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ABSTRACT

Recent advancements have highlighted the Mamba framework, a state-space mod-
els (SSMs) known for its efficiency in capturing long-range dependencies with
linear computational complexity. While Mamba has shown competitive perfor-
mance in medical image segmentation, it encounters difficulties in modeling local
features due to the sporadic nature of traditional location-based scanning methods
and the complex, ambiguous boundaries often present in medical images. To over-
come these challenges, we propose Uncertainty-Driven Mamba (UD-Mamba),
which redefines the pixel-order scanning process by incorporating channel un-
certainty into the scanning mechanism. UD-Mamba introduces two key scanning
techniques: sequential scanning, which prioritizes regions with high uncertainty
by scanning in a row-by-row fashion, and skip scanning, which processes columns
vertically, moving from high-to-low or low-to-high uncertainty at fixed intervals.
Sequential scanning efficiently clusters high-uncertainty regions, such as bound-
aries and foreground objects, to improve segmentation precision, while skip scan-
ning enhances the interaction between background and foreground regions, al-
lowing for timely integration of background information to support more accurate
foreground inference. Recognizing the advantages of scanning from certain to un-
certain areas, we introduce four learnable parameters to balance the importance of
features extracted from different scanning methods. Additionally, a cosine consis-
tency loss is employed to mitigate the drawbacks of transitioning between uncer-
tain and certain regions during the scanning process. Our method demonstrates
robust segmentation performance, validated across three distinct medical imaging
datasets involving pathology, dermatological lesions, and cardiac tasks.

1 INTRODUCTION

Transformers have shown significant potential in image processing due to their ability to model long-
range dependencies (Vaswani et al., 2017; Dosovitskiy et al., 2021; Liu et al., 2021; Bao et al., 2024;
Zhang et al., 2024b). However, their quadratic computational complexity with respect to sequence
length imposes substantial computational costs, particularly in high-resolution tasks like medical
image segmentation. Recently, state-space models (SSMs) have emerged as a more computationally
efficient alternative, offering linear complexity while preserving the ability to model long-range
dependencies (Gu et al., 2021). Among these, the Mamba architecture (Gu & Dao, 2023; Dao &
Gu, 2024) stands out, employing selective scanning techniques and hardware-optimized design to
achieve impressive results across various visual tasks (Liu et al., 2024b; Zhu et al., 2024; Li et al.,
2024; Hu et al., 2024; Liu et al., 2024a).

In medical image segmentation, the primary objective is to accurately delineate regions that cor-
respond to target organs or pathological tissues, providing essential support for clinical diag-
noses (Ronneberger et al., 2015; Chen et al., 2024; Isensee et al., 2021; Hatamizadeh et al., 2022;
Li et al., 2018; Wang et al., 2021). Due to its capacity to capture long-range dependencies and
process high-resolution images efficiently, the Mamba framework has seen increasing application
in the medical imaging field (Yang et al., 2024; Xing et al., 2024). However, Mamba’s traditional
position-based sequential scanning method often leads to intermittent scanning of different seman-
tic regions (Figure 1(e)), which is particularly problematic when dealing with complex backgrounds
and ambiguous boundaries in medical images. This hinders Mamba’s ability to accurately model
local features essential for effective segmentation (Fan et al., 2024; Wang et al., 2024a).
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(e) Scanning based on location 

(f) Scanning based on information density

Ⅰ.Sequential scan Ⅱ.Skip scan
(c) Uncertainty map

(a) Input

(d) Sorted map

(b) GT

Figure 1: Pixel-level channel uncertainty-based scanning mechanism. (a) Input image; (b) Ground
truth; (c) Resulting image obtained from channel-based uncertainty calculations; (d) Feature image
sorted by the degree of uncertainty; (e) Previous method using the SS2D scanning mechanism; (f)
Our UD-BSS scanning mechanism, which includes sequential scanning and skip scanning.

Figure 2: Ascend-
ing vs. descending
uncertainty.

To overcome this limitation, we propose Uncertainty-Driven Mamba (UD-
Mamba), which leverages channel uncertainty as a guiding metric to redefine
the pixel-wise scanning process. As illustrated in Figure 1(c), pixels with
higher median channel uncertainty are often associated with critical areas,
such as the foreground and boundaries. Conversely, regions with lower uncer-
tainty are typically related to the background. By calculating the uncertainty
map and ranking the pixels based on their uncertainty levels, as shown in Fig-
ure 1(d), we ensure that uncertain (and thus critical) regions are distinguished
from more certain regions (typically representing background information).

The proposed scanning strategy, as depicted in Figure 1(f), introduces two
key methods: 1) Sequential scanning: This method processes pixels in
strict order according to their uncertainty levels, effectively clustering high-
uncertainty regions such as boundaries and foreground areas. By focusing on
these critical regions, sequential scanning ensures that the model captures the
fine details in areas crucial for accurate segmentation. 2) Skip scanning: This technique moves
vertically across the image at consistent uncertainty intervals, enhancing the interaction between
background and foreground information. It supplements the model’s understanding of background
regions while ensuring precise foreground segmentation. By combining sequential and skip scan-
ning, UD-Mamba is able to focus on the fine structures of critical regions while maintaining an
understanding of the broader context. This dual-scanning approach enables a more balanced and
effective segmentation performance. Furthermore, as illustrated in Figure 2, scanning from regions
of low uncertainty to high uncertainty generally yields superior results compared to the reverse or-
der. To optimize this process, we introduce four learnable parameters that adjust the importance of
features gathered from different scanning techniques. Additionally, we apply a cosine consistency
loss to ensure that features derived from scanning uncertain-to-certain regions are aligned with those
from certain-to-uncertain regions, further enhancing segmentation accuracy.

Our contributions can be summarized as follows:

• We introduce a novel pixel-level selective scanning approach guided by channel uncer-
tainty, addressing the limitations of traditional position-based sequential scanning methods.

• We incorporate learnable parameters to balance feature importance across different scan-
ning directions and employ a cosine consistency loss to align forward and backward scan
results, improving feature consistency.

• Extensive experiments on three medical imaging datasets demonstrate that UD-Mamba
effectively identifies ambiguous regions, leading to more reliable segmentation outcomes
compared to existing Mamba-based methods.
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2 RELATED WORK

2.1 MEDICAL IMAGE SEGMENTATION

In medical image segmentation, Convolutional Neural Networks (CNNs) and Transformers dom-
inate as leading frameworks. A significant advancement in CNN-based segmentation was intro-
duced by UNet (Ronneberger et al., 2015), which employs a symmetric encoder-decoder architec-
ture with skip connections. These skip connections effectively integrate local features from the
encoder with semantic information from the decoder, setting the foundation for many subsequent
improvements (Zhou et al., 2019; Oktay et al., 2018; Le & Saut, 2023). Despite its success, CNN-
based methods are limited by their local receptive fields, which hinder the capture of long-range
dependencies essential for dense prediction tasks.

Inspired by the Vision Transformers (ViTs) (Dosovitskiy et al., 2021; Liu et al., 2021), there has
been increasing interest in incorporating Transformers into medical image segmentation. Tran-
sUNet (Chen et al., 2024), one of the pioneering works, introduced a hybrid model that uses Trans-
formers in the encoder to model global context, while retaining the overall UNet structure. Swin-
UNet (Cao et al., 2022) further explored a fully Transformer-based framework for segmentation
tasks. While Transformers are adept at modeling long-range dependencies, their self-attention mech-
anism introduces quadratic complexity relative to input size, which poses scalability challenges,
especially in pixel-level tasks like medical image segmentation.

2.2 MAMBA-BASED MEDICAL IMAGE SEGMENTATION

State Space Models (SSMs) have recently emerged as a powerful tool for visual tasks, with
Mamba (Gu & Dao, 2023; Dao & Gu, 2024) showing promising results by efficiently modeling
global context with linear complexity. Mamba-based models have demonstrated their versatility
across a range of applications (Zhu et al., 2024; Ruan & Xiang, 2024; He et al., 2024; Zhang et al.,
2024a; Fan et al., 2024). U-Mamba (Ma et al., 2024) introduces a hybrid framework combining
CNNs and SSMs, effectively capturing both local and global features. Swin-UMamba (Liu et al.,
2024a) incorporates ImageNet-based pretraining into a Mamba-based UNet for enhanced medical
image segmentation performance. P-Mamba (Ye & Chen, 2024) combines Perona-Malik diffusion
with Mamba to improve echocardiographic left ventricular segmentation in pediatric cardiology.
Additionally, Wang et al. (Wang et al., 2024b) introduced LMa-UNet, a Mamba-based network with
a large-window design for improved global context modeling.

Despite these advances, accurately segmenting complex medical images remains a challenge due to
the intricate background and ambiguous class boundaries. Moreover, traditional scanning mecha-
nisms, which intermittently scan different semantic regions, limit the model’s ability to consistently
capture the full range of contextual information within the images.

3 METHOD

In this section, we first introduce the foundational concepts pertinent to State Space Models (SSMs).
Next, we provide a comprehensive overview of our proposed UD-Mamba architecture, with an over-
all framework illustrated in Figure 3. Finally, we elucidate the key components of UD-Mamba, de-
tailing the operational workflow of the Uncertainty-Driven Selective Scanning Block (UD-SSB) and
the derived optimization strategies.

3.1 PRELIMINARIES

In Mamba blocks, the token mixer operates as a specialized selective state space model (SSM) (Gu
& Dao, 2023), which is characterized by its efficient handling of long-range dependencies through
a compact memory representation. The model defines four core input parameters (∆,A,B,C),
which are transformed into (A,B,C) using the following state-space dynamics:

A = exp(∆A)

B = (∆A)−1(exp(∆A)− I) ·∆B
(1)

3
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The Mamba block excels in efficiently modeling temporal sequences using a structured state-space
representation. The sequence transformation in the SSM is expressed as:

ht = Aht−1 +Bxt

yt = Cht

(2)

Here, t refers to the temporal index, xt is the input sequence at time t, ht is the hidden state capturing
the temporal context, and yt represents the output. The hidden state ht serves as a compact, memory-
efficient repository that retains essential historical information, allowing the model to propagate
context across time steps without increasing computational burden.

3.2 UD-MAMBA

Linear

UD-SSB

DW-Conv
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Linear
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LN

Linear

UD block

UD block
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Patch embeding
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Figure 3: An illustration of UD-Mamba architecture.

The UD-Mamba architecture
leverages a streamlined yet robust
UNet framework (Ronneberger
et al., 2015) with basic layers
of Uncertainty-Driven (UD)
Blocks. As illustrated in Figure 3,
the design comprises three key
components: a patch embedding
layer that transforms the input
image into a sequence of patches
for subsequent processing, an
encoder-decoder structure com-
posed of UD blocks that captures
and integrates both local and
global features across varying
scales, and a segmentation head
that produces the final pixel-
wise segmentation output based
on the decoded features. The
encoder-decoder configuration is enhanced by skip connections, which facilitate the integration of
multi-scale feature representations. Within the UD Block, Uncertainty-Driven Selective Scanning
Block (UD-SSB) serve as the critical elements. This architectural choice enhances information
propagation across levels, ultimately improving segmentation accuracy.

3.3 UNCERTAINTY-DRIVEN SELECTIVE SCANNING BLOCK

To address the limitations of traditional state-space models (SSMs) such as Mamba, which struggle
with effectively modeling local features due to intermittent scanning of target regions, we propose
a pixel-level uncertainty-driven selective scanning approach. This method is distinct from con-
ventional pixel-order scanning mechanisms, as it leverages uncertainty at the pixel level to inform
scanning sequences. As illustrated in Figure 4 I, our Uncertainty-Driven Selective Scanning Block
(UD-SSB) introduces five key components: channel uncertainty computation, uncertainty-based
sorting, scan expansion operations, the S6 block (Gu & Dao, 2023) processing, and the recovery
operation.

Given an input feature tensor X ∈ RB×C×H×W , where B, C, H , and W denote the batch size,
number of channels, height and width respectively. We propose the following methodology:

Channel uncertainty computation: To compute an uncertainty map U ∈ RB×H×W for each
spatial position across all channels, we define:

U = Uncertainty(X) (3)
In this context, we utilize the standard deviation as our uncertainty metric, a choice validated by the
results presented in Section 4.4.2. Specifically, for the input feature map X ∈ RB×C×H×W , we
calculate the standard deviation across all channels C for each spatial position (h,w):

Ub,h,w =

√√√√ 1

C

C∑
c=1

(Xb,c,h,w − µb,h,w)2 (4)

4
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Ⅰ .Uncertainty-Driven Selective Scan block

Ⅱ .Optimization Strategies for Selective Scanning Driven by Uncertainty
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Figure 4: UD-SSB module architecture and optimization strategies. I. Depicts the main workflow
of the UD-SSB module architecture. II. Illustrates our two optimization strategies for UD-SSB:
reweighting different scans and cosine consistency constraint.

where µb,h,w represents the mean value at that spatial position across all channels. This calculation
captures the pixel-level standard deviation across channels, where higher uncertainty typically cor-
responds to key regions, such as object boundaries or foreground regions, while lower uncertainty
indicates background consistency. By focusing on pixel-level uncertainty, we can more precisely
identify key regions for medical image segmentation, which is often critical when identifying patho-
logical regions or organ boundaries.

Uncertainty-based sorting: The uncertainty map U is then sorted in descending order, resulting in
Uidx, which ranks the spatial locations from high-uncertainty regions (foreground and boundaries)
to low-uncertainty regions (background). This allows the model to prioritize regions with higher
complexity or importance during subsequent operations:

Uidx = Sort(U) (5)

Feature map rearrangement: Using the sorted indices Uidx, we rearrange the original feature
map X to create X′, where regions of high uncertainty are treated intensively. This reorganization
prepares the feature map for efficient scanning:

X′ = Rearrange(X,Uidx) (6)

Scan expansion operations: We implement two distinct scanning operations on the rearranged
feature map X′: 1) Sequential scanning (Scanse): This operation processes spatial locations in de-
scending order of pixel uncertainty, meaning that regions with higher uncertainty, such as foreground
objects and boundaries, are prioritized. This approach ensures that key high-uncertainty regions are
modeled intensively, allowing the model to focus on areas that are critical for accurate segmenta-
tion. 2) Skip scanning (Scansk): This operation selects spatial locations at regular intervals across
the uncertainty spectrum, facilitating the interaction between background and foreground regions.
By timely integrating background information, skip scanning helps maintain the overall background
structure of the image while refining the details of the foreground, leading to more balanced seg-
mentation results. The combination of sequential and skip scanning enables our model to effectively
capture both local and global features.

S6 block processing: The scanned features are then processed by the S6 block (Gu & Dao, 2023):

Sout = S6(Scanse(X′),Scansk(X′)) (7)

Recovery operation: Finally, the rearranged and processed features are restored to their original
spatial configuration, ensuring that the spatial structure of the output remains consistent with the

5
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input. This ensures that the model preserves positional information critical for accurate medical
image segmentation:

Xrecovered = Recover(Sout) (8)

3.4 UNCERTAINTY-DRIVEN SELECTIVE SCANNING OPTIMIZATION STRATEGY

As depicted in Figure 4 II, the UD-SSB applies four distinct scanning sequences: sequential and skip
scans from high-to-low uncertainty levels (y1 and y2), and sequential and skip scans from low-to-
high uncertainty levels (y3 and y4). Generally, regions with high uncertainty are more likely to cor-
respond to target areas and critical boundaries, while low-uncertainty regions are usually associated
with the background. In the Mamba framework, which operates as an autoregressive model, each
output depends on the hidden state derived from previous inputs. Scanning from low-uncertainty
to high-uncertainty regions allows the model to first process simpler background information, ac-
cumulating hidden state reserves before addressing more complex areas. As shown in Figure 2,
this approach outperforms the reverse scanning order. Therefore, to capitalize on this property, we
propose two optimization strategies to exploit the benefits of scanning from high-to-low uncertainty
while mitigating the inherent limitations of scanning from low-to-high uncertainty.

3.4.1 REWEIGHTING OF DIFFERENT SCANNING SEQUENCES

To optimize the contribution of each scanning sequence, we introduce four learnable parameters (α1,
α2, α3, α4), each corresponding to one of the four scanning directions. These parameters serve to
enhance the advantages of scanning from high-to-low uncertainty while modulating the contribution
of each individual scanning sequence. The reweighting mechanism is mathematically defined as:

y′
i = yi · αi for i = 1, 2, 3, 4 (9)

This approach ensures that each scanning method contributes in proportion to its effectiveness in
capturing critical image regions, with greater emphasis placed on scans that progress from more
certain to less certain areas.

3.4.2 CONSISTENCY CONSTRAINTS BETWEEN BIDIRECTIONAL SCANS

To address the limitations associated with low-to-high uncertainty scans during the decoding phase
and improve overall segmentation performance, we introduce a cosine consistency constraint at the
end of the decoder. This constraint is applied between sequential and skip scans performed in both
directions (from high-to-low and low-to-high uncertainty). By aligning the results from low-to-high
uncertainty scans with those from high-to-low uncertainty scans, we ensure consistency in feature
representation across different scanning directions. To maintain positional consistency, all outputs
yr
i are derived after the recovery operation is applied to yi. The cosine consistency loss is defined

as:

Lcos = 1− cos sim(yr
1,y

r
3) + cos sim(yr

2,y
r
4)

2
, (10)

where cos sim represents the average cosine similarity between the forward and backward sequential
and skip scans. By maximizing this similarity, we aim to minimize discrepancies between the two
scanning directions, thereby reinforcing the consistency of the final segmentation outputs.

Finally, the overall loss function combines the supervised loss with the cosine consistency loss:

L = Lsup + λ · Lcos, (11)

where Lsup represents the combined cross-entropy and Dice loss (CeDice loss), Lcos is the cosine
similarity loss, and λ is a hyperparameter that balances these two components.

4 EXPERIMENTS

4.1 DATASET

To verify the effectiveness of UD-Mamba, we comprehensively evaluate its performance on three
medical image datasets: DigestPath, ISIC 2018 and ACDC.

6
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Figure 5: Visual comparisons of segmentation results from UD-Mamba and various other methods
are conducted across three different datasets.

The DigestPath dataset (Da et al., 2022) comprises whole slide images (WSIs) for binary segmenta-
tion of tumor lesions in colonoscopy. We randomly divided 130 malignant WSIs into three subsets:
100 for training, 10 for validation, and 20 for testing. For model training, WSIs were further parti-
tioned into 256 × 256 pixel patches, yielding a training set of 29,412 patches. Our model evaluation
was conducted at the WSI level.

The ISIC 2018 dataset (Codella et al., 2019), part of the 2018 International Skin Imaging Collab-
oration challenge, is a public dataset for skin lesion segmentation containing 2,694 dermoscopy
images with corresponding label data. We split the dataset into training, validation, and test sets
using a 7:2:1 ratio. Based on these two datasets, we conducted a detailed evaluation using perfor-
mance metrics including mean Intersection over Union (mIoU), Dice Similarity Coefficient (DSC),
Accuracy (Acc), Sensitivity (Sen), and Specificity (Spe).

The ACDC dataset (Bernard et al., 2018) consists of cardiac cine MRI scans from 100 patients,
used for the segmentation of three cardiac substructures: the Left Ventricle (LV), Right Ventricle
(RV), and Myocardium (MYO). We split the dataset into 70% for training, 10% for validation,
and 20% for testing. All slices were resized to a uniform resolution of 256 × 256 pixels before
training. Performance was evaluated using the Dice Similarity Coefficient (DSC), mean Intersection
over Union (mIoU), and 95% Hausdorff Distance (HD95). Given the fixed anatomical structures in
ACDC, the inclusion of HD95 provides a more robust assessment of boundary accuracy.

4.2 IMPLEMENTATION DETAILS

All experiments were conducted using the PyTorch framework on an Ubuntu desktop equipped with
an NVIDIA RTX A6000 GPU. Training was performed using Stochastic Gradient Descent (SGD)
with a multi-step learning rate strategy, initially set to 0.01. The total number of training epochs was
fixed at 300. For UD-Mamba, each layer of both the encoder and decoder corresponds to two UD
blocks. We utilize weights pre-trained on ImageNet-1K (Deng et al., 2009) to initialize the encoder.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4.3 COMPARISON WITH EXISTING METHODS

To validate the effectiveness of our proposed UD-Mamba model, we compared it with state-of-
the-art medical image segmentation methods across three datasets: ISIC, DigestPath, and ACDC.
Specifically, the models evaluated included CNN-based approaches (such as UNet (Ronneberger
et al., 2015), UNet++ (Zhou et al., 2019) and Att-UNet (Oktay et al., 2018)), Transformer-based
models (like TransUNet (Chen et al., 2024) and SwinUNet (Cao et al., 2022)), as well as Mamba-
based models (Mamba-UNet (Wang et al., 2024c)). The visualization results are shown in Figure 5.

Table 1: Performance comparison of different networks on ISIC 2018 and Tissue datasets.

Dataset ISIC 2018 DigestPath
Network DSC(%)↑ IoU(%)↑ ACC(%)↑ Spe(%)↑ Sen(%)↑ DSC(%)↑ IoU(%)↑ ACC(%)↑ Spe(%)↑ Sen(%)↑

UNet 86.51 77.81 92.91 94.90 88.69 77.96 64.91 94.30 96.09 80.74
UNet++ 87.36 79.20 93.10 95.59 88.71 78.37 65.43 94.52 96.13 80.41

TransUNet 88.12 80.32 93.91 94.04 89.40 79.30 66.74 94.64 96.27 81.18
SwinUNet 87.20 79.27 93.49 96.22 87.30 79.15 66.54 94.75 96.84 79.98
Att-UNet 87.47 79.31 93.12 95.77 88.83 78.28 65.24 94.38 95.78 81.57

Mamba-UNet 87.86 80.36 93.79 96.36 89.61 79.92 67.41 94.65 96.06 82.47
Ours 89.15 81.94 94.60 96.26 89.55 80.89 68.64 94.98 96.44 83.34

For the ISIC 2018 and DigestPath datasets, as shown in Table 1, we employed five evaluation metrics
to assess the model’s segmentation performance. Firstly, the UD-Mamba method significantly out-
performs CNN-based approaches. Specifically, UD-Mamba achieved improvements of 1.68% and
2.52% in DSC over the best CNN methods on the ISIC 2018 and DigestPath datasets, respectively.
Moreover, the mIoU scores increased by 2.63% and 3.21%. Compared to Transformer-based mod-
els such as TransUNet (Chen et al., 2024), our method demonstrated a notable advantage in mIoU,
with increases of 1.62% for ISIC 2018 and 1.90% for DigestPath. Additionally, when compared to
the representative Mamba-based model Mamba-UNet (Wang et al., 2024c), UD-Mamba improved
the mIoU by 1.58% and 1.23% on the two datasets, respectively.

Table 2: Comparison of different networks on ACDC dataset.

Network DSC(%)↑ RV MYO LV mIoU(%)↑ HD95(mm) ↓
UNet (Ronneberger et al., 2015) 90.07 89.11 87.22 93.89 82.42 2.74

UNet++ (Zhou et al., 2019) 90.23 89.08 87.65 93.96 82.64 1.90
TransUNet (Chen et al., 2024) 90.70 91.71 87.74 92.68 83.50 2.76
SwinUNet (Cao et al., 2022) 89.45 90.52 86.23 91.60 81.55 3.56
Att-UNet (Oktay et al., 2018) 89.17 88.45 86.14 92.94 81.04 3.17

Mamba-UNet (Wang et al., 2024c) 91.08 90.80 88.09 94.35 84.03 1.40
Ours 91.99 90.85 90.69 94.45 85.48 1.31

For the ACDC dataset, Table 2 presents a comparison of results with other methods. Compared
to the best-performing Mamba-UNet (Wang et al., 2024c), our approach demonstrated significant
improvements, with increases of 0.91% and 1.45% in DSC and mIoU, respectively, while reducing
the HD95 metric to 1.31 mm.

Table 3: Comparison of the effects of uncer-
tainty scanning and its optimization strategies.

UD-SSB Reweight Lcos DSC ↑ mIoU ↑ ACC ↑
79.92 67.41 94.65

✓ 80.32 68.14 94.93
✓ ✓ 80.41 68.18 94.94
✓ ✓ 80.72 68.55 94.97
✓ ✓ ✓ 80.89 68.64 94.98

Table 4: Comparison of different methods for
measuring the uncertainty of channels.

Method DSC ↑ mIoU ↑ ACC ↑
Mad 80.75 68.58 94.97

Range 79.89 68.07 94.88
Entroph 80.28 67.96 94.89
Variance 80.02 67.26 94.75

STD 80.89 68.64 94.98

4.4 ABLATION STUDIES

In the ablation study section, we conduct experimental verification on the DigestPath dataset (Da
et al., 2022).

4.4.1 ABLATION OF UNCERTAINTY SCANNING AND ITS OPTIMIZATION STRATEGIES

8
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Input Mamba-Unet UD-Mamba GT

Figure 6: Visual comparisons of uncertainty
maps.

We conducted ablation experiments on the pixel-
level channel uncertainty-driven scanning oper-
ation and its optimization strategies. As shown
in Table 3, without our components (first row),
the method degenerates into a standard position-
based scanning approach. We observed that the
uncertainty-driven scanning method yielded su-
perior results compared to the original scanning
method (DSC: 80.32% vs. 79.92%). This con-
firms that the uncertainty-driven scanning ap-
proach effectively separates uncertain regions
representing foreground and boundaries from
background-related areas, thereby enhancing lo-
cal modeling capabilities. As illustrated in Fig-
ure 6, our method demonstrates excellent model-
ing capability for target regions compared to the
traditional position-based scanning method used
in Mamba-UNet (Wang et al., 2024c). Further-
more, the re-weighting and consistency constraint strategies further enhance the model’s represen-
tational capacity. These strategies amplify the advantages of scanning from high to low uncertainty
while mitigating the limitations of scanning from low to high uncertainty, resulting in an improved
DSC of 80.89%.

4.4.2 ABLATION OF DIFFERENT UNCERTAINTY CALCULATION METHODS

To evaluate various criteria for measuring channel uncertainty, we conducted ablation experiments.
These criteria include Mean Absolute Deviation (MAD), Standard Deviation (STD), Variance, En-
tropy and the Range between the two highest values. As illustrated in Table 4, the use of STD
provides a stable measure of data dispersion. This stability enables the model to more reliably iden-
tify true regions of uncertainty, rather than being misled by noise or outliers. Consequently, the
method that employs STD to calculate uncertainty achieved the best results, attaining the highest
Dice Similarity Coefficient (DSC) of 80.89%.

4.4.3 ABLATION OF UNCERTAINTY CALCULATION REGION

Table 5: Comparison of different methods for calculat-
ing uncertainty.

Size Static Dynamic
1 2 4 8 av/a

min
v amax

v /av
DSC ↑ 80.89 80.44 80.19 79.82 79.85 79.93

To evaluate the effectiveness of pixel-
level uncertainty-driven scanning in sce-
narios lacking explicit spatial features,
we conducted comparative experiments
focusing on the size of the regions used
for uncertainty calculations. Instead of
relying solely on the uncertainty of indi-
vidual pixels, we extended the calculation
to larger regions to retain some degree of spatial information. These regions are defined as uncer-
tainty blocks with dimensions a× a.

Our experimental design explores both fixed and dynamically adjusted values for a. For fixed-size
regions, we varied a from 1 up to amin

v . In the case of dynamically adjusted regions, two strategies
were employed: (1) proportional scaling, where a = av/a

min
v , allowing a to increase proportion-

ally with the feature vector size av; and (2) inverse proportional scaling, where a = amax
v /av ,

causing a to decrease as the feature vector size av increases. Here, av refers to the feature vector
size at each stage before entering the UD-SSB, amax

v represents the feature vector size upon the
first entry into the UD-SSB, and amin

v denotes the feature vector size at the bottleneck layer. In
UD-Mamba, amax

v and amin
v are set to 64 and 8, respectively. After calculating the average un-

certainty value for each region, these values are used to rank the regions for subsequent scanning.
As demonstrated in Table 5, pixel-level uncertainty-driven scanning consistently outperforms both
dynamic and static region-based methods. This result highlights the advantages of pixel-level granu-
larity in determining uncertainty for fine-grained tasks like medical image segmentation. Compared
to broader region-based uncertainty approaches, pixel-level uncertainty focuses on capturing local
variations, providing a more precise method for identifying critical segmentation targets.
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Figure 7: Analysis of recorded values for four
learnable reweighting parameters.

Figure 8: Sensitivity analysis of the hyperpa-
rameter λ.

4.4.4 CHANGES IN RE-WEIGHTING VALUES FOR FOUR DIFFERENT SCANNING METHODS

Figure 7 illustrates the evolution of the four learnable parameters α1, α2, α3, and α4, which reweight
the four different scanning sequences, throughout the training process. All four parameters exhibit a
downward trend, with α3 and α4 showing a less pronounced decrease compared to α1 and α2. This
pattern suggests that during training, the scanning processes from high to low uncertainty levels,
corresponding to α3 and α4, contribute more significantly than the scanning processes from low
to high uncertainty levels associated with α1 and α2. This observation indirectly corroborates the
conclusion proposed in Figure 2.

4.4.5 ABLATION OF HYPERPARAMETER λ

For the hyperparameter λ, which controls the magnitude of the consistency constraint loss between
bidirectional scans, we conducted ablation experiments to determine its optimal range. As shown
in Figure 8, the best results were obtained when λ was set to 0.3.

5 CONCLUSION

In this paper, we introduce UD-Mamba, a novel architecture designed to address Mamba’s limita-
tions in local feature modeling. By integrating a pixel-level channel uncertainty-driven mechanism,
UD-Mamba effectively prioritizes pixels based on channel uncertainty, enabling comprehensive and
efficient feature extraction. Furthermore, as scanning from low-uncertainty to high-uncertainty vec-
tors typically yields greater benefits than the reverse process, we introduce four learnable parameters
to explore the impact of various scanning sequences on the autoregressive Mamba framework. Con-
currently, we enhance the efficacy of transitions from high-uncertainty to low-uncertainty regions
by constraining the cosine similarity loss between forward and backward scanning results. Exper-
imental results on three medical imaging datasets demonstrate UD-Mamba’s superior performance
in medical image segmentation tasks compared to traditional models.

Future work will focus on developing more precise and effective uncertainty estimation methods,
as model performance depends heavily on accurate channel uncertainty estimation. The use of
standard deviation to evaluate uncertainty may be inadequate for capturing more complex patterns
across diverse medical imaging tasks. Additionally, we aim to expand the application of UD-Mamba
to a wider range of medical image segmentation challenges.

Ethical Considerations: All authors of this paper have reviewed and are committed to upholding
the ethical guidelines outlined in the ICLR Code of Ethics.

Reproducibility Statement: We provide a detailed description of the model architecture (UD-
Mamba in Section 3.2), loss functions (Section 3.4.2), and training procedures (Section 4.2). All
related code will be open-sourced to ensure full reproducibility.
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