x′+bi. Notice that, conditionally
on k, z, z′, random variablesG1 andG2 are joint centered Gaussian with VarG1 = VarG2 = 1+σ2

and

Cov[G1, G2] =
1

d
(d− 2k − 2dH(z, z′)) + σ2 . (181)

Let G̃i := Gi/
√
1 + σ2 for i = 1, 2. Then, G̃1 and G̃2 are two joint centered unit variancce

Gaussians with correlation

Cov[G̃1, G̃2] =
1

d(1 + σ2)
(d− 2k − 2dH(z, z′)) +

σ2

1 + σ2
(182)

=

(
1− 2k

|S|

)
|S|

d(1 + σ2)
+
d− |S| − 2dH(z, z′) + dσ2

d(1 + σ2)
. (183)

Therefore, conditioned on z and z′, random variables (k,G1, G2) are (d, α, β)-alternating Gaussians
for α = |S|

d(1+σ2) ≥ 1
3(1+σ2

0)
> 0. It is also easy to check that α + |β| ≤ |S|+d−|S|+dσ2

d(1+σ2) = 1. By
Lemma 7, for some uniform constant C > 0 it holds

Ek,G1,G2

[
(−1)k1(G1 ≥ 0)1(G2 ≥ 0)

]
= Ek,G̃1,G̃2

[
(−1)k1(G̃1 ≥ 0)1(G̃2 ≥ 0)

]
(184)

≤ C ′ exp(−Cd) . (185)
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Plugging this into equation 179 and equation 180, we get the desired bound. The case of the hidden
layer bias bi proceeds by the same argument with S := {1, . . . , d− a}.

Finally, in case of vi we set S := {1, . . . , d− a} and proceed with a similar calculation

Eθ (Exfa(x)∇vi NN)
2
= (1 + σ2)Ez,z′,k

[
(−1)kEG̃1,G̃2

[ReLU(G̃1)ReLU(G̃2)]
]

(186)

≤ (1 + σ2
0)C

′ exp(−Cd) ≤ C ′′ exp(−Cd) , (187)

where in the last line we applied Lemma 8.

C.3 PROOF OF LEMMA 7

It is well-known (see, e.g., Chapter 11 in O’Donnell (2014)), that for two ρ-correlated unit variance
centered joint Gaussians it holds E[1(G1 ≥ 0)1(G2 ≥ 0)] = f(ρ) where f(x) = 1

2−
1
2π arccos (x).

By definition of (k,G1, G2), conditioned on k, random variables G1 and G2 have correlation ρ =
ρ(k) =

(
1− 2k

d

)
α+ β.

Hence, ∣∣E(−1)k1(G1 ≥ 0)1(G2 ≥ 0)
∣∣ = ∣∣Ek(−1)kf(ρ(k))

∣∣ (188)

≤ P(|k − d/2| ≥ d/4) · sup
x∈[−1,1]

|f(x)|+

∣∣∣∣∣∣ 12d
⌊3d/4⌋∑
k=⌈d/4⌉

(−1)k
(
d

k

)
f (ρ)

∣∣∣∣∣∣ (189)

(a)

≤ 2 exp(−d/10) +

∣∣∣∣∣∣ 12d
⌊3d/4⌋∑
k=⌈d/4⌉

(−1)k
(
d

k

)
f (ρ)

∣∣∣∣∣∣ , (190)

where (a) follows by Hoeffding’s inequality.

It remains to bound the last term in equation 190. Consider the Taylor expansion of f :

f(x) =
1

2
− 1

2π

[
π

2
−

∞∑
n=0

(2n)!

4n(n!)2(2n+ 1)
x2n+1

]
(191)

=
1

4
+

1

2π

∞∑
n=0

(2n)!

4n(n!)2(2n+ 1)
x2n+1 (192)

=
1

4
+

1

2π

∞∑
n=0

(
2n
n

)
4n(2n+ 1)

x2n+1 (193)

=
1

4
+

∑
2n+1<d

anx
2n+1 +

∑
2n+1≥d

anx
2n+1 , (194)

where an :=
(2nn )

2π4n(2n+1) . For future reference let us note that 0 ≤ an ≤ 1 for every n. So the
second part of the RHS of equation 190 is upper bounded by:

∣∣∣ 1

2d

⌊3d/4⌋∑
k=⌈d/4⌉

(−1)k
(
d

k

)(
1

4
+

∑
2n+1<d

anρ
2n+1

)
︸ ︷︷ ︸

:=T1

∣∣∣ (195)

+
∣∣∣ 1

2d

⌊3d/4⌋∑
k=⌈d/4⌉

(−1)k
(
d

k

) ∑
2n+1≥d

anρ
2n+1

︸ ︷︷ ︸
:=T2

∣∣∣ (196)

We are going to show that |T1| ≤ 2 exp (−d/10) and |T2| ≤ 2
α0

(1 − α0/2)
d. These two bounds

together with equation 190 imply the theorem statement.
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Let us start with T2. In the sum in equation 196 we have d/4 ≤ k ≤ 3d/4, and we can check that

|ρ| =
∣∣∣∣(1− 2k

d

)
α+ β

∣∣∣∣ ≤ 1

2
α+ |β| ≤ 1− α0

2
. (197)

Therefore,

|T2| =
∣∣∣ 1
2d

⌊3d/4⌋∑
k=⌈d/4⌉

(−1)k
(
d

k

) ∑
2n+1≥d

anρ
2n+1

∣∣∣ (198)

≤ 1

2d
·

⌊3d/4⌋∑
k=⌈d/4⌉

(
d

k

) ∑
2n+1≥d

an

(
1− α0

2

)2n+1

(199)

≤
∑

2n+1≥d

(
1− α0

2

)2n+1

≤ 2

α0

(
1− α0

2

)d
. (200)

For T1, we follow two steps. First,

|T1| ≤
∑

2n+1<d

∣∣∣ 1
2d

⌊3d/4⌋∑
k=⌈d/4⌉

(−1)k
(
d

k

)
ρ2n+1

∣∣∣. (201)

Applying Claim 8 (for this note that ρ is a linear function of k, and therefore ρ2n+1 is a polynomial
in k of degree 2n+ 1):∣∣∣∣∣∣ 12d

⌊3d/4⌋∑
k=⌈d/4⌉

(−1)k
(
d

k

)
ρ2n+1

∣∣∣∣∣∣ (202)

≤

∣∣∣∣∣ 12d
d∑
k=0

(−1)k
(
d

k

)
ρ2n+1

∣∣∣∣∣+
∣∣∣∣∣∣ 12d

∑
k:|k−d/2|≥d/4

(−1)k
(
d

k

)
ρ2n+1

∣∣∣∣∣∣ (203)

≤
∑

k:|k−d/2|≥d/4

(
d

k

)
2−d (204)

= P(|k − d/2| ≥ d/4) (205)
≤ 2 exp (−d/10) . (206)

Finally, we substitute into equation 201 and conclude |T1| ≤ 2 exp (−d/10).

C.4 PROOF OF LEMMA 8

In this proof we will use the probabilist’s Hermite polynomials Hk(x) = (−1)k

φ(x)
dk

dxkφ(x), where
φ(x) = 1√

2π
exp(−x2/2) is the standard Gaussian density, see, e.g., Lebedev (1972) for more

details. One property that we will need is that for two centered ρ-correlated unit variance joint
Gaussians G1, G2 it holds

EHm(G1)Hn(G2) =

{
m! if m = n,
0 otherwise.

(207)

We will also make use of the ReLU Hermite expansion, see, e.g., Proposition 6 in Abbe et al.
(2022c). That is, ReLU(x) = 1√

2π
+ 1

2x +
∑∞
m=1 amH2m(x) for am := (−1)m+1

√
2π2m(2m−1)m!

and
consequently, applying equation 207,

EReLU(G1)ReLU(G2) =
1

2π
+

1

4
ρ+

∞∑
m=1

a2m(2m)!ρ2m . (208)

Furthermore, in any case we always have

EReLU(G1)ReLU(G2) ≤ EReLU2(G1) =
1

2
. (209)
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As in Lemma 7, conditioned on k, random variables G1, G2 are centered unit variance Gaussians
with correlation ρ = ρ(k) =

(
1− 2k

d

)
α+ β. In particular, by equation 197, as long as d/4 ≤ k ≤

3d/4, then |ρ| ≤ 1− α0

2 . Now we estimate, for d ≥ 2, applying Claim 8 in equation 211 and again
in equation 216:∣∣E(−1)k ReLU(G1)ReLU(G2)

∣∣ (210)

=

∣∣∣∣E(−1)k
(
ReLU(G1)ReLU(G2)−

1

2π
− 1

4
ρ

)∣∣∣∣ (211)

≤ Pr[|k − d/2| > d/4] +

∣∣∣∣∣∣
⌊3d/4⌋∑
k=⌈d/4⌉

(−1)k
(
d

k

) ∞∑
m=1

a2m(2m)!ρ2m

∣∣∣∣∣∣ (212)

≤ 2 exp(−d/10) +
∑

2m<d

a2m(2m!)

∣∣∣∣∣∣
⌊3d/4⌋∑
k=⌈d/4⌉

(−1)k
(
d

k

)
ρ2m

∣∣∣∣∣∣ (213)

+
∑

2m≥d

a2m(2m!)

∣∣∣∣∣∣
⌊3d/4⌋∑
k=⌈d/4⌉

(−1)k
(
d

k

)
ρ2m

∣∣∣∣∣∣ (214)

≤ 2 exp(−d/10) +
∑

2m<d

∣∣∣∣∣∣
⌊3d/4⌋∑
k=⌈d/4⌉

(−1)k
(
d

k

)
ρ2m

∣∣∣∣∣∣+
∑

2m≥d

(
1− α0

2

)2m
(215)

≤ C ′ exp(−Cd) +
∑

2m<d

(∣∣∣∣∣
d∑
k=0

(−1)k
(
d

k

)
ρ2m

∣∣∣∣∣+ Pr[|k − d/2| > d/4]

)
(216)

≤ C ′ exp(−Cd) . (217)

D SMALL ALIGNMENT FOR PERTURBED INITIALIZATION: PROOF OF
THEOREM 8

D.1 PROPOSITION 2 IMPLIES THEOREM 8

Take σ0, C and C ′ from Proposition 2. Let the setting be as in Theorem 8 i.e. θ = (w, v), with i.i.d.
initialization w = 1√

d
(r + g) where r ∼ Rad(1/2), g ∼ N

(
0, σ2

)
and v ∼ N

(
0, 1

n Idn
)
. Let’s

consider any σ = σ(d) ≥ σ0.

As before, we would like to apply Theorem 6. Let 0 ≤ λ2 ≤ γ2τ2T . Let us check the gradient
alignment for θ + λH , where H ∼ N (0, IdP ). So we consider the weights with independent
coordinates where

wλ,ij =
1√
d
(rij + gij) + λhij , vλ,i ∼ N

(
0,

1

n
+ λ2

)
, (218)

where gij ∼ N
(
0, σ2

)
, rij ∼ Rad(1/2) and hij ∼ N (0, 1). Let us rewrite wλ,ij as

wλ,ij =
1√
d
(rij + g̃λ,ij) with g̃λ,ij ∼ N

(
0, σ2 + λ2d

)
. (219)

Also let’s normalize by dividing vλ by
√
1 + nλ2. That gives a new initialization θ̃λ = (wλ, ṽ) such

that ṽi ∼ N
(
0, 1

n

)
. Since we have

√
σ2 + λ2d ≥ σ ≥ σ0, then by Proposition 2

GALf (θ̃λ) ≤ PC ′ exp(−Cd) . (220)

Finally, by gradient formulas and homogenity of ReLU, we have

GALf (θ + λH) ≤ (1 + nλ2)GALf (θ̃λ) ≤ exp(−Ω(d)) . (221)
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Therefore the result follows by Theorem 6.

Let g and r be two i.i.d. vectors with n coordinates such that on each coordinate gi ∼ N
(
0, 1d

)
and ri ∼ Rad(1/2). Let’s define two values expressing the gradient alignments for weights in the
hidden and output layers, respectively. For µ ≥ 0 and d ∈ N:

GALhid(µ, d) := Eg,r

(Ex [d−1∏
i=1

xi1[(g + µr) · x ≥ 0]

])2
 . (222)

GALout(µ, d) := Eg,r

(Ex [ d∏
i=1

xiReLU((g + µr) · x)

])2
 . (223)

Lemma 9. There exists some α0, C > 0 and D0 such that, for d ≥ D0, and µ ≤ α0√
d

, it holds
GALhid(µ, d) ≤ exp(−Cd).
Lemma 10. There exists some α0, C > 0 and D0 such that, for d ≥ D0, and µ ≤ α0√

d
, it holds

GALout(µ, d) ≤ exp(−Cd).

D.2 LEMMA 9 AND LEMMA 10 IMPLY PROPOSITION 2

Let the setting be as in Theorem 8 i.e. wi = 1√
d
(ri + gi), gi ∼ N

(
0, σ2

)
and ri ∼ Rad(1/2). The

gradient formulas for full parity:

∇wij
NN = vi1(wi · x ≥ 0)xj , (224)

∇vi NN = ReLU(wi · x) . (225)

As the gradient has P = nd + n coordinates, it is enough to show the C ′ exp(−Cd) bound on
every coordinate of the gradient. Let us start with hidden weight coordinates. By symmetry, we can
suppose w.l.o.g. that j = d. The alignment of hidden layer is given by:

Eθ
(
Exf(x)∇wij

NN
)2

= Eθ (Exf(x)vi1 (wi · x ≥ 0)xj)
2 (226)

= Evi [v2i ]Egi,ri

(Ex d−1∏
ℓ=1

xℓ1

(
1√
d
(ri + gi) · x ≥ 0

))2
 (227)

=
1

n
Egi,ri

(Ex d−1∏
ℓ=1

xℓ1

(
1√
d
(ri + gi) · x ≥ 0

))2
 (228)

=
1

n
Eg̃i,ri

(Ex d−1∏
ℓ=1

xℓ1

(
(

1

σ
√
d
ri + g̃i) · x ≥ 0

))2
 , (229)

where g̃i ∼ N
(
0, 1d

)
. Therefore, by Lemma 9,

Eθ
(
Exf(x)∇wij

NN
)2

=
1

n
GALhid

(
1

σ
√
d
, d

)
≤ C ′ exp(−Cd) (230)

where the constant C ′ compensates for the fact that Lemma 9 holds for d large enough.

Similarly, for the alignments of output layer weights:

Eθ (Exf(x)∇vi NN)
2
= Egi,ri

(Ex d∏
ℓ=1

xℓReLU

(
1√
d
(ri + gi) · x

))2
 (231)

= σ2Eg̃i,ri

(Ex d∏
ℓ=1

xℓReLU

(
(

1

σ
√
d
ri + g̃i) · x

))2
 (232)

= σ2 GALout

(
1

σ
√
d
, d

)
(233)
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D.3 CORRELATED GAUSSIAN EXPECTATIONS

We give a general formula for expectation of functions of correlated Gaussians. We will then apply
this formula to the cases of step function and ReLU:
Lemma 11. Let (ck)k and (dk)k be two sequences of power series coefficients with infinite radius
of convergence. Let f(x) :=

∑∞
k=0 ckHk(x) and F (x) :=

∑∞
k=0 ckx

k. Similarly, let g(x) :=∑∞
k=0 dkHk(x) andG(x) :=

∑∞
k=0 dkx

k. Then, for every a, b ∈ R and ρ-correlated joint standard
Gaussians Z,Z ′:

Ef(a+ Z)g(b+ Z ′) =

∞∑
k=0

F (k)(a)G(k)(b)

k!
ρk , (234)

where F (k) denotes the k-th derivative of F .

Proof. Applying the Hermite polynomial identity Hm(a+ b) =
∑m
k=0

(
m
k

)
am−kHk(b):

f(a+ z) =

∞∑
m=0

cmHm(a+ z) =

∞∑
m=0

cm

m∑
k=0

(
m

k

)
am−kHk(z) (235)

=

∞∑
k=0

1

k!
Hk(z)

∞∑
m=k

cm

(
k−1∏
i=0

m− i

)
am−k =

∞∑
k=0

F (k)(a)

k!
Hk(z) (236)

Taking expectation and using EHk(Z)Hk′(Z
′) = 1k=k′k!ρ

k:

Ef(a+ Z)g(b+ Z ′) =

∞∑
k=0

F (k)(a)G(k)(b)

k!
ρk .

Applying Lemma 11 to the case of the step function, we get the two dimensional case of the “tetra-
choric series“ Harris & Soms (1980).
Claim 9. Using the notation above, F (x) = (f ∗ ϕ)(x) = E[f(x+ Z)].

Proof. From the convolution property (f ∗ g)′ = f ′ ∗ g and identity ϕ(k) = (−1)kHkϕ:

(f ∗ ϕ)(k)(0) = (f ∗ ϕ(k))(0) = (−1)k(f ∗ (Hkϕ))(0) =

∫
f(x)Hk(x)ϕ(x)dx (237)

= ckk! = F (k)(0) . (238)
Since the power series coefficients are equal for every k, the claim follows.

Corollary 6. E
[
1a+Z≥01b+Z′≥0

]
= Φ(a)Φ(b) + ϕ(a)ϕ(b)

∑∞
k=0Hk(a)Hk(b)

1
(k+1)!ρ

k+1.

Proof. Using Claim 9 for f(x) = 1x≥0, we get that
F (x) = E[1x+Z≥0] = Φ(x) . (239)

The result follows by applying Lemma 11 and Φ(k) = ϕ(k−1) = (−1)k−1Hk−1ϕ.

Corollary 7. Let R(x) = xΦ(x) + ϕ(x). Then,

E
[
ReLU(a+ Z)ReLU(b+ Z ′)

]
= R(a)R(b) + Φ(a)Φ(b)ρ+ ϕ(a)ϕ(b)

∞∑
k=0

Hk(a)Hk(b)

(k + 2)!
ρk+2 .

(240)

Proof. Applying Claim 9 for f = ReLU we get

F (x) = EReLU(x+ Z) =

∫
(x+ y)1x+y≥0ϕ(y)dy =

∫ ∞

−x
(x+ y)ϕ(y)dy (241)

= xΦ(x) +

∫ ∞

−x
−ϕ′(y)dy = xΦ(x) + ϕ(x) = R(x) . (242)

Again the result follows by Lemma 11 and observing that R′(x) = Φ(x) + xϕ(x) + ϕ′(x) =
Φ(x).
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D.4 PROOF OF LEMMA 9

Let us write µ = α/
√
d, so that by assumption α ≤ α0. We have,

GALhid = Eg,x,x′,r

[∏
i

xix
′
i1[g · x+ µr · x, g · x′ + µr · x′ ≥ 0]

]
(243)

= Ex,x′,r

[∏
i

xix
′
i Pr
g
[g · x+ µr · x, g · x′ + µr · x′ ≥ 0]

]
=: Ex,x′,rF (x, x

′, r) .

(244)

As for every x, x′, r, s ∈ {−1, 1}d we have F (x, x′, r) = F (x⊙ s, x′ ⊙ s, r⊙ s) (where ⊙ denotes
the Hadamard product), it follows

Ex,x′,rF (x, x
′, r) = Ex,x′F (x, x′, 1d) , (245)

so we can rewrite

GALhid = Ex,x′

[∏
i

xix
′
i Pr
g
[g · x+ µ · x, g · x′ + µ · x′ ≥ 0]

]
= Ex,x′F (x, x′, 1d) .

Fix x and assume w.l.o.g. that x = (1d−d
′
,−1d

′
) for some 0 ≤ d′ ≤ d. Furthermore, divide

x′ = (y, z) such that y ∈ {−1, 1}d−d′ and z ∈ {−1, 1}d′ . Assume that d′ ≥ d/2 and fix
y. (If d′ < d/2 we exchange the roles of y and z and proceed with an entirely symmetric argu-
ment.) Let G(x, y, z) = F (x, (y, z), 1d). We want to analyze EzG(x, y, z) so that the bound on
Ex,x′F (x, x′, 1d) = Ex,y,zG(x, y, z) will follow by averaging. Let ρ = 1

dx ·x
′ and k be the number

of −1 entries in z. Note that we have ρ = 1·y+2k−d′
d . Continuing:

|EzG(x, y, z)| =

∣∣∣∣∣∣(−1)d
′
d−d′∏
i=1

yiEz
[
(−1)k Pr

g
[g · x+ µ · x, g · x′ + µ · x′ ≥ 0]

]∣∣∣∣∣∣ (246)

=
∣∣Ek [(−1)kΛρ(µ(d− 2d′), µ(1 · y + d′ − 2k))

]∣∣ (247)

=
∣∣Ek [(−1)kΛρ(µ(d− 2d′),−µ(dρ− 2 · y))

]∣∣ , (248)

where Λρ(a, b) = Prg,g′ [g+ a, g′ + b ≥ 0] = Prg,g′ [g ≤ a, g′ ≤ b], where g, g′ are two standard ρ-
correlated joint Gaussians. Note that the distribution of k is binomial, that is Pr[k = k∗] = 2−d

′(d′
k∗

)
for 0 ≤ k∗ ≤ d′.

In particular, conditioned on x, y, the expectation in equation 248 can be written as |EkG(x, y, z)| =
|
∑d′

k=0(−1)k
(
d′

k

)
W (ρ)| for some function W that depends only on ρ. Since ρ is a linear function

of k, as in the Gaussian case, we will now expand W as a power series and apply Claim 8.

Let

A := µ(d− 2d′) , B := 2µ · y , C := −µd , and w := B + Cρ . (249)

Take some β > 0, where later on we will choose it to be a small enough universal constant (in fact
β = 0.005 will be enough). Let us define two “bad” events: E1 is |ρ| ≥ 1/2 and E2 is |w| ≥ β

√
d

and let F be the complement of E1 ∪ E2.
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First, let us argue that Pr[E1 ∪ E2] ≤ exp(−cβ2d) for some universal c > 0 and d large enough:

Pr [E1 ∪ E2] ≤ Pr [E1] + Pr[E2] (250)

= Pr [|ρ| ≥ 1/2] + Pr
[
|w| ≥ β

√
d
]

(251)

≤ Pr

[∣∣∣∣∣
d∑
i=1

xix
′
i

∣∣∣∣∣ ≥ d

2

]
+ Pr

[
|B| ≥ β

√
d

2

]
+ Pr

[
|Cρ| ≥ β

√
d

2

]
(252)

≤ Pr

[∣∣∣∣∣
d∑
i=1

xix
′
i

∣∣∣∣∣ ≥ d

2

]
+ Pr

∣∣∣∣∣∣
d−d′∑
i=1

yi

∣∣∣∣∣∣ ≥ β
d

4α

+ Pr

[∣∣∣∣∣
d∑
i=1

xix
′
i

∣∣∣∣∣ ≥ βd

2α

]
(253)

≤ 2 exp(−d
8
) + 2 exp

(
− β2d2

32α2(d− d′)

)
+ 2 exp

(
−β

2d

8α2

)
(254)

≤ exp(−cβ2d) , (255)

where equation 254 is by Hoeffding’s inequality. Using equation 248, our bound becomes

GALhid ≤ Ex,y
∣∣Ek(−1)kΛρ(A,w)

∣∣ (256)

≤ Pr[E1 ∪ E2] + Ex,y
∣∣Ek(−1)kΛρ(A,w)1F

∣∣ (257)

≤ exp(−cβ2d) + Ex,y
∣∣Ek(−1)kΛρ(A,w)1F

∣∣ . (258)

To study the expression Λρ(A,w), let us recall some facts about the Gaussians. We have the follow-
ing expansions:

Φ(z) =
1

2
+

1√
2π

∞∑
k=0

(−1)k

2kk!(2k + 1)
z2k+1 (259)

ϕ(z) =
1√
2π

∞∑
k=0

(−1)k

2kk!
z2k , (260)

as well as the tetrachoric series for Λ (convergent for every a, b ∈ R and |ρ| < 1) Harris & Soms
(1980), Vasicek (1998):

Λρ(a, b) = Φ(a)Φ(b) + ϕ(a)ϕ(b)

∞∑
k=0

Hk(a)Hk(b)
1

(k + 1)!
ρk+1 . (261)

Substituting into equation 258,

GALhid ≤ exp(−cβ2d) (262)

+ Ex,y

∣∣∣∣∣Ek(−1)k1F

(
Φ(A)Φ(w) + ϕ(A)ϕ(w)

∞∑
ℓ=0

Hℓ(A)Hℓ(w)
ρℓ+1

(ℓ+ 1)!

)∣∣∣∣∣
(263)

≤ exp(−cβ2d) + Ex,y
∣∣Ek(−1)k1FΦ(A)Φ(w)

∣∣ (264)

+

∞∑
ℓ=0

Ex,y
∣∣∣∣Ek(−1)k1Fϕ(A)ϕ(w)Hℓ(A)Hℓ(w)

ρℓ+1

(ℓ+ 1)!

∣∣∣∣ (265)

≤ exp(−cβ2d) + Ex,y
∣∣Ek(−1)k1FΦ(w)

∣∣︸ ︷︷ ︸
=:T1

(266)

+

∞∑
ℓ=0

Ex,y
∣∣∣∣Ek(−1)k1Fϕ(w)Hℓ(w)

ρℓ+1

√
ℓ!

∣∣∣∣︸ ︷︷ ︸
=:T2

, (267)

where in the last line we used the estimate from (Harris & Soms, 1980, proof of Theorem 2),

|Hℓ(A)| ≤ 2 exp(A2/4)
√
ℓ! , (268)

39



Published as a conference paper at ICLR 2025

which implies

|ϕ(A)Hℓ(A)| ≤
√
ℓ! . (269)

For tighter estimates on Hermite polynomials, see also Bonan & Clark (1990).

It remains to show that both T1 and T2 are exponentially small.

Let us start with T1. Recall equation 259 and let aℓ = (−1)ℓ√
2π2ℓℓ!(2ℓ+1)

. Using equation 259 and
triangle inequality,

T1 ≤ Ex,y

∣∣∣∣∣∣Ek(−1)k1F

1

2
+
∑

ℓ<d/10

aℓw
2ℓ+1

∣∣∣∣∣∣+
∑

ℓ≥d/10

|aℓ|(β
√
d)2ℓ+1 (270)

≤ Ex,y

∣∣∣∣∣∣Ek(−1)k

1

2
+
∑

ℓ<d/10

aℓw
2ℓ+1

∣∣∣∣∣∣+ Ex,y

∣∣∣∣∣∣Ek(−1)k1E1∪E2

1

2
+
∑

ℓ<d/10

aℓw
2ℓ+1

∣∣∣∣∣∣
(271)

+
∑

ℓ≥d/10

|aℓ|(β
√
d)2ℓ+1 (272)

≤ Pr[E1 ∪ E2]

1

2
+
∑

ℓ<d/10

|aℓ|(α
√
d)2ℓ+1

+
∑

ℓ≥d/10

|aℓ|(β
√
d)2ℓ+1 (273)

≤ exp(−cβ2d)

1

2
+
∑

ℓ<d/10

|aℓ|(α
√
d)2ℓ+1

+
∑

ℓ≥d/10

|aℓ|(β
√
d)2ℓ+1 . (274)

In the right term in equation 270 we used that event F implies |w| ≤ β
√
d. In equation 271, we

apply Claim 8 to the first term. This is valid since w is a linear function of k, and since 2ℓ + 1 <
2d/10 + 1 ≤ d/2 ≤ d′, which holds for d ≥ 4. In bounding the second term in equation 271, we
used a uniform bound |w| = |µx′| ≤ α

√
d.

We will now argue that both terms in equation 274 are exponentially small. Let us start with the
second term:∑
ℓ≥d/10

|aℓ|(β
√
d)2ℓ+1 ≤

∑
ℓ≥d/10

(β
√
d)2ℓ+1

ℓ!
≤ β

√
d
∑

ℓ≥d/10

exp(ℓ ln d+ 2ℓ lnβ − ℓ ln ℓ+ ℓ)

(275)

≤ β
√
d
∑

ℓ≥d/10

exp(2ℓ lnβ + ℓ ln 10 + ℓ) (276)

= β
√
d
∑

ℓ≥d/10

(10eβ2)ℓ ≤ β
√
d
∑

ℓ≥d/10

2−ℓ ≤ 2β
√
d2−d/10 ≤ exp(−c′d) ,

(277)
where the first inequality in equation 277 follows if β satisfies 10eβ2 ≤ 1/2.

Now let us move to the left-hand side term in equation 274. It is sufficient to prove 1/2 +∑
ℓ<d/10 |aℓ|(α

√
d)2ℓ+1 ≤ exp(cβ2d/2) and this is what we are going to show. Indeed,∑

ℓ<d/10

|aℓ|(α
√
d)2ℓ+1 ≤

∑
ℓ<d/10

(α
√
d)2ℓ+1

ℓ!
≤ α

√
d
∑

ℓ<d/10

(eα
√
d)2ℓ

ℓℓ
. (278)

Consider the function f(ℓ) = (eα
√
d)2ℓ

ℓℓ
. We check that its derivative is f ′(ℓ) = f(ℓ)

(
ln
(
(eα)2d

)
−

1− ln ℓ
)
. Therefore, f achieves its maximum at ℓ∗ = α2ed and we have

(eα
√
d)2ℓ

ℓℓ
= f(ℓ) ≤ f(ℓ∗) = exp(eα2d) (279)
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for every ℓ ≥ 0. For α small enough, for example if α2e ≤ cβ2/2, we can substitute into equa-
tion 278 to get

∑
ℓ<d/10 |aℓ|(α

√
d)2ℓ+1 ≤ αd

√
d exp(eα2d) and consequently

1/2 +
∑

ℓ<d/10

|aℓ|(α
√
d)2ℓ+1 ≤ exp(cβ2d/2) . (280)

In summary, by combining equation 274, equation 277, and equation 280, the inequality T1 ≤
exp(−Ω(d)) is established for large enough d.

We now turn to bounding T2. The idea is essentially the same with a more complicated calculation.
Recall equation 260, let bm := 1√

2π

(−1)m

2mm! and note for later that |bm| ≤ 1/m!. We write down

T2 =

∞∑
ℓ=0

∣∣∣∣Ek(−1)k1Fϕ(w)Hℓ(w)
ρℓ+1

√
ℓ!

∣∣∣∣ (281)

≤
∑

ℓ<d/10

∣∣∣∣∣∣Ek(−1)k1F

 ∑
m<d/10

bmw
2m

Hℓ(w)
ρℓ+1

√
ℓ!

∣∣∣∣∣∣︸ ︷︷ ︸
=:T3

(282)

+
∑

ℓ<d/10,m≥d/10

1

m!
Ex,y,k

∣∣∣∣1Fw
2mHℓ(w)√

ℓ!

∣∣∣∣︸ ︷︷ ︸
=:T4

(283)

+
∑

ℓ≥d/10

Ex,y,k
∣∣∣∣1Fϕ(w)Hℓ(w)

ρℓ+1

√
ℓ!

∣∣∣∣︸ ︷︷ ︸
=:T5

. (284)

Let us argue in turns that each of T3, T4, T5 is exponentially small proceeding in the reverse order.
For T5, we use equation 269 and the fact that event F implies |ρ| ≤ 1/2:

T5 ≤
∑

ℓ≥d/10

2−ℓ+1 ≤ 2−d/10 . (285)

For T4, we invoke equation 268 and event F implying |w| ≤ β
√
d:

T4 ≤ 2d exp(β2d/4)
∑

m≥d/10

(β2d)m

m!
≤ 2d exp(β2d/4)

∑
m≥d/10

(10eβ2)m . (286)

If β is chosen such that (10eβ2)1/10 ≤ 1/2 and exp(β2/4) ≤ 1.01, then we can continue and obtain
the desired bound

T4 ≤ 2d(1.01)d2−d ≤ exp(−c′d) . (287)

Finally, we turn to T3:

T3 ≤
∑

ℓ<d/10

Ex,y

∣∣∣∣∣∣Ek(−1)k

 ∑
m<d/10

bmw
2m

Hℓ(w)
ρℓ+1

√
ℓ!

∣∣∣∣∣∣ (288)

+
∑

ℓ<d/10

Ex,y

∣∣∣∣∣∣Ek(−1)k1E1∪E2

 ∑
m<d/10

bmw
2m

Hℓ(w)
ρℓ+1

√
ℓ!

∣∣∣∣∣∣ (289)

≤ 2dPr[E1 ∪ E2] exp(α2d/4)
∑

m<d/10

(α2d)m

m!
(290)

≤ 2d2 exp(−cβ2d) exp(α2d/4) exp(eα2d) ≤ exp(−c′d) . (291)
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The sum in equation 288 is equal zero by Claim 8: Indeed both w and ρ are linear functions of k,
so the expression inside the absolute value is a polynomial of degree at most 2m + ℓ + (ℓ + 1) <

4d/10 + 1 ≤ d/2 ≤ d′. To bound the sum in equation 289, we applied |bm| ≤ 1/m!, |w| ≤ 3α
√
d,

equation 268 and |ρ| ≤ 1. Finally, to bound equation 290 we applied equation 255 and equation 279
and the final inequality follows if we choose α0 small enough so that, e.g., α2/4 + eα2 ≤ cβ2/2
(recall that β is already chosen to be a small enough absolute constant).

Summing up, equation 285, equation 287 and equation 291 substituted into equation 284 give
T2 ≤ exp(−Ω(d)). Together with T1 ≤ exp(−Ω(d)), substituted into equation 267, we estab-
lished GALhid(µ, d) ≤ exp(−Ω(d)), which is what we set out to prove.

D.5 PROOF OF LEMMA 10

This proof follows a similar process as the proof of Lemma 9, so we will skip some details and refer
to Appendix D.4. Let us write µ = α/

√
d, so that by assumption α ≤ α0. We have,

GALout = Eg,x,x′,r

[
d∏
i

xix
′
iReLU(g · x+ µr · x)ReLU(g · x′ + µr · x′)

]
(292)

= Ex,x′,r

[∏
i

xix
′
iEg [ReLU(g · x+ µr · x)ReLU(g · x′ + µr · x′)]

]
(293)

:= Ex,x′,rF (x, x
′, r) . (294)

We still have for every x, x′, r, s ∈ {−1, 1}d, F (x, x′, r) = F (x⊙ s, x′ ⊙ s, r ⊙ s), therefore

GALout = Ex,x′F (x, x′, 1d)

= Ex,x′

[∏
i

xix
′
iEg [ReLU(g · x+ µ · x)ReLU(g · x′ + µ · x′)]

]
.

Let’s recall the notations from Appendix D.4: let’s fix x and assume w.l.o.g. that x = (1d−d
′
,−1d

′
)

for some 0 ≤ d′ ≤ d, x′ = (y, z) such that y ∈ {−1, 1}d−d′ and z ∈ {−1, 1}d′ . Assume that
d′ ≥ d/2 and fix y. Let G(x, y, z) = F (x, (y, z), 1d). We are going to analyze EzG(x, y, z) so that
the bound on Ex,x′F (x, x′, 1d) = Ex,y,zG(x, y, z) will follow by averaging. Let ρ = 1

dx · x′ =
1·y+2k−d′

d , where k be the number of −1 entries in z. We have,

|EzG(x, y, z)| =

∣∣∣∣∣∣(−1)d
′
d−d′∏
i=1

yiEz
[
(−1)kEg [ReLU(g · x+ µ · x)ReLU(g · x′ + µ · x′)]

]∣∣∣∣∣∣
(295)

=
∣∣Ek [(−1)kΛρ(µ(d− 2d′),−µ(dρ− 2 · y))

]∣∣ , (296)

where in this case Λρ(a, b) = Eg,g′ [ReLU(g + a)ReLU(g′ + b)], with g, g′ are two standard ρ-
correlated joint Gaussians. Let

A := µ(d− 2d′) , B := 2µ · y , C := −µd , and w := B + Cρ . (297)

Let us define two “bad” events: E1 is |ρ| ≥ 1/2 and E2 is |w| ≥ β
√
d (for some β that we will set

later) and let F be the complement of E1 ∪ E2.

Using the same argument as in Appendix D.4 (see Equationsequation 250-equation 255), we can
show that Pr[E1 ∪ E2] ≤ exp(−cβ2d) for some universal c > 0 and d large enough. Continuing,

GALout ≤ Ex,y
∣∣Ek(−1)kΛρ(A,w)

∣∣ (298)

≤ exp(−cβ2d) + Ex,y
∣∣Ek(−1)kΛρ(A,w)1F

∣∣ . (299)
From Corollary 7, we have

Λρ(A,w) = R(A)R(w) + Φ(A)Φ(w)ρ+ ϕ(A)ϕ(w)

∞∑
ℓ=0

Hℓ(A)Hl(w)

(ℓ+ 2)!
ρℓ+2 , (300)
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with R(x) = xΦ(x) + ϕ(x). Substituting the above into equation 300

GALhid ≤ exp(−cβ2d) + Ex,y

∣∣∣∣∣Ek(−1)k1F · (301)(
R(A)R(w) + Φ(A)Φ(w)ρ+ ϕ(A)ϕ(w)

∞∑
ℓ=0

Hℓ(A)Hl(w)

(ℓ+ 2)!
ρℓ+2

)∣∣∣∣∣ (302)

≤ exp(−cβ2d) + Ex,y
∣∣Ek(−1)k1FR(A)R(w)

∣∣+ Ex,y
∣∣Ek(−1)k1FΦ(A)Φ(w)ρ

∣∣
(303)

+

∞∑
ℓ=0

Ex,y
∣∣∣∣Ek(−1)k1Fϕ(A)ϕ(w)Hℓ(A)Hℓ(w)

ρℓ+2

(ℓ+ 2)!

∣∣∣∣ , (304)

≤ exp(−cβ2d) + Ex,y|R(A)|
∣∣Ek(−1)k1FwΦ(w)

∣∣+ Ex,y|R(A)|
∣∣Ek(−1)k1Fϕ(w)

∣∣
(305)

+ Ex,y
∣∣Ek(−1)k1FΦ(w)ρ

∣∣+ ∞∑
ℓ=0

Ex,y
∣∣∣∣Ek(−1)k1Fϕ(w)Hℓ(w)

ρℓ+2

√
ℓ!

∣∣∣∣ , (306)

≤ exp(−cβ2d) + µdEx,y
∣∣Ek(−1)k1FwΦ(w)

∣∣︸ ︷︷ ︸
=:T11

+µdEx,y
∣∣Ek(−1)k1Fϕ(w)

∣∣︸ ︷︷ ︸
=:T12

(307)

+ Ex,y
∣∣Ek(−1)k1FΦ(w)ρ

∣∣︸ ︷︷ ︸
=:T13

+

∞∑
ℓ=0

Ex,y
∣∣∣∣Ek(−1)k1Fϕ(w)Hℓ(w)

ρℓ+2

√
ℓ!

∣∣∣∣︸ ︷︷ ︸
=:T22

, (308)

The bound in equation 307 and equation 308 follow because of equation 269 and the fact that
|R(A)| ≤ 2|A| = 2µ(d− d′) ≤ µd. It remains to show that T11, T12 ,T13 and T22 are exponentially
small. The term T22 differs from T2 in equation 267 by the exponent of ℓ+ 2 in ρ instead of ℓ+ 1.
Thus for d large enough, a similar proof as for T2 will show that T22 is exponentially small. The
process to handle T11, T12 and T13 is the same as in T1. Indeed, for example:

T11 ≤ Ex,y

∣∣∣∣∣∣Ek(−1)k1F

1

2
w +

∑
ℓ<d/10

aℓw
2ℓ+2

∣∣∣∣∣∣+
∑

ℓ≥d/10

|aℓ|(β
√
d)2ℓ+2 (309)

≤ exp(−cβ2d)

1

2
α
√
d+

∑
ℓ<d/10

|aℓ|(α
√
d)2ℓ+2

+
∑

ℓ≥d/10

|aℓ|(β
√
d)2ℓ+2 . (310)

Both of the above terms can be handled similarly as in Appendix D.4.

E EXPERIMENT DETAILS AND ADDITIONAL EXPERIMENTS

E.1 EXPERIMENT DETAILS

All experiments were performed using the PyTorch framework (Paszke et al. (2019)) and they were
executed on NVIDIA Volta V100 GPUs.

Architectures. For the results presented in the main, we used mainly a 4-layer MLP architecture
trained by SGD with the hinge loss. In this Section, we also present some experiments obtained with
a 2-layer MLP trained by SGD with the squared loss.

• 4-layer MLP. This is a fully-connected architecture of 3 hidden layers of neurons of size
512, 512, 64, and ReLU activation.

• 2-layer MLP. This is again a fully-connected architecture, with 1 hidden layer of 512
neurons, and ReLU activation,
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Initializations. We compare few initialization schemes. In the following, dim denotes the input
dimension of the layer of the corresponding parameter. All layers weights and biases are indepen-
dently initialized according to:

• σ-perturbed Rademacher:
(
Rad(1/2) +N (0, σ2)

)
· 1√

dim·(1+σ2)
.

• Gaussian: N (0, 1
dim ).

• s-sparsified Rademacher: Ber(1− s) · Rad(1/2) · 1√
dim·(1−s)

.

• Uniform σ-perturbed Rademacher:
(
Rad(1/2) + Unif[−

√
3σ,

√
3σ]
)
· 1√

dim·(1+σ2)
.

• Discrete perturbed Rademacher: Unif{−2,−1, 1, 2} ·
√

2
5·dim .

Training procedure. We consider mainly the hinge loss: Lhinge(ŷ, y) := max(0, 1 − ŷy). In
some experiments we consider the ℓ2 loss: Lℓ2(ŷ, y) := (ŷ − y)2. We train the architectures using
SGD with batch size 64. In the online setting, we sample fresh batches of samples at each iterations.
In the offline setting, we sample batches from a fixed dataset and we stop training when the training
loss is less than 0.01.

Hyperparameter tuning. The primary goal of our experiments is to conduct a fair comparison
of different initialization methods. Thus, we did not engage in extensive hyperparameter tuning.
We tried different batch sizes and learning rates, and we did not observe significant qualitative
difference. We chose to report the experiments obtained for a standard batch size of 64 and a
learning rate of 0.01.

Additional details for Figure 2. In the left plot of Figure 2, we are computing the quan-

tity Ew
[
Ex,r

[
∂L(w,x,f(x))

∂wd
− ∂L(w,x,r)

∂wd

]2]
, where w ∼ N (0, 1d Idd) for one case and w ∼

Rad(1/2) for the other case, f is the full parity, r ∼ Rad(1/2) and L(w, x, y) :=
max (0, 1− yReLU(w.x)) is the hinge loss. For the approximated part we update the weights
according to ψt+1 = ψt − γ (Γr(ψ

t)), with ψ0 ∼ N (0, 1d Idd) and γ = 1, and we calculate

Eψt

[
Ex,r

[
∂L(ψt,x,f(x))

∂ψt
d

− ∂L(ψt,x,r)
∂ψt

d

]2]
.

E.2 ADDITIONAL EXPERIMENTS
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Figure 4: Learning 3-parity (left) and 5-parity (right) with Rademacher, σ-perturbed and Gaussian
initializations, with SGD with the hinge loss on a 4-layer MLP, with d = 50. We plot the test
accuracy, for several training set sizes.

Sparse Parities. In Figure 4 we train a 4-layer MLP with Rademacher initialization and σ-
perturbation (σ ∈ 0.1, 1) on two sparse parities: degree 3 (left) and degree 5 (right). We observe
no significant difference between these initializations, unlike the full parity case. This is because,
for sparse parities, the learning bottleneck lies in recovering the support, which takes dΩ(k) time for
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Figure 5: Learning the full parity with σ-perturbed initialization by SGD with the hinge loss on a
4-layer MLP, with input dimension d = 100 (top-left), d = 150 (top-right) and d = 200 (bottom),
with online fresh samples.

any i.i.d. initialization. Hence, the initial embedding does not play the same role as in the full parity
scenario.

Larger input dimension. In Figure 5, we plot the test accuracy achieved by a 4-layer MLP trained
with the hinge loss on the full parity task, with different σ-perturbed initializations. We report only
the curves for small σ. We observe that for fixed σ, learning becomes hard as d increases.
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Figure 6: Computing numerically GALf for correlation loss for one-neuron with threshold activa-
tion. We report the estimated GALf for different values of the input dimension, in a log-log plot.

Alignment for correlation loss. Figure 6 completes Figure 2 (right) in the main. Here we plot
the numerically computed GALf for larger values of σ. We observe that the GALf becomes con-
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sistently smaller as σ increases. Moreover, from the plot the decay seems super-polynomially small
for all σ > 0.

Two-layer MLP and squared loss. In Figure 7 we train a 2-layer MLP with the squared loss and
online fresh samples. In the left plot, we initialize the weights according to σ-perturbed Rademacher,
for different values of σ. In the right plot, we initialize with other perturbations of the Rademacher
initialization, namely a mixture of (continuous) uniform distributions of mean +1 and −1 and stan-
dard deviation σ and s-sparsified Rademacher with s = 1/3. We observe in both plots a similar
behavior as for the 4-layer MLP with the hinge loss.
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Figure 7: Learning the full parity with σ-perturbed Rademacher (left) and uniform and sparse per-
turbed Rademacher (right) with a 2-layer MLP, with input dimension d = 50, trained with the
squared loss, with online fresh samples.

Effect of the Loss. We consider the following Boolean function:

f(x) :=
1

8
x1x2x3 +

3

8
x1x2x4 +

1

4
x1x3x4 +

1

4
x2x3x4. (311)

In (Joshi et al. (2024)), the authors show that this function is learned more efficiently by SGD with
L1-loss than with L2-loss (see Section 7.1 therein). In Figure 8, we observe that such difference is
captured by our loss-dependent notion of Initial Gradient Alignment (GAL). This motivates future
work in comparing our GAL with previously defined measures (e.g. LGA (Mok et al. (2022))) in a
broader setting.
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Figure 8: (left) Learning f (Eq. equation 311) with SGD with the L1 and L2 (squared) loss on a
4-layer MLP, with input dimension d = 50. (right) Initial GAL for f on the same architecture, with
the two losses.

Output Layer Training with Correlation Loss. The purpose of Figure 9 is to empirically
verify our positive theoretical result from Theorem 5. To that purpose, we train a two-layer
fully connected network with Rademacher initialization with ReLU and clipped-ReLU activation
σ(x) = min(1,max(0, x)) on the full parity task. We train only the output layer, consistently with
our positive result, with SGD with large batch size (1024) with the correlation loss and online fresh
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samples, until convergence of the test accuracy. We show the test accuracy achieved for different
input dimensions (d) and different widths of the hidden layer (w). Consistently with our theory, with
clipped-ReLU, d2 hidden neurons are sufficient to achieve accuracy 1 (left). For ReLU, we observe
that w = O(d2) is not enough to achieve perfect accuracy and we believe that our theoretical bound
(i.e Ω(d4)) for learning with accuracy 1 may not be tight and that d3 or d3.5 may be sufficient (right).
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Figure 9: Learning the full parity with a 2-layer network, where only the output layer is trained by
SGD with the correlation loss. We report the test accuracy achieved after training, for clipped-ReLU
activation (left) and ReLU (right), for different input dimensions (d) and hidden layer width (w).
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