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Abstract

Relative entropy coding (REC) algorithms encode a random sample following a
target distribution Q, using a coding distribution P shared between the sender and
receiver. Sadly, general REC algorithms suffer from prohibitive encoding times, at
least on the order of 2DKLrQ||P s, and faster algorithms are limited to very specific
settings. This work addresses this issue by introducing a REC scheme utilizing
space partitioning to reduce runtime in practical scenarios. We provide theoretical
analyses of our method and demonstrate its effectiveness with both toy examples
and practical applications. Notably, our method successfully handles REC tasks
with DKLrQ||P s about three times greater than what previous methods can manage,
and reduces the bitrate by approximately 5-15% in VAE-based lossless compression
on MNIST and INR-based lossy compression on CIFAR-10, compared to previous
methods, significantly improving the practicality of REC for neural compression.

1 Introduction

Let’s consider a two-party communication problem where the sender wants to transmit some data
X to the receiver. A widely used approach is transform coding (Ballé et al., 2020), where X is first
transformed to a discrete variable Z and entropy coded to achieve an optimal codelength on average.
However, directly finding a discrete Z is difficult in many scenarios. For example, in lossy image
compression, X represents some image, and Z represents the latent embedding output by an encoder
network in a model akin to the variational auto-encoder (Kingma and Welling, 2013). A common
solution to obtain a discrete Z is to first learn a continuous variable and quantize it (Ballé et al., 2017).

However, perhaps surprisingly, there is also a way to directly handle a continuous Z in this pipeline.
Specifically, instead of a deterministic value, the sender transmits a random sample following a
posterior Z „ QZ|X

1. These algorithms are referred to as relative entropy coding (REC, Flamich
et al., 2020), and also known as channel simulation or reverse channel coding (Theis and Yosri, 2022).
Li and El Gamal (2018) showed that the codelength of such an algorithm is upper-bounded by the
mutual information2 between X and Z plus some logarithmic and constant overhead:

IrX;Zs ` log2pIrX;Zs ` 1q ` Op1q. (1)

REC has a clear advantage over quantization: quantization is a non-differentiable operation, while
REC directly works for continuous variables and eases the training of some neural compression
models, which highly rely on gradient descent. Also, Theis and Agustsson (2021) exemplified that
stochastic encoders can be significantly better than their deterministic counterpart if we target realism.

1To avoid notation overload, we will use Q for the posterior, omitting its dependence on X unless needed.
2Throughout this paper, unless otherwise stated, we use log2 to calculate the log density ratio, the Kullback-

Leibler (KL) divergence DKL, the mutual information I and the Rényi-8 divergence D8. We use upper-case
letters (e.g., Q and P ) to represent probability measures and lower-case letters (e.g., q and p) for their densities.
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However, the encoding time of REC algorithms is at least typically on the order of 2DKLrQ } P s,
which is prohibitively long in practice.3 While there are several works on accelerating REC (Flamich
et al., 2022; Flamich and Theis, 2023; Flamich et al., 2024), so far they only work on highly
limited problems. In fact, in practice, the common option to employ REC is to segment Z into the
concatenation of independent blocks, denoted as Z “ rZ1,Z2, ¨ ¨ ¨ ,ZKs, where the coding cost of
each block Zk is approximately κ bits. This strategy reduces the runtime to OpK2κq. However,
by Equation (1), the logarithmic and constant overhead only becomes negligible if IrX;Zis is
sufficiently large. For example, for the runtime to be feasible, κ is set between 16 to 20 in Havasi
et al. (2019); Guo et al. (2024); He et al. (2023). In this case, the overhead will typically constitute
40% to 50% of the total mutual information, resulting in sub-optimal compression performance.

Our work’s primary aim is to reduce the complexity of REC runtime for more practical settings.
Specifically, our contributions are

• We propose a faster REC framework based on space partitioning. Equivalently, our method can
be viewed as introducing a search heuristic to a standard REC algorithm, which can significantly
reduce the algorithm’s runtime when chosen appropriately. Furthermore, we provide theoretical
analysis, showing that our method achieves a close codelength to Equation (1) with an extra cost ϵ
that is negligible for some commonly used distributions in neural compression.

• We show that, interestingly, using different space partitioning and different search heuristics only
influences the runtime but not the (upper bound on) codelength. Following this, we discuss two
cases: 1) encoding exact samples from the target and 2) encoding approximate samples to further
reduce the computational complexity.

• We draw attention to a hitherto unused fact for designing fast, practical relative entropy coding
schemes: when the sender wishes to communicate vector-valued random variate Z | X to the
receiver, we may assume that they share knowledge of the dimension-wise mutual information
IrZi;Xs for each dimension i, as opposed to just the total IrZ;Xs. Incorporating this information
into our space partitioning scheme allows us to construct faster relative entropy coding algorithms.

• We conduct experiments on synthetic examples and neural codecs, including a VAE-based lossless
codec on MNIST (LeCun and Cortes, 1998) and INR-based lossy codecs on CIFAR-10 (Krizhevsky
et al., 2009). We demonstrate that our method can handle blocks with larger κ using much fewer
samples and reduces the bitrate by approximately 5-15% compared to previous methods.

2 Preliminary

In this paper, we focus on accelerating the Poisson functional representation (PFR; Li and El Gamal,
2018) and ordered random coding (ORC; Theis and Yosri, 2022), and hence we discuss these in
detail below. However, we note that our space partitioning scheme is also applicable to other relative
entropy coding (REC) algorithms (Flamich and Theis, 2023; Flamich et al., 2024; Flamich, 2024).

Relative entropy coding (REC). Consider a two-party communication problem, where the sender
wants to transmit some data X to the receiver. However, instead of encoding X directly, the sender
first transforms X into a representation Z that they encode. In REC, we allow Z to be stochastic with
Z „ QZ|X. Then, the goal of REC is to encode a single, random realization Z „ QZ|X with the
assumption that the sender and receiver share a coding distribution P and have access to common
randomness S. In practice, the latter can be achieved by a shared pseudo-random number generator
(PRNG) and seed. Given these assumptions, the optimal coding cost is given by HrZ | Ss, as the
code cannot depend on X since the receiver doesn’t know it. Surprisingly, Z can be encoded very
efficiently, as Li and El Gamal (2018) show that

IrX;Zs ď HrZ | Ss ď IrX;Zs ` log2pIrX;Zs ` 1q ` Op1q. (2)

Note that IrX;Zs and hence HrZ | Ss can be finite even if Z is continuous and HrZs is infinite.
Next, we describe a concrete scheme with which we can encode Z at such an efficiency.

Poisson functional representation (PFR). To encode a sample from the target distribution Q with
density q using the coding distribution P with density p, PFR (Li and El Gamal, 2018) starts by

3We note that REC’s decoding is very fast, so in this paper, runtime will refer exclusively to encoding time.
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…

(a) Procedure of standard REC algorithm.

…

(b) Procedure of REC with space partitioning.

Figure 1: An illustrative comparison between the standard REC algorithm and REC with space
partitioning. We illustrate the prior P ’s density in blue and Q’s density in orange. (a) In a standard
REC algorithm, we may draw numerous samples (colored in red) before identifying one that aligns
well with Q (colored in green). The majority of these samples do not directly contribute to the desired
result. (b) In the method we propose, we first divide the search space into smaller grids and then
reweight each grid. This amounts to adjusting the prior P to a search heuristic P 1, which can align
better with Q. The samples from P 1 will thus be more relevant to Q, potentially reducing the runtime.

drawing a random sequence Z1,Z2, ¨ ¨ ¨ from P using the public random state S. Furthermore, the
sender draws a sequence of random times T1, T2, ¨ ¨ ¨ as follows:

T0 “ 0, Tn Ð Tn´1 ` ∆Tn, ∆Tn „ Expp1q, n “ 1, 2, ¨ ¨ ¨ (3)

Next, letting r “ q{p be the density ratio, the sender calculates τn Ð Tn{rpZnq for each sample
and returns N˚ Ð argminiPNtτiu. Using the theory of Poisson processes, it can be shown that
ZN˚ „ Q as desired (Maddison, 2016). Additionally, while the minimum is taken over all positive
integers, in practice, N˚ can be found in finite steps if r is bounded. In fact, in expectation, PFR will
halt after 2D8rQ } P s steps (Maddison, 2016). We summarize this process in Algorithm 1.

Ordered random coding (ORC). Unfortunately, PFR’s random runtime can be a significant draw-
back. In practice, we may want to set a limit on the number of iterations to ensure a consistent and
manageable runtime at the cost of some bias in the encoded sample. To this end, Theis and Yosri
(2022) proposed ordered random coding (ORC). Specifically, in ORC with N candidates, rather than
calculating Tn by Equation (3), we first draw N i.i.d. sample from Expp1q, and sort them in ascending
order as T̃ 1

1 ď T̃ 1
2 ď ¨ ¨ ¨ ď T̃ 1

N . We then set Tn “ T̃ 1
n for each n “ 1, 2, ¨ ¨ ¨ , N . In practice, instead

of generating the Tn-s in OpN logNq time by sorting, Theis and Yosri (2022) suggest an iterative
procedure similar to Equation (3) with OpNq time complexity:

T0 “ 0, Tn Ð Tn´1 ` N{pN ´ n ` 1q∆Tn, ∆Tn „ Expp1q, n “ 1, 2, ¨ ¨ ¨ , N (4)

3 Relative Entropy Coding with Space Partitioning

In this section, we describe our proposed algorithm and analyze its codelength. To motivate our
method, recall that in PFR, the sender draws a random sequence from P , and examines each sample’s
density ratio. We can interpret this process as a random search in P ’s support, aiming to find a point
that has a relatively high density ratio between Q and P . However, when Q concentrates only within
a small region of P ’s support, most of the search does not contribute to the final outcome. Thus, can
we instead quickly navigate the search towards the region where Q is concentrated?

For one-dimensional distributions Q and P , the answer is affirmative, as we can perform a branch-
and-bound search by partitioning the 1D space on the fly (Maddison et al., 2014; Flamich et al., 2022).
Unfortunately, it is unclear how to generalize these adaptive partitioning strategies to spaces with
dimension greater than one. Instead, in Section 3.1, we propose to partition the space in advance
according to a rule that the sender and receiver agree on such that we can carry out the search fast
enough in practical problems and retain an efficient codelength.

3.1 Coding Scheme

Given a shared coding distribution P and a target Q, our algorithm proceeds as follows:

1. The sender and receiver agree on a partition of P ’s support consisting of J bins tB1, ¨ ¨ ¨ , BJu

with equal probability mass, i.e. P pBjq “ 1{J for j “ 1, . . . , J . As we will discuss later, these
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Algorithm 1 Encoding of standard PFR

Input: Q, P and a random state S.
Output: Sample index N˚.

# initialize:
τ˚ Ð 8, t0 Ð 0, N˚ Ð 0 .
rmax Ð supz

!

qpzq

ppzq

)

.

# run PFR:
for n “ 1, 2, ¨ ¨ ¨ do

Sample ∆tn „ Expp1q; tn Ð tn´1 `∆tn.
# simulate a sample with PRNG:

zn Ð PRNGpP, S, nq4

# update τ˚:
τn Ð tn ¨ ppznq{qpznq.
if τn ď τ˚ then

τ˚ Ð τn, N
˚ Ð n.

end if
# check stopping criterion:
if tn{rmax ą τ˚ then

break
end if

end for

Algorithm 2 PFR with Space Partitioning

Input: Q, P , and random states tSju
J
j“1.

Output: Bin index j˚, local sample index ñ˚.
# initialize:
τ˚ Ð 8, t0 Ð 0, j˚ Ð 0, ñ˚ Ð 0.
Partition space in J “bins", s.t. P pBjq “ 1{J .
Select categorical distribution π.
ñj Ð 0 for j “ 1, 2, ¨ ¨ ¨ , J.

r1
max Ð maxj“1,¨¨¨ ,J

!

supzPBj

!

qpzq

ppzq

P pBjq

πpjq

))

.
# run PFR:
for n “ 1, 2, ¨ ¨ ¨ do

Sample ∆tn „ Expp1q; tn Ð tn´1 `∆tn.
# simulate a sample with PRNG:
jn „ π; ñjn Ð ñjn ` 1.
zn Ð PRNGpP |Bjn

, Sjn , ñjnq.
# update τ˚:
τn Ð J ¨ πpjnq¨ tn ¨ ppznq{qpznq.
if τn ď τ˚ then

τ˚ Ð τn, j
˚ Ð jn, ñ

˚ Ð ñjn .
end if
# check stopping criterion:
if tn{r1

maxą τ˚ then
break

end if
end for

bins can overlap, but to aid understanding for now, it may be helpful to imagine the space is
partitioned by non-overlapping bins.

2. According to the target distribution Q, the sender selects a categorical distribution for the bins, with
event probabilities defined as πpjq for j “ 1, 2, ¨ ¨ ¨ , J . We can view this categorical distribution
as a reweighting of each bin to adjust the coding distribution P . The coding distribution adjusted
by this reweighting can be better aligned with Q. We will discuss the choice of π later.

3. Then, the sender starts to draw and examine samples iteratively, similar to the PFR algorithm.
However, instead of drawing samples directly from P , the sender first samples a bin from π and
then draws a sample from the prior restricted to this bin. Specifically, at each iteration n:

(a) the sender first draws a bin index, jn, according to the distribution π;
(b) the sender then draws a sample Zn „ P |Bjn

. This sample is generated with the random
state Sjn associated with this bin. It’s critical that each bin has a unique random state to
ensure different bins have different random sample sequences. In practice, this can be easily
achieved by setting the PRNG’s seed of the bin Bj to j, for j “ 1, 2, ¨ ¨ ¨ , J . Note that given
these random states, the value of Zn is uniquely determined by the bin index jn and its
sample index within this bin, which we denote by ñjn . For the sake of clarity, we will call n
the global sample index and ñjn the local sample index hereafter;

(c) the sender examines the sample by calculating τn:

τn Ð Tn{r1, r1 – qpZnq{p1
n, p1

n – πpjnqppZnq{P pBjnq “ J ¨ πpjnq ¨ ppZnq, (5)

and keeps track of N˚ Ð argmini“1,2,¨¨¨ ,ntτiu. Here, Tn is also obtained by Equation (3);
(d) finally, the sender checks the following stopping criterion:

Tn{r1
max ą τ˚, r1

max – max
j“1,2,¨¨¨ ,J

!

sup
zPBj

qpzqP pBjq

ppzqπpjq

)

(6)

If the criterion is met, halt and return jN˚ and ñN˚ ; otherwise, proceed to the next iteration.

4PRNGpP, S, nq means simulating the n-th sample in the random sequence from P by PRNG with seed S.
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We detail the above coding scheme in Algorithm 2. As a comparison, we describe the standard PFR
algorithm in Algorithm 1, and highlight their difference in red. We also illustrate these two algorithms
from a high-level point of view in Figure 1. It is easy to verify that Algorithm 2 is equivalent to
running standard PFR with an adjusted prior P 1, whose density is defined as

p1pzq “
řJ

j“11tz P Bju
πpjqppzq

P pBjq
. (7)

Therefore, the encoded sample is guaranteed to be Q-distributed. By choosing a sensible π, the
adjusted prior P 1 can be more closely aligned with Q than the original P , potentially decreasing the
runtime. From this point forward, we will refer to P 1 as the search heuristic.

Note that the receiver does not need to be aware of π to decode the sample. Instead, after receiving the
bin index jN˚ , the receiver can construct the random sequence from P |Bj

N˚
with seed SjN˚ . Then,

taking the ñN˚ -th sample in this sequence, the receiver successfully retrieves the desired sample.

3.2 Codelength of the two-part code

In our proposed algorithm, the sender needs to transmit a two-part code that includes both the bin
index and the local sample index. This is distinct from the standard PFR, where the sender transmits
only the sample index, hence potentially raising concerns about the codelength. Indeed, we find the
two-part code can introduce an extra cost, as outlined in the following theorem:

Theorem 3.1. Let a pair of correlated random variables X,Z „ PX,Z be given. Assume we perform
relative entropy coding using Algorithm 2 and let j˚ denote the bin index and ñ˚ the local sample
index returned by the algorithm. Then, the entropy of the two-part code is bounded by

Hrj˚, ñ˚s ď IrX;Zs ` EXrϵs ` log2pIrX;Zs ´ log2 J ` EXrϵs ` 1q ` 4, (8)

where ϵ “ Ez„QZ|X

„

max

"

0, log2 J ´ log2
qpzq

ppzq

*ȷ

. (9)

We prove Theorem 3.1 in Appendix C.1. Note, that when IrX;Zs is sufficiently large, the term
log2pIrX;Zs ´ log2 J ` EXrϵs ` 1q ` 4 will be negligible. However, without further information
on Q and P , it is difficult to assert how small EXrϵs is. We can view ϵ as the extra cost introduced by
the space partitioning algorithm. Fortunately, for commonly used distributions in neural compression,
including Uniform and Gaussian, we have the following conclusion under reasonable assumptions:

Proposition 3.2 (Bound of ϵ for Uniform and Gaussian). Assume setting J ď 2DKLrQ } P s when
running Algorithm 2 for each QZ|X. Then, for Uniform Q and P , if Q ! P (i.e., Q is absolute
continuous w.r.t P ), we have ϵ “ 0; for factorized Gaussian Q and P , if Q has smaller variance than
P along each axis, we have ϵ ď 0.849

a

DKLrQ } P s, and EXrϵs ď 0.849
a

IrX;Zs.

We prove Proposition 3.2 in Appendix C.2. Also, we highlight that the conclusion for Gaussian in
Proposition 3.2 is derived by considering the worst case when P has the same variance as Q along all
dimensions. In practice, this worst case can barely happen since in neural compression P represents
the prior, and Q represents the posterior, which will be more concentrated than the prior. Empirically,
we find this ϵ-cost yields no visible influence on the codelength (e.g., Figure 2b in Section 5).

3.3 Generality of our Space Partitioning Algorithm

We highlight that the conclusions in Section 3.2 are independent of the partitioning strategy and π.
This allows us to use different π without the need to revisit the bound of the codelength.

More interestingly, we do not need to partition the space with non-overlapping bins. This is because
the density of P 1, as stated in Equation (7), can be directly interpreted as a mixture of priors with J
components, where πpjq represents the mixture weights. There are no restrictions preventing this
mixture model from having overlapping components. We provide more explanation and discussion on
overlapping components in Appendix B.1. As an extreme case, we can even have entirely overlapping
bins. Notably, this scenario coincides with the “parallel threads” version of REC proposed by Flamich
(2024). Concretely, Flamich (2024) proposed to initiate several threads for a single REC task and run
them in parallel on various machines, thereby decreasing the runtime.
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Furthermore, the concept of space partitioning and its codelength, as stated in Theorem 3.1, extends
beyond the scope of Poisson functional representation algorithms. Here, we state the codelength
by applying our proposed space partitioning method to greedy Poisson rejection sampling (GPRS)
(Flamich, 2024) and leave its application to other REC algorithms for future work.
Theorem 3.3. Let a pair of correlated random variables X,Z „ PX,Z be given. Assume we perform
relative entropy coding using GPRS with space partitioning and let j˚ denote the bin index and ñ˚

the local sample index returned by the algorithm, and ϵ be as in Equation (9). Then,

Hrj˚, ñ˚s ď IrX;Zs ` EXrϵs ` log2pIrX;Zs ´ log2 J ` EXrϵs ` 1q ` 6. (10)

We prove Theorem 3.3 in Appendix C.3. Additionally, since we can view the “parallel threads”
version of GPRS as a special case of our proposed method, Theorem 3.3, and hence Proposition 3.2,
offer alternative bounds for Theorem 3.5 in Flamich (2024).

4 Exemplifying the choice of Partitioning Strategy and π

In the above sections, we do not specify the partitioning strategy and π. In this section, we will
exemplify their choices. To keep our discussion simple, we take the assumption that both Q and P
are fully-factorized distributions. This covers a majority of neural compression applications with
relative entropy coding, including both VAE-based (Flamich et al., 2020) and INR-based codecs (Guo
et al., 2024; He et al., 2023). Under this assumption, we adopt a simple partitioning strategy to split
space with axis-aligned grids, which allows us to draw samples and evaluate the density ratio easily.

Now, let’s focus on π. We consider two scenarios: 1) the sender aims to encode a sample that exactly
follows Q, and 2) the sender encodes a sample following Q approximately for a more manageable
computational cost. As we will see, the optimal choice of π differs in these cases.

We note that the latter garners more interest in practical neural compression. This is because we
can always construct an example where the standard PFR algorithm does not terminate while the
first sample from the prior already has little bias. As an example, take qpzq “ N pz|0.001, σ2q, and
ppzq “ N pz|0, 1q. When σ Õ 1 (approaching 1 from below), the expected runtime for PFR diverges:
2D8rQ||P s Ñ 8. Unfortunately, our proposed space partitioning approach can do little in this case.
This is because, for a small ϵ-cost, as stated in Proposition 3.2, the number of partitions J should be
less than 2DKLrQ } P s, which reduces to 1 when σ Õ 1. For multi-dimensional (factorized) Q and
P , this issue will occur whenever it arises in any single dimension. Making things even worse, this
example is pervasive in neural compression due to numerical inaccuracies. Therefore, limiting the
number of candidate samples is more practical than running the PFR algorithm until the stopping
criterion is met. Consequently, we will mainly study the non-exact case in the following, but for the
sake of completeness, we first discuss the exact scenario.

4.1 Exact Sampler

When encoding a sample following Q exactly, we hope to minimize the expected runtime by adjusting
the search heuristic P 1. Since we can view our proposed algorithm as running standard PFR with P 1,
its expected runtime is 2D8rQ||P 1

s. Thus, we have the following constrained optimization problem:

argmin
π

#

max
j“1,2,¨¨¨ ,J

«

sup
zPBj

qpzqP pBjq

ppzqπpjq

ff+

, subject to
řJ

j“1 πpjq “ 1. (11)

The solution turns out to be intuitive:

πpjq9 sup
zPBj

qpzqP pBjq

ppzq
9 sup

zPBj

qpzq

ppzq
. (12)

However, sampling from this π is generally challenging. Fortunately, if Q and P are both factorized
and we partition the space with axis-aligned grids, then π factorizes dimensionwise into a product of
categorical distributions. Also, this choice of π simplifies the evaluation of the stopping criterion
in Equation (6). Specifically, r1

max simplifies to r1
max “ Z ¨ J , where Z “

řJ
j“1 πpjq denotes the

normalization constant. This constant is shared in both the maximum density ratio r1
max and the

density ratio for individual samples. We thus can omit it when evaluating the stopping criterion. We
detail the procedure in Algorithm 3 in Appendix A.1.
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4.2 Non-exact Sampler

If we only need to encode a sample following Q approximately, we can apply our space partitioning
strategy to ordered random coding (ORC). In this case, we hope to reduce the bias with the same
sample size or reduce the sample size for the same bias. To determine the optimal choice of π, we
state the following corollary on ORC’s bias. This is a corollary of Theis and Yosri (2022, Lemma
D.1) and Chatterjee and Diaconis (2018, Theorem 1.2). We present the proof in Appendix C.4.
Corollary 4.1 (Biasness of sample encoded by ORC). Given a target distribution Q and a prior
distribution P , run ordered random coding (ORC) to encode a sample. Let Q̃ be the distribution of
encoded samples. If the number of candidates is N “ 2DKLrQ } P s`t for some t ě 0, then

DTVrQ̃,Qs ď 4

˜

2´t{4 ` 2

d

Pz„Q

ˆ

log
qpzq

ppzq
ě DKLrQ } P s `

t

2

˙

¸1{2

. (13)

Conversely, supposing that N “ 2DKLrQ } P s´t for some t ě 0, then

DTVrQ̃,Qs ě 1 ´ 2´t{2 ´ Pz„Q

ˆ

log
qpzq

ppzq
ď DKLrQ } P s ´

t

2

˙

. (14)

This corollary tells us that when running ORC with target Q and prior P , if the density ratio between
Q and P is well concentrated around its expectation, choosing N « 2DKLrQ } P s candidates is both
sufficient and necessary to encode a low-bias sample in terms of total variation (TV) distance. Recall
that our proposed algorithm can be viewed as running ORC with the search heuristic P 1 as the prior.
We, therefore, want to choose π to minimize the KL-divergence between the target Q and the search
heuristic P 1. The optimal π turns out to be surprisingly simple:

πpjq “ QpBjq, j “ 1, 2, ¨ ¨ ¨ , J. (15)

This is because DKLrQ } P 1s “ DKLrQ } P s ´
řJ

j“1 QpBjq log2 πpjq `
řJ

j“1 QpBjq log2 P pBjq,

and the cross-entropy p´
řJ

j QpBjq log2 πpjqq takes its minimum when π matches Q. In practice,
to sample from this categorical distribution, we can simply draw z „ Q and find the bin it belongs to.
However, choosing πpjq “ QpBjq complicates the calculation of r1

max in Equation (6). Fortunately,
in ORC, we do not need to check the stopping criterion, so this complication does not pose an issue.
We formalize this new ORC algorithm in Algorithm 4 in Appendix A.2.

Algorithm 4 still leaves three questions unanswered: first, we need to determine the number of parti-
tions J . As a finer partition allows better alignment between Q and P 1, we pick J “ 2tDKLrQ } P su,
the maximum value for which Proposition 3.2 provides a bound on the extra coding cost ϵ. Note that
this will require the receiver to know tDKLrQ } P su. As we will demonstrate in Section 5, in practice,
we can achieve this by either encoding the KL using negligible bits (e.g., in neural compression with
VAE) or enforcing the KL budget during optimization (e.g., in neural compression with INRs).

Second, as we partition the space using axis-aligned grids, we need to determine the number of bins
assigned to each axis. To explain why this choice matters, we consider an example where Q and
P share the same marginal distribution along a specific axis, and the space is partitioned solely by
dividing this axis; in this case, we have P 1 ” P , leading to no improvement in runtime. Fortunately,
in most neural compression applications, the sender and receiver can also have access to an estimation
of the mutual information Id along each axis d from the training set. If the mutual information is
non-zero along one axis, on average, Q and P will not have the same marginal distribution along this
axis. Based on this observation, we suggest partitioning the d-th axis into approximately 2nd intervals
where nd “ DKLrQ } P s ¨ Id

L
řD

d1“1 Id1 ; see Appendix B.2 for further discussion, including the
derivation, a toy example illustration, and ablation studies on this.

Third, we determine how many candidate samples we need to draw from P 1 to ensure the encoded
sample has low bias. Recall that our proposed algorithm can be viewed as running ORC with P 1 as
the prior, we thus require a sample size « 2DKLrQ } P 1

s according to Corollary 4.1. When the total
number of partitions J “ 2DKLrQ } P s, we find DKLrQ } P 1s “ ´

řJ
j“1 QpBjq log2 QpBjq. We do

not have an analytical form for this value, but we can estimate it by samples from Q. In fact, we
empirically find a small number of samples to be sufficient for an accurate estimator.
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Why choose the TV distance as the measure of approximation error in Corollary 4.1? Indeed,
TV distance is not the only possible metric and the choice should align with the intended application.
We choose total variation as it fits well with the task in our experiments: the one-shot nature of data
compression for human consumption. We will explain this in two parts:

1. Control of the TV distance in the latent space implies control in data space: naturally, we wish to
assess reconstruction quality in data space, but we use REC only to encode latent variables from
which we reconstruct the data. However, since the total variation satisfies the data processing and
triangle inequalities, if our generative model approximates the true data distribution with δ total
variation error and we use an ϵ-approximate REC algorithm, then encoding the latents incurs no
more than ϵ ` δ total variation error in the data space (Flamich and Wells, 2024).

2. TV distance captures a reasonable notion of realism. Imagine two distributions Q (e.g., the
ground truth data distribution) and Q̃ (e.g., the data distribution learned by our compressor). Let
x0 „ Q,x1 „ Q̃ and let B „ Bernp1{2q be a fair coin toss. Then, the probability that any
observer can correctly decide which distribution zB was sampled from, i.e., correctly predict the
value of B given xB , is at most 1{2 ¨ p1 ` DTVrQ̃,Qsq (Nielsen, 2013; Blau and Michaeli, 2018).
Thus, in the context of approximate REC, the TV distance bounds the accuracy with which any
observer can tell the compressed and reconstructed data apart from the original.

5 Experiments

We now verify our proposed algorithm with three different experiments, including synthetic toy
examples, lossless compression on MNIST with VAE, and lossy compression on CIFAR-10 with
INRs. We include details of the experiment setups in Appendix D.

Toy Experiments. We explore the effectiveness of our algorithm on 5D synthetic Gaussian examples.
We run PFR with space partitioning (Algorithm 3) to encode exact samples and ORC with space
partitioning (Algorithm 4) for approximate samples. We show the results in Figure 2 and Figure 3,
and also include standard PFR and ORC for comparison. We can see that our space partitioning
algorithm reduces the runtime by up to three orders of magnitude while maintaining codelength when
encoding exact samples, and requires a much smaller sample size to achieve a certain bias (quantified
by maximum mean discrepancy (MMD, Smola et al., 2007)) when encoding approximate samples.

Lossless Compression on MNIST with VAE. As a further proof of concept, we apply our methods
to losslessly compress MNIST images (LeCun and Cortes, 1998). We train a VAE following Flamich
et al. (2024), employ REC (specifically, ORC with our proposed space partitioning) to encode the
latent embeddings, and entropy-encode the image. The KL divergence of entire latent embeddings
averages over 90 bits. Unfortunately, even after employing our proposed space partitioning algorithm,
the new KL divergence DKLrQ } P 1s exceeds our manageable size. We hence randomly divide the
latent dimensions into smaller blocks. Recall that, in our proposed approach, the sender and receiver
need to share tDKLrQ } P su so that they can partition the space into the same J “ 2tDKLrQ } P su

bins. However, this value varies across different images. Therefore, we estimate the distribution of
tDKLrQ } P su for each block from the training set, and entropy code it for each test image.

We evaluate the performance achieved by t2, 4u blocks and different sample sizes in Table 1, with the
theoretically optimal codelength and the results by GPRS, a REC algorithm that is faster in 1D space
but incurs coding overhead dimension-wise (Flamich, 2024). Notably, our algorithm’s codelength
is only 2% worse than the theoretically optimal result and about 6% better than GPRS’s. We also
investigate the reasons for overhead. Compared to the ELBO, our method incurs overhead in three
ways: (a) the cost to encode tDKLrQ } P su; (b) the overhead from encoding the latent embeddings by
REC; and (c) the overhead when encoding the target image, which arises from the bias in encoding the
latent embeddings, as ORC encodes only approximate samples. We can see our algorithm achieves
extremely low bias while maintaining a relatively small overhead caused by (a) and (b).

Lossy Compression on CIFAR-10 with INRs. We apply our methods to a more practical setting:
compressing CIFAR-10 images with RECOMBINER (He et al., 2023), an implicit neural representa-
tion (INR)-based codec. The authors of RECOMBINER originally encoded INR weights using a
block size of DKLrQ } P s “ 16 bits. We empirically find that our proposed method can handle a
block size of DKLrQ } P s “ 48 bits while maintaining DKLrQ } P 1s within a manageable range,
approximately 12-14 bits. To further reduce the bias of the encoded sample, we opt to use 216 samples

8



5 10 15
D [Q||P]

102

104

106

St
ep

s

standard PFR
Space partition PFR

(a) Runtime w.r.t D8rQ||P s.

2.5 5.0 7.5 10.0
I[X; Z]

0

10

20

Co
de

le
ng

th

standard PFR
Space partition PFR
I[X; Z]

(b) Codelength w.r.t IrX;Zs.
Figure 2: Comparing standard PFR and PFR with our proposed
space partitioning algorithm on toy examples. Solid lines and
the shadow areas represent the mean and IQR.

2 4 6 8
DKL[Q||P]

0

200

400

ru
nt

im
e 

(#
sa

m
pl

es
) MMD < 0.006

MMD < 0.009
MMD < 0.012
Standard ORC
Space partition ORC

Figure 3: Comparing standard
ORC and ORC with our pro-
posed space partitioning algo-
rithm on toy examples.

Table 1: Lossless compression performance on MNIST test set with different REC settings. We
include the theoretical results and the results by GPRS (Flamich, 2024) for reference. We repeat each
setting 5 times and report the mean and std. *: κ̄ represents the average KL divergence between target
Q and the search heuristic P 1. We estimate it by MC estimator and average across all test images.
We empirically find κ̄ « 14 when using 2 blocks and κ̄ « 7 when using 4 blocks. :: Given that κ̄ is
relatively small, we can employ more than t2κ̄u samples to further reduce the bias. We hence report
the results achieved by t2κ̄`2u samples, which remains manageable in both cases.

REC SETUPS BITRATE DETAILS OF THE OVERHEAD (TO ELBO)

#BLOCKS RUNTIME
(#SAMPLES / BLOCK ) BITS PER PIXEL COST TO

ENCODE KL
OVERHEAD

IN REC
OVERHEAD
FROM BIAS

4
1 1.6139 ˘ 0.0058

0.0217 ˘ 0.0001

0 0.2472 ˘ 0.0066
100 1.4045 ˘ 0.0004 0.0222 ˘ 0.0002 0.0158 ˘ 0.0008

t2κ̄u˚ 1.4042 ˘ 0.0010 0.0233 ˘ 0.0011 0.0144 ˘ 0.0024
t2κ̄`2u: 1.4012 ˘ 0.0006 0.0293 ˘ 0.0008 0.0054 ˘ 0.0008

2
1 1.6051 ˘ 0.0060

0.0130 ˘ 0.0001

0 0.2463 ˘ 0.0063
100 1.4089 ˘ 0.0005 0.0105 ˘ 0.0001 0.0397 ˘ 0.0006

t2κ̄u˚ 1.3905 ˘ 0.0005 0.0259 ˘ 0.0010 0.0059 ˘ 0.0018
t2κ̄`2u: 1.3898 ˘ 0.0007 0.0286 ˘ 0.0008 0.0024 ˘ 0.0010

Theorical Optimum 1.3618 ˘ 0.0006 0 0.0136 ˘ 0.0001 0

GPRS (Flamich, 2024) 1.4810 ˘ 0.0015 0 0.1320 ˘ 0.0012 0.0012 ˘ 0.0001
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Figure 4: Rate-distortion curve of RECOMBINER by our proposed algorithm and standard ORC.
We also provide the theoretical RD curve for an ideal REC algorithm (i.e., assuming we can encode
an exact sample in a single block, whose codelength is calculated by Equation (1)). Notably, our
method’s performance is already very close to this theoretical result.

for each block. Besides, unlike in the VAE case, where the KL for each block varies across different
test images, here, we follow He et al. (2023) to enforce the KL of all blocks to be close to 48 bits
when training the INR for each test image. This eliminates the need to encode tDKLrQ } P su.

Additionally, He et al. (2023) enhanced their results by fine-tuning Q for the not-yet-compressed
weights after encoding each block, which can achieve a more complicated posterior distribution Q in
an auto-regressive manner. However, the effectiveness of fine-tuning is closely tied to the number of
blocks. As we have reduced the number of blocks in our approach, fine-tuning becomes less effective.
Therefore, we present results both with and without fine-tuning in Figure 4. We also present the
theoretical RD curve (without fine-tuning) to evaluate how close we are to the theoretical bound.
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As we can see, compared with standard ORC using a block size of DKLrQ } P s “ 16 bits, our
proposed algorithm with the block size of DKLrQ } P s “ 48 bits reduces the codelength by
approximately 10% with fine-tuning and 15% without. This gain is due to three reasons: 1) when
the KL of each block is larger, the ϵ-cost, the algorithmic and constant overhead in Equation (8)
becomes negligible; 2) the ´ log2 J term in Equation (8) also reduces the algorithmic overhead in our
method’s codelength comparing with Equation (1); and 3) as the new KL divergence DKLrQ } P 1s is
around 12-14 bits and we choose a sample size of 216, we eliminate most of the bias in our encoded
samples. Moreover, the algorithm’s codelength remains within 2% of the theoretical optimal result.
As a further comparison, we present the performance of other compression baselines in Figure 12,
where we can see that our proposed algorithm makes RECOMBINER more competitive.

6 Related Works

There are several efforts to accelerate REC algorithms. Flamich et al. (2022, 2024); Flamich (2024)
leveraged the idea of partitioning in 1D space, achieving an impressive runtime in the order of
O pD8rQ||P sq or O pDKLrQ } P sq. However, these fast approaches only work for 1D distributions.
Besides, Flamich and Theis (2023) proposed bits-back quantization (BBQ), which encodes a sample
with time complexity linear in dimensionality. However, BBQ assumes P and Q to be uniform
distributions in two hypercubes with their edges aligned, which may not be practical in many
applications. The algorithm most similar to ours is hybrid coding (Theis and Yosri, 2022), which
employs dithered quantization followed by a sampling procedure, an approach that resembles a
special case of our proposed algorithm. However, hybrid coding relies on the assumption that the
support of Q is contained within a hypercube, restricting its practical applicability.

7 Conclusions and Limitations

In this work, we propose a relative entropy coding (REC) scheme based on space partitioning, which
significantly reduces the runtime in practical settings. We provide both theoretical analysis and
experimental evidence supporting our method. Being among the few successful attempts to accelerate
REC for practical settings, we firmly believe that our contributions will broaden the application of
REC methods and inspire further research.

However, our proposed algorithm still faces several limitations at the current stage. First, although
our method and conclusion apply to general partitions, in practice, we are largely limited to handling
axis-aligned grids. Second, in our experiments, we require the mutual information to be factorized
per dimension and shared between the sender and receiver, which restricts our algorithm’s utility, for
example, in non-factorized cases (Theis et al., 2022) or one-shot REC tasks (Havasi et al., 2019).
A potential avenue for future research involves employing a mixture of priors to form “partitions”
without hard boundaries as discussed in Section 3.3. Additionally, by considering the prior as a
convolution of two distributions, we may potentially create infinitely many partitions. However,
managing the codelength in such cases may raise new challenges.
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A Algorithms

A.1 Practical PFR Algorithm with Space Partitioning

Algorithm 3 Practical encoding procedure of PFR with dimension-wise space partitioning

Input: Fully-factorized target Q “ Qr1s ˆ Qr2s ˆ ¨ ¨ ¨ ˆ QrDs, shared and fully-factorized coding
distribution P “ P r1s ˆ P r2s ˆ ¨ ¨ ¨ ˆ P rDs, and shared random states Sj for each partition j.

Output: Bin index j˚, local sample index ñ˚.
# initialize:
τ˚ Ð 8, t0 Ð 0, j˚ Ð 0, ñ˚ Ð 0.
Partition d-th dimension into J rds intervals Brds

1 , B
rds

2 , ¨ ¨ ¨ , B
rds

Jrds , s.t., J Ð
śD

d“1 J
rds.

ñj Ð 0 for j “ 1, 2, ¨ ¨ ¨ , J.
r1

max Ð 1. Ź Note that we omit the normalization factor and J

# pre-process for fast sampling along each dimension:
for d “ 1, 2, ¨ ¨ ¨ , D do

for i “ 1, 2, ¨ ¨ ¨ , J rds do
π

rds

i Ð sup
zPB

rds

i

´

qrds
pzq

prdspzq

¯

.
end for
Z Ð

řJrds

i“1 π
rds

i .

Define πrds “ Categorical
´

π
rds

1 {Z, πrds

2 {Z, ¨ ¨ ¨ , πrds

Jrds
{Z

¯

.
end for
# run PFR:
for n “ 1, 2, ¨ ¨ ¨ do

# sample time:
Sample ∆tn „ Expp1q.
tn Ð tn´1 ` ∆tn.
# sample a bin by sampling intervals per dimension:
jn Ð 0. Ź jn keeps track of the bin index.
ℓn Ð 1. Ź ℓn keeps track of the likelihood of the bin being sampled.
for d “ 1, 2, ¨ ¨ ¨ , D do

k „ πrds.
ℓn Ð ℓn ¨ π

rds

k .
if d “ 0 then

jn Ð k.
else

jn Ð k ` jn ¨ J rd´1s.
end if

end for
# simulate a sample with PRNG:
ñjn Ð ñjn ` 1.
zn Ð PRNGpP |Bjn

, Sjn , ñjnq.
Ź by inverse transform sampling when both of the partitioning and P are axis-aligned.

# update τ˚:
τn Ð ℓn ¨ tn ¨ ppznq{qpznq. Ź Note that we omit the normalization factor and J .
if τn ď τ˚ then

τ˚ Ð τn, j
˚ Ð jn, ñ

˚ Ð ñjn .
end if
# check stopping criterion:
if tn{r1

max ą τ˚ then
break

end if
end for
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A.2 Practical ORC Algorithm with Space Partitioning

Algorithm 4 Practical encoding procedure of ORC with Space Partitioning

Input: Target Q, shared coding distribution P , number of candidate samples N , and shared random
states Sj for each partition j.

Output: Bin index j˚, local sample index ñ˚.
# initialize:
τ˚ Ð 8, t0 Ð 0, j˚ Ð 0, ñ˚ Ð 0.
Partition space in J “bins”.
ñj Ð 0 for j “ 1, 2, ¨ ¨ ¨ , J.

# run ORC:
for n “ 1, 2, ¨ ¨ ¨ , N do

# sample time:
Sample ∆tn „ Expp1q.
tn Ð tn´1 ` N

N´n`1∆tn. Ź Note the difference from the PFR algorithm.
# simulate a sample with PRNG:
z „ Q, and find jn s.t. z P Bjn .
ñjn Ð ñjn ` 1.
zn Ð PRNGpP |Bjn

, Sjn , ñjnq.
Ź by inverse transform sampling when both of the partitioning and P are axis-aligned.

# update τ˚:
τn Ð J ¨ QpBjnq¨ tn ¨ ppznq{qpznq.
if τn ď τ˚ then

τ˚ Ð τn, j
˚ Ð jn, ñ

˚ Ð ñjn .
end if

end for

A.3 Decoding Algorithm

Algorithm 5 Dncoding procedure of PFR/ORC with Space Partitioning

Input: Bin index j˚, local sample index ñ˚, and shared random states Sj for each partition j.
Output: Sample z.

Partition space in J “bins”.
z Ð PRNGpP |Bj˚ , Sj˚ , ñ˚q.

B Additional Results and Discussions

B.1 Elucidating Non-overlapping Bins

As we discussed in the main text, the partitioning does not need to form non-overlapping grids. In
fact, there are only two constraints for the partitions: (1) the density of the distributions for
all “bins”, without being weighted by π, should sum to ppzq at each z, and (2) integrating the
density of z in each “bin” should yield the same constant 1{J . As long as we follow these two
constraints, we can create any kind of partition, no matter whether they overlap or not. In Section 3.3,
we explain this by viewing Equation (7) as a mixture model. In this section, we provide another
explanation from an intuitive point of view.

First, we assume the reader agrees that we can always create non-overlapping bins as non-overlapped
grids. Then, to create overlapping bins, we can add an auxiliary axis xaux to the original space Ω,
forming an augmented space as xaux ˆ Ω. We define the prior and target in the auxiliary axis as Paux
and Qaux, and define the prior and target in the augmented space as Paug “ Paux ˆP , Qaug “ Qaux ˆQ.
This augmentation will not influence the codelength since we can always ensure the augmented Paug
and Qaug to have identical marginal densities along the auxiliary axis. We illustrate this augmented
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space in Figure 5a. We can view partitions in the original space as non-overlapping ones in an
augmented space, as illustrated in Figures 5b to 5d.

In this augmented space, the partitions show follow these two constraints: (1) without considering
π, if we marginalize our the auxiliary axis, Paug should revert to the original P ; (2) we require all
bins to have the same probability under the prior Paug. The second constraint comes from the first
step in Section 3.1, which is necessary for the proof of the codelength later in Equation (38). If we
only consider the original space, these two constraints correspond to the ones aforementioned at the
beginning of this section.

Ω

𝑥aux

𝑝 𝑞

𝑞aug𝑝aug

𝑝
a
u
x
≡
𝑞
a
u
x

augmented space = Ω × 𝑥aux

(a) The augmented space.
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(b) Non-overlapping bins.
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(c) Fully-overlapping bins.
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(d) General partitions.

Figure 5: Elucidating the generality of space partitioning. Ω represents the original space. We use
dashed lines to represent the boundaries of the partitions. (a) We can add an auxiliary axis xaux
to the original space, forming an augmented space. We define the prior and target in the auxiliary
axis as Paux and Qaux, and define the prior and target in the augmented space as Paug “ Paux ˆ P ,
Qaug “ Qaux ˆ Q. We also require Paux and Qaux to be the same, so that DKLrQaug||Paugs is the same
as the original KL DKLrQ } P s. Dividing the augmented space into non-overlapping bins will lead to
non-overlapping bins or overlapping bins in the original space. For example, as shown in (b), dividing
the augmented space into non-overlapping bins whose boundaries are parallel to the auxiliary axis
results in the standard non-overlapping bins in the original space Ω. As shown in (c), dividing the
augmented space into non-overlapping bins whose boundaries are orthogonal to the auxiliary axis
results in fully overlapping bins in the original space Ω. Also, as in (d), the augmented space can be
divided in an arbitrary manner, leading to generally overlapping bins in the original space Ω.

B.2 Choosing the Number of Intervals Assigned to Each Axis

First, we elaborate on why this question matters. We take the following example: Q and P are 2D
Gaussians, and they have the same marginal distribution along the first dimension, denoted as x1, but
have different marginal distributions along the second dimension, denoted as x2.

Now, we partition the space x1 ˆ x2 by axis-aligned grids, i.e., the boundaries of grids are parallel
to the axes. If we partition the space by solely dividing x1, we will find that the prior and the
posterior have the same probability for each bin, i.e., P pBjq “ QpBjq,@j. In this case, choosing
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πpjq “ QpBjq as discussed in Section 4.2, we can write the density of P 1 (Equation (7)) as

p1pzq “
řJ

j“11tz P Bju
πpjqppzq

P pBjq
(16)

“
řJ

j“11tz P Bju
Qpjqppzq

P pBjq
(17)

“
řJ

j“11tz P Bju
���P pBjqppzq

���P pBjq
(18)

“
řJ

j“11tz P Bjuppzq (19)

“ ppzq (20)
which means that the adjusted search heuristic P 1 is the same as the original prior P , and thus we
will have no improvements in the runtime. Figure 6a visualize this example.

On the other hand, if we partition the space by dividing x2, as shown in Figure 6b, the search heuristic
P 1 will align with Q better than P , and hence we can reduce the runtime. In practice, it is not always
feasible to partition in this way. Instead, we may partition the space by dividing both x1 and x2, as
shown in Figure 6c. In this case, we will still have reduced runtime. This is because

DKLrQ } P 1s “ DKLrQ } P s ´

J
ÿ

j“1

QpBjq log2 πpjq `

J
ÿ

j“1

QpBjq log2 P pBjq (21)

“ DKLrQ } P s ´

˜

J
ÿ

j“1

QpBjq log2 Qpjq ´

J
ÿ

j“1

QpBjq log2 P pBjq

¸

(22)

We recognize the term
´

řJ
j“1 QpBjq log2 Qpjq ´

řJ
j“1 QpBjq log2 P pBjq

¯

as a KL diver-
gence and hence will be non-negative. Whene there exists Bj , s.t. QpBjq ‰ P pBjq, the

KL term
´

řJ
j“1 QpBjq log2 Qpjq ´

řJ
j“1 QpBjq log2 P pBjq

¯

will always be positive to ensure

DKLrQ } P 1s ď DKLrQ } P s and hence guarantee a reduction in the runtime.

𝑥2

𝑥1

𝑝 𝑞

(a)

𝑥2

𝑥1

𝑝 𝑞

(b)

𝑥2

𝑥1

𝑝 𝑞

(c)

Figure 6: An example to explain why the number of intervals assigned to each axis matters when
we partition the space with axis-aliged grids. We use dashed lines to represent the boundaries of the
partitions. In this example, Q and P have the same marginal along x1. In (a), we partition the space
by solely dividing x1. This will make the search heuristic P 1 equal to P , leading to no improvements
in the runtime. In (b), we partition the space by dividing x2. This will make the search heuristic P 1

align with Q better than P (i.e., DKLrQ||P 1s ă DKLrQ||P s), reducing the runtime. In (c), we partition
the space by dividing both x2 and x1. This will still reduce the runtime, but is not as efficient as (b).
Please note that while the plot looks similar to Figure 5, they represent different concepts.

From this example, we conclude that even when the total number of partitions is fixed, different
partition strategies will lead to different runtime. What we want to avoid is the case in Figure 6a.
Fortunately, in most neural compression applications, we have access to an estimation of the mutual
information Id along each axis d from the training set. For the reader who is not familiar with the
term, we can view Id as the average KL divergence along d-th axis. If the mutual information is
non-zero along one axis, on average, Q and P will not have the same marginal distribution along
this axis. Therefore, we can partition the d-th axis into approximately 2^pId ¨ DKLrQ } P s{

řD
d1“1

Id1 q

intervals to avoid the worst case in Figure 6a.
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B.2.1 Examples and Ablations on Choosing the Number of Intervals Assigned to Each Axis

Qualitative visualization. We first visualize the approximation error of using ORC with different
partitioning strategies on a toy problem. Specifically, we create a 5D Gaussian target, and we set
dimension 1 to have 0 mutual information (we call it a collapsed/uninformative dimension). We
compare three partition strategies: only partitioning the collapsed dimension, randomly assigning
intervals to dimensions, and assigning intervals according to mutual information (our proposed
strategy). We also include standard ORC for reference. We run the four settings with the same
number of samples (20) and repeat each setting 5000 times. We show the histogram of 5000 encoded
results in Figure 7. As we can see, assigning intervals according to mutual information works best,
whereas partitioning only the collapsed dimension yields almost the same results as standard ORC.
This verifies our discussion above.

2 1 0 1
0

2

de
ns

ity

Standard ORC

2 1 0 1
0

2

Only partition collapsed dim

2 1 0 1
0

2

Randomly assign intervals per dim

2 1 0 1
0

2

Assign intervals according to MI (ours)

Empirical density of the encoded samples (average acorss 5000 runs) target density

Figure 7: Visualizing approximation error of standard ORC and our proposed methods with different
partitioning strategies when executed with the same number of samples (20). We use the same setup
as the toy experiments in the main text (details in Appendix D.1), but here we set dimension 1 to
have zero mutual information (i.e., collapsed dimension).

Ablation study. We now provide ablation studies showing how partition strategies will influence
performance. We run the ablation on the Gaussian toy example and the CIFAR-10 compression
experiments. As we can see, our proposed partition strategy is always better than randomly assigning
intervals per dim. For CIFAR-10, we also compare the results by first removing uninformative
dimensions (mutual information 0), and then randomly assigning intervals to other dimensions. We
find this is only slightly worse than our proposed partition strategy. This not only further verifies our
discussion above in Appendix B.2, but also indicates that our algorithm is not very sensitive to how
we construct the intervals as long as we avoid partitioning along uninformative dimensions.

4 6 8 10 12 14 16
D [Q||P]

101

102

103

104

105

106

St
ep

s

Space Partitioning PFR (assign intervals according to MI, ours)
Space Partitioning PFR (randomly assign intervals per dim)
Standard PFR

(a) PFR’s runtime w.r.t D8rQ||P s
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(b) ORC’s runtime for a certain bias w.r.t DKLrQ||P s

Figure 8: Runtime (number of steps/simulated samples) of different partition strategies on 5D toy
Gaussian examples. We compare two partition strategies: randomly assigning intervals to dimensions
and assigning intervals according to mutual information. We also include standard PFR and ORC for
reference.
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Figure 9: Rate-distortion of RECOMBINER (on 100 CIFAR-10 test images) by our space-partitioning
algorithm using different partition strategies: randomly assigning intervals to dimensions; first
removing axis with MI « 0 and then randomly assigning intervals; assigning intervals according
to MI (our proposed strategy). We include standard ORC and theoretical RD for reference. Our
proposed partition strategy is better than randomly assigning intervals per axis. Surprisingly, the
results achieved by first removing uninformative dimensions (MI « 0) and then randomly assigning
intervals to other dimensions are only slightly worse than our proposed partition strategy. This
indicates that our algorithm is not very sensitive to how we construct the intervals, as long as we
avoid partitioning along uninformative dimensions.

C Proofs and Derivations

C.1 Proof of Theorem 3.1

Restate Theorem 3.1 for easy reference:

Theorem 3.1. Let a pair of correlated random variables X,Z „ PX,Z be given. Assume we perform
relative entropy coding using Algorithm 2 and let j˚ denote the bin index and ñ˚ the local sample
index returned by the algorithm. Then, the entropy of the two-part code is bounded by:

Hrj˚, ñ˚s ď IrX;Zs ` EXrϵs ` log2pIrX;Zs ´ log2 J ` EXrϵs ` 1q ` 4, (23)

where ϵ “ Ez„QZ|X

„

max

"

0, log2 J ´ log2
qpzq

ppzq

*ȷ

. (24)

Proof. The proof will be organized as follows: first, we will prove an upper bound of Erñ˚|X “ xs

for the one-shot case, i.e., the expectation of ñ˚ given a realization of the data X. Then, we will
take the expectation over X to achieve an upper bound for the average case Erñ˚s. Finally, we will
consider encoding ñ˚ using a Zipf distribution to calculate the upper bound given in Theorem 3.1.

Derive Erñ˚|X “ xs. Assume that the posterior distribution Z|X “ x is Q. We run PFR with space
partitioning according to Algorithm 2 using a coding distribution P to encode a sample from Q. As
we discussed in the main text, we can view our proposed algorithm as running standard PFR with an
adjusted prior P 1, whose density is defined as

p1pzq “

J
ÿ

j“1

1tz P Bju
πpjqppzq

P pBjq
. (25)

Therefore, we follow similar arguments as Li and El Gamal (2018) to prove the codelength.

We first assume the minimal τ is τ˚, the corresponding sample is z˚, and the global sample index is
n˚. WLG, let’s assume the sample falls in bin j˚ and its local sample index in this bin is ñ˚.
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According to Li and El Gamal (2018), we have

τ˚ „ Expp1q (26)

n˚ ´ 1 „ Poissonpλq (27)

λ ď τ˚ qpz˚q

p1pz˚q
(28)

Equation (28) is obtained from Appendix A in Li and El Gamal (2018) and replacing p by p1.

Additionally, we have

ñ˚ ´ 1|n˚ ´ 1 „ Binomialpñ˚ ´ 1|n˚ ´ 1, πpj˚qq. (29)

This is because: if we define “success” as a sample falling in the bin j˚, then the probability that the
sample in the bin j˚ with global sample index n˚ has a local sample index ñ˚ is equivalent to the
probability that there are ñ˚ ´ 1 success in the first n˚ ´ 1 Bernoulli trials.

Therefore, according to the property of Poisson distribution, we have

ñ˚ ´ 1 „ Poissonpπpj˚qλq (30)

Therefore, we have

E log2rñ˚|X “ xs “ Ej˚Ez˚„Q|B
j˚

Eτ˚Eñ˚|j˚,z,τ˚ rlog2pñ˚ ´ 1 ` 1qs (31)

Jensen’s
ď Ej˚Ez˚„Q|B

j˚
Eτ˚

“

log2 Eñ˚|j˚,z,τ˚ pñ˚ ´ 1 ` 1q
‰

(32)

eq. (30)
ď Ej˚Ez˚„Q|B

j˚
Eτ˚ rlog2pπpj˚qλ ` 1qs (33)

eq. (28)
ď Ej˚Ez˚„Q|B

j˚
Eτ˚ log2

„

τ˚πpj˚q
qpz˚q

p1pz˚q
` 1

ȷ

(34)

Jensen’s
ď Ej˚Ez˚„Q|B

j˚
log2

„

πpj˚q
qpz˚q

p1pz˚q
` 1

ȷ

(35)

eq. (25)
“ Ej˚Ez˚„Q|B

j˚
log2

„

�
��πpj˚q

qpz˚qP pBj˚ q

ppz˚q���πpj˚q
` 1

ȷ

(36)

“ Ez˚„Q log2

„

qpz˚qP pBj˚ q

ppz˚q
` 1

ȷ

(37)

“ Ez„Q log2

„

qpzq

Jppzq
` 1

ȷ

(38)

The last line is because we require P pB1q “ P pB2q “ ¨ ¨ ¨ “ P pBJq “ 1{J . We can see that
Equation (38) does not depend on either the specific space partitioning strategy or the choice of π.

Based on Taylor expansion of log2p1 ` xq at 0,`8, we have

log2

´

1 `
x

a

¯

ď

"

x
a log2 e, 0 ď x ď a

log2
`

x
a

˘

` a
x log2 e, otherwise

(39)
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Therefore,

E log2rñ˚|X “ xs ď Ez„Q log2

„

qpzq

Jppzq
` 1

ȷ

(40)

ď Ez„Q log2

„

1

"

qpzq

ppzq
ď J

* ˆ

qpzq

Jppzq

˙

log2 e

ȷ

` Ez„Q log2

„

1

"

qpzq

ppzq
ą J

* ˆ

log2
qpzq

Jppzq
`

Jppzq

qpzq
log2 e

˙ȷ

(41)

“ Ez„Q log2

„

1

"

qpzq

ppzq
ą J

* ˆ

log2
qpzq

Jppzq

˙ȷ

` log2 e ¨ Ez„Q log2

„

1

"

qpzq

ppzq
ď J

* ˆ

qpzq

Jppzq

˙

` 1

"

qpzq

ppzq
ą J

* ˆ

Jppzq

qpzq

˙ȷ

(42)

ď Ez„Q log2

„

1

"

qpzq

ppzq
ą J

* ˆ

log2
qpzq

Jppzq

˙ȷ

` log2 e (43)

The last line is because

Ez„Q log2

„

1

"

qpzq

ppzq
ď J

* ˆ

qpzq

Jppzq

˙

` 1

"

qpzq

ppzq
ą J

* ˆ

Jppzq

qpzq

˙ȷ

(44)

ďEz„Q log2

„

1

"

qpzq

ppzq
ď J

*

¨ 1 ` 1

"

qpzq

ppzq
ą J

*

¨ 1

ȷ

(45)

“1 (46)

We can further simplify Equation (43) as follows:

E log2rñ˚|X “ xs ď DKLrQ||P s ´ log2 J ` EQ

„

1

"

log2
qpzq

ppzq
ď log2 J

* ˆ

log2 J ´ log2
qpzq

ppzq

˙ȷ

` log2 e

(47)
“ DKLrQ||P s ´ log2 J ` ϵ ` log2 e (48)

where we denote

ϵ “ Ez„Q

„

1

"

log2
qpzq

ppzq
ď log2 J

* ˆ

log2 J ´ log2
qpzq

ppzq

˙ȷ

(49)

“ Ez„Q

„

max

"

log2 J ´ log2
qpzq

ppzq
, 0

*ȷ

(50)

Derive Erñ˚s. Now, we consider the average case by taking the expectation over X. We have

Erñ˚s ď EXDKLrQZ|X||PZs ´ log2 J ` EXrϵs ` log2 e (51)

“ IrX;Zs ´ log2 J ` EXrϵs ` log2 e (52)

Derive entropy. Following the maximum entropy argument similar to Li and El Gamal (2018), we
have

Hrñ˚s ď IrX;Zs ´ log2 J ` EXrϵs ` log2 e ` log2pIrX;Zs ´ log2 J ` EXrϵs ` log2 e ` 1q ` 1
(53)

ď IrX;Zs ´ log2 J ` EXrϵs ` log2pIrX;Zs ´ log2 J ` EXrϵs ` 1q ` 1 ` log2 e ` log2plog2 e ` 1q

(54)
ď IrX;Zs ´ log2 J ` EXrϵs ` log2pIrX;Zs ´ log2 J ` EXrϵs ` 1q ` 4 (55)

Finally, we need log2 J bits to encode the index j˚. Therefore, the two-part code’s codelength is
upper-bounded by

Hrñ˚s ` log2 J ď IrX;Zs ` EXrϵs ` log2pIrX;Zs ´ log2 J ` EXrϵs ` 1q ` 4 (56)
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We also note that, if we do not take the expectation over X, we can also achieve a similar bound for
the one-shot channel simulation task targeting Q using a coding distribution P :

Hrñ˚s ` log2 J ď DKLrQ||P s ` ϵ ` log2pDKLrQ||P s ´ log2 J ` ϵ ` 1q ` 4. (57)

This ensures that the codelength is consistent for each realization of X and guarantees a good
encoding performance both on average and for each certain data observation in practice.

C.2 Proof of Proposition 3.2

To prove Proposition 3.2, we first prove the following Lemma:

Lemma C.1. The ϵ-cost defined in Equation (9) monotonically increases w.r.t J .

Proof. By setting r “ log2 qpzq{ppzq which is a new random variable, we rewrite the ϵ-cost as

Ez„Q

„

1

"

log2
qpzq

ppzq
ď log2 J

* ˆ

log2 J ´ log2
qpxq

ppxq

˙ȷ

(58)

“Er r1 tr ď J u pJ ´ rqs (59)

“

ż J

´8

pprqpJ ´ rqdr (60)

where we also write J “ log2 J , which is a monotonically increasing function of J . Take derivative
w.r.t. J , we have

d

şJ
´8

pprqpJ ´ rqdr

dJ
“ ppJ qpJ ´ J q `

ż J

´8

pprqdr “

ż J

´8

pprqdr ě 0 (61)

which finishes the proof.

Therefore, to prove Proposition 3.2, we only need to look at the worst case, where J “ 2DKLrQ||P s.
We now prove for Uniform and Gaussian, respectively:

Uniform. For uniform distribution, WLG, assume P “ Up0, 1qn, and Q “ UpAq, where A Ď

p0, 1qn. In this case, we have DKLrQ||P s “ ´ log2 µpAq, and qpzq

ppzq
“ 1

µpAq
,@z P A, where µ is the

Lesbague measure. Therefore,

ϵ “ Ez„Q

„

1

"

log2
qpzq

ppzq
ď log2 J

* ˆ

log2 J ´ log2
qpzq

ppzq

˙ȷ

(62)

ď Ez„Q

„

1

"

log2
qpzq

ppzq
ď DKLrQ||P s

* ˆ

DKLrQ||P s ´ log2
qpzq

ppzq

˙ȷ

(63)

“ 0 (64)

On the other hand, the indicator function ensures the integrand is non-negative, and hence ϵ ě 0.
Therefore, ϵ “ 0.

Factorized Gaussian. To prove for Gaussian, we first prove the following lemma:

Lemma C.2. When J “ 2DKLrQ||P s, the ϵ-cost defined in Equation (9) is upper-bounded by

ϵ ď
1

2

a

Varrrs, (65)

where r is the RV defined by r “ log2 qpzq{ppzq, z „ Q.

Proof. First, we know

Ez„Q

„

DKLrQ||P s ´ log2
qpzq

ppzq

ȷ

“ 0 (66)
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and we recognize

Ez„Q

„

DKLrQ||P s ´ log2
qpzq

ppzq

ȷ

(67)

“Ez„Q

„

1

"

log2
qpzq

ppzq
ď DKLrQ||P s

* ˆ

DKLrQ||P s ´ log2
qpzq

ppzq

˙ȷ

` Ez„Q

„

1

"

log2
qpzq

ppzq
ą DKLrQ||P s

* ˆ

DKLrQ||P s ´ log2
qpzq

ppzq

˙ȷ

(68)

When J “ 2DKLrQ||P s, we have

ϵ “Ez„Q

„

max

"

0, DKLrQ||P s ´ log2
qpzq

ppzq

*ȷ

(69)

Ez„Q

„

1

"

log2
qpzq

ppzq
ď DKLrQ||P s

* ˆ

DKLrQ||P s ´ log2
qpzq

ppzq

˙ȷ

(70)

“Ez„Q

„

1

"

log2
qpzq

ppzq
ą DKLrQ||P s

* ˆ

log2
qpzq

ppzq
´ DKLrQ||P s

˙ȷ

(71)

Therefore, we have

2 ¨ ϵ “ Ez„Q

„

1

"

log2
qpzq

ppzq
ď DKLrQ||P s

* ˆ

DKLrQ||P s ´ log2
qpzq

ppzq

˙ȷ

` Ez„Q

„

1

"

log2
qpzq

ppzq
ą DKLrQ||P s

* ˆ

log2
qpzq

ppzq
´ DKLrQ||P s

˙ȷ

(72)

“ Ez„Q

„
ˇ

ˇ

ˇ

ˇ

log2
qpzq

ppzq
´ DKLrQ||P s

ˇ

ˇ

ˇ

ˇ

ȷ

(73)

Writing r “ log2 qpzq{ppzq, we have

ϵ “
1

2
Er t|r ´ Errs|u (74)

“
1

2
Er

!

a

pr ´ Errsq2
)

(75)

Jensen’s
ď

1

2

a

Er tpr ´ Errsq2u (76)

“
1

2

a

Varrrs (77)

Lemma C.2 means that the ϵ-cost is closely related to the variance of the log-density ratio between
the target and the prior. We highlight that this conclusion holds generally and can be used to prove
the bound of ϵ for all distribution families. But for now, we only focus on Gaussian, and leave more
extensions to future exploration.

According to Lemma C.2, if we want to bound ϵ, we only need to bound Varrrs. To achieve this, we
state the following Lemma:
Lemma C.3. For 1D Gaussian Q and P , with density q “ N pµq, σ

2
q q, p “ N pµp, σ

2
pq, and σq ď σp,

defining random variable r by r “ log2 qpxq{ppxq, x „ Q, if DKLrQ||P s is fixed to a constant, then
Varrrs monotonically increases w.r.t σq .
Proof. WLG, let’s assume p “ N p0, 1q, µq ą 0, DKLrQ||P s “ δ. Denoting v “ σ2

q , we have

µq “

b

2δ ` logpσ2
q q ´ σ2

q ` 1 “
a

2δ ` logpvq ´ v ` 1 (78)

and thus

r “
1

2v

`

p1 ´ vqx2 ´ 2µqx ` µ2
q ´ v ` vµ2

q ` v2
˘

(79)

“
1

2v

˜

p1 ´ vqpx ´
µq

1 ´ v
q2 ´

µ2
q

1 ´ v
` µ2

q ´ v ` vµ2
q ` v2

¸

, x „ N pµq, vq (80)
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Reparameterizating y “ px ´
µq

1´v q{
?
v, we have

r “
1

2v

˜

vp1 ´ vqy2 ´
µ2
q

1 ´ v
` µ2

q ´ v ` vµ2
q ` v2

¸

, y „ N p
µq
?
v

´
µq

?
vp1 ´ vq

, 1q (81)

The variance of r is given by

Varrrs “
p1 ´ vq2

4

«

4

ˆ

µq
?
v

´
µq

?
vp1 ´ vq

˙2

` 2

ff

(82)

“ p1 ´ vq2µ2
q

«

ˆ ?
v

1 ´ v

˙2

`
1

2

ff

(83)

“ vµ2
q `

1

2
p1 ´ vq2µ2

q (84)

“
1

2
pv2 ` 1qp2δ ` logpvq ´ v ` 1q (85)

Taking derivative, we have

dVarrrs

dv
“ vp2δ ` logpvq ´ v ` 1q `

1

2
pv2 ` 1qp

1

v
´ 1q (86)

“ vp2δ ` logpvq ´ v ` 1q `
1

2
pv `

1

v
´ v2 ´ 1q (87)

ě vp2δ ` 2 ´
1

v
´ vq `

1

2
pv `

1

v
´ v2 ´ 1q (88)

“ 2vδ `
5

2
v `

1

2v
´

3

2
v2 ´

3

2
(89)

ě
5

2
v `

1

2v
´

3

2
v2 ´

3

2
(90)

ě 0pwhen v ď 1q (91)

In summary, Lemma C.2 tells us if we want to upper-bound ϵ, we only need to upper-bound Varrrs;
while Lemma C.3 further tells us if we want to upper-bound Varrrs, we only need to look at the worst
case, when Q and P share the same variance.

Following this, we can finally finish our prove:

WLG, assume the density of Q and P are given by

ppzq “ N pz|0, Iq (92)
qpzq “ N pz1|µ1, 1qN pz2|µ2, 1q ¨ ¨ ¨N pzd|µd, 1q (93)

where d is the dimensionality. In this case, we have

DKLrQ||P s “ log2 e
n

ÿ

i“1

µ2
i

2
(94)

and

r “ log2
qpzq

ppzq
“ log2 e

˜

n
ÿ

i“1

µizi ´

n
ÿ

i“1

µ2
i

2

¸

„ N

˜

log2 e
n

ÿ

i“1

µ2
i

2
, log22 e

n
ÿ

i“1

µ2
i

¸

(95)

Therefore,

ϵ ď
1

2

a

Varrrs “

g

f

f

e

1

4
log22 e

n
ÿ

i“1

µ2
i “

c

log2 e

2
DKLrQ||P s « 0.849

a

DKLrQ||P s (96)
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Finally, taking expectation over X, and by Jensen’s Inequality, we have

EXrϵs ď 0.849EX

”

a

DKLrQ||P s

ı

(97)

ď 0.849
a

EX rDKLrQ||P ss (98)

“ 0.849
a

IrX;Zs, (99)

which finishes the proof for the Gaussian case in Proposition 3.2.

C.3 Proof of Theorem 3.3

We first restate Theorem 3.3 for easy reference:
Theorem 3.3. Let a pair of correlated random variables X,Z „ PX,Z be given. Assume we perform
relative entropy coding using GPRS with space partitioning and let j˚ denote the bin index and ñ˚

the local sample index returned by the algorithm, and ϵ be as in Equation (9). Then,

Hrj˚, ñ˚s ď IrX;Zs ` EXrϵs ` log2pIrX;Zs ´ log2 J ` EXrϵs ` 1q ` 6. (100)

Proof. For those who are not familiar with GPRS, please note the notation used by Flamich (2024)
is slightly different from those defined in this paper. We define the sample we encode as z˚, while
in GPRS paper, it is denoted by X̃ . We define the smallest τ as τ˚, while in GPRS paper, Flamich
(2024) name it as the first arrival and denote it by T̃ . We define the global sample index of the
encoded sample by n˚, while Flamich (2024) denote it by N . In the following proof, since we will
mainly modify the proof of Flamich (2024), we follow their notations unless otherwise stated.

We still follow the structure similar to the proof in Appendix C.1. Specifically, we first derive the
upper bound of log2 n

˚ conditional on a certain X “ x. Then, we take expectation over X. Finally,
we derive the entropy by the same maximum entropy argument.

Derive Erlog2 n
˚|X “ xs. Our proof starts from Equation (59) on Page 17 of the GPRS paper. It

says that N ´ 1 follows a Poisson distribution given T̃ “ t, with mean:

t ´ µ̃ptq (101)

where µ̃ is defined by Flamich (2024) as the average number of points “under the graph” up to time t
(See Appendix A on Page 13 of the GPRS paper for a detailed definition).

WLG, assume the encoded sample X̃ is in the j˚-th bin. Then, according to the property of Poisson
distribution, n˚ ´ 1 is also Poisson-distributed, with mean πpj˚q ¨ pt ´ µ̃ptqq, where n˚ is the local
sample index in the j˚-th bin.

Therefore, we can modify Equation (133) on Page 21 of the GPRS paper as follows:

Erlog2 n
˚|T̃ “ t, X̃ “ x, x P Bj˚ ,X “ xs ď log2pErpn˚ ´ 1q|T̃ “ t, X̃ “ x, x P Bj˚ s ` 1q

(102)

“ log2rπpj˚q ¨ pt ´ µ̃ptqq ` 1s (103)

ď log2rπpj˚qt ` 1s (104)

By Equation (132) on Page 21 of the GPRS paper, we have

t ď
qpxq

p1pxqPrT̃ ě ts
(105)

where p1 is the density of our adjusted prior, defined in Equation (25).

Therefore,

πpj˚qt ď
πpj˚qqpxq

p1pxqPrT̃ ě ts
(106)

“ �
��πpj˚qP pBj˚ qqpxq

�
��πpj˚qppxqPrT̃ ě ts

(107)

“
qpxq

J ¨ ppxqPrT̃ ě ts
(108)
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Hence, we have

πpj˚qt ` 1 ď
qpxq

J ¨ ppxqPrT̃ ě ts
` 1 (109)

“
qpxq{pJ ¨ ppxqq

PrT̃ ě ts
` 1 (110)

ď
qpxq{pJ ¨ ppxqq ` 1

PrT̃ ě ts
(111)

Taking this back to Equation (104), we have

Erlog2 n
˚|T̃ “ t, X̃ “ x, x P Bj˚ ,X “ xs ď log2

„

qpxq{pJ ¨ ppxqq ` 1

PrT̃ ě ts

ȷ

(112)

“ log2

„

qpxq

J ¨ ppxq
` 1

ȷ

` µ̃ptq ¨ log2 e, (113)

where the last follows the same principle as Equation (137) on Page 21 of the GPRS paper.

Now, by the law of iterated expectations,we find

Erlog2 ñ
˚|X “ xs “ Ej˚Ex„Q|B

j˚
Et

”

Erlog2 n
˚|T̃ “ t, X̃ “ x, x P Bj˚ s

ı

(114)

eq. (113)
ď Ej˚Ex„Q|B

j˚
Et

„

log2

„

qpxq

J ¨ ppxq
` 1

ȷ

` µ̃ptq ¨ log2 e

ȷ

(115)

“ Ex„Q

„

log2

„

qpxq

J ¨ ppxq
` 1

ȷȷ

` log2 e ¨ Etrµ̃ptqs (116)

According to Equation (64) on Page 17 of the GPRS paper, Etrµ̃ptqs “ 1. Therefore, we have

Erlog2 ñ
˚|X “ xs ď Ex„Q

„

log2

„

qpxq

J ¨ ppxq
` 1

ȷȷ

` log2 e (117)

Surprisingly, this coincide with Equation (40) in the proof for PFR up to a constant. Therefore,
following exactly the proof for PFR, we have

Erlog2 ñ
˚|X “ xs ď DKLrQ||P s ´ log2 J ` ϵ ` 2 ¨ log2 e (118)

where ϵ is defined in the same way as the PFR case.

Derive Erlog2 ñ
˚s. Following exactly the proof for PFR, we have

Erlog2 ñ
˚s ď IrX;Zs ´ log2 J ` EXrϵs ` 2 ¨ log2 e (119)

where ϵ is defined in the same way as the PFR case.

Derive entropy. Finally, following the same maximum entropy argument, we have

Hrñ˚s ď IrX;Zs ´ log2 J ` EXrϵs ` 2 ¨ log2 e ` log2pIrX;Zs ´ log2 J ` EXrϵs ` 2 ¨ log2 e ` 1q ` 1
(120)

ď IrX;Zs ´ log2 J ` EXrϵs ` log2pIrX;Zs ´ log2 J ` EXrϵs ` 1q ` 1 ` 2 ¨ log2 e ` log2p2 ¨ log2 e ` 1q

(121)
ď IrX;Zs ´ log2 J ` EXrϵs ` log2pIrX;Zs ´ log2 J ` EXrϵs ` 1q ` 6 (122)

Do not forget we need log2 J bits to encode the index j˚. Therefore, the two-part code’s codelength
is upper-bounded by

Hrñ˚s ` log2 J ď IrX;Zs ` EXrϵs ` log2pIrX;Zs ´ log2 J ` EXrϵs ` 1q ` 6 (123)

which finishes the proof.
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C.4 Proof of Corollary 4.1

Corollary 4.1. Given a target distribution Q and a prior distribution P running Ordered random
coding (ORC) to encode a sample from Q. Let Q̃ be the distribution of encoded samples. If the
number of candidates is N “ 2DKLrQ||P s`t for some t ě 0, then

DTVrQ̃,Qs ď 4

˜

2´t{4 ` 2

d

Pz„Q

ˆ

log
qpzq

ppzq
ě DKLrQ||P s `

t

2

˙

¸1{2

(124)

Conversely, suppose that N “ 2DKLrQ||P s´t for some t ě 0, then

DTVrQ̃,Qs ě 1 ´ 2´t{2 ´ Pz„Q

ˆ

log
qpzq

ppzq
ď DKLrQ||P s ´

t

2

˙

(125)

Proof. Theis and Yosri (2022) prove Equation (124). Therefore, we focus on Equation (125).

First, we note that, as proved by Theis and Yosri (2022), the sample returned by ORC has the same
distribution as the sample returned by Minimal random coding Havasi et al. (2019) and hence inherits
all the conclusions of importance sampler by Chatterjee and Diaconis (2018).

Then, we define set A as

A “

#

z

ˇ

ˇ

ˇ

ˇ

ˇ

log2
qpzq

ppzq
ď DKLrQ||P s ´

t

2

+

(126)

also, define

fpzq “

"

1 z P A
0 otherwise

(127)

Note, that
EQrfpzqs “ Pz„Qrz P As “ QpAq. (128)

Assume given a random state S, the set of all candidate samples tz1, ..., zNu is uniquely determined.
We therefore denote

IN,S “

řN
i“1 fpziq

qpziq

ppziq
řN

i“1
qpziq

ppziq

(129)

According to Chatterjee and Diaconis (2018), we have
ESr1tIN,S ‰ 1us “ PrIN,S ‰ 1s ď 2´t{2; (130)

ESr1tIN,S “ 1us “ PrIN,S “ 1s ě 1 ´ 2´t{2. (131)
Therefore, we have

Q̃pAq “ EQ̃rf s (132)

“ ESrIN,Ss (133)
“ PrIN,S “ 1sESrIN,S |IN,S “ 1s ` PrIN,S ‰ 1sESrIN,S |IN,S ‰ 1s (134)
ě PrIN,S “ 1sESrIN,S |IN,S “ 1s (135)
“ PrIN,S “ 1s (136)

ě 1 ´ 2´t{2. (137)
on the other hand, we have

QpAq “ Pz„Qrz P As “ Pz„Q

ˆ

log
qpzq

ppzq
ď DKLrQ||P s ´

t

2

˙

(138)

Therefore, we have
DTVrQ̃,Qs– sup

A1

|Q̃pA1q ´ QpA1q| (139)

ě |Q̃pAq ´ QpAq| (140)

ě Q̃pAq ´ QpAq (141)

ě 1 ´ 2´t{2 ´ Pz„Q

ˆ

log
qpzq

ppzq
ď DKLrQ||P s ´

t

2

˙

(142)
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D Experiment Details

D.1 Synthetic Gaussian Toy Examples

D.1.1 Generation of the toy examples

We explore the effectiveness of our proposed algorithm on 5D synthetic Gaussian toy examples.
Specifically, we assume ppxq “ N px|0, diagpσ2qq, and qpz|xq „ N pz|x, diagpρ2qq. The density
of prior P is given by ppzq “ N p0, diagpσ2 ` ρ2qq. Therefore, for a certain realization of σ,ρ,
we have the following REC task: transmitting a sample following Q whose density is qpz|xq „

N pz|x, diagpρ2qq with the help of the prior P with density ppzq “ N p0, diagpσ2`ρ2qq. To generate
multiple toy examples, we randomly draw σ,ρ „ Up0, 1q5. The dimension-wise mutual information
IrX,Zs is 1

2 log2 ppσ2
` ρ2

q{ρ2q.

D.1.2 Space partitioning details

In this toy example, we naively assume the receiver knows both the dimension-wise mutual informa-
tion and the entire KL divergence between Q and P (but dimension-wise KL is only available to the
sender). In practice, we can achieve this by either encoding the KL divergence using negligible bits
(for VAE in Section 5) or enforcing the KL budget during optimization (for INRs in Section 5).

Then we partition the d-th axis into approximately 2

˜

Id¨DKLrQ } P s
řD
d1“1

I
d1

¸

intervals, where Id “
1
2 log2 ppσ2

d ` ρ2
dq{ρ2

dq is the mutual information along d-th dimension. To achieve this, we adopt
the following steps:

• Initialize: we first initialize the number of intervals per dimension to 1, i.e., J rds Ð 1,@d “

1, 2, ¨ ¨ ¨ , D; and we also initialize a vector of mutual information rI1, I2, ¨ ¨ ¨ , Ids.
• Iterate: we iteratively increase the number of intervals by two in the dimension that currently

has the highest mutual information. Specifically, we find d˚ Ð argmaxdtI1, I2, ¨ ¨ ¨ , Idu, and set
J rd˚

s Ð 2J rd˚
s.

• Update and Repeat: after increasing J rd˚
s, we decrement both the mutual information of that

dimension and the total KL divergence by 1. We repeat this process until KL is exhausted.

D.1.3 Generation of the plots

After this, we run PFR with space partitioning (Algorithm 3) to encode exact samples and ORC
with space partitioning (Algorithm 4) for approximate samples. We show the results in Figure 2
and Figure 3, and also include standard PFR and ORC for comparison. To plot Figure 2, we sample
200 different σ,ρ pairs, and repeat the encoding procedure 50 times with different seeds for each
realization of σ,ρ. We calculate the negative log-likelihood of the 50 encoded indices using Zipf
distribution P pNq9N´p1`1{ζq as a proxy of the codelength. To find the optimal value of ζ, we
optimize the log-likelihood of the 50 indices with scipy.optimize.minimize. Finally, we average
and find the IQR across these 50 repeats, and smooth the curves at the end for better visualization. In
real-world applications, one may raise the concern that we need to transmit this ζ , which may lead to
another overhead in the codelength. However, as we will see later in our VAE and INR cases, we can
estimate the value of ζ from the training set (or a very small subset of the training set) and share it
between the sender and receiver.

To plot Figure 3, we first sample 200 different σ,ρ pairs. For each realization of σ,ρ, we run ORC
with a range of sample sizes: 2t1,2,3,4,5,6,7,8,9,10u, and repeat the encoding procedure 500 times
with different seeds for each sample size. Then we estimate maximum mean discrepancy (MMD,
Smola et al., 2007) between the 500 encoded samples and real target samples with RBF kernel5.
Since different target Q can lead to different MMD scales, we normalize the Q to standard isotropic
Gaussian (and also scale and shift the encoded samples correspondingly) before calculating MMD.
Note, that the absolute value MMD means little here. What we should care about is the relative
comparison. After this process, we achieve a scatter plot. Finally, for clear visualization, we fit a

5We use the codes at https://github.com/jindongwang/transferlearning/blob/master/code/
distance/mmd_numpy_sklearn.py (MIT License)
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Gaussian Process regressor with scikit-learn package (Pedregosa et al., 2011) to estimate the
mean and IQR.

D.2 Lossless Compression on MNIST with VAE

D.2.1 VAE architecture and training details

We follow (Flamich et al., 2024; Townsend et al., 2019) for the VAE architecture. Specifically,
both encoder and decoder are 2-layer MLP. We set the hidden size to 400 and the latent size to
100, with ReLU activation function. We use fully factorized Gaussian as the latent distribution and
Beta-Binomial as the likelihood distribution. The encoder maps the input flattened image to two
100-D vectors, corresponding to the mean and std in Gaussian distribution. We use softplus to ensure
the standard deviation vector is positive. The decoder maps the 100-D latent vector back to two 784-D
vectors, corresponding to two parameters in Beta-Binomial distribution. We also use softplus to
ensure positivity. We use Adam (Kingma and Ba, 2017) with a learning rate of 0.001 as the optimizer,
to train the VAE with a batch size of 1,000 for 1,000 epochs.

D.2.2 Space partitioning details

We estimate the mutual information Id along each dimension d in the latent space (i.e., averaging over
the KL divergence across the entire training set), and then we partition the d-th axis into approximately

2

˜

Id¨tDKLrQ } P su
řD
d1“1

I
d1

¸

intervals. We use the same strategy as Appendix D.1.2, but also found simply

rounding 2

˜

Id¨tDKLrQ } P su
řD
d1“1

I
d1

¸

to the nearest integer works very well. Here, we apply the floor function
to the KL divergence since we need to transmit this value to the receiver.

To ensure our space partitioning strategy can reduce the runtime, we need mutual information to match
well with the KL divergence for each test image along all dimensions. We empirically check this in
Figure 10. As we can see, the test image KL divergence concentrated around mutual information.
Also, if the mutual information is zero for some dimension, the test KL divergence will also be zero.
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Figure 10: Dimension-wise mutual informa-
tion and KL divergence for each test image
along all dimensions. We can see the KL
divergences concentrate around mutual infor-
mation. And if the mutual information is zero
for some dimension, the test KL divergence
will also be zero. This ensures our space par-
titioning strategy can reduce the runtime.
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Figure 11: The distribution of KL for each
group, estimated from 60,000 training im-
ages. Here, we take the case where we split
the latent embeddings into 2 blocks as an ex-
ample. Different colors represent different
blocks. We note that the difference between
these 2 blocks is solely due to randomness in
the splitting.

D.2.3 Encoding details

We losslessly encode a test image with a code with four components: (1) tDKLrQ } P su for each
block; (2) the local sample index for each block; (3) the bin index for each block and (4) the image
conditional on the encoded latent embedding. We discuss these 4 components in the following:
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• For the first component, we estimate the distribution of tDKLrQ } P su for each block from the
training set, and use the negative log-likelihood as a proxy for the codelength. To provide an
intuition on the distribution of tDKLrQ } P su, we take the 2-block case as an example and visualize
the histogram of tDKLrQ } P su for each block in Figure 11.

• For the second component, we estimate the codelength by the negative log-likelihood of Zipf
distribution P pNq9N´p1`1{ζq. We find the optimal ζ value for each block from only 50 training
images and find it generalizes very well to all test images. Note, that we find a different ζ for each
block. This is because, as we can see from Figure 11, the random splitting will not ensure the two
blocks to have the same KL divergence distribution and hence may lead to different optimal ζ.

• The codelength for the bin index is simply tDKLrQ } P su for each block.
• For the last component, we estimate the codelength by the negative log-likelihood of Beta-Binomal

distribution with the parameters predicted by the decoder.

One concern is that using negative log-likelihood as a proxy may underestimate the codelength.
However, since we use the same proxy across all settings, this doesn’t raise an issue in comparison.

D.3 Lossy Compression on CIFAR-10 with INRs

Following the methodology described by He et al. (2023), we model the latent weights and latent
positional encodings (collectively denoted by h) with a fully factorized Gaussian distribution qh.
We also learn the prior ph using 15,000 images from the CIFAR-10 training set. During the testing
and encoding stage, He et al. (2023) suggested using 16-bit blocks. Specifically, He et al. (2023)
split h into K blocks, h “ rhr1s, ¨ ¨ ¨ ,hrKss, and trained qh for each test image x by optimizing the
following β-ELBO:

L “

K
ÿ

k

βk ¨ DKL rqhrks ||phrks s ` Eqh rDistortionpx̂h,xqs (143)

where x̂h is the reconstructed image with parameter h, and βk-s are adjusted dynamically to
ensure DKL rqhrks ||phrks s « 16. In our experiments, we find that our proposed methods can
safely accommodate larger block sizes of 48 bits. To ensure a fair comparison, we follow
He et al. (2023)’s setting on CIFAR-10 exactly, except for the block sizes and the REC al-
gorithm. Specifically, we modify the block sizes and the REC algorithm in codes at https:
//github.com/cambridge-mlg/RECOMBINER (MIT License), and keep other settings unchanged.

As for the theoretical RD curve in Figure 4, we do not split h into blocks, and directly optimize
L “ β ¨ DKL rqh||phs ` Eqh rDistortionpx̂h,xqs . (144)

The β is set to the β obtained during training and kept the same for all test samples since we do not
need to ensure any bit budget for a theoretically ideal REC codec. Then we directly draw a sample
from qh to calculate PSNR, since we assume a theoretically ideal REC codec can encode a sample
from the target exactly. As for the rate, we average DKL rqh||phs across all test images to estimate
Irh,Xs, and calculate the codelength by Irh,Xs ` log2pIrh,Xs ` 1q ` 4.

D.3.1 Space partitioning details

To apply our proposed REC algorithm, we also need to estimate the mutual information Id along each
dimension d in h. To achieve this, we randomly select 1,000 training images, and learn their posterior
distributions qh by Equation (143). We also adjust βk to ensure DKL rqhrks ||phrks s « 48 on these
1,000 training images. After this, we average their KL divergence per dimension as an estimation of
the dimension-wise mutual information. Having the estimation of Id, we use the same strategy as
Appendix D.1.2 to partition the space during test time.

D.3.2 Encoding details

During the encoding stage, we simply apply Algorithm 4 to encode each block. We use Zipf
distribution P pNq9N´p1`1{ζq to encode the local sample index, and then spend 48 bits to encode
the bin index. We find the optimal ζ value from only 10 training images. Different from the VAE
case, we find using the same ζ value for all blocks works well. Also, to ensure a fair comparison
with other codecs, we do not estimate the codelength by log-likelihood but encode the index using
torchac package (Mentzer et al., 2019) and count the length of the obtained bitstream.
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E Licenses

Datasets:
CIFAR-10 (Krizhevsky et al., 2009): MIT License
MNIST (LeCun and Cortes, 1998): CC BY-SA 3.0 License

Codes and Packages:
Codes for RECOMBINER6 (He et al., 2023): MIT License
Codes for calculating MMD7: MIT License
torchac8 (Mentzer et al., 2019): GPL-3.0 license

6https://github.com/cambridge-mlg/RECOMBINER
7https://github.com/jindongwang/transferlearning/blob/master/code/distance/mmd_

numpy_sklearn.py
8https://github.com/fab-jul/torchac
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F More Results

In Figure 12, we compare RECOMBINER (He et al., 2023) with our proposed algorithm with its
original performance and also present the RD curves of other codecs for reference. Specifically,
our baselines include classical codecs: (JVET, 2020), BPG (Bellard, 2014), JPEG2000; VAE-based
codecs: Ballé et al. (2018), Cheng et al. (2020); and INR-based codecs: COIN++ (Dupont et al.,
2022), VC-INR (Schwarz et al., 2023) and COMBINER (Guo et al., 2024).
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Figure 12: Comparing RECOMBINER with our proposed space partitioning algorithm (w. fine-
tuning) with other codecs on CIFAR-10. We use solid lines to denote INR-based codecs, dotted lines
to denote VAE-based codecs, and dashed lines to denote classical codecs.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We propose a framework to accelerate REC algorithm. We clearly state our
main contribution in the last part of the introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations in the last paragraph of the Section Conclusions and
Limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

32



Answer: [Yes]

Justification: We prove the theorems, corollaries, and propositions in Appendix C.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We describe our algorithm in details in Algorithm 3 and Algorithm 4 and
include how to reproduce the experiments in Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: All data we used is public. Our main contribution is the new REC algorithm
and its algorithm to implement following the pseudo-codes.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We briefly describe the experiments and discuss results in Section 5. We
include full experimental settings in Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: For the toy example, we report IQRs. For lossless compression using VAE in
Section 5, we include the standard deviation across multiple running. For lossy compression
using INRs, we do not report the error bars. This is because all the baselines do not report
this in the RD curve, and we follow the convention. And since there are 10,000 test images,
the results should be relatively reliable already.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: Our main contribution is the new REC algorithm, which can easily run on any
CPU. We, in practice, run the scripts on many CPUs in parallel to get the error bar across
multiple runs, but this is not needed.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We do not believe our work has ethical concerns.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA] .
Justification: We do not believe our work has societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA] .

Justification: We do not believe the paper poses such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: See Appendix E.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA] .

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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