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ABSTRACT

Repurposing large vision-language models (LVLMs) as computer use agents
(CUAsS) has led to substantial breakthroughs, primarily driven by human-labeled
data. However, these models often struggle with novel and specialized software,
particularly in scenarios lacking human annotations. To address this challenge,
we propose SEAgent, an agentic self-evolving framework enabling CUAs to au-
tonomously evolve through interactions with unfamiliar software. Specifically,
SEAgent empowers computer-use agents to autonomously master novel software
environments via experiential learning, where agents explore new software, learn
through iterative trial-and-error, and progressively tackle auto-generated tasks or-
ganized from simple to complex. To achieve this goal, we design a World State
Model for step-wise trajectory assessment, along with a Curriculum Generator that
generates increasingly diverse and challenging tasks. The agent’s policy is updated
through experiential learning, comprised of adversarial imitation of failure actions
and Group Relative Policy Optimization (GRPO) on successful ones. Furthermore,
we introduce a specialist-to-generalist training strategy that integrates individual ex-
periential insights from specialist agents, facilitating the development of a stronger
generalist CUA capable of continuous autonomous evolution. This unified agent
ultimately achieves performance surpassing ensembles of individual specialist
agents on their specialized software. We validate the effectiveness of SEAgent
across five professional software of OSWorld, ScienceBoard and AndroidWorld.
Our approach achieves a significant improvement over a competitive open-source
CUA, UI-TARS. All the code and models will be made publicly available to foster
further research.

1 INTRODUCTION

“A new generation of agents will acquire superhuman capabilities by learning predominantly from
experience.” (Silver & Sutton, [2025))

— David Silver, Richard S. Sutton

With the rapid development of large vision-language models (LVLMs) (Touvron et al., 2023}
Grattafior1 et al., 2024} Bai et al.l [2025; |Wang et al.| [2024; |OpenAl, 2023} |Anthropic| |2025b;
Team et al.| 2023)), computer use agents (CUAs) (Anthropic, 2024;|OpenAl, 2025} |Qin et al., |2025}
Lin et al.,2024; Wu et al., |2024b) have not only emerged but also demonstrated increasing practical
utility. By leveraging the powerful perception and reasoning capabilities of LVLMs, these agents can
interpret screenshots as visual inputs and operate computers via keyboard and mouse actions. Despite
their promising capabilities, current CUAs (Qi et al., [2024} |Putta et al., 2024} |Deng et al., [2023; |[He
et al}[2024; Bai et al.| 2024} |Lu et al.|[2024) primarily depend on costly human-curated datasets (Deng
et al., 2023} |Chen et al., [2024; Wu et al., 2024b; [Kapoor et al.l [2024; |Li et al., 2024)), which are
typically derived from demonstrations (Lu et al., 2024} [Zhang & Zhang|, 2023} |Gur et al., 2023}
Rawles et al., [2023} [Zhang et al.,[2024a)) or video tutorials in the wild (Xu et al.| 2024). However,
new software continuously emerges and existing software may regularly be updated, often in the
absence of annotated human data. It is both necessary and timely to enter an era that emphasizes
learning from experience (Silver & Sutton| [2025) in CUA domain. In this paper, we aim to enable
CUAs to autonomously explore unfamiliar software environments and evolve into experts without
relying on human supervision.
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Figure 1: SEAgent enables computer use agents self-evolving in novel environments by au-
tonomously exploring and learning from their own experiences without human intervention. The
specialist-to-generalist training strategy further enhances the development of a strong generalist agent.

To address this challenge, we propose SEAgent, an agentic self-evolving framework in which
Computer Use Agents (CUAs) are exposed to previously unfamiliar software environments and
engage in autonomous exploration and experiential learning, as illustrated in Fig.[T} Enabling such self-
evolution requires addressing two key challenges: (1) generating executable tasks within unfamiliar
software environments, and (2) accurately assessing task success and precisely identifying the step
at which failure occurs. To this end, we introduce a World State Model for environmental state
captioning and step-wise trajectory assessment, together with a Curriculum Generator powered by
a continuously updated software guidebook memory to generate increasingly diverse and challenging
tasks, thereby establishing a curriculum learning paradigm. The agent’s policy is optimized through
experiential learning from both failures and successes, combining adversarial imitation of failure
actions and Group Relative Policy Optimization (GRPO) on successful ones.

Given the critical role of reward accuracy, we conduct extensive evaluations and observe that existing
reward models of computer use tasks fall short in terms of judgment precision and reward density.
Leveraging the enhanced long-context processing capabilities of advanced LVLMs, we input the
agent’s full trajectory of states into the reward model and fine-tune a reward model, World State
Model, using Qwen2.5-VL 2023), substantially narrowing the gap with commercial
models such as GPT-4o with +7.5% improvement in precision compared to baseline
model in evaluating CUASs’ trajectories on AgentRewardBench 2025)), enable World State
Model to provide high quality step level reward signals in self-evolving agentic system.

Moreover, SEAgent enables agents to evolve into either single-software specialists or multi-software
generalists. To overcome the limitation that directly training a generalist underperforms compared to
specialists, inspired by (Zhang et al,[2024c)), we introduce a novel specialist-to-generalist training
strategy, which even surpasses the performance of individual specialists on their respective software
applications. We perform extensive experiments of SEAgent built on UI-TARS

and evaluated on five professional software applications from OSWorld (Xie et al.,[2024). SEAgent
with the specialist-to-generalist strategy significantly improves the UI-TARS (Qin et al [2025).
Furthermore, SEAgent with the specialist-to-generalist strategy outperforms both specialist RL and
generalist RL by a substantial margin, demonstrating the effectiveness of the specialist-to-generalist
paradigm. We also validate this strategy on UI-TARS-1.5 on ScienceBoard on out
of domain scientific softwares. In general, SEAgent offers a promising approach for developing more
powerful and versatile computer-use agents without human involvement.




Under review as a conference paper at ICLR 2026

2 RELATED WORK

Agent for Computer Use. With recent revolution in LLM and LVLMs (Touvron et al., [2023;
Grattafiori et al. 2024} [Liu et al., 2023a} Bai et al., 2025} [Wang et al., [2024), processing human
level perception and reasoning ability, building computer use agent is also intensively studied (Hu
et al., 2024} Hong et al., 2024} |Cheng et al.| [2024; [Nguyen et al., [2024; |Lin et al., [2024)). These
agents either takes only text input from structured text (Qi et al.,|2024) or more like human, take
screenshot and text condition as multi-modal input. Although intensively studied and perform well
on in-domain benchmark (Lu et al.,[2024; |Zheng et al., 2024} Liu et al.| 2024} [Li et al., [2025; |Cheng
et al.| [2024), The computer use agent still fall largely behind human level performance in simulation
environment (Xie et al.,|2024; Rawles et al., 2024; Koh et al., 2024} Zhou et al.| 2023)), as its challenge
the multi-dimension ability of LVLMs in grounding, decision making and reasoning with works
done breaking this process into different expert models (Gou et al., [2024; |Wan et al., [2024) with
agent calloberation (Agashe et al., [2024; 2025} Liu et al., [2023b; Zhang et al., [2025) through prompt
engineering (Yan et al.| [2023; |He et al., 2024; [Zhang et al., 2024b; Wang et al., 2023 |Wu et al.|
2024a), However, these training free methods improvements is restricted without fine-tuning. In this
work, we dive into the next step of CUA where the pretrained agent is fine-tuned to learn from its own
experience and achieves self-evolution on specialized novel software without human annotations.

Reinforcement Learning for LLM/ LVLMs. Previous post-training for LLM/ LVLMs (Touvron
et al.| 2023} \Grattafiori et al., [2024; Liu et al., | 2023a; |Bai et al.| 2025 (Wang et al., [2024) mainly from
supervised fine-tuning (SFT) (Liu et al.| 2023a; Wei et al.,[2022)). Similar to imitation learning in
RL, SFT teach model to output desired output. This makes SFT highly dependent on high quality
human procedure data. Recently, DeepSeek-R1 (Guo et al.| | 2025) achieve strong reasoning ability
through Group Relative Policy Optimization (GRPO) (Shao et al. [2024) with verifiable rewards.
Previous works (Ouyang et al., 2022} |Ziegler et al., [2019; Rafailov et al., [2023) also apply RL to
single turn optimization from human feedback. However, in agentic applications like computer use
where environment feedback is sparse, where success is achieved with multi-step interactions. It is
important to introduce stable step level reward signals. Previous works on RL for agent (Bai et al.,
2024;|Q1 et al.l 2024} [Zhou et al., [2024; Zhai et al.| 2024; (Carta et al., 2023)) fine-tune their own
critic model for advantage estimation based on output reward model (ORM) or use DPO (Rafailov
et al., [2023) policy updates based on interaction data (Putta et al., 2024} |Qin et al., 2025)). In this
work, we dive into evaluation of different strategies for building the best performing reward model
for CUAs and find that full process based analysis provide the most accurate results compared to
training specific critic model to perform advantage estimation in (Bai et al., [2024} |Q1 et al., 2024)).

3 METHODS

Problem Formulation. The objective of SEAgent is to establish a training pipeline enabling the
Computer Use Agent (CUA) to autonomously explore its environment (Sec. [3.1)) and progressively
self-evolve on novel software applications via reinforcement learning from experience (Sec. [3.2).
Specifically, the SEAgent pipeline comprises three primary components: an Actor Model 7 perform-
ing exploratory actions to accomplish these tasks, and a World State Model M ;4. describing the
current environment state and evaluating the success or failure of executed actions, and a Curriculum
Generator M, that continuously proposes more diverse and challenging exploration tasks:

(1) Actor Model 7: The policy 7(a|st, I) defines the probability of taking action a at time step ¢,
conditioned on the current state s; and the overall task instruction 1.

(2) World State Model M ;,:.: This component is a fine-tuned Large Vision-Language Model
(LVLM) responsible for providing detailed descriptions of environment states. It also evaluates
each step of the trajectory executed by the Actor Model 7, producing trajectory judgement [J
which indicates whether the task has been successfully completed. Joint training with state change
captioning C of the software GUI has been shown to enhance judgment accuracy, as shown in Table [T]

(3) Curriculum Generator M,,;: This component utilizes a powerful Large Language Model
(LLM) to automatically generate novel exploration tasks. It also maintains and updates a software
guidebook U based on the state change captioning C and the trajectory judgement 7 provided by
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Figure 2: SEAgent autonomous exploration and experiential learning pipeline. Guided by tasks
generated by the Curriculum Generator, the Actor Model is updated according to step-level rewards
from the World State Model through verifiable reward functions tailored for different action types.

Mstate during interactions. The gradually enriched guidebook U enables M, to progressively
generate increasingly diverse and challenging tasks in a curriculum learning fashion.

SEAgent can be applied to enable the self-evolution of a computer-use agent, either as a specialist for
a single software or as a generalist across multiple software. However, we observe that direct training
for generalist agents is suboptimal. We introduce a specialist-to-generalist training strategy, which
achieves improved overall performance than training multiple generalist agents detailed in Sec.[3.3]

3.1 AUTONOMOUS EXPLORATION WITH SELF-EVOLVING CURRICULUM

Autonomous exploration is essential for enabling the Computer Use Agent (CUA) to develop profi-
ciency in novel software applications that are previously unseen or poorly understood. This process
involves addressing two key challenges: (1) generating executable tasks within unfamiliar software
environments, and (2) evaluating task completion success and pinpointing the specific step at which
failure occurs. To tackle these challenges, we introduce two novel components: the World State
Model M and the Curriculum Generator M,gc. These components jointly support a self-evolving
curriculum paradigm, which facilitates the autonomous generation of increasingly diverse and
challenging tasks.

The self-evolving curriculum paradigm pipeline is structured into P sequential phases. Before
the first phase, a set of initial tasks targeting basic GUI operations is generated (details provided in
Sup.[C.I). In each phase, these tasks are executed and step-wise evaluated. The resulting judgments
and descriptions of the exploration trajectories are fed into the Curriculum Generator M, which
updates a self-maintained software guidebook U. Leveraging this updated guidebook and the
current capabilities of the CUA, the generator then produces more diverse and challenging tasks for
subsequent phases. The following outlines each step of the process in detail:

(1) Task initiation: The initial state of the unfamiliar software is provided, typically in the form of
screenshots of its basic GUI interface. The World State Model M, performs dense captioning of
the GUI elements, including button detection and OCR-based recognition. These detailed captions
are passed to the Curriculum Generator M ,g, which generates an initial set of task instructions

To ={], (()1), 1 ég), -+ - } along with an initial software guidebook Uy for the software.

(2) World state judgment: In the p-th phase of Auto Exploration, the Actor Model ,, executes tasks
based on the instructions in Z,,. Each execution is evaluated by the World State Model M., Which
provides feedback 7, = {ngl), JZSQ), - - - } for each step within the operation trajectory. In addition, it
generates a detailed description of GUI state changes based on captured screenshots, denoted as Cp,.

(3) Task self-evolving: Based on the outcomes 7, and C,, the Curriculum Generator M, produces
a more challenging task set Z, 1 and expands the agent’s knowledge boundary by updating the
software guidebook to U,,; 1. The detailed prompting process is illustrated in Fig. E} This iterative
update can be formalized as:

Up+laIp+1 = Mtask(Upazpvjpacp) (1)
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Here, Uy serves as a more comprehensive software guidebook memory, while 7, represents a
more challenging task set tailored to the current capabilities of the Actor Model 7,,. Examples of
1, are provided in Fig. [Zl_f], where the Actor Model m demonstrates curriculum learning by handling
increasingly complex tasks across different phases p. Illustrations of U,, across various software
applications are provided in Sup.[J| Comparison with previous methods (Murty et al.} 2025} [2024;
Sun et al., [2024) on task generation are detailed in SuplC.2]

(4) Autonomous RL Training: Through iterative reinforcement learning, the Actor Model 7, is
updated based on its execution of the instruction set Z,,, guided by evaluation feedback 7}, and a set
of action-specific verifiable functions Ryeriter. The resulting policy 7,41 is then used as the actor in
the subsequent phase. Further details are provided in Sec.[3.2]

3.2 REINFORCEMENT LEARNING FROM EXPERIENCE

The World State Model M 44+ provides step-level reward signals for reinforcement learning. Unlike
previous reward models for CUA (Qi et al., 2024; |Bai et al., 2024; |Putta et al., 2024; |Pan et al.,
2024} [Lu et al, [2025)), our M4t model takes the entire trajectory of states and actions, H =
{(s0,a0), (s1,0a1),...}, as input. It classifies each action « as either ar or ar, where ar indicates
an incorrect action leading to failure or redundant loops, and ap represents a correct action that
contributes to successful progression without redundancy. The curated prompt used for judgment
is depicted in Fig. [8| with input/output format detailed in Sec.??. For historical states that result in
ar, we encourage CUA to reinforce these actions through verifiable rewards defined by a set of
functions Ryerifer = {7dist }- Conversely, for states leading to ar, we penalize them using negative
KL divergence with adversarial imitation.

Adversarial Imitation for Failure Action Punishment. To explicitly encourage the policy to diverge
from failure-inducing behaviors, we employ a contrastive log-ratio loss based on a reference failure
action ar. This objective encourages the policy to sample actions a that minimize alignment with the
failure action ag:

mo(a | s, I)

L =E, [-1]
A](ﬂ—()) og 7Tref(CEF | S,I)

@

Verifiable Rewards for Correct Action Encouragement. To more effectively guide the policy
toward correct actions ar, we adopt Reinforcement Learning with Verifiable Rewards (RLVR) (Guo
et al.,[2025} [Shao et al., [2024)), which has recently shown success in enhancing language models on
tasks with objectively verifiable answers, such as mathematics (Shao et al.|[2024), and more recently,
counting and grounding in the vision-language domain (Liu et al.l 2025} [Shen et al., 2025; Meng
et al.l[2025). After labeling the correct step (s, ar) using the World State Model, we apply Group
Relative Policy Optimization (GRPO), computing the relative advantage of each response based on
its reward:

() — mean({r("D}% )

AW = : ,
std({r(@) ]Gzl)

1=1

7"'aG' (3)

As we design distinct reward signals for different action types, we define the reward function between
a predicted action a and the ground-truth action ar as:

r =7 ar) =1 (type(a(i)) = type(aT)) + ras(a?, ar), 4

where I(+) is the indicator function that returns 1 if the predicted action and ground-truth action are of
the same type, and O otherwise. The distance-based reward term rdisl(a(i), ar) is defined according
to the specific action type: for c1ick actions, it is computed based on the normalized L1 distance
between the clicked coordinates; for drag and select actions, it is computed using the Intersection
over Union (IoU) between the predicted and ground-truth bounding boxes; and for t ype actions, it
is determined by the character-level BLEU score between the predicted and ground-truth text. All
T4ise Tewards are normalized to the range [0, 1] to ensure consistency across different action types. A
comprehensive list of rdist(a("'), ar) definitions for various action types is provided in Tab. @ The
final loss of GRPO is directly adopted from (Shao et al., [2024)):
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Similar to (Shao et al., 2024} |Guo et al.] [2025), advantage A is weighted on the whole reasoning
token logits to encourage free form thinking for performing action and planning.

The final training loss is defined as a weighted combination of positive and negative action samples,
i.e., correct actions ar and incorrect actions ag: L£(m(0)) = Lgreo + 7La1. We set v = 0.2 during
training, and the rationale for this choice is discussed in the ablation study presented in Sup.

This strategy is shown to be more effective in Sec.[4.2|compared to Generalized Advantage Estimation
(GAE) (Schulman et al., 2015)-based RL methods (Qi et al., 2024} Bai et al., [2024), as the more
powerful reward model M g;,;. provides accurate step-level reward signals by leveraging the entire
episode trajectory H from a global perspective.

3.3 FROM SPECIALIST TO GENERALIST.

Achieving a generalist agent capable of operating across multiple software platforms is an ambitious
and valuable goal. We first attempted to train such a generalist directly using the proposed SEAgent
framework across all software environments. However, this approach led to suboptimal performance
compared to specialized agents, as the actor struggled to learn effectively in the multi-software
environment.

We thus introduce a specialist to generalist strategy, as illustrated in Fig.[I] Specifically, we first train
software-specialized agents via SEAgent on individual environments, allowing each to master a spe-
cific application. These specialists are then distilled into a single generalist model through supervised
fine-tuning (SFT) on synthesized successful trajectories. Finally, the generalist is refined via SEAgent
on multiple software. This generalist, now equipped with better reasoning, planning abilities, and
software-specific commonsense, achieves significantly improved performance, outperforming both
the SEAgent via direct general RL and the performance combination of multi-specialists as in Table[2]

4 EXPERIMENTS

4.1 EVALUATION OF REWARD MODEL FOR COMPUTER USE AGENT.

Providing CUA agents with reliable reward signals is crucial for enabling self-evolution. Building
on AgentRewardBench (Lu et al.| [2025), which focuses on web tasks, we extend the evaluation
to a broader set of PC software environments. Specifically, we evaluate on all 339 feasible tasks
from OSWorld (Xie et al., [2024). Trajectories are sampled from UI-TARS (Qin et al., [2025) and
Gemini-2.5-Pro (Google DeepMind, [2025), and a rule-based evaluation is used as ground-truth
supervision to compute a confusion matrix for each reward model’s predictions.

The judging strategy in AgentRewardBench (Lu et al., [2025)) is limited, as it relies solely on the
final state and action history. It is more natural and reliable for a judge model to consider the entire
trajectory when assessing task success. For example, a final state message like ”Your flight ticket has
been successfully booked” does not confirm whether the correct date and time were selected, which
can lead to compromised judgment accuracy.

However, we observe that current open-sourced LVLMs perform poorly under this more holistic
evaluation strategy. As shown in Fig. [3] feeding additional historical screenshots into Qwen2.5-
VL (Bai et al., [2025) significantly degrades its Average Precision (AP), diverging notably from
GPT-40 (Hurst et al.} 2024) on the same curated prompt. We attribute this performance drop to the
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Table 1: Precision and Negative Predictive Value (NPV) on AgentReardBench (Lu et al., 2025)
and OSWorld (Xie et al.,[2024) with last screenshot only (LS) or entire process screenshots (ES) as
input. World State Model closes the gap with commercial model. The co-training with screenshot
change description (CD) improves judgment precision.

AgentRewardBench  OS-World-Full Prof/Office

Model Input Precision NPV Precision NPV Precision NPV
\ LS 68.1 923 463 882 405  81.0

GPT-4o (Hurst et al.{[2024) ES 72.1 922 746 952 704 853
_ LS 64.5 94.2 415 869 317 787

Qwen2.5-VL-72B (Bai et al.|2025)  gg 26.2 83.0 268 830 256 766
, LS 64.1 90.3 373 852 318  79.0

Qwen2.5-VL-7B (Bai et al.|2025) g 25.4 83.8 200 817 235 760
World State Model (w/o CD) ES 69.1 88.5 711 884 650 811
World State Model (w/ CD) ES 71.6 91.2 739 905 693  82.0

insufficient pretraining of Qwen2.5-VL on long sequences of high-resolution screenshots, which
pushes it toward the limits of its 32K context length.

To address this, we propose World State Model, a distilled model based on Qwen2.5-VL-7B. The
training process for World State Model uses a dataset of 0.86K GPT-40 (Hurst et al.,2024) generated
evaluations on trajectories with dense GUI change descriptions, exclusively from the Chrome browser
within the OSWorld (Xie et al.|2024) environment. Alongside the primary judgment task, we also find
it effective to co-training the model with change description (CD) task for describing the difference
of the screenshot before and after an action. Training data and settings are detailed in Sup. [A]
Despite being trained solely on Chrome data, World State Model exhibits strong generalization to
other professional software in OSWorld and to the external AgentRewardBench (Lu et al., [2025)
benchmark. This demonstrates that the model learns transferable judgment patterns rather than
overfitting to a single application.

As evaluated in Tab. 1| and further analyzed in 4
Fig. Bl World State Model achieves state-of- 75
the-art performance among open-sourced mod- 7o
els, significantly narrowing the gap with GPT-
40 (Hurst et al., 2024). Despite being trained Qwen2.5-VL-7B
on a relatively small dataset, World State Model 60
. .. GPT-40
is explicitly encouraged to capture the sequen- 33

tial dependencies among historical screenshots 50 GUI-Judge
and to perform step-by-step reasoning for final 45
jgdgment. It provides reliable, step-le\{el reward » #istates (screenshot)
signals that support downstream policy learn- 1 2 4 8 all

ing (Training reward w.r.t. different reward sig- Figure 3: The Average Precision on AgentRe-
nal providers is depicted in Fig. 5, allowing wardBench (Lu et al., 2025), where GUI-Judge
our agentic system to evolve using fully open- exhibits an improvement in AP as the number of
sourced models while avoiding inefficient and input middle states increases, showing a similar
costly API calls to proprietary models. trend to that of the closed sourced GPT-4o.

} Average Precision

—&— Qwen2.5-VL-72B

4.2 SELF EVOLUTION OF GUI AGENTS

Models Before Self-Evolution. Our self-evolving system is initialized with three locally deployed
models: UI-TARS-7B-DPO (Qin et al.| 2025) as the Actor Model, World State Model as the step-level
reward model, and Qwen2.5-72B (Yang et al., [2024) as the Curriculum Generator. As shown in
Tab. [2] the initial Actor Agent achieves an average success rate of 21.5% across five professional
software applications from OSWorld.

Evolution Process Details. The evolution process begins with the Curriculum Generator producing
an initial instruction set (Z), averaging 150.2 instructions. The Actor Model executes these tasks,
and the resulting trajectories are evaluated by World State Model and parsed into an average of
1361.5 multi-turn conversation pairs (detailed statistics are in Sup[H). We then perform reinforcement
fine-tuning (RFT) for 1k iterations on 8 NVIDIA A100 80GB GPUs, with a batch size of 16 and a
learning rate of 2 x 10~° scheduled via cosine decay. This process is repeated for three phases.
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Table 2: Success Rate (SR) on OSWorld (Xie et al., 2024). SEAgent demonstrates strong perfor-
mance after reinforcement learning. In addition to evolving on separate software, a new General
Model achieves better performance after another iteration of SEAgent. *Indicates specialist agents
trained separately for each software with ensembled results. All results are averaged over five runs.

Model VScode GIMP Impress VLC  Writer Overall
Human Performance 73.9 73.1 80.9 70.6 73.9 74.5
GPT-40 (Hurst et al.}|[2024) 4.35 3.85 6.77 16.1 4.35 7.08
GPT-4V (OpenAl![2023) 0.00 7.69 2.52 18.3 4.35 6.59
Gemini-Pro-1.5 (Team et al.,[2023) 0.00 11.5 13.2 6.53 8.71 7.99
Claude3.7 Sonnet (Anthropic!/2025a) 18.8 24.4 10.6 27.5 17.4 19.7
Gemini-Pro-2.5 (Google DeepMind|[2025) 21.7 26.9 9.92 25.5 24.6 21.7
UI-TARS-7B-DPO (Lu et al.|[2024) 30.4 34.6 17.0 11.8 13.6 21.5
UI-TARS-72B-DPO (Lu et al.|[2024) 39.1 53.8 234 15.3 26.1 31.5
DigiRL (Bai et al.||2024) (Specialized RL)* 43.7 454 19.6 25.0 19.1 30.6
WebRL (Q1 et al.[|2024) (Specialized RL)* 36.5 37.7 20.4 29.4 21.7 29.1
SEAgent (Specialized RL)* 46.1 50.0 21.3 31.8 33.0 36.4
DigiRL (Bai et al.|2024) (General RL) 38.3 46.2 19.1 25.9 19.1 29.7
WebRL (Qi1 et al.||2024) (General RL) 35.6 33.1 18.7 27.0 15.7 26.0
SEAgent (General RL) 40.8 42.3 21.7 28.2 30.4 32.6
SEAgent (General SFT) 36.5 41.5 25.5 30.6 32.2 333
SEAgent (Specialist-to-Generalist) 47.8 50.8 29.8 35.3 36.5 40.0

Table 3: Success Rate (SR) on OSWorld (Xie et al., 2024} and ScienceBoard (Sun et al.} 2025]).

Benchmark OSWorld (Xie et al.|[2024) ScienceBoard (Sun et al.|[2025)
Software Impress Writer GIMP VScode VLC ChamerX GrassGIS KAlgebra Celestia
UI-TARS-1.5-7B-DPO 29.8 39.1 51.5 60.9 23.5 12.4 0.0 11.6 4.9
UI-TARS-1.5-7B-DPO + SEAgent 319 435 56.9 60.9 353 31.0 20.6 29.0 15.2

Specialist Evaluation. For a fair comparison with previous methods (Bai et al., [2024; |Qi et al.}
2024), we train specialist agents for five different software applications. We adapt their strategies by
initializing a separate critic model from UI-TARS-7B with randomly initialized MLP layers to regress
value predictions using Generalized Advantage Estimation (GAE) (Schulman et al., [2015). As shown
in Tab.2]and Fig.[d] SEAgent, achieves superior performance. We attribute this to World State Model
providing fine-grained, step-level rewards from the full history, which is more effective than relying
on a separate critic to estimate advantages from sparse, final success/failure signals. Experimental
results on mobile use GUI are supplied in Sec.[D] We also provide comparison with previous task
generation methods (Murty et al.l 2025} |Qi et al.,[2024) on task generation are detailed in Sup@}

As shown in Fig. 4|and Tab. [2] we train separate actor agents for five different software applications.
Our approach, denoted as SEAgent (Specialist), achieves strong performance compared to previous
reinforcement learning methods such as DigiRL (Bai et al., 2024) and WebRL (Qi et al.} 2024). We
attribute this improvement to the use of World State Model, which provides fine-grained, step-level
reward signals derived from a comprehensive understanding of the full history of states and actions.
This contrasts with previous approaches that rely on separate critic models—typically initialized
from the actor itself—to estimate advantages from sparse, final success/failure signals. Furthermore,
the curriculum of task instructions generated by the Curriculum Generator, as illustrated in Fig. 4]
validates the effectiveness of our autonomous learning framework. These tasks progress from simple
to complex based on the actor’s evolving capabilities, enabling it to gradually specialize in each target
software environment. Based on the observed evolution curves, we set the number of training phases
to three, as performance gains saturate beyond that point.

From Specialist to Generalist. After training five strong software specialists, we pursue general-
ization. We collect task instructions from each specialist’s training and use them to generate 3.5K
successful trajectories. These trajectories, along with their reasoning traces, are distilled into a new
base model (UI-TARS-7B) via supervised fine-tuning (SFT). This distilled model is then further
optimized through RL across all five software environments. As shown in Tab. 2] the resulting
generalist model surpasses the performance of the individual specialist ensemble.

Results based on UI-TARS-1.5 and ScienceBoard. Our work focuses on enabling agents to adapt
to out-of-domain (OOD) and novel software where human-labeled data is not available. We applied
our SEAgent pipeline to the UI-TARS-1.5 (Qin et al., 2025)) using the same process described above
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Figure 4: Self-evolved task instructions and success rate (SR) curves across different software.
Tasks are progressively upgraded by the Curriculum Generator without human intervention, based on
the evolving capabilities of the Actor Model at different training phases.

on two distinct benchmarks. As reported in Tab. [3] on OSWorld (Xie et al., [2024), we observed
moderate performance gains. We hypothesize this is because UI-TARS-1.5’s training data already
cover OSWorld software environments, making it a familiar, in-domain evaluation for the base model.
However, on the ScienceBoard (Sun et al., [2025)) benchmark—a suite of scientific applications that
are truly novel to UI-TARS-1.5—our pipeline delivers significant and substantial improvements.
This strongly validates our core claim: SEAgent is most impactful when performing self-evolution
learning on truly OOD software. We excluded two of the six ScienceBoard applications—Lean and
TeX—as they are primarily text- and code-based software for mathematics and typesetting, which are
not suitable for evaluating a GUI-centric agent like UI-TARS.

Ablation Study of Specialist Train- Table 4: Ablation of different configurations and their cor-
ing. Our work focuses on enabling responding VScode success rates on OSWorld (Xie et al.,
agents to adapt to out-of-domain [2024). Using World State Model as the reward model yields
(O0OD) software. To test this, we significant performance gains. We further compare different
applied our SEAgent pipeline to the training strategies including supervised fine-tuning (behavior
UI-TARS-1.5 model. On OSWorld, cloning), GRPO, and Adversarial Imitation (AI).

an in-domain environment, we ob-

served moderate gains. However, on Qwen2.5VL-72B  World State Model SFT (BC) GRPO AI VScode SR

the ScienceBoard (Sun et al., [2025) 304

. N . v v 26.1
benchmark—a suite of scientific ap- v v 283
plications novel to the model—our 5 j . gg-?
pipeline delivered significant improve- v v 435
ments. We excluded two Science- v v ¥ 46.1

Board applications (Lean and TeX) as their text- and code-based interfaces are unsuitable for a
GUI-centric agent like UI-TARS.

5 CONCLUSION

In this work, we introduce SEAgent, an autonomous Computer Use Agent (CUA) exploration system
that learns from its own experience on specific software. Powered by a robust World State Model that
provides step-level reward signals, and a carefully designed reinforcement learning framework that
encourages free-form reasoning through trial and error, the CUA is able to evolve into a specialist for
individual software platforms. Furthermore, a specialist-to-generalist training strategy enables the
development of a strong generalist agent capable of operating across multiple software environments.
Given that computer software constitutes a highly regularized virtual world, we believe this work can
inspire future research on agentic systems in both gaming and real world embodied environments.

Limitations and future work. While promising, our work still has several unresolved limitations.
Firstly, our self evolving agent system is bounded by GUI-Judge to provide reliable reward signal
instead of real signal from environment. As its still challenging to learning from sparse reward signal
in complex environment. Secondly, though we tested on relatively complex and novel software like
libreoffice-tools and GIMP. The task is still relatively simple as it only takes a human expert less
than 20 step to accomplish. How to adapt the system to achieve hours-long workflow in even more
challenging software used by real human expert are thus interesting future directions.
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ETHICS STATEMENT

Our work adheres to the ICLR Code of Ethics. Our goal is to develop versatile computer-use agents
that can autonomously adapt to new software, thereby automating a wide range of human workflows.
We acknowledge that self-evolving agents learning without direct human oversight raises important
safety considerations. To address this, our framework confines learning to isolated virtual machine
environments and guides the agent’s exploration through a structured curriculum and an automated
reward model, preventing the acquisition of harmful or unintended behaviors. Potential for societal
bias exists in the foundational models we use (e.g., UI-TARS (Qin et al.,|2025), Qwen2.5-VL (Bai
et al.}2025)) and could be inherited by our fine-tuned World State Model reward model, World State
Model, and Curriculum Generator. A significant ethical benefit of our approach is its ability to bypass
the need for costly, human-curated datasets, thus reducing the reliance on intensive manual annotation
labor. We acknowledge the computational resources required for this form of experiential learning
and are committed to the responsible development of capable and safely-evolving Al agents.

REPRODUCIBILITY STATEMENT

To ensure full reproducibility and to contribute to the community, we firmly commit to open-sourcing
our entire project after the peer-review process. This includes all source code for our agentic self-
evolving framework (SEAgent), encompassing the World State Model, Curriculum Generator, and
our implementations of the learning algorithms. Furthermore, we will release all model weights,
including our fine-tuned World State Model reward model and all specialist and generalist agents
trained with our specialist-to-generalist strategy. Our work builds on public models like UI-TARS-
1.5 (Qin et al., 2025 and Qwen2.5-VL (Bai et al., [2025), for which we provide exact identifiers. The
appendix will offer a comprehensive guide to the experimental setup, detailing software configurations
for the OSWorld (Xie et al.,|2024) and ScienceBoard (Sun et al.|,[2025) and Android-World (Zhang
et al., 2024b)) benchmarks, all training hyperparameters, and the computational resources required to
fully replicate our findings.
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DISCLOSURE ON THE USE OF LLMS

During the final drafting stages of this paper, we consulted Large Language Models (LLMs) to
improve the manuscript’s clarity and linguistic precision. The LLM served as an advanced editing
tool, providing suggestions on syntax, word choice, and overall readability for the author-written text.
We emphasize that this was an iterative process where the authors directed the tool and made all final
decisions regarding the text. No part of the paper’s core scientific arguments, methodology, or results
was generated by the LLM. The authors bear full responsibility for all content and claims presented
herein.

1.0 QWen2.5VL-7B
QWen2.5VL-72B
0.8 —— World-State-Model

Training Reward
o
(o]

0.4
0.2
0.0
0 50 100 150 200 250 300
Step

Figure 5: Training reward with different reward signal provider. Our World State Model provide
reward signal that can achieve improved training reward compared to strong base models.

A WORLD STATE MODEL

The World State Model (WSM) is a central component of SEAgent, responsible for understanding
visual state changes and evaluating the effectiveness of the agent’s actions.

A.1 MODEL ARCHITECTURE AND OPERATION

The WSM is built upon the Qwen2.5-VL-7B vision-language model. It operates in two distinct
modes, each with a specific input-output structure to perform different tasks:

1. Trajectory Judgment:

Input: A sequence of screenshot images captured during an episode.

Output: Short captions for each screenshot, the reasoning process for the judgment, and a struc-
tured judgment dictionary (containing fields such as Correctness, Redundant,
and First Error Step, as detailed in Fig.[8|of the supplementary material).

2. State Change Description:
Input: Two screenshot images, one from before and one after a single action was executed.
Output: A detailed description of the visual differences between the two images.

A.2 FINE-TUNING DATASET AND PROCESS

To equip the WSM with these capabilities, a specialized dataset was constructed for fine-tuning.
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Data Construction The data construction process is as follows:

1. Trajectory Sampling: A Computer Using Agent (CUA), powered by UI-TARS and Gemini-
2.5-Pro, was used to sample trajectories from 43 feasible tasks in Google Chrome within the
OSWorld benchmark. These trajectories were saved as screenshot sequences.

2. GPT-40 Annotation: Using the prompts detailed in Figures 6 and 7 of the supplementary
material, GPT-40 was employed to annotate the sampled trajectories, generating judgments
and screenshot captions. Only samples where the judgment matched the ground truth
from OSWorld evaluation protocols were retained, resulting in 860 high-quality annotated
trajectories.

3. Change Description Data: An additional 1,000 pairs of (before action, after action)
screenshots were sampled. GPT-40 was used to generate detailed descriptions of the
differences, creating a 1,000-sample Change Description (CD) dataset.

Fine-Tuning Process The fine-tuning was performed using the Llama-Factory framework on 8
NVIDIA A100 (80G) GPUs for 2,000 iterations. A learning rate of 2 X 10~° was used, and LoRA
(rank=128) was employed for parameter-efficient fine-tuning. The 860 annotated trajectories serve as
the core training data for teaching the model trajectory judgment, captioning, and reasoning. The
1,000-sample CD dataset acts as auxiliary data, specifically to encourage the model to focus on
fine-grained visual differences, which enhances its overall state understanding. As shown in Table
1 of the main paper, incorporating CD data significantly boosts judgment performance. The two
datasets were combined for training without any special re-weighting.

A.3 REWARD GENERATION FROM TRAJECTORY ANALYSIS

The trajectory judgment capability of the WSM is the core source of the reward signal for reinforce-
ment learning. After an agent executes a full trajectory H = {sg, ao, $1,a1, - - - , Sfinal }» the WSM
analyzes it and outputs a structured judgment. Based on this output, actions within the trajectory are
dynamically labeled as either positive actions (a7) or failure actions (ar):

* Fully Successful Trajectory: If Correctness is ‘True‘ and there are no Redundant
steps, all actions a in the trajectory are labeled as ar.

¢ Successful but Inefficient Trajectory: If Correctness is ‘True‘ but Redundant steps
begin at step k, all actions prior to step k are labeled as ap.

* Failed Trajectory: If Correctness is ‘False‘ and the First Error Stepise, all
actions prior to step e are labeled as ar, while the erroneous action a. is labeled as a .

These dynamically labeled ar and ar actions constitute the reward signals for the RL pipeline.
During training, the actor predicts an action a; based on the history {ao, so, . . ., s;} and uses these
labels to calculate rewards.

B CURRICULUM GENERATOR

The Curriculum Generator is designed to dynamically produce tasks of increasing difficulty and
diversity, guiding the agent through a systematic exploration of the software’s capabilities.

B.1 TASK GENERATION MECHANISM

The workflow of the Curriculum Generator is detailed in the pseudocode in our supplementary
material. Its core idea is to leverage the WSM'’s analysis of completed tasks to generate new ones.
The process, illustrated by the “add a rectangle” example from Figure 5, involves three main steps:

1. Analysis and Feedback: The agent successfully completes an initial task, “add a rectangle.”
The WSM analyzes the execution trajectory and extracts two key pieces of information: a
task evaluation (Exam) and a list of observed state changes (CD_1ist).

CD_list: {"add a rectangle”: ["The Edit bar is expanded...”, " The cursor has
changed into a cross...”, A blue box appears on the screen with side bars showing
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properties such as fill, line, color, width, transparency, and corner style...”], ...}

CLINET) 39, 9

Exam: [{’task”: “add a rectangle”, “’status”: ”success”}, ...]

2. Knowledge Integration and Task Generation: The CD_1ist and Exam are fed into the
Curriculum Generator. It distills new knowledge, such as “properties of a rectangle,” and
integrates it into its internal Software guidebook. Based on this new knowledge, it
generates more challenging tasks like ”Add a green rectangle” or ”Add a red rectangle with
50% transparency,” which are then added to the task buffer.

3. Iterative Learning: In the next RL phase, the agent samples from this updated, more
challenging task buffer. The continuously enriched Software guidebook acts as the
system’s long-term memory, driving the Curriculum Generator to propose increasingly
sophisticated and unexplored tasks in subsequent rounds, thereby guiding the agent toward
mastery.

C DETAILS OF CURRICULUM GENERATOR.

C.1 EXEMPLAR CASE DURING TASK EVOLUTION.

Add a Rectangle
Click to add Title 2 2p Vv GUIRLI

= - \ o

GUIRLI

A4
5FUI Dense Captioning

...displays the text 'Untitled
- LibreOoffice Impress.'
Directly below... On the right
side of the main area, a gray
rectangle labeled 'Properties’

J «

...it shows the properties of

a rectangle such as fill, line, .
color, width, transparency and A
corner style...

A A

is visible, categorized with
labels such as 'Format',
'Orientation', and surrounded
by various buttons and
dropdown menus. ..

Draw a green rectangle
with 50% transparency.

N
@Software Elements Register
Figure 6: SEAgent autonomous exploration pipeline. The agent (policy model) and World State
Model iteratively generate new task and perform RL to become a specialist in novel software.

We provide an exemplar case of our task evolution pipeline in Fig. [6] demonstrated using LibreOffice
Impress. Initially, the World State Model parses a screenshot of the Impress interface into detailed
captions describing the layout and individual buttons. The Task Generator then produces an initial

task set, Zp = {I(()l)7 Iéz), ...}, and summarizes the initial software guidance memory Uy. The
initial agent executes tasks in Zy, such as “Add a Rectangle,” while the World State Model evaluates
these actions, providing judgments and detailed descriptions of resulting changes. As shown in the
Auto-Exploration stage, this includes generating captions for newly appeared property panels and
assessing execution success. The Task Generator incorporates feedback on execution success and
newly revealed properties (e.g., transparency) to evolve new tasks, such as “Draw a green rectangle
with 50% transparency.” This process iteratively improves through reinforcement learning, enabling
continuous task evolution and agent self-improvement.

C.2 COMPARATIVE ANALYSIS OF INSTRUCTION GENERATION STRATEGIES.
To validate the effectiveness of our Curriculum Generator, we conducted a comparative analysis

against state-of-the-art instruction generation methods, namely those from NNetNav (Murty et al.,
2025) and WebRL (Qi et al., 2024).
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Experimental Setup We adapted the official code and prompts from these prior works from web
environments to general software applications. To ensure a fair comparison of the curriculum quality,
for each strategy, we employed two leading LLMs: the open-source Qwen2.5-72B (Bai et al., [2025)
and the proprietary Gemini-2.5-Pro (Google DeepMind, |2025)). The tasks generated by each strategy
were used to train an RL agent (using GRPO only), with reward signals uniformly provided by our
fine-tuned WSM. The evaluation was performed on two applications: VSCode from OSWorld (a
standard software) and Celestia from ScienceBoard (?) (a more challenging, out-of-domain scientific
application). The primary metric was the task success rate.

Table 5: Success rate (%) comparison of different task generation strategies on two software applica-
tions.

Task Generation Strategy LLM VSCode Celestia
WebRL Qwen2.5-72B 27.5 0.00
WebRL  Gemini2.5-Pro-thinking 36.2 3.03
NNetNav Qwen2.5-72B 34.6 0.00
NNetNav ~ Gemini2.5-Pro-thinking 43.6 5.05
Curriculum Generator (Ours) Qwen2.5-72B 37.7 9.09
Curriculum Generator (Ours) Gemini2.5-Pro-thinking 423 12.12

Results and Discussion The results are presented in Table[5] As shown, the reverse instruction
generation strategy from NNetNav (Murty et al.l 2025)) is highly effective on the in-domain applica-
tion (VSCode), demonstrating high data generation efficiency by producing successful trajectories.
However, a critical trade-off was observed: this approach tends to generate many similar tasks,
limiting its ability to explore the full breadth of the software’s functionalities. This limitation becomes
more pronounced when the task generator is unfamiliar with the target software, as seen in the OOD
Celestia environment.

In contrast, our guidebook-based method, while having a lower initial data generation efficiency,
excels at systematic exploration. It builds structured knowledge of the software from scratch, making
it more robust for tackling novel applications. This is evidenced by its superior performance on the
more challenging Celestia software.

We conclude that these two strategies are complementary. Reverse instruction generation can
efficiently exploit known functionalities, while our guidebook-based method can systematically
explore new ones and help the task generator build a more comprehensive understanding of the target
software. A hybrid approach combining both strategies is a promising direction for future work.

D EXPERIMENTS ON ANDROIDWORLD

Table 6: Success Rate on AndroidWorld (Rawles et al., [2024)

Model AndroidWorld_SR
Qwen2.5-VL-7B 8.0
Qwen2.5-VL-7B+SEAgent 19.5
UI-TARS-7B-SFT 33.0
UI-TARS-7B-SFT+SEAgent 38.0

To evaluate SEAgent’s application to other format of GUI, we conduct new experiments on the
AndroidWorld (Rawles et al., [2024)) benchmark, which focuses on mobile GUIs. We apply our
SEAgent pipeline to two distinct backbone models. As shown in the table below, our method yields
substantial performance improvements for both, demonstrating that its self-evolving approach is
effective across different model architectures and GUI formats. Specifically, SEAgent improves the
success rate of Qwen2.5-VL by +11.5% and UI-TARS by +5.0%. This result strongly indicate the
effectiveness of our pipeline also generalize to other form of GUIL.
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E SENSITIVITY ANALYSIS ON KEY HYPERPARAMETERS

We conducted a sensitivity analysis on key hyperparameters to evaluate their impact on the SEAgent
pipeline. For model sampling, we set the temperature ¢ = 0 for better reproducibility. We analyze
two specific parameters: the number of generated tasks and the number of change descriptions. The
results are presented in Table[7|and discussed below.

Table 7: Sensitivity analysis for key hyperparameters in the SEAgent pipeline, evaluated on VSCode.
The metric is Success Rate (%).

# Tasks Generated VScode SR | # Change Descriptions VScode SR

30 31.88 30 33.33
50 36.23 50 37.68
100 37.68 100 37.68
200 37.68 200 34.78

Number of Generated Tasks This parameter controls the breadth of exploration in each learning
cycle. As shown in our analysis, performance improves as more diverse tasks are generated, eventually
plateauing around 100 tasks.

Number of Change Descriptions This parameter controls how much new information the generator
receives to update its “software guidebook.” We found a clear trade-off: A sufficient number of
descriptions (50-100) is essential for the generator to learn about new UI functionalities and create
meaningful, unexplored tasks. However, providing too many descriptions (e.g., 200) creates an overly
long context for the LLM, which degrades the quality of task generation and hurts final performance.

F ABLATION ON THE LOSS BALANCE FACTOR.

In Sec[3.2] we use ~ to balance the ratio of two loss item: adversarial imitation that learn from error
and GRPO that learn to achieve success. We ablate the choice of +y in Tab[8] according to which we
set v = 0.2 in main experiments.

¥ \ 0.0 0.1 02 03 05 038
Success Rate (%) \ 348 362 377 319 261 23.1

Table 8: VScode Success Rate on OSWorld (Xie et al.,[2024) under different loss balance factor v
values.

G REWARD FUNCTION FOR DIFFERENT ACTIONS.

Action Type | Description | Distance-based Reward

click, left_single, right_single, hover | Click or hover on a location Normalized L1 distance between predicted and ground-truth coordinates
left_double,double_click Double click on a region Normalized L1 distance between clicked coordinates

drag, select Drag from start box to end box Intersection over Union (IoU) between predicted and ground-truth boxes
type Type textual input Character-level BLEU score between predicted and ground-truth text
hotkey Press multiple keys at once Character-level BLEU score between predicted and ground-truth key combinations
press Press a single key Character-level BLEU score between predicted and ground-truth key
scroll Scroll in a certain direction Character-level BLEU score between predicted and ground-truth direction
move_mouse Move mouse to a specific location | Normalized L1 distance between predicted and ground-truth coordinates
highlight Highlight a rectangular Ul region | IoU between predicted and ground-truth region

copy, paste Clipboard operations BLEU score between copied/pasted content

wait Explicit wait command Fixed reward + 1

finished, finish_task Finish current task/trajectory Fixed reward + 1

Table 9: Reward computation for each action type in GUI agent
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Phase0 Phasel Phase2 Phase3

VSCode 112/39  282/83  161/34  98/55
GIMP 104/51  309/90  183/50  95/52
Impress  102/44  290/92  185/61  87/51
VLC 85/29 114/41  160/48  53/27
Writer 123/62  278/101 201/69 101/43

Table 10: Number of episode (Success/Failure) across four phases for different software tools during
self-evolution. Each episode contains 8.8 multi-turn conversions in average.

H DATA STATISTICS DURING ITERATIVE REINFORCEMENT LEARNING.

I DETAILED PROMPT TEMPLATES.

For evaluation on AgentRewardBench (Lu et al., [2025), we use their official template for final
state screenshot only testing and modified prompt in Fig[7] for entire process (or sampled middle
screenshots) testing.

For evaluation on OSWorld Sampled trajectories, we use prompt in Fig[§|to prompt GPT-40 to
provide step level judges, the sampled judges on Chrome in OSWorld (Xie et al., 2024) serves as
training data of GUI-Judge. This template is also used in training GUI-Judge and at inference time in
autonomous exploration stage.

For navigator, we use prompt template in Fig[9] which takes previous software usage manual and
the performance of actor agent evaluated by judge (Empty if in initial phase.) as well as detailed
exploration caption as input and output the updated usage manual as well as new task for agent to
execute.

J SELF DOCUMENTED USAGE MANUAL ON DIFFERENT SOFTWARE DURING
EXPLORATION.

In Fig[T0|Fig[12] FiglT1] FiglT3] we demonstrate the self-documented usage manuals of the navigator
(Qwen2.5-72B (Yang et al.l 2024)) in the exploration and learning system introduced in Sec[3.1]

K BROADER IMPACTS

Potential positive societal impacts: SEAgent introduces a self-evolving paradigm for Computer
Use Agents (CUAS), enabling them to autonomously learn and adapt to previously unseen software
without human supervision. This significantly reduces the need for extensive manual data annotation
and domain-specific customization, allowing intelligent agents to assist users across a wide range
of applications—including productivity tools, multimedia editing, and educational software. By
automating repetitive tasks and providing guidance in complex software environments, SEAgent
holds promise for improving accessibility, enhancing digital literacy, and reducing cognitive workload
in both professional and everyday settings.

Potential negative societal impacts: The capability of SEAgent to autonomously explore and
operate complex software also introduces risks of misuse. Malicious actors might repurpose SEAgent
for unauthorized software automation, such as automating account creation, spamming interfaces,
or conducting surveillance via GUI interactions. In addition, as the agent learns from its own
experience, there exists a risk that the agent may inadvertently inherit or amplify software-specific
biases, potentially leading to unfair or inappropriate behaviors in sensitive applications (e.g., finance,
legal automation). Mitigation strategies include controlled release of models, behavior filters during
deployment, and incorporating safeguards in the World State Model to detect and prevent unintended
or adversarial behavior.
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Algorithm 1 SEAgent Specialized Self-Evolution Training Loop

1:

24
25:

26:

27:

Input: Initial policy my, World State Model M e, Curriculum Generator Mg, Initial GUI

state S
1. Task Initialization
Co < CaptionGUI(S)) > Parse initial GUI layout (menu bar, buttons, etc.)
o, Uy + Musk(0,0,0,Co) > Generate basic initial tasks and usage guide
forp=0to P —1do > 2. Self-Evolution Phase Loop
2.1 Autonomous Exploration
DLraj —0
forall I ¢ Z, do
T < Executelnstruction(r,, I) > Actor executes task in the virtual environment
2.2 Effect Evaluation
J1,Cr  Migae(T) > Step-level trajectory judgment and new state captions
Diraj ¢ Duwaj U{(7, T1,Cr)} > Jr: asequence of per-step feedback labels (ar or ar)
end for

2.3 Policy Update (RFT)
Split Dy into:
Dpos: steps labeled as positive ar
Dieg: steps labeled as negative ar
Compute GRPO loss on Dp:
r(a,ar) = Iftype(a) = type(ar)] + rais(a, ar)
Compute Adversarial Imitation loss on Dyeg:

Lar = —log Zolelels

Total loss: Ly = Lcrro + YLAI
Tp+1 < Update(m,, Liotar)

2.4 Task Update

Zpt1,Upt1  Musk(Up, L, {T1},{Cr}) > Generate more complex tasks based on new
software knowledge and performance feedback
end for

Output: Specialized agent policy 7p after P stages of self-evolution
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Web Step Level Judge Prompt Template

You are a Language Model specialized in judging the performance of web agents in web-navigation
tasks. For a certain website, you are given the goal of a navigation task, the current URL of the
webpage, the actions taken by the agent, and the thought process of the agent. Additionally, you
will have access to the sequence of key frame screenshots Your task is to answer several
questions about the agent's performance in the task.

You should carefully look at the sequencial screenshot images in order to decide whether its
sucessfully finish the task or failed halfway.

Question 1: Was the sequence of actions successful in achieving the goal?
Choices: <success>Successful</success>, <success>Unsuccessful</success>

Question 2: Did the agent perform unnecessary actions that could lead to unintended side effects?
Choices: <side>Yes</side>, <side>No</side>

Question 3: Did the agent perform the task optimally, by only performing necessary actions and
avoiding unnecessary ones?

Choices:

<optimal>1. Complete Failure</optimal>

<optimal>2. Suboptimal</optimal>

<optimal>3. Somewhat Optimal</optimal>

<optimal>4. Completely Optimal</optimal>

Question 4: Did the agent loop through a sequence of actions that did not make progress towards
the goal?
Choices: <loop>Yes</loop>, <loop>No</loop>

Provide your reasoning for each question.
Your answer **must** follow this exact format:

<reasoning>your reasoning here</reasoning>
<success>answer</success>
<side>answer</side>
<optimal>answer</optimal>
<loop>answer</loop>

Figure 7: Prompt Template of GUI-Judge for web agent trajectories evaluations with history
screenshots as input, its difference with default prompt of AgentRewardBench (Lu et al., |2025)) is
highlighted in bold.

L SEAGENT SELF-EVOLUTION ALGORITHM

Algorithm [T] presents the core self-evolution training loop of SEAgent in a specialized software
environment. The procedure is divided into four major stages:

(1) Task Initialization. Given the initial GUI state of a target software application, the World State
Model performs dense captioning to extract structural semantics (e.g., menu bar, buttons), which is
used by the Curriculum Generator to create an initial set of executable tasks and an editable software
guidebook.

(2) Autonomous Exploration and Effect Evaluation. The agent explores each task via its current
policy. The World State Model then performs step-level trajectory analysis, assigning each action a
feedback label—either correct (ar) or incorrect (ar)—and generating GUI state change captions.
This produces rich supervision signals for both policy learning and downstream task generation.

(3) Policy Update via Reinforcement Fine-Tuning. Based on the labeled execution data, positive
and negative action steps are separated. We apply Group Relative Policy Optimization (GRPO) to
reinforce correct actions, and Adversarial Imitation (AI) to suppress failure-prone behaviors. The
updated policy is used for the next exploration round.
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OSWorld Step Level Judge Prompt Template

| am evaluating the performance of a Ul agent. The images provided are sequential keyframes that
represent the full execution trajectory of the agent when attempting to follow a command. These
keyframes correspond to the instruction: [INSTRUCTION].

Please thoroughly analyze the sequence to assess the following aspects:

1. Correctness — Did the agent successfully complete the task as instructed?

2. Redundant Steps — Identify any unnecessary or repeated actions that do not contribute to the goal
3. Optimization — Did the agent follow an efficient plan with a minimal number of steps?

5. First Error Step — If the execution is incorrect or sub-optimal, determine the index of the first 5.
keyframe where a mistake occurred.

6. Error Analysis — Provide a brief explanation of the mistake at that step.

7. Correct Action Suggestion — Explain what the agent should have done instead at the point of error.

Important Instructions:

The agent may have made progress toward the goal, but unless the task is fully and correctly
completed, you must set 'Correctness' to False.

Be cautious in determining success. Missing confirmation screens, skipped inputs, or wrong Ul
elements clicked all count as errors.

Carefully examine all Ul changes, button interactions, text entries, and any visual feedback in the
screenshots.

Clearly indicate which exact steps are redundant (starting from 1).

Once you finish the analysis, return your evaluation in the following dictionary format. Include your
step-by-step reasoning above the result.

<thinking>step by step reasoning.</thinking>
res_dict = {
"Correctness": True or False,
"Redundant": [step numbers],
"Optimized": True or False,
"First_Error_Step": step number or None,
"Error_Type": "brief description of the mistake”,
"Correct_Action": "what should have been done instead”

\ J

Figure 8: Prompt Template of GUI-Judge for OSWorld (Xie et al.,2024) trajectories, which
prompts judge model to provide step level reward signal.

(4) Task Update. The Curriculum Generator leverages feedback signals () and GUI state transitions
(C) to propose more diverse and challenging tasks, thereby expanding the task frontier in a curriculum
fashion.

This process repeats over multiple curriculum phases, ultimately yielding a specialized agent policy
capable of mastering complex operations in the given software environment.
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Task Buffer Update Prompt Template

You are now a teacher training a Computer Use Agent (CUA). This CUA is exposed to a new software
environment and undergoes multiple rounds of iterative training. Your task is to issue new tasks for
the agent to explore and train on, based on the feedback from the agent's actions. You are also
responsible for summarizing a software usage manual to help the agent remember knowledge
about the software.

The agent has provided the following feedback on its operations within the software:
{json.dumps(action_decription_list)}

Here is the software usage document you summarized in the previous round: {document}

Here is the agent's performance on the task you provided in the previous round:
{json.dumps(exam)}

Your are also access to the previous given tasks with the screenshot caption after agent's
execution. You can also use these captions and results to evaluate the agent's capability and
generate new task and update document accordingly given the caption of the new screen and the
corresponding intruction with judged evaluation: {json.dumps(prev_states)}

Please:

- Analyze the agent's performance.

- Integrate new knowledge from the feedback.

- Update the usage manual accordingly.

- Design a new set of tasks (with increased difficulty) (30 or more) that reinforce the concepts the
agent struggled with in the last round.

- Each task **must be concise and specific**, targeting a concrete atomic action, based on the
document and agent's observations, such as:

- "Create a file named main.py."
- "Open Terminal card."

- Each task must be executable from software initial state with no file open, e.g. you should not
generate task like save xxx.txt if xxx.txt doesn't exist or created.

- if task is in sequencial order with reliance, you should output a seq list like [subtask1,
subtask?, ...], if there is no reliance, output [task].

- Decompose and target previous errors in a more focused way.

Output your reasoning and analysis process first. Then output the updated usage document and
task list in the following JSON format within a SINGLE JSON DICT easier for me to parse:
json

{

"software_document_new": "...",
"exam_new": [[subtask1, subtask2, ..], [task]...]

1

\_ J

Figure 9: Prompt Template for task buffer update, which generates new tasks in a curriculum
manner and update software documents. The new tasks are used for actor to perform next phase of
RL.

Visual Studio Code Usage Manual (v2)
1. Overview

2. Menu Bar

5. Command Palette

6. Settings Ul

2.2, View Menu 8. Dialogs & Pop-ups

Figure 10: Automatically generated usage manual during self exploration on VScode.
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GIMP (GNU Image Manipulation
Program) Usage Manual
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« Clone Too1: Rubber stamp

« Heal o1 Crossed band-i
Color Area (Below Tool Icons)

« Foreground Color Swatch:Top olo squae. Clck o apen coor picker.

« Detaule Colors con:Smal overlapping blck & it squares Resets coors

= Swap Colos con: Bent arrow con Swaps oreground and bckground.

3. Tool Options Panel (Typically Below the Toolbox)
Common Ut temants
+ St
« ipu el
Example rop Tooy
« Nlow gowing (checkbon
Yoo Options uttons sty atth bostom

« Resettodefaut oten a ool arrowicon)

4.1mage Area (Center)

« Oisplays and allows eding of image e,

5. Dockable Dialogs (Typically on the Right Side)

A collection of panes organized it tabs:

Common Tabs:

- undo wistory

7001 optians (1 not docked beow toolbos)

Dlalog Buttons:

« Usualyfound a the bottom of eachpanel e, new aye buton =+ on  page kon)

1l. Common Operations

1. Access Menus:Cick men name — lck command to execute

Tools: Cktool con i Toolbox - Tool Optins update

e Tool ptions: Use siders cropdowns,checkboxes i Tool Options Panel.
4 Manage colors

o Cick swatches t change foregroundibackground color.

o Clk defoul colors con 1o reset toblckwhie

o Cickwap ot swichforegroundbackground.
5 Switch Tab inRight Pane:Clck ab e (.5, Layers, Brshes .

6 Use Dalog Buttons: Clck con butons wihin active dlog panel 5. new ayer buttn)

11l Important Distinctions

« M Menu vs. Dialog Buttons:

© Layer > New Layer... (Menu bar command)

o wew Layer icon button i Laers daog

« “Colors*Menuvs Color Swatches:

o Calors menu: For image coloradjustments e, brightness,hue,

o Swatches i Toolbox:Fr selectng pint colors.

Figure 11: Automatically generated usage manual during self exploration on GIMP.

LibreOffice Impress (Version 4.x) Usage
Manual - v1

1. Overview

running
o a Linux (GOWE) enironment.

2. Main Application Window Components
2.1. Menu Bar (Top)
e Cut copy, past,uno, redo, I . epoce

View: Control sy of tol p—

nsert Ad e, charts, b

napes, audionideo
Format: Tex formatuing, paragraph syes, bject propertes.
154 Manage sides (new,duplicate, delte, lyout.

S11de Show:Start and configure presentatons

Toots:Speling,langy

2.2. Standard Toolbar (First Row of Icons)
Provides quickaccess o common funcions,

« ews Createa new presentation.

« open: Open an eisting fe
prine: it the presentaton.

Find & raptace

« orawing foggle crawing oolbar

Figure 12: Automatically generated usage manual during self exploration on LibreOffice_Impress.

LibreOffice Writer Usage Manual
1. Overview

Toolbars,o
o " B, and  Sdebar.
document (e "untitled 1°)

2. Main Window Components
2.1. Title Bar

= Displaysthecurrent fename and application name (e, UAtiE1ed 1 - Libreofice
writer or Docunenthane.docx - Libreoffice writer .

2.2. Menu Bar

.

« Continscrop-down menus for various commands.
« tems with ... open diaogs: arrows ndcate submenus
Menus Incude:
i Undo, Redo, Cu, Copy, Paste Find and Replace.
View: Toclbars, Zoom, Layou,
Format: B0k, Pararaphs, Page Sy

Styves: Manage and apply s,

« Table: Tabe operations and properte

« Toota: Speling, Macrs, Options

« windon: Manage open windows

« WeTn: Helpcontens and bt page
23.Toolbars

o rows:Standard and Formatting toolbr

2.3.1. standard Toolbar

Figure 13: Automatically generated usage manual during self exploration on LibreOffice_Writer.

2.3. Drawing / Formatting Toolbar (Second Row)
Contin 0o or draving and ormateng bjects Contents varywith slecto)
- setect arrom)

« Text sox (Ticon)

Callouts, Baste shapes, Syabo1 shapes, Block Arroms, Flowchare, Stars and

Banners, 30 objects
Fontwork GaTlary (sylized A
fron P nsertimage)

extruston on/of

2.4. Notification Area (Below Toolbars)
Ofplaysnformationa banners wth butons ke
« Bomples:
o “Holpus make LbreOfficeeven bettrt
o “Your donatons support ou workdwide communiy
Includes button ke Gat: vo1ved, Donate, and cose ().
2.5. Main Interface Panes
25.1. Slides Pane (Left)
« Oisplays s thumbnal
o Selcted s s hghighted e, orange border)
« Il shows oneside labeled "
2.5.2. Workspace / Slide Editor (Center)
« Shaws dofaut layout o5, il Se)

o “Cick o add Tt

« Toggte rarmateing uarks (9)

© Inert: Table, thage, Chart Text B, Page sresk, Specta) Character, WyperTik.

« show braw Functions
2.3.2. Formatting Toolbar
Test formatting contols nclude
« paragraph suyle dropdown
« superscrip, subscrip
« Algnment: Lo, Conter, Righe, Juseify
« wore ogtions (1)
2.4, Rulers
« orlzontal Ruler:For marginstabs, indent
« Vertical Rler: For vertca placement page margis
2.55. Document Area
« Centralworkspacefo yping and eiin
2.6. Vertical Scrollbar
2.7. Status Bar
oisplys
« Page number,wordicharacter count
« View layoutcons: sngle page, muti-page,book mode
+ Zoom controts:

25

253 sidebar (Right)

Tabbed panefo properties andtocs

arlcons(ar righty
copereies (gear

Styles and Formatting (paintbrush)
Gallery (pcure frame)

Navigator (compass)

Shapes (basic shape con)

S1ide Transition (side + arrow)
Animation (sarwit ral)

Master $11des (stacked shdes)

Propertes Tab Example Content:

Side Section
o Format e, Sareen 169"

o Oretation: Landscape

o Background: e, None

o Maste ide selector

o MasterBackground Objects checkbones

o Master View button

« Layouts Secton

o Gridoflayout thumbrals

o Selcted layout s highighted

Sidebaralsoncldes:

« X button ose)

2.6. Status Bar (Bottom of the Window)

* Leteside:

o Correntsde and toa sides .5, "STde 1 f 1)

o Side layout name (., Tite Side")

s o sire ofselected abject

« Right side

o Language sectng o5, "Englsh (Hong Kong)

o Zoom sider with = and + buttons

o Percentage dislay (g, 100%)

2.8. Right Sidebar

Vertial st with toles for panes:

operties (sidersmrench con)
saoe (page con)

stytes (s brsh)

Gallery (pctre frame)

Navigator (compass)

2. Information Banners.

« Conbe closed withan x.

2.10. Dialog Boxes

« Actons ke e > open... o Tnsert > Tasge.... open dilogs

« Usualy inclode o, cane1, Close
211, Tooltips
« Hovering over U elmentsshows tolips e 5. Bl

213, File Format Support

Wiersupperts a wide rang of document formats:

« Default Format: ot (Open Document Text

+ Common Impert/Export Formats:

o Ldoc 1 docx (MirosoftWord)
o Lref (ieh TextFormat)
o Lt PlainTen)

o Lpaf Eportony

2.14. Keyboard Shortcuts

o ctrt + n:New document

o e sisme
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