SEAGENT: SELF-EVOLVING COMPUTER USE AGENT WITH AUTONOMOUS LEARNING FROM EXPERIENCE

Anonymous authors

000

001

002003004

010 011

012

013

014

015

016

017

018

019

021

025

026

027

028

029

031

032

034

037

040

041

042

043

044

046

047

048

051

052

Paper under double-blind review

ABSTRACT

Repurposing large vision-language models (LVLMs) as computer use agents (CUAs) has led to substantial breakthroughs, primarily driven by human-labeled data. However, these models often struggle with novel and specialized software, particularly in scenarios lacking human annotations. To address this challenge, we propose SEAgent, an agentic self-evolving framework enabling CUAs to autonomously evolve through interactions with unfamiliar software. Specifically, SEAgent empowers computer-use agents to autonomously master novel software environments via experiential learning, where agents explore new software, learn through iterative trial-and-error, and progressively tackle auto-generated tasks organized from simple to complex. To achieve this goal, we design a World State Model for step-wise trajectory assessment, along with a Curriculum Generator that generates increasingly diverse and challenging tasks. The agent's policy is updated through experiential learning, comprised of adversarial imitation of failure actions and Group Relative Policy Optimization (GRPO) on successful ones. Furthermore, we introduce a specialist-to-generalist training strategy that integrates individual experiential insights from specialist agents, facilitating the development of a stronger generalist CUA capable of continuous autonomous evolution. This unified agent ultimately achieves performance surpassing ensembles of individual specialist agents on their specialized software. We validate the effectiveness of SEAgent across five professional software of OSWorld, ScienceBoard and AndroidWorld. Our approach achieves a significant improvement over a competitive open-source CUA, UI-TARS. All the code and models will be made publicly available to foster further research.

1 Introduction

"A new generation of agents will acquire superhuman capabilities by learning predominantly from experience." (Silver & Sutton, 2025)

— David Silver, Richard S. Sutton

With the rapid development of large vision-language models (LVLMs) (Touvron et al., 2023; Grattafiori et al., 2024; Bai et al., 2025; Wang et al., 2024; OpenAI, 2023; Anthropic, 2025b; Team et al., 2023), computer use agents (CUAs) (Anthropic, 2024; OpenAI, 2025; Qin et al., 2025; Lin et al., 2024; Wu et al., 2024b) have not only emerged but also demonstrated increasing practical utility. By leveraging the powerful perception and reasoning capabilities of LVLMs, these agents can interpret screenshots as visual inputs and operate computers via keyboard and mouse actions. Despite their promising capabilities, current CUAs (Qi et al., 2024; Putta et al., 2024; Deng et al., 2023; He et al., 2024; Bai et al., 2024; Lu et al., 2024) primarily depend on costly human-curated datasets (Deng et al., 2023; Chen et al., 2024; Wu et al., 2024b; Kapoor et al., 2024; Li et al., 2024), which are typically derived from demonstrations (Lu et al., 2024; Zhang & Zhang, 2023; Gur et al., 2023; Rawles et al., 2023; Zhang et al., 2024a) or video tutorials in the wild (Xu et al., 2024). However, new software continuously emerges and existing software may regularly be updated, often in the absence of annotated human data. It is both necessary and timely to enter an era that emphasizes learning from experience (Silver & Sutton, 2025) in CUA domain. In this paper, we aim to enable CUAs to autonomously explore unfamiliar software environments and evolve into experts without relying on human supervision.

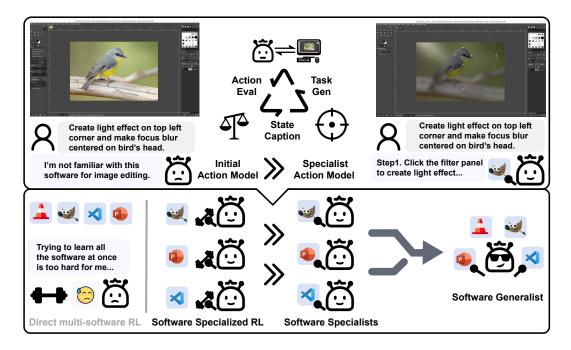


Figure 1: **SEAgent enables computer use agents self-evolving in novel environments** by autonomously exploring and learning from their own experiences without human intervention. The specialist-to-generalist training strategy further enhances the development of a strong generalist agent.

To address this challenge, we propose SEAgent, an agentic self-evolving framework in which Computer Use Agents (CUAs) are exposed to previously unfamiliar software environments and engage in autonomous exploration and experiential learning, as illustrated in Fig. 1. Enabling such self-evolution requires addressing two key challenges: (1) generating executable tasks within unfamiliar software environments, and (2) accurately assessing task success and precisely identifying the step at which failure occurs. To this end, we introduce a **World State Model** for environmental state captioning and step-wise trajectory assessment, together with a **Curriculum Generator** powered by a continuously updated software guidebook memory to generate increasingly diverse and challenging tasks, thereby establishing a curriculum learning paradigm. The agent's policy is optimized through experiential learning from both failures and successes, combining adversarial imitation of failure actions and Group Relative Policy Optimization (GRPO) on successful ones.

Given the critical role of reward accuracy, we conduct extensive evaluations and observe that existing reward models of computer use tasks fall short in terms of judgment precision and reward density. Leveraging the enhanced long-context processing capabilities of advanced LVLMs, we input the agent's full trajectory of states into the reward model and fine-tune a reward model, World State Model, using Qwen2.5-VL (Bai et al., 2025), substantially narrowing the gap with commercial models such as GPT-40 (OpenAI, 2023) with +7.5% improvement in precision compared to baseline model in evaluating CUAs' trajectories on AgentRewardBench (Lù et al., 2025), enable World State Model to provide high quality step level reward signals in self-evolving agentic system.

Moreover, SEAgent enables agents to evolve into either single-software specialists or multi-software generalists. To overcome the limitation that directly training a generalist underperforms compared to specialists, inspired by (Zhang et al., 2024c), we introduce a novel specialist-to-generalist training strategy, which even surpasses the performance of individual specialists on their respective software applications. We perform extensive experiments of SEAgent built on UI-TARS (Qin et al., 2025) and evaluated on five professional software applications from OSWorld (Xie et al., 2024). SEAgent with the specialist-to-generalist strategy significantly improves the UI-TARS (Qin et al., 2025). Furthermore, SEAgent with the specialist-to-generalist strategy outperforms both specialist RL and generalist RL by a substantial margin, demonstrating the effectiveness of the specialist-to-generalist paradigm. We also validate this strategy on UI-TARS-1.5 on ScienceBoard (Sun et al., 2025) on out of domain scientific softwares. In general, SEAgent offers a promising approach for developing more powerful and versatile computer-use agents without human involvement.

2 RELATED WORK

Agent for Computer Use. With recent revolution in LLM and LVLMs (Touvron et al., 2023; Grattafiori et al., 2024; Liu et al., 2023a; Bai et al., 2025; Wang et al., 2024), processing human level perception and reasoning ability, building computer use agent is also intensively studied (Hu et al., 2024; Hong et al., 2024; Cheng et al., 2024; Nguyen et al., 2024; Lin et al., 2024). These agents either takes only text input from structured text (Qi et al., 2024) or more like human, take screenshot and text condition as multi-modal input. Although intensively studied and perform well on in-domain benchmark (Lu et al., 2024; Zheng et al., 2024; Liu et al., 2024; Li et al., 2025; Cheng et al., 2024), The computer use agent still fall largely behind human level performance in simulation environment (Xie et al., 2024; Rawles et al., 2024; Koh et al., 2024; Zhou et al., 2023), as its challenge the multi-dimension ability of LVLMs in grounding, decision making and reasoning with works done breaking this process into different expert models (Gou et al., 2024; Wan et al., 2024) with agent calloberation (Agashe et al., 2024; 2025; Liu et al., 2023b; Zhang et al., 2025) through prompt engineering (Yan et al., 2023; He et al., 2024; Zhang et al., 2024b; Wang et al., 2023; Wu et al., 2024a), However, these training free methods improvements is restricted without fine-tuning. In this

work, we dive into the next step of CUA where the pretrained agent is fine-tuned to learn from its own

experience and achieves self-evolution on specialized novel software without human annotations.

Reinforcement Learning for LLM/ LVLMs. Previous post-training for LLM/ LVLMs (Touvron et al., 2023; Grattafiori et al., 2024; Liu et al., 2023a; Bai et al., 2025; Wang et al., 2024) mainly from supervised fine-tuning (SFT) (Liu et al., 2023a; Wei et al., 2022). Similar to imitation learning in RL, SFT teach model to output desired output. This makes SFT highly dependent on high quality human procedure data. Recently, DeepSeek-R1 (Guo et al., 2025) achieve strong reasoning ability through Group Relative Policy Optimization (GRPO) (Shao et al., 2024) with verifiable rewards. Previous works (Ouyang et al., 2022; Ziegler et al., 2019; Rafailov et al., 2023) also apply RL to single turn optimization from human feedback. However, in agentic applications like computer use where environment feedback is sparse, where success is achieved with multi-step interactions. It is important to introduce stable step level reward signals. Previous works on RL for agent (Bai et al., 2024; Qi et al., 2024; Zhou et al., 2024; Zhai et al., 2024; Carta et al., 2023) fine-tune their own critic model for advantage estimation based on output reward model (ORM) or use DPO (Rafailov et al., 2023) policy updates based on interaction data (Putta et al., 2024; Qin et al., 2025). In this work, we dive into evaluation of different strategies for building the best performing reward model for CUAs and find that full process based analysis provide the most accurate results compared to training specific critic model to perform advantage estimation in (Bai et al., 2024; Qi et al., 2024).

3 Methods

Problem Formulation. The objective of SEAgent is to establish a training pipeline enabling the Computer Use Agent (CUA) to autonomously explore its environment (Sec. 3.1) and progressively self-evolve on novel software applications via reinforcement learning from experience (Sec. 3.2). Specifically, the SEAgent pipeline comprises three primary components: an Actor Model π performing exploratory actions to accomplish these tasks, and a World State Model \mathcal{M}_{state} describing the current environment state and evaluating the success or failure of executed actions, and a Curriculum Generator \mathcal{M}_{task} that continuously proposes more diverse and challenging exploration tasks:

- (1) Actor Model π : The policy $\pi(a|s_t, I)$ defines the probability of taking action a at time step t, conditioned on the current state s_t and the overall task instruction I.
- (2) World State Model \mathcal{M}_{state} : This component is a fine-tuned Large Vision-Language Model (LVLM) responsible for providing detailed descriptions of environment states. It also evaluates each step of the trajectory executed by the Actor Model π , producing trajectory judgement \mathcal{J} which indicates whether the task has been successfully completed. Joint training with state change captioning \mathcal{C} of the software GUI has been shown to enhance judgment accuracy, as shown in Table 1.
- (3) Curriculum Generator \mathcal{M}_{task} : This component utilizes a powerful Large Language Model (LLM) to automatically generate novel exploration tasks. It also maintains and updates a software guidebook U based on the state change captioning \mathcal{C} and the trajectory judgement \mathcal{J} provided by

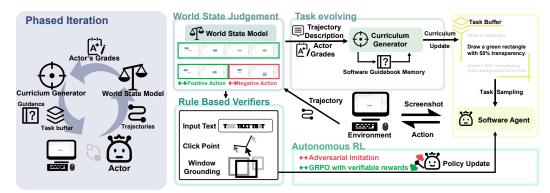


Figure 2: **SEAgent autonomous exploration and experiential learning pipeline.** Guided by tasks generated by the Curriculum Generator, the Actor Model is updated according to step-level rewards from the World State Model through verifiable reward functions tailored for different action types.

 \mathcal{M}_{state} during interactions. The gradually enriched guidebook U enables \mathcal{M}_{task} to progressively generate increasingly diverse and challenging tasks in a curriculum learning fashion.

SEAgent can be applied to enable the self-evolution of a computer-use agent, either as a specialist for a single software or as a generalist across multiple software. However, we observe that direct training for generalist agents is suboptimal. We introduce a specialist-to-generalist training strategy, which achieves improved overall performance than training multiple generalist agents detailed in Sec. 3.3.

3.1 AUTONOMOUS EXPLORATION WITH SELF-EVOLVING CURRICULUM

Autonomous exploration is essential for enabling the Computer Use Agent (CUA) to develop proficiency in novel software applications that are previously unseen or poorly understood. This process involves addressing two key challenges: (1) generating executable tasks within unfamiliar software environments, and (2) evaluating task completion success and pinpointing the specific step at which failure occurs. To tackle these challenges, we introduce two novel components: the World State Model $\mathcal{M}_{\text{state}}$ and the Curriculum Generator $\mathcal{M}_{\text{task}}$. These components jointly support a **self-evolving curriculum paradigm**, which facilitates the autonomous generation of increasingly diverse and challenging tasks.

The **self-evolving curriculum paradigm** pipeline is structured into P sequential phases. Before the first phase, a set of initial tasks targeting basic GUI operations is generated (details provided in Sup. C.1). In each phase, these tasks are executed and step-wise evaluated. The resulting judgments and descriptions of the exploration trajectories are fed into the Curriculum Generator $\mathcal{M}_{\text{task}}$, which updates a self-maintained software guidebook U. Leveraging this updated guidebook and the current capabilities of the CUA, the generator then produces more diverse and challenging tasks for subsequent phases. The following outlines each step of the process in detail:

- (1) Task initiation: The initial state of the unfamiliar software is provided, typically in the form of screenshots of its basic GUI interface. The World State Model $\mathcal{M}_{\text{state}}$ performs dense captioning of the GUI elements, including button detection and OCR-based recognition. These detailed captions are passed to the Curriculum Generator $\mathcal{M}_{\text{task}}$, which generates an initial set of task instructions $\mathcal{I}_0 = \{I_0^{(1)}, I_0^{(2)}, \cdots\}$ along with an initial software guidebook U_0 for the software.
- (2) World state judgment: In the p-th phase of Auto Exploration, the Actor Model π_p executes tasks based on the instructions in \mathcal{I}_p . Each execution is evaluated by the World State Model $\mathcal{M}_{\text{state}}$, which provides feedback $\mathcal{J}_p = \{J_p^{(1)}, J_p^{(2)}, \cdots\}$ for each step within the operation trajectory. In addition, it generates a detailed description of GUI state changes based on captured screenshots, denoted as \mathcal{C}_p .
- (3) Task self-evolving: Based on the outcomes \mathcal{J}_p and \mathcal{C}_p , the Curriculum Generator $\mathcal{M}_{\text{task}}$ produces a more challenging task set \mathcal{I}_{p+1} and expands the agent's knowledge boundary by updating the software guidebook to U_{p+1} . The detailed prompting process is illustrated in Fig. 9. This iterative update can be formalized as:

$$U_{p+1}, \mathcal{I}_{p+1} = \mathcal{M}_{\text{task}}(U_p, \mathcal{I}_p, \mathcal{J}_p, \mathcal{C}_p) \tag{1}$$

Here, U_{p+1} serves as a more comprehensive software guidebook memory, while \mathcal{I}_{p+1} represents a more challenging task set tailored to the current capabilities of the Actor Model π_p . Examples of \mathcal{I}_p are provided in Fig. 4, where the Actor Model π demonstrates curriculum learning by handling increasingly complex tasks across different phases p. Illustrations of U_p across various software applications are provided in Sup. J. Comparison with previous methods (Murty et al., 2025; 2024; Sun et al., 2024) on task generation are detailed in Sup.C.2

(4) Autonomous RL Training: Through iterative reinforcement learning, the Actor Model π_p is updated based on its execution of the instruction set \mathcal{I}_p , guided by evaluation feedback \mathcal{J}_p and a set of action-specific verifiable functions $\mathcal{R}_{\text{verifer}}$. The resulting policy π_{p+1} is then used as the actor in the subsequent phase. Further details are provided in Sec. 3.2.

3.2 Reinforcement Learning from Experience

The World State Model \mathcal{M}_{state} provides step-level reward signals for reinforcement learning. Unlike previous reward models for CUA (Qi et al., 2024; Bai et al., 2024; Putta et al., 2024; Pan et al., 2024; Lù et al., 2025), our \mathcal{M}_{state} model takes the entire trajectory of states and actions, $\mathcal{H} = \{(s_0, a_0), (s_1, a_1), \ldots\}$, as input. It classifies each action a as either a_F or a_T , where a_F indicates an incorrect action leading to failure or redundant loops, and a_T represents a correct action that contributes to successful progression without redundancy. The curated prompt used for judgment is depicted in Fig. 8 with input/output format detailed in Sec.?? For historical states that result in a_T , we encourage CUA to reinforce these actions through verifiable rewards defined by a set of functions $\mathcal{R}_{\text{verifer}} = \{r_{dist}\}$. Conversely, for states leading to a_F , we penalize them using negative KL divergence with adversarial imitation.

Adversarial Imitation for Failure Action Punishment. To explicitly encourage the policy to diverge from failure-inducing behaviors, we employ a contrastive log-ratio loss based on a reference failure action a_F . This objective encourages the policy to sample actions a that minimize alignment with the failure action a_F :

$$\mathcal{L}_{AI}(\pi_{\theta}) = \mathbb{E}_{\nu} \left[-\log \frac{\pi_{\theta}(a \mid s, I)}{\pi_{ref}(a_F \mid s, I)} \right]$$
 (2)

Verifiable Rewards for Correct Action Encouragement. To more effectively guide the policy toward correct actions a_T , we adopt Reinforcement Learning with Verifiable Rewards (RLVR) (Guo et al., 2025; Shao et al., 2024), which has recently shown success in enhancing language models on tasks with objectively verifiable answers, such as mathematics (Shao et al., 2024), and more recently, counting and grounding in the vision-language domain (Liu et al., 2025; Shen et al., 2025; Meng et al., 2025). After labeling the correct step (s, a_T) using the World State Model, we apply Group Relative Policy Optimization (GRPO), computing the relative advantage of each response based on its reward:

$$A^{(i)} = \frac{r^{(i)} - \operatorname{mean}(\{r^{(j)}\}_{j=1}^G)}{\operatorname{std}(\{r^{(j)}\}_{j=1}^G)}, \quad i = 1, \dots, G.$$
(3)

As we design distinct reward signals for different action types, we define the reward function between a predicted action a and the ground-truth action a_T as:

$$r^{(i)} = r(a^{(i)}, a_T) = \mathbb{I}\left(\text{type}(a^{(i)}) = \text{type}(a_T)\right) + r_{\text{dist}}(a^{(i)}, a_T),$$
 (4)

where $\mathbb{I}(\cdot)$ is the indicator function that returns 1 if the predicted action and ground-truth action are of the same type, and 0 otherwise. The distance-based reward term $r_{\text{dist}}(a^{(i)}, a_T)$ is defined according to the specific action type: for <code>click</code> actions, it is computed based on the normalized L1 distance between the clicked coordinates; for <code>drag</code> and <code>select</code> actions, it is computed using the Intersection over Union (IoU) between the predicted and ground-truth bounding boxes; and for <code>type</code> actions, it is determined by the character-level BLEU score between the predicted and ground-truth text. All r_{dist} rewards are normalized to the range [0,1] to ensure consistency across different action types. A comprehensive list of $r_{\text{dist}}(a^{(i)}, a_T)$ definitions for various action types is provided in Tab. 9. The final loss of GRPO is directly adopted from (Shao et al., 2024):

$$\mathcal{L}_{GRPO}(\pi_{\theta}) = -\mathbb{E}_{(s,I)\sim\mathcal{D},\{a^{(i)}\}_{i=1}^{G}\sim\pi_{ref}(\cdot|s,I)}$$

$$\left[\frac{1}{G} \sum_{i=1}^{G} \frac{1}{|a^{(i)}|} \sum_{t=1}^{|a^{(i)}|} \left\{ \min\left(r_{t}^{(i)}(\theta)A^{(i)}, \text{clip}(r_{t}^{(i)}(\theta), 1 - \epsilon, 1 + \epsilon)A^{(i)}\right) - \beta D_{KL}^{(i,t)}(\pi_{\theta} \| \pi_{ref}) \right\} \right],$$
(5)

$$\text{where} \quad r^{i,t}(\theta) = \frac{\pi_{\theta}(a^{(i)}|s,I)}{\pi_{\theta_{\text{ref}}}(a^{(i)}|s,I)} \text{ and } D_{\text{KL}}^{i,t}(\pi_{\theta},\pi_{\text{ref}}) = \frac{\pi_{\text{ref}}(a^{(i)}|s,I)}{\pi_{\theta}(a^{(i)}|s,I)} - 1 - \log \frac{\pi_{\text{ref}}(a^{(i)}|s,I)}{\pi_{\theta}(a^{(i)}|s,I)}.$$

Similar to (Shao et al., 2024; Guo et al., 2025), advantage A is weighted on the whole reasoning token logits to encourage free form thinking for performing action and planning.

The final training loss is defined as a weighted combination of positive and negative action samples, i.e., correct actions a_T and incorrect actions a_F : $\mathcal{L}(\pi(\theta)) = \mathcal{L}_{GRPO} + \gamma \mathcal{L}_{AI}$. We set $\gamma = 0.2$ during training, and the rationale for this choice is discussed in the ablation study presented in Sup. F.

This strategy is shown to be more effective in Sec. 4.2 compared to Generalized Advantage Estimation (GAE) (Schulman et al., 2015)-based RL methods (Qi et al., 2024; Bai et al., 2024), as the more powerful reward model \mathcal{M}_{state} provides accurate step-level reward signals by leveraging the entire episode trajectory \mathcal{H} from a global perspective.

3.3 From Specialist to Generalist.

Achieving a generalist agent capable of operating across multiple software platforms is an ambitious and valuable goal. We first attempted to train such a generalist directly using the proposed SEAgent framework across all software environments. However, this approach led to suboptimal performance compared to specialized agents, as the actor struggled to learn effectively in the multi-software environment.

We thus introduce a specialist to generalist strategy, as illustrated in Fig. 1. Specifically, we first train software-specialized agents via SEAgent on individual environments, allowing each to master a specific application. These specialists are then distilled into a single generalist model through supervised fine-tuning (SFT) on synthesized successful trajectories. Finally, the generalist is refined via SEAgent on multiple software. This generalist, now equipped with better reasoning, planning abilities, and software-specific commonsense, achieves significantly improved performance, outperforming both the SEAgent via direct general RL and the performance combination of multi-specialists as in Table 2.

4 EXPERIMENTS

4.1 EVALUATION OF REWARD MODEL FOR COMPUTER USE AGENT.

Providing CUA agents with reliable reward signals is crucial for enabling self-evolution. Building on AgentRewardBench (Lù et al., 2025), which focuses on web tasks, we extend the evaluation to a broader set of PC software environments. Specifically, we evaluate on all 339 feasible tasks from OSWorld (Xie et al., 2024). Trajectories are sampled from UI-TARS (Qin et al., 2025) and Gemini-2.5-Pro (Google DeepMind, 2025), and a rule-based evaluation is used as ground-truth supervision to compute a confusion matrix for each reward model's predictions.

The judging strategy in AgentRewardBench (Lù et al., 2025) is limited, as it relies solely on the final state and action history. It is more natural and reliable for a judge model to consider the entire trajectory when assessing task success. For example, a final state message like "Your flight ticket has been successfully booked" does not confirm whether the correct date and time were selected, which can lead to compromised judgment accuracy.

However, we observe that current open-sourced LVLMs perform poorly under this more holistic evaluation strategy. As shown in Fig. 3, feeding additional historical screenshots into Qwen2.5-VL (Bai et al., 2025) significantly degrades its Average Precision (AP), diverging notably from GPT-40 (Hurst et al., 2024) on the same curated prompt. We attribute this performance drop to the

Table 1: **Precision and Negative Predictive Value (NPV)** on AgentReardBench (Lù et al., 2025) and OSWorld (Xie et al., 2024) with last screenshot only (LS) or entire process screenshots (ES) as input. World State Model closes the gap with commercial model. The co-training with screenshot change description (CD) improves judgment precision.

		AgentRewardBench		OS-World	d-Full	Prof/Of	fice
Model	Input	Precision	NPV	Precision	NPV	Precision	NPV
CDT 4- (Ht -t -1, 2024)	LS	68.1	92.3	46.3	88.2	40.5	81.0
GPT-40 (Hurst et al., 2024)	ES	72.1	92.2	74.6	95.2	70.4	85.3
O 25 M 70D (D : 4 1 2025)	LS	64.5	94.2	41.5	86.9	31.7	78.7
Qwen2.5-VL-72B (Bai et al., 2025)	ES	26.2	83.0	26.8	83.0	25.6	76.6
O 25 M 7D (D : 1 2025)	LS	64.1	90.3	37.3	85.2	31.8	79.0
Qwen2.5-VL-7B (Bai et al., 2025)	ES	25.4	83.8	20.0	81.7	23.5	76.0
World State Model (w/o CD)	ES	69.1	88.5	71.1	88.4	65.0	81.1
World State Model (w/CD)	ES	71.6	91.2	73.9	90.5	69.3	82.0

insufficient pretraining of Qwen2.5-VL on long sequences of high-resolution screenshots, which pushes it toward the limits of its 32K context length.

To address this, we propose World State Model, a distilled model based on Qwen2.5-VL-7B. The training process for World State Model uses a dataset of 0.86K GPT-40 (Hurst et al., 2024) generated evaluations on trajectories with dense GUI change descriptions, exclusively from the Chrome browser within the OSWorld (Xie et al., 2024) environment. Alongside the primary judgment task, we also find it effective to co-training the model with change description (CD) task for describing the difference of the screenshot before and after an action. Training data and settings are detailed in Sup. A. Despite being trained solely on Chrome data, World State Model exhibits strong generalization to other professional software in OSWorld and to the external AgentRewardBench (Lù et al., 2025) benchmark. This demonstrates that the model learns transferable judgment patterns rather than overfitting to a single application.

As evaluated in Tab. 1 and further analyzed in Fig. 3, World State Model achieves state-ofthe-art performance among open-sourced models, significantly narrowing the gap with GPT-40 (Hurst et al., 2024). Despite being trained on a relatively small dataset, World State Model is explicitly encouraged to capture the sequential dependencies among historical screenshots and to perform step-by-step reasoning for final judgment. It provides reliable, step-level reward signals that support downstream policy learning (Training reward w.r.t. different reward signal providers is depicted in Fig. 5), allowing our agentic system to evolve using fully opensourced models while avoiding inefficient and costly API calls to proprietary models.

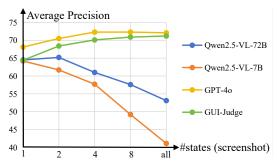


Figure 3: The Average Precision on AgentRewardBench (Lù et al., 2025), where GUI-Judge exhibits an improvement in AP as the number of input middle states increases, showing a similar trend to that of the closed sourced GPT-40.

4.2 Self evolution of GUI Agents

Models Before Self-Evolution. Our self-evolving system is initialized with three locally deployed models: UI-TARS-7B-DPO (Qin et al., 2025) as the Actor Model, World State Model as the step-level reward model, and Qwen2.5-72B (Yang et al., 2024) as the Curriculum Generator. As shown in Tab. 2, the initial Actor Agent achieves an average success rate of 21.5% across five professional software applications from OSWorld.

Evolution Process Details. The evolution process begins with the Curriculum Generator producing an initial instruction set (\mathcal{I}_0) , averaging 150.2 instructions. The Actor Model executes these tasks, and the resulting trajectories are evaluated by World State Model and parsed into an average of 1361.5 multi-turn conversation pairs (detailed statistics are in Sup.H). We then perform reinforcement fine-tuning (RFT) for 1k iterations on 8 NVIDIA A100 80GB GPUs, with a batch size of 16 and a learning rate of 2×10^{-5} scheduled via cosine decay. This process is repeated for three phases.

Table 2: Success Rate (SR) on OSWorld (Xie et al., 2024). SEAgent demonstrates strong performance after reinforcement learning. In addition to evolving on separate software, a new General Model achieves better performance after another iteration of SEAgent. *Indicates specialist agents trained separately for each software with ensembled results. All results are averaged over five runs.

Model	VScode	GIMP	Impress	VLC	Writer	Overall
Human Performance	73.9	73.1	80.9	70.6	73.9	74.5
GPT-40 (Hurst et al., 2024)	4.35	3.85	6.77	16.1	4.35	7.08
GPT-4V (OpenAI, 2023)	0.00	7.69	2.52	18.3	4.35	6.59
Gemini-Pro-1.5 (Team et al., 2023)	0.00	11.5	13.2	6.53	8.71	7.99
Claude3.7 Sonnet (Anthropic, 2025a)	18.8	24.4	10.6	27.5	17.4	19.7
Gemini-Pro-2.5 (Google DeepMind, 2025)	21.7	26.9	9.92	25.5	24.6	21.7
UI-TARS-7B-DPO (Lu et al., 2024)	30.4	34.6	17.0	11.8	13.6	21.5
UI-TARS-72B-DPO (Lu et al., 2024)	39.1	53.8	23.4	15.3	26.1	31.5
DigiRL (Bai et al., 2024) (Specialized RL)*	43.7	45.4	19.6	25.0	19.1	30.6
WebRL (Qi et al., 2024) (Specialized RL)*	36.5	37.7	20.4	29.4	21.7	29.1
SEAgent (Specialized RL)*	<u>46.1</u>	<u>50.0</u>	21.3	<u>31.8</u>	<u>33.0</u>	<u>36.4</u>
DigiRL (Bai et al., 2024) (General RL)	38.3	46.2	19.1	25.9	19.1	29.7
WebRL (Qi et al., 2024) (General RL)	35.6	33.1	18.7	27.0	15.7	26.0
SEAgent (General RL)	40.8	42.3	21.7	28.2	30.4	32.6
SEAgent (General SFT)	36.5	41.5	<u>25.5</u>	30.6	32.2	33.3
SEAgent (Specialist-to-Generalist)	47.8	50.8	29.8	35.3	36.5	40.0

Table 3: Success Rate (SR) on OSWorld (Xie et al., 2024) and ScienceBoard (Sun et al., 2025).

Benchmark	OSWorld (Xie et al., 2024)				Scie	nceBoard (S	Sun et al., 202	25)	
Software	Impress	Writer	GIMP	VScode	VLC	ChamerX	GrassGIS	KAlgebra	Celestia
UI-TARS-1.5-7B-DPO	29.8	39.1	51.5	60.9	23.5	12.4	0.0	11.6	4.9
UI-TARS-1.5-7B-DPO + SEAgent	31.9	43.5	56.9	60.9	35.3	31.0	20.6	29.0	15.2

Specialist Evaluation. For a fair comparison with previous methods (Bai et al., 2024; Qi et al., 2024), we train specialist agents for five different software applications. We adapt their strategies by initializing a separate critic model from UI-TARS-7B with randomly initialized MLP layers to regress value predictions using Generalized Advantage Estimation (GAE) (Schulman et al., 2015). As shown in Tab. 2 and Fig. 4, SEAgent, achieves superior performance. We attribute this to World State Model providing fine-grained, step-level rewards from the full history, which is more effective than relying on a separate critic to estimate advantages from sparse, final success/failure signals. Experimental results on mobile use GUI are supplied in Sec. D. We also provide comparison with previous task generation methods (Murty et al., 2025; Qi et al., 2024) on task generation are detailed in Sup.C.2.

As shown in Fig. 4 and Tab. 2, we train separate actor agents for five different software applications. Our approach, denoted as SEAgent (Specialist), achieves strong performance compared to previous reinforcement learning methods such as DigiRL (Bai et al., 2024) and WebRL (Qi et al., 2024). We attribute this improvement to the use of World State Model, which provides fine-grained, step-level reward signals derived from a comprehensive understanding of the full history of states and actions. This contrasts with previous approaches that rely on separate critic models—typically initialized from the actor itself—to estimate advantages from sparse, final success/failure signals. Furthermore, the curriculum of task instructions generated by the Curriculum Generator, as illustrated in Fig. 4, validates the effectiveness of our autonomous learning framework. These tasks progress from simple to complex based on the actor's evolving capabilities, enabling it to gradually specialize in each target software environment. Based on the observed evolution curves, we set the number of training phases to three, as performance gains saturate beyond that point.

From Specialist to Generalist. After training five strong software specialists, we pursue generalization. We collect task instructions from each specialist's training and use them to generate 3.5K successful trajectories. These trajectories, along with their reasoning traces, are distilled into a new base model (UI-TARS-7B) via supervised fine-tuning (SFT). This distilled model is then further optimized through RL across all five software environments. As shown in Tab. 2, the resulting generalist model surpasses the performance of the individual specialist ensemble.

Results based on UI-TARS-1.5 and ScienceBoard. Our work focuses on enabling agents to adapt to out-of-domain (OOD) and novel software where human-labeled data is not available. We applied our SEAgent pipeline to the UI-TARS-1.5 (Qin et al., 2025) using the same process described above

Figure 4: **Self-evolved task instructions and success rate (SR) curves across different software.** Tasks are progressively upgraded by the Curriculum Generator without human intervention, based on the evolving capabilities of the Actor Model at different training phases.

on two distinct benchmarks. As reported in Tab. 3, on OSWorld (Xie et al., 2024), we observed moderate performance gains. We hypothesize this is because UI-TARS-1.5's training data already cover OSWorld software environments, making it a familiar, in-domain evaluation for the base model. However, on the ScienceBoard (Sun et al., 2025) benchmark—a suite of scientific applications that are truly novel to UI-TARS-1.5—our pipeline delivers significant and substantial improvements. This strongly validates our core claim: SEAgent is most impactful when performing self-evolution learning on truly OOD software. We excluded two of the six ScienceBoard applications—Lean and TeX—as they are primarily text- and code-based software for mathematics and typesetting, which are not suitable for evaluating a GUI-centric agent like UI-TARS.

Ablation Study of Specialist Training. Our work focuses on enabling agents to adapt to out-of-domain (OOD) software. To test this, we applied our SEAgent pipeline to the UI-TARS-1.5 model. On OSWorld, an in-domain environment, we observed moderate gains. However, on the ScienceBoard (Sun et al., 2025) benchmark—a suite of scientific applications novel to the model—our pipeline delivered significant improvements. We excluded two Science-

Table 4: Ablation of different configurations and their corresponding VScode success rates on OSWorld (Xie et al., 2024). Using World State Model as the reward model yields significant performance gains. We further compare different training strategies including supervised fine-tuning (behavior cloning), GRPO, and Adversarial Imitation (AI).

Qwen2.5VL-72B	World State Model	SFT (BC)	GRPO	ΑI	VScode SR
					30.4
✓		✓			26.1
✓			✓		28.3
	✓	✓			34.8
	✓	✓		✓	39.1
	✓		✓		43.5
	✓		✓	✓	46.1

Board applications (Lean and TeX) as their text- and code-based interfaces are unsuitable for a GUI-centric agent like UI-TARS.

5 CONCLUSION

In this work, we introduce SEAgent, an autonomous Computer Use Agent (CUA) exploration system that learns from its own experience on specific software. Powered by a robust World State Model that provides step-level reward signals, and a carefully designed reinforcement learning framework that encourages free-form reasoning through trial and error, the CUA is able to evolve into a specialist for individual software platforms. Furthermore, a specialist-to-generalist training strategy enables the development of a strong generalist agent capable of operating across multiple software environments. Given that computer software constitutes a highly regularized virtual world, we believe this work can inspire future research on agentic systems in both gaming and real world embodied environments.

Limitations and future work. While promising, our work still has several unresolved limitations. Firstly, our self evolving agent system is bounded by GUI-Judge to provide reliable reward signal instead of real signal from environment. As its still challenging to learning from sparse reward signal in complex environment. Secondly, though we tested on relatively complex and novel software like libreoffice-tools and GIMP. The task is still relatively simple as it only takes a human expert less than 20 step to accomplish. How to adapt the system to achieve hours-long workflow in even more challenging software used by real human expert are thus interesting future directions.

ETHICS STATEMENT

Our work adheres to the ICLR Code of Ethics. Our goal is to develop versatile computer-use agents that can autonomously adapt to new software, thereby automating a wide range of human workflows. We acknowledge that self-evolving agents learning without direct human oversight raises important safety considerations. To address this, our framework confines learning to isolated virtual machine environments and guides the agent's exploration through a structured curriculum and an automated reward model, preventing the acquisition of harmful or unintended behaviors. Potential for societal bias exists in the foundational models we use (e.g., UI-TARS (Qin et al., 2025), Qwen2.5-VL (Bai et al., 2025)) and could be inherited by our fine-tuned World State Model reward model, World State Model, and Curriculum Generator. A significant ethical benefit of our approach is its ability to bypass the need for costly, human-curated datasets, thus reducing the reliance on intensive manual annotation labor. We acknowledge the computational resources required for this form of experiential learning and are committed to the responsible development of capable and safely-evolving AI agents.

REPRODUCIBILITY STATEMENT

To ensure full reproducibility and to contribute to the community, we firmly commit to **open-sourcing our entire project** after the peer-review process. This includes **all source code** for our agentic self-evolving framework (SEAgent), encompassing the World State Model, Curriculum Generator, and our implementations of the learning algorithms. Furthermore, we will release **all model weights**, including our fine-tuned World State Model reward model and all specialist and generalist agents trained with our specialist-to-generalist strategy. Our work builds on public models like UI-TARS-1.5 (Qin et al., 2025) and Qwen2.5-VL (Bai et al., 2025), for which we provide exact identifiers. The appendix will offer a comprehensive guide to the experimental setup, detailing software configurations for the OSWorld (Xie et al., 2024) and ScienceBoard (Sun et al., 2025) and Android-World (Zhang et al., 2024b) benchmarks, all training hyperparameters, and the computational resources required to fully replicate our findings.

REFERENCES

- Saaket Agashe, Jiuzhou Han, Shuyu Gan, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent s: An open agentic framework that uses computers like a human. *arXiv preprint arXiv:2410.08164*, 2024.
- Saaket Agashe, Kyle Wong, Vincent Tu, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent s2: A compositional generalist-specialist framework for computer use agents. *arXiv preprint arXiv:2504.00906*, 2025.
- Anthropic. Claude computer use. 2024. URL https://www.anthropic.com/news/3-5-models-and-computer-use.
- Anthropic. Claude 3.7 sonnet system card. https://assets.anthropic.com/m/785e231869ea8b3b/original/claude-3-7-sonnet-system-card.pdf, 2025a.
- Anthropic. Claude's extended thinking. 2025b. URL https://www.anthropic.com/research/visible-extended-thinking.
- Hao Bai, Yifei Zhou, Jiayi Pan, Mert Cemri, Alane Suhr, Sergey Levine, and Aviral Kumar. Digirl: Training in-the-wild device-control agents with autonomous reinforcement learning. *Advances in Neural Information Processing Systems*, 37:12461–12495, 2024.
- Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang, Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*, 2025.
- Thomas Carta, Clément Romac, Thomas Wolf, Sylvain Lamprier, Olivier Sigaud, and Pierre-Yves Oudeyer. Grounding large language models in interactive environments with online reinforcement learning. In *International Conference on Machine Learning*, pp. 3676–3713. PMLR, 2023.

- Wentong Chen, Junbo Cui, Jinyi Hu, Yujia Qin, Junjie Fang, Yue Zhao, Chongyi Wang, Jun Liu,
 Guirong Chen, Yupeng Huo, et al. Guicourse: From general vision language models to versatile
 gui agents. arXiv preprint arXiv:2406.11317, 2024.
 - Kanzhi Cheng, Qiushi Sun, Yougang Chu, Fangzhi Xu, Yantao Li, Jianbing Zhang, and Zhiyong Wu. Seeclick: Harnessing gui grounding for advanced visual gui agents. *arXiv* preprint *arXiv*:2401.10935, 2024.
 - Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Sam Stevens, Boshi Wang, Huan Sun, and Yu Su. Mind2web: Towards a generalist agent for the web. *Advances in Neural Information Processing Systems*, 36:28091–28114, 2023.
 - Google DeepMind. Gemini 2.5 Pro Preview (03-25). https://deepmind.google/technologies/gemini, 2025.
 - Boyu Gou, Ruohan Wang, Boyuan Zheng, Yanan Xie, Cheng Chang, Yiheng Shu, Huan Sun, and Yu Su. Navigating the digital world as humans do: Universal visual grounding for gui agents. *arXiv* preprint arXiv:2410.05243, 2024.
 - Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.
 - Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.
 - Izzeddin Gur, Hiroki Furuta, Austin Huang, Mustafa Safdari, Yutaka Matsuo, Douglas Eck, and Aleksandra Faust. A real-world webagent with planning, long context understanding, and program synthesis. *arXiv* preprint arXiv:2307.12856, 2023.
 - Hongliang He, Wenlin Yao, Kaixin Ma, Wenhao Yu, Yong Dai, Hongming Zhang, Zhenzhong Lan, and Dong Yu. Webvoyager: Building an end-to-end web agent with large multimodal models. *arXiv* preprint arXiv:2401.13919, 2024.
 - Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang, Zihan Wang, Yuxiao Dong, Ming Ding, et al. Cogagent: A visual language model for gui agents. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 14281–14290, 2024.
 - Xueyu Hu, Tao Xiong, Biao Yi, Zishu Wei, Ruixuan Xiao, Yurun Chen, Jiasheng Ye, Meiling Tao, Xiangxin Zhou, Ziyu Zhao, et al. Os agents: A survey on mllm-based agents for general computing devices use, 2024.
 - Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. *arXiv preprint arXiv:2410.21276*, 2024.
 - Raghav Kapoor, Yash Parag Butala, Melisa Russak, Jing Yu Koh, Kiran Kamble, Waseem AlShikh, and Ruslan Salakhutdinov. Omniact: A dataset and benchmark for enabling multimodal generalist autonomous agents for desktop and web. In *European Conference on Computer Vision*, pp. 161–178. Springer, 2024.
 - Jing Yu Koh, Robert Lo, Lawrence Jang, Vikram Duvvur, Ming Chong Lim, Po-Yu Huang, Graham Neubig, Shuyan Zhou, Ruslan Salakhutdinov, and Daniel Fried. Visualwebarena: Evaluating multimodal agents on realistic visual web tasks. *arXiv* preprint arXiv:2401.13649, 2024.
 - Kaixin Li, Ziyang Meng, Hongzhan Lin, Ziyang Luo, Yuchen Tian, Jing Ma, Zhiyong Huang, and Tat-Seng Chua. Screenspot-pro: Gui grounding for professional high-resolution computer use. *arXiv* preprint arXiv:2504.07981, 2025.
 - Wei Li, William Bishop, Alice Li, Chris Rawles, Folawiyo Campbell-Ajala, Divya Tyamagundlu, and Oriana Riva. On the effects of data scale on computer control agents. *arXiv e-prints*, pp. arXiv-2406, 2024.

- Kevin Qinghong Lin, Linjie Li, Difei Gao, Zhengyuan Yang, Shiwei Wu, Zechen Bai, Weixian Lei, Lijuan Wang, and Mike Zheng Shou. Showui: One vision-language-action model for gui visual agent. *arXiv preprint arXiv:2411.17465*, 2024.
 - Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances in neural information processing systems*, 36:34892–34916, 2023a.
 - Junpeng Liu, Yifan Song, Bill Yuchen Lin, Wai Lam, Graham Neubig, Yuanzhi Li, and Xiang Yue. Visualwebbench: How far have multimodal llms evolved in web page understanding and grounding? *arXiv preprint arXiv:2404.05955*, 2024.
 - Zhiwei Liu, Weiran Yao, Jianguo Zhang, Le Xue, Shelby Heinecke, Rithesh Murthy, Yihao Feng, Zeyuan Chen, Juan Carlos Niebles, Devansh Arpit, et al. Bolaa: Benchmarking and orchestrating llm-augmented autonomous agents. *arXiv preprint arXiv:2308.05960*, 2023b.
 - Ziyu Liu, Zeyi Sun, Yuhang Zang, Xiaoyi Dong, Yuhang Cao, Haodong Duan, Dahua Lin, and Jiaqi Wang. Visual-rft: Visual reinforcement fine-tuning. *arXiv preprint arXiv:2503.01785*, 2025.
 - Quanfeng Lu, Wenqi Shao, Zitao Liu, Fanqing Meng, Boxuan Li, Botong Chen, Siyuan Huang, Kaipeng Zhang, Yu Qiao, and Ping Luo. Gui odyssey: A comprehensive dataset for cross-app gui navigation on mobile devices. *arXiv preprint arXiv:2406.08451*, 2024.
 - Xing Han Lù, Amirhossein Kazemnejad, Nicholas Meade, Arkil Patel, Dongchan Shin, Alejandra Zambrano, Karolina Stańczak, Peter Shaw, Christopher J Pal, and Siva Reddy. Agentrewardbench: Evaluating automatic evaluations of web agent trajectories. *arXiv preprint arXiv:2504.08942*, 2025.
 - Fanqing Meng, Lingxiao Du, Zongkai Liu, Zhixiang Zhou, Quanfeng Lu, Daocheng Fu, Botian Shi, Wenhai Wang, Junjun He, Kaipeng Zhang, et al. Mm-eureka: Exploring visual aha moment with rule-based large-scale reinforcement learning. *arXiv* preprint arXiv:2503.07365, 2025.
 - Shikhar Murty, Christopher Manning, Peter Shaw, Mandar Joshi, and Kenton Lee. Bagel: Bootstrapping agents by guiding exploration with language, 2024. URL https://arxiv.org/abs/2403.08140.
 - Shikhar Murty, Hao Zhu, Dzmitry Bahdanau, and Christopher D. Manning. Nnetnav: Unsupervised learning of browser agents through environment interaction in the wild, 2025. URL https://arxiv.org/abs/2410.02907.
 - Dang Nguyen, Jian Chen, Yu Wang, Gang Wu, Namyong Park, Zhengmian Hu, Hanjia Lyu, Junda Wu, Ryan Aponte, Yu Xia, et al. Gui agents: A survey. *arXiv preprint arXiv:2412.13501*, 2024.
 - OpenAI. GPT-4 technical report. *CoRR*, abs/2303.08774, 2023. doi: 10.48550/ARXIV.2303.08774. URL https://doi.org/10.48550/arXiv.2303.08774.
 - OpenAI. Operator. 2025. URL https://openai.com/research/operator.
 - Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with human feedback. *Advances in neural information processing systems*, 35:27730–27744, 2022.
 - Jiayi Pan, Yichi Zhang, Nicholas Tomlin, Yifei Zhou, Sergey Levine, and Alane Suhr. Autonomous evaluation and refinement of digital agents. *arXiv preprint arXiv:2404.06474*, 2024.
 - Pranav Putta, Edmund Mills, Naman Garg, Sumeet Motwani, Chelsea Finn, Divyansh Garg, and Rafael Rafailov. Agent q: Advanced reasoning and learning for autonomous ai agents. *arXiv* preprint arXiv:2408.07199, 2024.
 - Zehan Qi, Xiao Liu, Iat Long Iong, Hanyu Lai, Xueqiao Sun, Wenyi Zhao, Yu Yang, Xinyue Yang, Jiadai Sun, Shuntian Yao, et al. Webrl: Training llm web agents via self-evolving online curriculum reinforcement learning. *arXiv preprint arXiv:2411.02337*, 2024.

- Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang, Jiahao Li, Yunxin Li, Shijue Huang, Wanjun Zhong, Kuanye Li, Jiale Yang, Yu Miao, Woyu Lin, Longxiang Liu, Xu Jiang, Qianli Ma, Jingyu Li, Xiaojun Xiao, Kai Cai, Chuang Li, Yaowei Zheng, Chaolin Jin, Chen Li, Xiao Zhou, Minchao Wang, Haoli Chen, Zhaojian Li, Haihua Yang, Haifeng Liu, Feng Lin, Tao Peng, Xin Liu, and Guang Shi. UI-TARS: pioneering automated GUI interaction with native agents. *CoRR*, abs/2501.12326, 2025. doi: 10.48550/ARXIV.2501.12326. URL https://doi.org/10.48550/arXiv.2501.12326.
- Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances in Neural Information Processing Systems*, 36:53728–53741, 2023.
- Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. Androidinthewild: A large-scale dataset for android device control. *Advances in Neural Information Processing Systems*, 36:59708–59728, 2023.
- Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Marybeth Fair, Alice Li, William Bishop, Wei Li, Folawiyo Campbell-Ajala, et al. Androidworld: A dynamic benchmarking environment for autonomous agents. *arXiv preprint arXiv:2405.14573*, 2024.
- John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-dimensional continuous control using generalized advantage estimation. *arXiv* preprint arXiv:1506.02438, 2015.
- Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.
- Haozhan Shen, Peng Liu, Jingcheng Li, Chunxin Fang, Yibo Ma, Jiajia Liao, Qiaoli Shen, Zilun Zhang, Kangjia Zhao, Qianqian Zhang, et al. Vlm-r1: A stable and generalizable r1-style large vision-language model. *arXiv preprint arXiv:2504.07615*, 2025.
- David Silver and Richard S Sutton. Welcome to the era of experience. Preprint of a chapter to appear in Designing an Intelligence, edited by George Konidaris, MIT Press (forthcoming), 2025.
- Qiushi Sun, Kanzhi Cheng, Zichen Ding, Chuanyang Jin, Yian Wang, Fangzhi Xu, Zhenyu Wu, Chengyou Jia, Liheng Chen, Zhoumianze Liu, et al. Os-genesis: Automating gui agent trajectory construction via reverse task synthesis. *arXiv preprint arXiv:2412.19723*, 2024.
- Qiushi Sun, Zhoumianze Liu, Chang Ma, Zichen Ding, Fangzhi Xu, Zhangyue Yin, Haiteng Zhao, Zhenyu Wu, Kanzhi Cheng, Zhaoyang Liu, et al. Scienceboard: Evaluating multimodal autonomous agents in realistic scientific workflows. *arXiv preprint arXiv:2505.19897*, 2025.
- Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.
- Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.
- Jianqiang Wan, Sibo Song, Wenwen Yu, Yuliang Liu, Wenqing Cheng, Fei Huang, Xiang Bai, Cong Yao, and Zhibo Yang. Omniparser: A unified framework for text spotting key information extraction and table recognition. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 15641–15653, 2024.
- Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models. *arXiv* preprint arXiv:2305.16291, 2023.
- Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model's perception of the world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024.

- Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in neural information processing systems*, 35:24824–24837, 2022.
 - Zhiyong Wu, Chengcheng Han, Zichen Ding, Zhenmin Weng, Zhoumianze Liu, Shunyu Yao, Tao Yu, and Lingpeng Kong. Os-copilot: Towards generalist computer agents with self-improvement. *arXiv preprint arXiv:2402.07456*, 2024a.
 - Zhiyong Wu, Zhenyu Wu, Fangzhi Xu, Yian Wang, Qiushi Sun, Chengyou Jia, Kanzhi Cheng, Zichen Ding, Liheng Chen, Paul Pu Liang, et al. Os-atlas: A foundation action model for generalist gui agents. *arXiv preprint arXiv:2410.23218*, 2024b.
 - Tianbao Xie, Danyang Zhang, Jixuan Chen, Xiaochuan Li, Siheng Zhao, Ruisheng Cao, Toh J Hua, Zhoujun Cheng, Dongchan Shin, Fangyu Lei, et al. Osworld: Benchmarking multimodal agents for open-ended tasks in real computer environments. *Advances in Neural Information Processing Systems*, 37:52040–52094, 2024.
 - Yiheng Xu, Dunjie Lu, Zhennan Shen, Junli Wang, Zekun Wang, Yuchen Mao, Caiming Xiong, and Tao Yu. Agenttrek: Agent trajectory synthesis via guiding replay with web tutorials. *arXiv preprint arXiv:2412.09605*, 2024.
 - An Yan, Zhengyuan Yang, Wanrong Zhu, Kevin Lin, Linjie Li, Jianfeng Wang, Jianwei Yang, Yiwu Zhong, Julian McAuley, Jianfeng Gao, et al. Gpt-4v in wonderland: Large multimodal models for zero-shot smartphone gui navigation. *arXiv preprint arXiv:2311.07562*, 2023.
 - An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint arXiv:2412.15115*, 2024.
 - Simon Zhai, Hao Bai, Zipeng Lin, Jiayi Pan, Peter Tong, Yifei Zhou, Alane Suhr, Saining Xie, Yann LeCun, Yi Ma, et al. Fine-tuning large vision-language models as decision-making agents via reinforcement learning. *Advances in neural information processing systems*, 37:110935–110971, 2024.
 - Chi Zhang, Zhao Yang, Jiaxuan Liu, Yanda Li, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and Gang Yu. Appagent: Multimodal agents as smartphone users. In *Proceedings of the 2025 CHI Conference on Human Factors in Computing Systems*, pp. 1–20, 2025.
 - Jianguo Zhang, Tian Lan, Rithesh Murthy, Zhiwei Liu, Weiran Yao, Ming Zhu, Juntao Tan, Thai Hoang, Zuxin Liu, Liangwei Yang, et al. Agentohana: Design unified data and training pipeline for effective agent learning. *arXiv preprint arXiv:2402.15506*, 2024a.
 - Jiwen Zhang, Jihao Wu, Yihua Teng, Minghui Liao, Nuo Xu, Xiao Xiao, Zhongyu Wei, and Duyu Tang. Android in the zoo: Chain-of-action-thought for gui agents. *arXiv preprint arXiv:2403.02713*, 2024b.
 - Kaiyan Zhang, Biqing Qi, and Bowen Zhou. Towards building specialized generalist ai with system 1 and system 2 fusion, 2024c. URL https://arxiv.org/abs/2407.08642.
 - Zhuosheng Zhang and Aston Zhang. You only look at screens: Multimodal chain-of-action agents. *arXiv preprint arXiv:2309.11436*, 2023.
 - Boyuan Zheng, Boyu Gou, Jihyung Kil, Huan Sun, and Yu Su. Gpt-4v (ision) is a generalist web agent, if grounded. *arXiv preprint arXiv:2401.01614*, 2024.
 - Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng, Tianyue Ou, Yonatan Bisk, Daniel Fried, et al. Webarena: A realistic web environment for building autonomous agents. *arXiv preprint arXiv:2307.13854*, 2023.
 - Yifei Zhou, Andrea Zanette, Jiayi Pan, Sergey Levine, and Aviral Kumar. Archer: Training language model agents via hierarchical multi-turn rl. *arXiv preprint arXiv:2402.19446*, 2024.
 - Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. *arXiv* preprint arXiv:1909.08593, 2019.

DISCLOSURE ON THE USE OF LLMS

 During the final drafting stages of this paper, we consulted Large Language Models (LLMs) to improve the manuscript's clarity and linguistic precision. The LLM served as an advanced editing tool, providing suggestions on syntax, word choice, and overall readability for the author-written text. We emphasize that this was an iterative process where the authors directed the tool and made all final decisions regarding the text. No part of the paper's core scientific arguments, methodology, or results was generated by the LLM. The authors bear full responsibility for all content and claims presented herein.

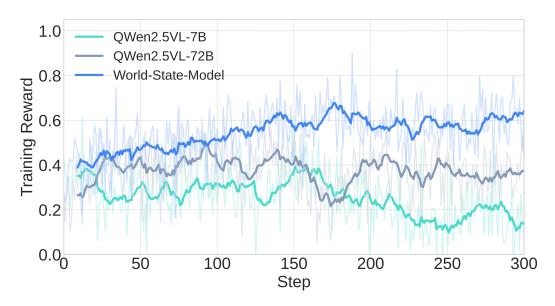


Figure 5: **Training reward with different reward signal provider.** Our World State Model provide reward signal that can achieve improved training reward compared to strong base models.

A WORLD STATE MODEL

The World State Model (WSM) is a central component of SEAgent, responsible for understanding visual state changes and evaluating the effectiveness of the agent's actions.

A.1 MODEL ARCHITECTURE AND OPERATION

The WSM is built upon the Qwen2.5-VL-7B vision-language model. It operates in two distinct modes, each with a specific input-output structure to perform different tasks:

1. Trajectory Judgment:

Input: A sequence of screenshot images captured during an episode.

Output: Short captions for each screenshot, the reasoning process for the judgment, and a structured judgment dictionary (containing fields such as Correctness, Redundant, and First Error Step, as detailed in Fig. 8 of the supplementary material).

2. State Change Description:

Input: Two screenshot images, one from before and one after a single action was executed. **Output:** A detailed description of the visual differences between the two images.

A.2 FINE-TUNING DATASET AND PROCESS

To equip the WSM with these capabilities, a specialized dataset was constructed for fine-tuning.

Data Construction The data construction process is as follows:

- 1. **Trajectory Sampling:** A Computer Using Agent (CUA), powered by UI-TARS and Gemini-2.5-Pro, was used to sample trajectories from 43 feasible tasks in Google Chrome within the OSWorld benchmark. These trajectories were saved as screenshot sequences.
- 2. **GPT-4o Annotation:** Using the prompts detailed in Figures 6 and 7 of the supplementary material, GPT-4o was employed to annotate the sampled trajectories, generating judgments and screenshot captions. Only samples where the judgment matched the ground truth from OSWorld evaluation protocols were retained, resulting in 860 high-quality annotated trajectories.
- 3. **Change Description Data:** An additional 1,000 pairs of (before action, after action) screenshots were sampled. GPT-40 was used to generate detailed descriptions of the differences, creating a 1,000-sample Change Description (CD) dataset.

Fine-Tuning Process The fine-tuning was performed using the Llama-Factory framework on 8 NVIDIA A100 (80G) GPUs for 2,000 iterations. A learning rate of 2×10^{-5} was used, and LoRA (rank=128) was employed for parameter-efficient fine-tuning. The 860 annotated trajectories serve as the core training data for teaching the model trajectory judgment, captioning, and reasoning. The 1,000-sample CD dataset acts as auxiliary data, specifically to encourage the model to focus on fine-grained visual differences, which enhances its overall state understanding. As shown in Table 1 of the main paper, incorporating CD data significantly boosts judgment performance. The two datasets were combined for training without any special re-weighting.

A.3 REWARD GENERATION FROM TRAJECTORY ANALYSIS

The trajectory judgment capability of the WSM is the core source of the reward signal for reinforcement learning. After an agent executes a full trajectory $\mathcal{H} = \{s_0, a_0, s_1, a_1, \dots, s_{\text{final}}\}$, the WSM analyzes it and outputs a structured judgment. Based on this output, actions within the trajectory are dynamically labeled as either positive actions (a_T) or failure actions (a_F) :

- Fully Successful Trajectory: If Correctness is 'True' and there are no Redundant steps, all actions a in the trajectory are labeled as a_T .
- Successful but Inefficient Trajectory: If Correctness is 'True' but Redundant steps begin at step k, all actions prior to step k are labeled as a_T .
- Failed Trajectory: If Correctness is 'False' and the First Error Step is e, all actions prior to step e are labeled as a_T , while the erroneous action a_e is labeled as a_F .

These dynamically labeled a_T and a_F actions constitute the reward signals for the RL pipeline. During training, the actor predicts an action a_t based on the history $\{a_0, s_0, \ldots, s_t\}$ and uses these labels to calculate rewards.

B CURRICULUM GENERATOR

The Curriculum Generator is designed to dynamically produce tasks of increasing difficulty and diversity, guiding the agent through a systematic exploration of the software's capabilities.

B.1 TASK GENERATION MECHANISM

The workflow of the Curriculum Generator is detailed in the pseudocode in our supplementary material. Its core idea is to leverage the WSM's analysis of completed tasks to generate new ones. The process, illustrated by the "add a rectangle" example from Figure 5, involves three main steps:

1. **Analysis and Feedback:** The agent successfully completes an initial task, "add a rectangle." The WSM analyzes the execution trajectory and extracts two key pieces of information: a task evaluation (Exam) and a list of observed state changes (CD_list).

CD_list: {"add a rectangle": ["The Edit bar is expanded...", "The cursor has changed into a cross...", "A blue box appears on the screen with side bars showing

properties such as fill, line, color, width, transparency, and corner style..."], ...} Exam: [{"task": "add a rectangle", "status": "success"}, ...]

- 2. **Knowledge Integration and Task Generation:** The CD_list and Exam are fed into the Curriculum Generator. It distills new knowledge, such as "properties of a rectangle," and integrates it into its internal Software guidebook. Based on this new knowledge, it generates more challenging tasks like "Add a green rectangle" or "Add a red rectangle with 50% transparency," which are then added to the task buffer.
- 3. Iterative Learning: In the next RL phase, the agent samples from this updated, more challenging task buffer. The continuously enriched Software guidebook acts as the system's long-term memory, driving the Curriculum Generator to propose increasingly sophisticated and unexplored tasks in subsequent rounds, thereby guiding the agent toward mastery.

C DETAILS OF CURRICULUM GENERATOR.

C.1 EXEMPLAR CASE DURING TASK EVOLUTION.

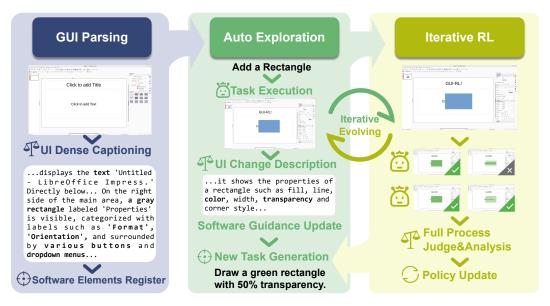


Figure 6: **SEAgent autonomous exploration pipeline.** The agent (policy model) and World State Model iteratively generate new task and perform RL to become a specialist in novel software.

We provide an exemplar case of our task evolution pipeline in Fig. 6, demonstrated using LibreOffice Impress. Initially, the World State Model parses a screenshot of the Impress interface into detailed captions describing the layout and individual buttons. The Task Generator then produces an initial task set, $\mathcal{I}_0 = \{I_0^{(1)}, I_0^{(2)}, \ldots\}$, and summarizes the initial software guidance memory U_0 . The initial agent executes tasks in \mathcal{I}_0 , such as "Add a Rectangle," while the World State Model evaluates these actions, providing judgments and detailed descriptions of resulting changes. As shown in the Auto-Exploration stage, this includes generating captions for newly appeared property panels and assessing execution success. The Task Generator incorporates feedback on execution success and newly revealed properties (e.g., transparency) to evolve new tasks, such as "Draw a green rectangle with 50% transparency." This process iteratively improves through reinforcement learning, enabling continuous task evolution and agent self-improvement.

C.2 COMPARATIVE ANALYSIS OF INSTRUCTION GENERATION STRATEGIES.

To validate the effectiveness of our Curriculum Generator, we conducted a comparative analysis against state-of-the-art instruction generation methods, namely those from NNetNav (Murty et al., 2025) and WebRL (Qi et al., 2024).

Experimental Setup We adapted the official code and prompts from these prior works from web environments to general software applications. To ensure a fair comparison of the curriculum quality, for each strategy, we employed two leading LLMs: the open-source Qwen2.5-72B (Bai et al., 2025) and the proprietary Gemini-2.5-Pro (Google DeepMind, 2025). The tasks generated by each strategy were used to train an RL agent (using GRPO only), with reward signals uniformly provided by our fine-tuned WSM. The evaluation was performed on two applications: VSCode from OSWorld (a standard software) and Celestia from ScienceBoard (?) (a more challenging, out-of-domain scientific application). The primary metric was the task success rate.

Table 5: Success rate (%) comparison of different task generation strategies on two software applications

Task Generation Strategy	LLM	VSCode	Celestia
WebRL	Qwen2.5-72B	27.5	0.00
WebRL	Gemini2.5-Pro-thinking	36.2	3.03
NNetNav	Qwen2.5-72B	34.6	0.00
NNetNav	Gemini2.5-Pro-thinking	43.6	5.05
Curriculum Generator (Ours)	Qwen2.5-72B	37.7	9.09
Curriculum Generator (Ours)	Gemini2.5-Pro-thinking	42.3	12.12

Results and Discussion The results are presented in Table 5. As shown, the reverse instruction generation strategy from NNetNav (Murty et al., 2025) is highly effective on the in-domain application (VSCode), demonstrating high data generation efficiency by producing successful trajectories. However, a critical trade-off was observed: this approach tends to generate many similar tasks, limiting its ability to explore the full breadth of the software's functionalities. This limitation becomes more pronounced when the task generator is unfamiliar with the target software, as seen in the OOD Celestia environment.

In contrast, our guidebook-based method, while having a lower initial data generation efficiency, excels at systematic exploration. It builds structured knowledge of the software from scratch, making it more robust for tackling novel applications. This is evidenced by its superior performance on the more challenging Celestia software.

We conclude that these two strategies are complementary. Reverse instruction generation can efficiently exploit known functionalities, while our guidebook-based method can systematically explore new ones and help the task generator build a more comprehensive understanding of the target software. A hybrid approach combining both strategies is a promising direction for future work.

D EXPERIMENTS ON ANDROIDWORLD

Table 6: Success Rate on AndroidWorld (Rawles et al., 2024)

Model	AndroidWorld_SR
Qwen2.5-VL-7B	8.0
Qwen2.5-VL-7B+SEAgent	19.5
UI-TARS-7B-SFT	33.0
UI-TARS-7B-SFT+SEAgent	38.0

To evaluate SEAgent's application to other format of GUI, we conduct new experiments on the AndroidWorld (Rawles et al., 2024) benchmark, which focuses on mobile GUIs. We apply our SEAgent pipeline to two distinct backbone models. As shown in the table below, our method yields substantial performance improvements for both, demonstrating that its self-evolving approach is effective across different model architectures and GUI formats. Specifically, SEAgent improves the success rate of Qwen2.5-VL by +11.5% and UI-TARS by +5.0%. This result strongly indicate the effectiveness of our pipeline also generalize to other form of GUI.

E SENSITIVITY ANALYSIS ON KEY HYPERPARAMETERS

We conducted a sensitivity analysis on key hyperparameters to evaluate their impact on the SEAgent pipeline. For model sampling, we set the temperature t=0 for better reproducibility. We analyze two specific parameters: the number of generated tasks and the number of change descriptions. The results are presented in Table 7 and discussed below.

Table 7: Sensitivity analysis for key hyperparameters in the SEAgent pipeline, evaluated on VSCode. The metric is Success Rate (%).

# Tasks Generated	VScode SR	# Change Descriptions	VScode SR
30	31.88	30	33.33
50	36.23	50	37.68
100	37.68	100	37.68
200	37.68	200	34.78

Number of Generated Tasks This parameter controls the breadth of exploration in each learning cycle. As shown in our analysis, performance improves as more diverse tasks are generated, eventually plateauing around 100 tasks.

Number of Change Descriptions This parameter controls how much new information the generator receives to update its "software guidebook." We found a clear trade-off: A sufficient number of descriptions (50–100) is essential for the generator to learn about new UI functionalities and create meaningful, unexplored tasks. However, providing too many descriptions (e.g., 200) creates an overly long context for the LLM, which degrades the quality of task generation and hurts final performance.

F ABLATION ON THE LOSS BALANCE FACTOR.

In Sec.3.2, we use γ to balance the ratio of two loss item: adversarial imitation that learn from error and GRPO that learn to achieve success. We ablate the choice of γ in Tab.8, according to which we set $\gamma = 0.2$ in main experiments.

$\overline{\gamma}$	0.0	0.1	0.2	0.3	0.5	0.8
Success Rate (%)	34.8	36.2	37.7	31.9	26.1	23.1

Table 8: VScode Success Rate on OSWorld (Xie et al., 2024) under different loss balance factor γ values.

G REWARD FUNCTION FOR DIFFERENT ACTIONS.

Action Type	Description	Distance-based Reward
click, left_single, right_single, hover	Click or hover on a location	Normalized L1 distance between predicted and ground-truth coordinates
left_double, double_click	Double click on a region	Normalized L1 distance between clicked coordinates
drag, select	Drag from start box to end box	Intersection over Union (IoU) between predicted and ground-truth boxes
type	Type textual input	Character-level BLEU score between predicted and ground-truth text
hotkey	Press multiple keys at once	Character-level BLEU score between predicted and ground-truth key combinations
press	Press a single key	Character-level BLEU score between predicted and ground-truth key
scroll	Scroll in a certain direction	Character-level BLEU score between predicted and ground-truth direction
move_mouse	Move mouse to a specific location	Normalized L1 distance between predicted and ground-truth coordinates
highlight	Highlight a rectangular UI region	IoU between predicted and ground-truth region
copy, paste	Clipboard operations	BLEU score between copied/pasted content
wait	Explicit wait command	Fixed reward + 1
finished, finish_task	Finish current task/trajectory	Fixed reward + 1

Table 9: Reward computation for each action type in GUI agent

	Phase0	Phase1	Phase2	Phase3
VSCode	112/39	282/83	161/34	98/55
GIMP	104/51	309/90	183/50	95/52
Impress	102/44	290/92	185/61	87/51
VLC	85/29	114/41	160/48	53/27
Writer	123/62	278/101	201/69	101/43

Table 10: Number of episode (Success/Failure) across four phases for different software tools during self-evolution. Each episode contains 8.8 multi-turn conversions in average.

H DATA STATISTICS DURING ITERATIVE REINFORCEMENT LEARNING.

I DETAILED PROMPT TEMPLATES.

For evaluation on AgentRewardBench (Lù et al., 2025), we use their official template for final state screenshot only testing and modified prompt in Fig.7 for entire process (or sampled middle screenshots) testing.

For evaluation on OSWorld Sampled trajectories, we use prompt in Fig.8 to prompt GPT-40 to provide step level judges, the sampled judges on Chrome in OSWorld (Xie et al., 2024) serves as training data of GUI-Judge. This template is also used in training GUI-Judge and at inference time in autonomous exploration stage.

For navigator, we use prompt template in Fig.9, which takes previous software usage manual and the performance of actor agent evaluated by judge (Empty if in initial phase.) as well as detailed exploration caption as input and output the updated usage manual as well as new task for agent to execute.

J SELF DOCUMENTED USAGE MANUAL ON DIFFERENT SOFTWARE DURING EXPLORATION.

In Fig.10 Fig.12, Fig.11, Fig.13, we demonstrate the self-documented usage manuals of the navigator (Qwen2.5-72B (Yang et al., 2024)) in the exploration and learning system introduced in Sec.3.1.

K Broader Impacts

Potential positive societal impacts: SEAgent introduces a self-evolving paradigm for Computer Use Agents (CUAs), enabling them to autonomously learn and adapt to previously unseen software without human supervision. This significantly reduces the need for extensive manual data annotation and domain-specific customization, allowing intelligent agents to assist users across a wide range of applications—including productivity tools, multimedia editing, and educational software. By automating repetitive tasks and providing guidance in complex software environments, SEAgent holds promise for improving accessibility, enhancing digital literacy, and reducing cognitive workload in both professional and everyday settings.

Potential negative societal impacts: The capability of SEAgent to autonomously explore and operate complex software also introduces risks of misuse. Malicious actors might repurpose SEAgent for unauthorized software automation, such as automating account creation, spamming interfaces, or conducting surveillance via GUI interactions. In addition, as the agent learns from its own experience, there exists a risk that the agent may inadvertently inherit or amplify software-specific biases, potentially leading to unfair or inappropriate behaviors in sensitive applications (e.g., finance, legal automation). Mitigation strategies include controlled release of models, behavior filters during deployment, and incorporating safeguards in the World State Model to detect and prevent unintended or adversarial behavior.

11251126

```
1082
1084
1085
1087
1088
1089
1090
1091
            Algorithm 1 SEAgent Specialized Self-Evolution Training Loop
1092
             1: Input: Initial policy \pi_0, World State Model \mathcal{M}_{\text{state}}, Curriculum Generator \mathcal{M}_{\text{task}}, Initial GUI
1093
1094
             2: 1. Task Initialization
1095
                                                                                ▶ Parse initial GUI layout (menu bar, buttons, etc.)
             3: C_0 \leftarrow \text{CaptionGUI}(S_0)
             4: \mathcal{I}_0, U_0 \leftarrow \mathcal{M}_{task}(\emptyset, \emptyset, \emptyset, \mathcal{C}_0)
                                                                                       5: for p = 0 to P - 1 do
                                                                                                           ≥ 2. Self-Evolution Phase Loop
                       2.1 Autonomous Exploration
1099
             6:
             7:
                       \mathcal{D}_{\text{traj}} \leftarrow \emptyset
1100
             8:
                       for all I \in \mathcal{I}_p do
1101
             9:
                            \tau \leftarrow \text{ExecuteInstruction}(\pi_p, I)
                                                                                   > Actor executes task in the virtual environment
1102
            10:
                            2.2 Effect Evaluation
1103
            11:
                             \mathcal{J}_I, \mathcal{C}_I \leftarrow \mathcal{M}_{\text{state}}(\tau)

    ▷ Step-level trajectory judgment and new state captions

1104
                            \mathcal{D}_{	ext{traj}} \leftarrow \mathcal{D}_{	ext{traj}} \cup \{(	au, \mathcal{J}_I, \mathcal{C}_I)\}
                                                                        \triangleright \mathcal{J}_I: a sequence of per-step feedback labels (a_T \text{ or } a_F)
            12:
1105
            13:
1106
1107
                       2.3 Policy Update (RFT)
            14:
1108
                       Split \mathcal{D}_{traj} into:
            15:
1109
            16:
                           \mathcal{D}_{pos}: steps labeled as positive a_T
                          \mathcal{D}_{\text{neg}}: steps labeled as negative a_F
1110
            17:
            18:
                       Compute GRPO loss on \mathcal{D}_{pos}:
1111
            19:
                          r(a, a_T) = \mathbb{I}[\mathsf{type}(a) = \mathsf{type}(a_T)] + r_{\mathsf{dist}}(a, a_T)
                       Compute Adversarial Imitation loss on \mathcal{D}_{neg}:
            20:
1113
                          \mathcal{L}_{\text{AI}} = -\log \frac{\pi_{\theta}(a|s,I)}{\pi_{\text{ref}}(a_F|s,I)}
1114
            21:
            22:
                       Total loss: \mathcal{L}_{total} = \mathcal{L}_{GRPO} + \gamma \mathcal{L}_{AI}
1115
            23:
                       \pi_{p+1} \leftarrow \text{Update}(\pi_p, \mathcal{L}_{\text{total}})
1116
1117
            24:
                       2.4 Task Update
1118
                       \mathcal{I}_{p+1}, U_{p+1} \leftarrow \mathcal{M}_{\text{task}}(U_p, \mathcal{I}_p, \{\mathcal{J}_I\}, \{\mathcal{C}_I\})
                                                                                       1119
                  software knowledge and performance feedback
1120
            26: end for
1121
1122
            27: Output: Specialized agent policy \pi_P after P stages of self-evolution
1123
1124
```

1134 Web Step Level Judge Prompt Template 1135 1136 You are a Language Model specialized in judging the performance of web agents in web-navigation 1137 tasks. For a certain website, you are given the goal of a navigation task, the current URL of the 1138 webpage, the actions taken by the agent, and the thought process of the agent. Additionally, you will have access to the sequence of key frame screenshots Your task is to answer several 1139 questions about the agent's performance in the task. 1140 You should carefully look at the sequencial screenshot images in order to decide whether its 1141 sucessfully finish the task or failed halfway. 1142 Question 1: Was the sequence of actions successful in achieving the goal? 1143 Choices: <success>Successful</success>, <success>Unsuccessful</success> 1144 1145 Question 2: Did the agent perform unnecessary actions that could lead to unintended side effects? 1146 Choices: <side>Yes</side>, <side>No</side> 1147 Question 3: Did the agent perform the task optimally, by only performing necessary actions and 1148 avoiding unnecessary ones? 1149 Choices: 1150 <optimal>1. Complete Failure <optimal>2. Suboptimal 1151 <optimal>3. Somewhat Optimal 1152 <optimal>4. Completely Optimal/optimal> 1153 1154 Question 4: Did the agent loop through a sequence of actions that did not make progress towards 1155 Choices: <loop>Yes</loop>, <loop>No</loop> 1156 1157 Provide your reasoning for each question. 1158 Your answer **must** follow this exact format: 1159 <reasoning>your reasoning here</reasoning> 1160 <success>answer</success> 1161 <side>answer</side> 1162 <optimal>answer</optimal> <loop>answer</loop> 1163 1164

Figure 7: **Prompt Template of GUI-Judge for web agent trajectories evaluations** with history screenshots as input, its difference with default prompt of AgentRewardBench (Lù et al., 2025) is highlighted in bold.

L SEAGENT SELF-EVOLUTION ALGORITHM

1165 1166

1167

1168

1169 1170 1171

117211731174

1175

1176

1177

1178

1179

1180

1181

1182

1183

11841185

1186

1187

Algorithm 1 presents the core self-evolution training loop of SEAgent in a specialized software environment. The procedure is divided into four major stages:

- (1) **Task Initialization.** Given the initial GUI state of a target software application, the World State Model performs dense captioning to extract structural semantics (e.g., menu bar, buttons), which is used by the Curriculum Generator to create an initial set of executable tasks and an editable software guidebook.
- (2) **Autonomous Exploration and Effect Evaluation.** The agent explores each task via its current policy. The World State Model then performs step-level trajectory analysis, assigning each action a feedback label—either correct (a_T) or incorrect (a_F) —and generating GUI state change captions. This produces rich supervision signals for both policy learning and downstream task generation.
- (3) **Policy Update via Reinforcement Fine-Tuning.** Based on the labeled execution data, positive and negative action steps are separated. We apply Group Relative Policy Optimization (GRPO) to reinforce correct actions, and Adversarial Imitation (AI) to suppress failure-prone behaviors. The updated policy is used for the next exploration round.

1221

1222 1223 1224

1225

1226 1227

1228

1236 1237

1239 1240

1188 1189 OSWorld Step Level Judge Prompt Template 1190 I am evaluating the performance of a UI agent. The images provided are sequential keyframes that 1191 represent the full execution trajectory of the agent when attempting to follow a command. These 1192 keyframes correspond to the instruction: [INSTRUCTION]. 1193 1194 Please thoroughly analyze the sequence to assess the following aspects: 1195 1. Correctness — Did the agent successfully complete the task as instructed? 1196 2. Redundant Steps — Identify any unnecessary or repeated actions that do not contribute to the goal. 1197 3. Optimization — Did the agent follow an efficient plan with a minimal number of steps? 1198 5. First Error Step — If the execution is incorrect or sub-optimal, determine the index of the first 5. 1199 keyframe where a mistake occurred. 6. Error Analysis — Provide a brief explanation of the mistake at that step. 7. Correct Action Suggestion — Explain what the agent should have done instead at the point of error. 1201 1202 Important Instructions: The agent may have made progress toward the goal, but unless the task is fully and correctly 1203 completed, you must set 'Correctness' to False. 1204 Be cautious in determining success. Missing confirmation screens, skipped inputs, or wrong UI 1205 elements clicked all count as errors. 1206 Carefully examine all UI changes, button interactions, text entries, and any visual feedback in the 1207 screenshots. Clearly indicate which exact steps are redundant (starting from 1). 1208 Once you finish the analysis, return your evaluation in the following dictionary format. Include your 1209 step-by-step reasoning above the result. 1210 1211 <thinking>step by step reasoning.</thinking> res_dict = { 1212 "Correctness": True or False, 1213 "Redundant": [step numbers], 1214 "Optimized": True or False, "First Error Step": step number or None, 1215 "Error Type": "brief description of the mistake", 1216 "Correct Action": "what should have been done instead' 1217 1218

Figure 8: Prompt Template of GUI-Judge for OSWorld (Xie et al., 2024) trajectories, which prompts judge model to provide step level reward signal.

(4) **Task Update.** The Curriculum Generator leverages feedback signals (\mathcal{J}) and GUI state transitions (\mathcal{C}) to propose more diverse and challenging tasks, thereby expanding the task frontier in a curriculum fashion.

This process repeats over multiple curriculum phases, ultimately yielding a specialized agent policy capable of mastering complex operations in the given software environment.

1242 Task Buffer Update Prompt Template 1243 1244 You are now a teacher training a Computer Use Agent (CUA). This CUA is exposed to a new software 1245 environment and undergoes multiple rounds of iterative training. Your task is to issue new tasks for the agent to explore and train on, based on the feedback from the agent's actions. You are also 1246 responsible for summarizing a software usage manual to help the agent remember knowledge 1247 about the software. 1248 The agent has provided the following feedback on its operations within the software: 1249 {json.dumps(action decription list)} Here is the software usage document you summarized in the previous round: {document} 1250 Here is the agent's performance on the task you provided in the previous round: 1251 {json.dumps(exam)} 1252 Your are also access to the previous given tasks with the screenshot caption after agent's 1253 execution. You can also use these captions and results to evaluate the agent's capability and generate new task and update document accordingly given the caption of the new screen and the corresponding intruction with judged evaluation: {json.dumps(prev states)} 1255 1256 Analyze the agent's performance. - Integrate new knowledge from the feedback. 1257 - Update the usage manual accordingly. - Design a new set of tasks (with increased difficulty) (30 or more) that reinforce the concepts the 1259 agent struggled with in the last round. 1260 - Each task **must be concise and specific**, targeting a concrete atomic action, based on the 1261 document and agent's observations, such as: "Create a file named main.py." 1262 - "Open Terminal card." 1263 - Each task must be executable from software initial state with no file open, e.g. you should not 1264 generate task like save xxx.txt if xxx.txt doesn't exist or created. - if task is in sequencial order with reliance, you should output a seg list like [subtask1, 1265 subtask2, ...], if there is no reliance, output [task]. 1266 - Decompose and target previous errors in a more focused way. 1267 Output your reasoning and analysis process first. Then output the updated usage document and 1268 task list in the following JSON format within a SINGLE JSON DICT easier for me to parse: json 1269 1270 "software document new": "..." "exam new": [[subtask1, subtask2, ...], [task]...] 1272

1273

1275

1276

1277 1278 1279

1280

1285 1286

1288

1290

1291

Figure 9: **Prompt Template for task buffer update**, which generates new tasks in a curriculum manner and update software documents. The new tasks are used for actor to perform next phase of RL.

Figure 10: Automatically generated usage manual during self exploration on VScode.

13311332



Figure 11: Automatically generated usage manual during self exploration on GIMP.

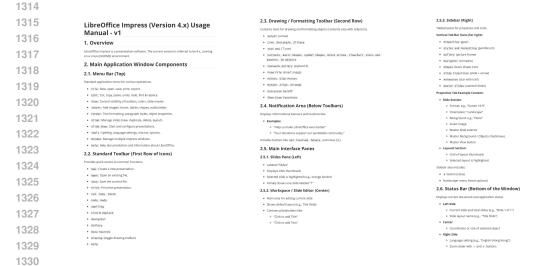


Figure 12: Automatically generated usage manual during self exploration on LibreOffice Impress.

```
1333
                           LibreOffice Writer Usage Manual
1334
                                                                                                                                                                                 2.8. Right Sidebar
                            1. Overview
1335
                            2. Main Window Components
                                                                                                      2.3.2. Formatting Toolbar
1336
                           2.1. Title Bar
1337
                                                                                                                                                                                 2.9. Information Banners
                            2.2. Menu Bar
1338

Located at the top of the application window, below the Title Bar.
Contains drop-down menus for various commands.
Rems with .... open dialogs; arrows indicate submenus.
                                                                                                                                                                                2.10. Dialog Boxes
1339
1340
                                                                                                                                                                                 2.11. Tooltips
1341
1342
                                                                                                      2.6. Vertical Scrollbar
1344
                            2.3. Toolbars
1345
                                                                                                                                                                                 2.14. Keyboard Shortcuts
1346
1347
1348
```

Figure 13: Automatically generated usage manual during self exploration on LibreOffice_Writer.