Under review as a conference paper at ICLR 2025

LEARN FROM INTERACTIONS: GENERAL-SUM INTER-
ACTIVE INVERSE REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper studies the problem that a learner aims to learn the reward function of
the expert from the interactions with the expert and how to interact with the ex-
pert. We formulate the problem as a stochastic bi-level optimization problem and
develop a double-loop algorithm “general-sum interactive inverse reinforcement
learning” (GSIIRL). In the GSIIRL, the learner first learns the reward function of
the expert in the inner loop and then learns how to interact with the expert in the
outer loop. We theoretically prove the convergence of our algorithm and validate
our algorithm through simulations.

1 INTRODUCTION

Inverse reinforcement learning (IRL) has been widely applied to various domains including robotics
(Ziebart et al.| [2008}; |Okal & Arras}, 2016) and cyber security (Zhang et al.,|2019; Elnaggar & Bezzo,
2018). In IRL, a learner aims to learn a reward function and an associated policy that are consistent
with the demonstrations of an expert. IRL focuses on learning the reward function since “the reward
function is the most succinct, robust, and transferable definition of the task” (Ng & Russell, [2000).
When the reward function is learned, methods like reinforcement learning (RL) can be used to learn
the corresponding policy.

In this paper, we consider a variant problem of IRL called interactive IRL. In the classic IRL, the
learner only passively observes the experts and learns from demonstrations in isolation from the
experts, so that the learner does not affect the expert’s demonstrated trajectories. In interactive IRL,
the learner actively interacts with the expert and thus can influence the trajectories of the expert.
That is, the learner is not only an observer but also a participant. Consider a scenario where a human
(i.e., expert) and a ground mobile robot (i.e., learner) navigate in a 2D plane while their destinations
are distinct. The human usually has a higher priority so the robot needs to bypass or slow down for
the human to cross. Meanwhile, the robot also wants to reach its destination as soon as possible.
Therefore, the interaction between the robot and the human is a general-sum game. Notice that the
robot has a human-independent goal (i.e., its own destination) and a human-dependent goal (i.e.,
bypassing the human). The reward function of the robot can be decomposed into two parts and each
part captures one of the goals. For example, the reward function in (ElI-Shamouty et al., 2020) is
decomposed into the distance of the robot to its goal location and the fact whether a collision between
the robot and the human happens. Motivated by the above example, this paper considers the general-
sum game where the learner’s reward function is decomposed into the expert-dependent and the
expert-independent parts. The learner knows the expert-independent reward function and is unaware
of the expert-dependent reward function and the expert’s reward function. The learner aims to learn
the expert reward from expert demonstrations during the interactions. The benefits of learning the
expert’s reward include facilitating the learner’s policy learning and understanding a transferable
expert model. When the transition probabilities of a Markov game (MG) substantially change,
the policy needs to be re-trained, but the reward function could be the same. Fully cooperative
(Palaniappan et al.l 2017} [Biining et al. 2022} |[Kamalaruban et al., [2019; [Hadfield-Menell et al.|
2016) and fully competitive (Zhang et al.l |2019; Wang & Klabjan|, 2018} |Goktas et al.) interactive
IRL problems are the special cases of our interactive IRL problem. The fully cooperative interactive
IRL problems assume the learner and the expert cooperate with each other and the reward functions
of the learner and the expert are identical. The fully competitive interactive IRL solves a zero-sum
game where the reward functions of the learner and the expert are opposite.

Under review as a conference paper at ICLR 2025

Our interactive IRL problem is relevant to classic IRL, multi-agent IRL (MA-IRL) (Lin et al., 2019j
Yu et al., 2019; [Liu & Zhu, 2022), and multi-agent RL (MARL) (Lowe et al., 2017} |[Yu et al.
2022; | Kuba et al.,[2021). In the classic IRL and MA-IRL, the learners are isolated from the experts.
However, the learner actively influences the trajectories of the expert in our interactive IRL problem.
As a result, classic IRL and MA-IRL can not be directly applied to our interactive IRL problem.
MARL is usually utilized to learn the policies with the given rewards. it can not used to learn the
reward function of the expert. Although the model-based MARL (Moerland et al.| [2023)) can learn
the reward function of the learner, it still can not learn the reward function of the expert. Therefore,
MARL can not solve our interactive IRL problem.

Contribution. The contributions of this paper are four-fold. First, we study the general-sum interac-
tive IRL problem, which includes fully cooperative and fully competitive IRL as special cases. We
formulate the problem as a stochastic bi-level optimization problem where the lower level learns a
reward function of the expert through IRL and the upper level learns a reward function for the learner
and a corresponding policy through RL. Second, we develop a double-loop algorithm ”general-sum
interactive inverse reinforcement learning” (GSIIRL) to solve the bi-level optimization problem.
The outer loop solves the upper-level optimization problem and the inner loop solves the lower-level
optimization problem. In both the inner loop and the outer loop, we use the projected stochastic
gradient descent (SGD) to update the decision variables. In particular, we leverage the simultaneous
perturbation stochastic approximation (SPSA) (Spall, [1992)) to approximate the hypergradients in
the outer loop since the hypergradients include the Hessian of the lower-level objective function.
With the SPSA, the computational complexity per iteration of the outer loop reduces from O(T?)
to O(T?) where T is the maximum length of the trajectories. Third, we show that the expected
hypergradients decrease at the rate of O(\/#ﬁ) where K is the iteration number of the outer loop.

Fourth, we validate our algorithm through three experiments.

2 RELATED WORK

IRL and Multiagent IRL. As (Ng & Russell, 2000) mentioned, IRL faces the challenge that one
demonstration can be explained by multiple reward functions. A number of methods have been
developed to address the challenge. The maximum margin method in (Ng & Russell, 2000) aims to
maximize the differences between the reward of the optimal action and that of the second-best action.
Feature expectation matching in|Abbeel & Ng (2004) aims to minimize the difference between the
feature expectation of a learned policy and the empirical feature of demonstrations. Based on the
previous idea, maximum entropy IRL (ME-IRL) (Ziebart et al., 2008) finds the reward function by
maximizing the entropy while imposing the feature expectation matching as a constraint.

The aforementioned works are only focused on a single expert. When multiple experts interact with
each other in the environment, it becomes MA-IRL. To learn the reward functions of all experts,
papers (Lin et al., 2019; |Yu et al.l [2019; [Liu & Zhul [2022) extend the above single-expert IRL to
multi-expert IRL where a learner or a group of learners recover the reward functions of all experts
from their demonstrations. Consider a MG which is controlled by two experts. Each expert knows
its reward function which depends on the MG state and/or the joint action of the experts. Since they
know the reward functions, the experts can execute the policies that maximize the reward functions
and provide the induced trajectories of the MG as demonstrations. In these papers, the learners
only passively observe the experts and learn from demonstrations in isolation from the experts. The
learner cannot influence the MG but only observes the demonstrations.

Fully cooperative and fully competitive interactive IRL. Recent papers (Palaniappan et al.l[2017}
Biining et al.,|2022; |Kamalaruban et al.| | 2019;Hadfield-Menell et al.| 2016)) study a fully cooperative
setting where the learner has the same reward function as the expert. The learner learns this shared
reward function. The papers formulate the interactive IRL problem as a Stackelberg game where
the lower level learns the policy of the expert and the upper level finds the reward function of the
expert. Papers (Zhang et al., |2019; Wang & Klabjan| 2018} |Goktas et al.) study a fully competitive
setting where the reward function of the learner is the opposite of that of the expert and formulate
the problem as a zero-sum game. The learner learns the opposite of the expert’s reward function.
These interactive IRL methods impose strong assumptions on the relationship between the expert’s
reward function and the learner’s reward function.

Under review as a conference paper at ICLR 2025

In this paper, the relationship between the reward functions of the learner and the expert is arbitrary.
The fully cooperative and fully competitive cases are special cases of the above scenario. Let us
ignore the expert-independent reward function. If the expert-dependent reward function is identical
to the expert’s reward function, it reduces to the fully cooperative case. If the expert-dependent
reward function and the expert’s reward function are opposite, it reduces to the fully competitive
case.

Bi-level optimization. Bi-level optimization has been applied to many machine learning prob-
lems, including meta-learning (Lee et al., 2019; [Xu & Zhu, 2022), hyperparameter optimization
(Pedregosa, 2016; | Xu & Zhul [2023)), and IRL (Liu & Zhu, |2022). The descent method (Kolstad &
Lasdon| [1990; [Xu & Zhul [2023) is a classic approach for solving bi-level optimization problems.
This method requires to calculate the second-order Hessian of the lower-level objective function.
To avoid computing the Hessian, a common way is to use the finite difference method (Strikw-
erda), 2004)) to approximate the Hessian. This paper adopts SPSA to further reduce the number of
measurements by disturbing all directions of the decision variable at one time, so it only requires 2
measurements of the objective function.

3 MOTIVATING EXAMPLE

Consider the scenario of a human and a robot moving and coordinating in a 2D plane.

Human model. The human moves in the 2D plane by changing his/her velocity v; and wants
to reach his/her destination g, as soon as possible. This goal is captured by the reward function
—||gn—pr || where py, is the position of the human. The human can measure pj, and assess the reward
function. When interacting with the robot, the human exhibits different emotions. For example, the
human is angry when the robot is close or he/she is slow, the human is happy when he/she moves
fast (Bera et al.,[2019)).

Robot model. Analogous to the human, the robot decides the velocity v,. to reach its destination g,
as soon as possible. The robot can measure its current position p, and access the reward function
—|lgr — pr||2- In addition, the robot aims to keep the human with positive emotions like happiness
during the interactions. This goal of the robot is captured by the reward function h(p,., pn, vy, vp).
The function h is unknown to the robot but the robot can measure the value of h(p;., pp, vy, v) given
any locations p,., py, and velocities v,., vj,. For example, the robot captures the facial expressions of
the human through a camera and recognizes his/her emotions using a deep neural network-based
classifier. Positive emotions like happiness are interpreted as positive values and negative emotions
like anger are interpreted as negative values (Arakawa et al.L[2018)). These are the measured values of
h(pr,Dh, v, vp). The overall reward function of the robot is given by —||g- —p» |2 +h(pr, Py V7, VR)
where the second term is dependent on the human but the first term is not.

Robot learning. The robot aims to learn the expert’s reward function —||g, — py|| from observed
positions and velocities of the human.

4 MODEL AND PROBLEM STATEMENT

In this section, we will introduce the interactive IRL problem, which generalizes the example in
Section 3

Markov Game model. We model the interactions between a learner and an expert based on a finite
horizon MG (S, A, P, T, riq + 71i,Te,). The elements of the MG are defined as follows.

+ S £ 8, xS, is anon-empty Borel state space where S; and S, are associated with the

learner and the expert, respectively; s € S, s; € 5, s € Se.

A& A; x A, where A; and A, are non-empty Borel spaces of actions associated with the

learner and the expert, respectively; a € A, a; € A, a. € Ae.

P(s'|s, a) is the probability density for the state transition from s to s’ by taking joint action

a.

¢ T'is the finite time horizon.

* 114 + 13 is the reward function of the learner. It includes two parts: the expert-dependent
reward function 7,4(s, a) and the expert-independent reward function 7;(s;, a;). The func-

Under review as a conference paper at ICLR 2025

tion ;4 maps the state-action pairs (s, a) to bounded rewards, and the function r;; maps the
learner’s state-action pairs (s;, a;) to bounded rewards.

* 1, is the reward function of the expert which maps the state-action pairs (s, a) to bounded
rewards.

* v € (0,1) is the discount factor.

Referring to the motivating example in Section 3] the robot is the learner and the human is the ex-
pert. The human-dependent reward function 4 is h(p;, pp, vy, vy), the human-independent reward
function r; is —||g» — pr||2 and 7 is the reward function —||g, — pp||2 of the human .

Define m;(a;|s) as the policy of the learner, . (a.|s) as the policy of the expert and 7(a|s) =

mi(ar]s) X me(ae|s) as the joint policy. The joint policy 7 represents the probability density for the
learner choosing a; and the expert choosing a. at state s. When the policy 7 is executed, the MG

generates a trajectory ¢ = s°,a°,s',a',- -, s(T=D oT-1),

The goal of the learner is to find a policy m; such that the discounted cumulative reward

Emme [Zz;_ol Y (ra(st, at) + ri(st, al))] is maximized. Analogously, the expert aims to find a
policy 7, which maximizes E™ ™ [ZtT:_Ol v're(st,a')]. The optimal policy 7* is the Nash equi-
librium of the MG, and such Nash equilibrium exists according to Theorem 2 in (Nowak, [2003)).
Notice that the MG is a framework for MARL, many MARL algorithms (Lowe et al. 2017} |Yu
et al., [2022; |[Kuba et al., [2021) have been developed to approximate the Nash equilibrium. In this

paper, we assume that 7 is obtained by some existing MARL algorithms.

Knowledge of the learner. The learner does not know r;4 and r. but knows other elements
(S, A, P,T,~) of the MG. Although the reward function r;4 is unknown, the learner can access
the value of r;4(s,a) given any state-action pair (s,a). During the interactions, the learner can
observe the trajectories of the MG. Referring to the robot in Section [3] it can notice the value of
h(pr,Dh, v, vp) from the emotions of the human and observe the positions and velocities of the
robot and the human during the interactions.

Goal of the learner. Using the trajectories of the MG, the learner aims to learn 7.

Related problems. The aforementioned MG is a general-sum game between the learner and the
expert. For the special case with r4(s,a) = r.(s,a),V(s,a) € SxAandr;(s;,a;1) = 0,V(s1,a;) €
S; x Ay, the reward functions of the learner and the expert are identical and this case reduces to the
fully cooperative interactive IRL in (Palaniappan et al., |2017; Biining et al.| 2022} [Kamalaruban
et all [2019; Hadfield-Menell et al., [2016). When r4(s,a) = —r.(s,a) , ¥(s,a) € S x A and
ri(si,a1) = 0, V(si,a;) € S; x Ay, the MG reduces to the fully competitive interactive IRL in
(Zhang et al., [2019} [Wang & Klabjan, [2018)). In classic IRL (Ziebart et al.l 2008; |Abbeel & Ng|
2004; Ziebart et al.,[2010; Lin et al.,[2019; |Liu & Zhu, 2022)), the learner only passively observes the
demonstrations of the expert and does not influence the expert. In contrast, the learner in our MG
actively interacts with the expert. Consider the case where the MG is independent of the learner,
i.e., the state transitions and the reward function of the expert are independent of the action of the
learner. The case reduces to the classic IRL.

As 7 is influenced by m;, the learner actively influences the trajectories of the expert. We can not
directly utilize classic IRL and MA-IRL for our interactive IRL problem. MARL is unable to solve
our interactive IRL problem because the learner learns 7* instead of . through MARL.

5 PROBLEM FORMULATION

The learner aims to learn both r. and r;4. Since r;4 is unknown to the learner, it cannot apply
algorithms for classic IRL to solve the learning problem. In this section, we formulate the learning
problem as a bi-level optimization problem where the learner makes the first move to maximize its
reward function and the expert responds accordingly to maximize its own reward function.

Learning expert’s reward function r.. Recall that . is unknown to the learner. The learner uses
the parametric function 7% to estimate r, where . € O, = {6.|||6.| < 1}. When the ground truth
of ;4 is known to the learner, the trajectories are sampled from the MG (S, A, P, T, 714 + r1i, Te, Y)
with its optimal policy 7" corresponding r;4 + 7;; and r.. However, the learner is unaware of
r14. The learner estimates ;4 using rf& where 6, € ©; = {6,](|6;|| < 1}, and aims to learn the ex-

Under review as a conference paper at ICLR 2025

The learning process of 74

MARL Policy RL | Choose 6; to maximize
n00:0) £(01,6:(61)
| The learner with reward 0:(0)
function 7 iE
[IRL
The expert with reward
function 7,

MARL . o Collect demonstration

Policy 7" setD s
The learning process of 7¢

Figure 1: Flow chart of the overall learning process. The process of learning r;4 is included in the

upper block and the process of learning 7. is included in the lower block.

pert reward function under any given estimate Tzefi" Given rfé, the learner collects the trajectories set
0
D o, . under the policy 77ia-"e which is the optimal policy of the MG (S, A, P, T, rfé F Ty e, Y)-

ld’' e
Since the expert adopts the ground-truth reward function r., the trajectories recorded from the in-

teractions are the demonstrations of the expert. As rf& is known to the learner, learning r, from the
demonstrations is a special case of the standard two-agent IRL problem (Lin et al.| 2019} |Yu et al.,
2019; Liu & Zhu, 2022) with one of the reward functions known to the learner. The learning process
is shown in the upper block of Figure[T]and formulated as the following ML-IRL problem:

0%(0;) = argmin L(6;,0.), (1)
0.€0,
whete L(0.0.) £ Y, cp, S0 a0 @]s)] + 30, . (0, 5) € . This max
"1d

imum likelihood IRL (ML-IRL) aims to learn a reward function ré’;“’” that makes the sample

demonstrations from D s, most probable. Notice that the maximum likelihood estimation has
1d e

been widely used in IRL to infer the reward function of the expert (Ziebart et al.,|2008;2010). As we
prefer a simpler reward function, a L, regularization term 3|0 || is added. From the optimization

01,

problem , a reward parameter 67 (0;) will be learned. With rfé, the policy 7?9 (%) correspond-

ing to the learned expert reward function rge 0) g expected to produce the same trajectory from the

6
policy TTiaTe corresponding to the ground truth expert reward function ..

Learning expert-dependent reward function ;4. Given 6;, the learner solves problem (I)) to
obtain 6% (0;). So 0 can be viewed as a best response mapping. For the time being, let us assume
that the learner knows the mapping 6. The learner aims to choose parameter 6; that maximizes its
0,.,0% (0 _

vt S At (ralst, at) 4 (s, al))]. Notice that the optimal policies

70020 of the MG (S, A, P, T, 0} 41y, roe), ~) only depend on ;. So finding 6; can be viewed

as an RL problem where the policy is parameterized by #;. The learning process is shown in the
lower block of Figure[T]and formulated as follows:

cumulative reward E™

T-—1
max f(00:(00) £ B3 o (ra(s' o) + (5]))
t=0

Recall that the learner is unaware of the reward function 7,4 but can access the value of r4(s, a)
given any state-action pair (s, a). The parameter 6; is learned in the same way as the policy gradient
by calculating Vg, f(0;, 0%(6;)) since the policy is parameterized by 0;.

Overall learning process. The overall learning process is a hierarchical structure, the learner has
the knowledge that the expert interacts with the best response 6% (6;) from problem . The learner
learns 6; from problem (2) where the learner is able to predict the response 87 (6;). This hierarchical

structure is shown in Figure [T] and is formulated as the following bi-level optimization problem
where the lower-level learns the expert reward function rﬁe“’” which corresponds to the expert-

dependent reward function rlejl from the upper-level and the upper-level learns the expert-dependent

L6y
reward function 7, .

Under review as a conference paper at ICLR 2025

max f(0;,0:(0;)), st 0:(0;) =argmin L(6;,0,). 3)
9[6@[eee("')e

6 ALGORITHM

In this section, we develop a double-loop algorithm GSIIRL, Algorithm [I] to solve the bi-level
optimization problem (3). In each iteration, the learner partially solves the lower-level optimization
problem through the inner loop (lines 3-8) and then uses the sub-optimal lower-level solution to solve
the upper-level optimization problem through the outer loop (lines 9-15). Following this order, we
present the details of the inner loop in Section[6.1]and those of the outer loop in Section[6.2]

Algorithm 1 General Sum Interactive Inverse Reinforcement Learning (GSIIRL)

1: Initializes 6;(0) € 6;,0.(0) € 0., step size sequence {c } x>0, {5t }+>0, regularization parame-
ter A and integer sequence {tj } x>0

2: fork=0,1,--- ,K —1do
3: 0.(0) = 0.(k)
4: Samples the trajectory set DTGN"J ,
5: fort=0,--- ,t, —1do a
6: Samples trajectories under the policy 7% (k).0«(t)
7: 0.(t+1) = argr;ﬁn(VgeL(Hl(k), 0e(t)), u) + 557 [lu — O(1)]|
uebe)
8: end for
9: Oc(k) =0.(tx, — 1)
10: Samples trajectories under the policy 7% (%)-0« (k)
11: Initializes the random vector A(k) and the positive scalar p(k)

121 Gets V2, L(0:(K), 0(k)), V3 L(0i(k),0c(k)), Vo, f(0;,0.) and Ve, f(6;,0.) through
SPSA approximation following equation
13 V34 L(O1(K), 0c (k)] "' Vo, f(01(K), 0c(k)) = min, $u” V3 L(6i(k),0.(k))u
—UT@G f(alvoe) ~
14 Vf(Oi(k),0e(k)):Volf(1(k), 0e(K)) R
—V3,0. L(0u(k), 0 (k))[V3, L(61(k)799(k))]*1ve f(6u(k),0c(k))
150 Oi(k+)=ar§€rgin<vf(9z()s 0e(K)), u) + 5o llu — 6 ()|

16: end for

6.1 INNER LOOP

At each inner loop iteration t, the learner uses the projected SGD to update 6, (t), i.e., 6. (t) moves
along the opposite direction of the partial gradient Vy_L(60;(k),0.(t)) and is then projected onto
the set 6.. The following lemma shows the analytical expression of Vg, L(0;,0.) and its proof is
given in the appendix. The computation of Vg, L(0;,0.) requires the expected reward gradient of

mOu0e [Zt o 7'V, % (s, a")] and its empirical estimate fie(D o) =

1d>"e

the expert jio (700) £

d Zz 0 Zt 0 'YtVOETee (s,a"), (5", a") € ¢
Lemma 1. The gradient Vg, L(0,0.) = jio(7%%) — fie(D o,)+ A
1d>"e
Among 1y, iterations, the expectation fic(D o,x) remains unchanged but fre (0 (R):0e (1)) needs
1d Te
to be recalculated for each 6.(t). The inner loop terminates after ¢ iterations and the estimate

rﬁe(t’“ =Y is used for the update of the outer loop at the k-th iteration.

6.2 OUTER LOOP

At the k-th iteration of the outer loop, the learner aims to update 6;(k) through the projected
SGD. Analogous to the inner loop, the projected SGD requires to compute the hypergradient
Vf(6i(k),0.(k)). The analytical expression of V f(6;(k), 8. (k)) is shown in the following lemma
and it is widely used in the bi-level optimization problems. The computation of V f(6;(k), 6. (k))

Under review as a conference paper at ICLR 2025

requires the partial gradients Vo, f(6;,6.), Ve, f (01, 6.), the Jacobian V3 , L(6;, ..) and the inverse
Hessian [V L(6;,0.)]". However, the large computational complexity, O(T*), of directly com-
puting each is a challenge to the learner. To solve this challenge, we approximate them through
SPSA and reduce computational complexities to O(T?). The detail for computational complexi-
ties decreasing is discussed later in the Theorem (1} Then the learner uses V f(6;(k), 6, (k)) for the
projected gradient.

Lemma 2. The hypergradient of f(0;,0.) for wupdating 0, is Vo, f(01,0.)
Va6, L(01,0.)[V5 L(6:,0.)] " Vo, f(61,06c)

Take @36 L(6;(k),0.(k)) as an example to illustrate SPSA. According to the equation (2.2) in (Spall,
1992), it is approximated as follows:
Voo L(01(k),0c (k) +p()A(k)) =V, L(01(k),0e (k) —p(k) A(k))
. 2pAq (k)
V5. L(0i(k), 0c (k) = : SO
Voo L(01(k),0c (k) +p(k)A(k)) =V, L(01(k),0c (k) —p(k)A(k))
2pApy, (k)
the perturbation A(k) € R™ is a vector of m mutually independent zero-mean random vari-
ables and each element of A(k) satisfies |A;(k)| < o, E|A7YE)| < i, i = 1,---,m
with «g, a; as positive constants. The parameter p(k) is a positive scalar. The computation of
Vo, f(01(k), 0(k)) requires f(6;(k), 0. (k)) with weight perturbations on 6; (k). Analogously, com-
puting Vo, f(6:(k), (k). V3 L(01(k),0c(k)), and V3 o L(0,(k), 0. (k)) requires f(6;(k), O (k)),
Vo, L(0,(k),0.(k)), and Vg, L(0,(k), 0. (k)) with weight perturbations on 6. (k), respectively. The
analytical expression of f(6;(k),0.(k)) and Vg, L(6;(k),0.(k)) are shown in optimization prob-
lem (2) and Lemma [1] respectively. Similarly to Lemma |1} the gradient Vg, L(6;(k), 0.(k)) £
ul(O1(k),0e (k) —fu(D, IO) and the proof is given in the appendix. The expectation i (7%-%) £

201:0e

[Zt o ' 1V, T d(s a *)] is the reward gradient expectation of the learner and the expectation
M(Drffi,re) £1 ¢ ST AtV (st i), (s, ait) € ¢; is the estimated reward gradient ex-

pectation of the learner.

In order to successfully to compute Vf(6;(k),0.(k)), the existence of inverse Hessian

[VZ L(6;(k),0(k))] ! needs to be guaranteed. Since the negative log-likelihood func-
tion is convex and the Lo regularization term is obviously strongly convex, the overall
function L(6;(k),0.(k)) is strongly convex. We can conclude that V§ L(6;(k),0.(k)) >

AI. Then, we can choose proper A(k) and p(k) which lead to @gﬁL(ﬁl(k)ﬁg(/ﬂ)) >
0. As directly computing the inversg of a matrix is coAmputational we use the
conjugate gradient method to compute [V o L(6;(k),0c(k))] "' Vo, f(01(k),0c(k)) and the
expression is shown in line 13. With Vo, f(6u(k),0c(k)), V3, L(6i(k),0.(k)) and
[@ieeL(Hl(k),9€(k))]_1@96f(91(k:),He(k:)), the estimate hypergradient Vf(6;(k),0.(k)) =
@(i,,f(gz(k)ﬁe(k)) = V30, L(Oi(K), 0 (k) [V5, L(6i(k), 0 ()] Vo, f(Bi(k), 0 (k) can be cal-
culated.

After K iterations, the outer loop terminates and the GSIIRL outputs rf&(K)’ rge(K) and

70 (F)00(K)

7 ANALYTICAL RESULT

In this section, we conclude the analytical results for computational complexity reduction and the
convergence rate.

We add an assumption on the estimated reward functions 7”16[11 and 7% for the analytical results. The
estimated reward functions satisfy the following assumption.

Assumption 1. The estimated expert-dependent reward function rleé, and the estimated expert re-
ward function rgﬁ are fourth differentiable, i.e., C*.

Since #; and 6, are compact, Assumption [I| implies the first-order to the fourth-order gradients of
the reward functions rfé and r?¢ are bounded. The boundedness assumption is widely adopted in

Under review as a conference paper at ICLR 2025

bi-level optimization (Jin et al.| | 2020; Zeng et al., [2022; [Liu & Zhul [2023a), RL (Wang et al.,|2019;
Zhang et al.,[2020) and IRL (Liu & Zhul 2023b).

7.1 COMPUTATIONAL COMPLEXITY

The computation complexities of computing V f(6;, 6.) and V £ (6;, 0..) are quantified in Theorem

Theorem 1. Consider T as the decisionA factor, the computational complexity of computing
Vf(01,0.) is O(T?) and that of computing NV f(0;,0.) is O(T?).

By applying the SPSA to approximate V f(6;, 6.), the computational complexity for each iteration
of the upper-level reduces from O(73) to O(T?). The proof of Theorem [I|is in the appendix.
Compared to the finite difference, SPSA requires fewer policies for the approximation. In SPSA,
a random perturbation is added or subtracted to ; or 6., and therefore we only need two policies
for the approximation. In finite difference, two policies are required for each dimension of 6; or 6.
These policies are generated through RL, so the computational cost of generating the policies can
not be neglected. As SPSA requires fewer policies, the computational cost of SPSA is lower than
the finite difference which has a lower computational cost than directly computing gradients.

7.2 CONVERGENCE RATE

This section shows the main result of our algorithm, the converge result is shown in Theorem

. . 1 1 _ rVEk+1
Theorem 2. Suppose Assumpttonholds, by choosing p(k) = , ax TV’ ty = [Y5, the
following result holds: + ZkK;()l E[||[V£(0:(k), 0 (0,(K)))|?) < O(\/%)
Corollary 2.1. If the reward function r% are linear; the cumulative reward difference between the
learned expert policy Ty, and . decreases at a rate 0(%\/?)
The proof of Theorem [2]and Corollary [2.T]are shown in the appendix. The Theorem 2]indicates that

the expected hypergradient decreases at the rate of O(\/—%) It is the same rate as the projected SGD,

so the bias from the SPSA does not slow the convergence rate compared to standard projected SGD.
The Corollary [2.] indicates the convergence of the cumulative reward difference between 7, and
7. which has been widely used to infer the convergence of the learned expert policy.

8 EXPERIMENT

This section conducts three experiments to evaluate the performance of the GSIIRL. We compare the
GSIIRL with two benchmarks: the MARL algorithm (Lowe et al.,|2017) and the MA-IRL algorithm
(Lin et al.} 2019). The MARL uses the ground truth reward functions of the learner and the expert
and the other two algorithms use the learned reward functions. To learn the reward functions, the
MA-IRL requires demonstrations generated through the ground truth reward functions of the learner
and the expert. The GSIIRL only requires the interactions of the expert and the accessed values of
the expert-dependent reward function. Recall that the learner aims to learn the reward function of the
expert from observed trajectories and an expert-dependent reward function from accessed values.

8.1 MULTI-AGENT PARTICLE ENVIRONMENTS

We use the physical deception environment which is a non-cooperative environment in the Multi-
Agent Particle Environments (MPE) (Lowe et al} 2017} [Terry et al) [2021) to do the simulation.
There are one adversary, two cooperating agents, and two landmarks. One of the landmarks is the
target landmark, the cooperating agents know which one is the target landmark but the adversary
does not know. The cooperating agents aim to let one of them get as close as the target landmark
and keep the adversary as far as the target landmark. Therefore, the cooperating agents need to learn
how to spread out and cover both landmarks to deceive the adversary. The cooperating agents are
viewed as a single learner and the adversary is the expert. The accessed values are the distances
between the adversary and the target landmark. The state space dimensions for the agents and the

Under review as a conference paper at ICLR 2025

60 — GSIIRL ~20 —
—— MARL °
T 40 — maRL | 2-30
3 e
g 20 5—40
S 50
[—
£ 0 g —— GSIIRL
260 —— MARL
-20 — MA
—70 MA-IRL
0 10 20 30 40 50 0 10 20 30 40 50
Iteration number Iteration number

Figure 2: MPE simulation results. Left: Agent’s reward. Right: Adversary’s reward. The horizontal
lines are the results from the MARL with ground truth reward functions. For the MA-IRL and
the GSIIRL, the reward functions are updated at each iteration. In each iteration, we sample the
trajectories of the adversary and the agents through MARL with updated reward functions and plot
the cumulative rewards of the sampled trajectories with ground truth reward functions.

adversary are 10 and 8 respectively, and the action space dimensions for the agents and the adversary
are 5. Other experiment details are listed in Appendix Section[A:T0.1}

We compare the performance of the algorithms through the cumulative rewards. Since two agents
cooperate with each other and share the same reward, we only plot one graph for the agents’ cumula-
tive reward. In Figure2] two randomly initialized reward functions are updated during 50 iterations.
At the beginning, the adversary and the agents move randomly and the initial cuamulative rewards
are far from the horizontal line. While updating reward functions, the agents learn the goals of
themselves and the adversary, then the cumulative rewards converge to the horizontal line.

8.2 HUMAN-ROBOT INTERACTION

Consider the human-robot interaction scenario in Section[3} the robot (learner) and the human (ex-
pert) aim to reach their destinations as soon as possible. In addition, the robot needs to keep the
human with positive emotions. The state space dimensions and the action space dimensions for the
robot and the human are 4 and 2 respectively. The accessed values are the distance between the
robot and the human and the human’s speed, detailed setups are shown in Appendix Section[A.10.2}

-25

|
S

-50
-75
100
-125
-150

!
s
5

Robot reward
|
Human reward

— GSIRL
— MARL
-175 — MAJRL

—2000 20 80 100 0 20

— GSIIRL
—— MARL
—— MAJRL

o
|
52 o a
s 8 8 8

80 100 0 80 100

40 60
Iteration number

40 60 40 60
Iteration number Iteration number

(a) Robot’s cumulative reward (b) Human’s cumulative reward (¢) Collision rate

\ Robot —— Distance
Human —— Threshold

)
®

S
Y

Distance

)
IS

— GSIRL -02,
— MARL o.
—— MA-IRL -04

°
o

Goal reaching rate

o
°

0 20 80 100 -04 -02 00 02 04 0 5 10 5 30 3 40

40 6! 5 20 2
Iteration number Time step

(d) Goal reaching rate (e) Sample trajectory (f) Distance

Figure 3: Human-robot interaction simulation results. The cumulative rewards, the collision rate,
and the goal reaching rate are calculated in the same way described in Figure 2]

We use four metrics to compare the algorithms: the robot’s cumulative reward, the human’s cu-
mulative reward, the collision rate, and the goal-reaching rate. Then we show a sample trajectory
from the results of the GSIIRL. In Figure 3(a)|and Figure 3(b)} the cumulative rewards of the robot
and the human converge to the ground truth values which means the robot reaches its maximum
cumulative reward and successfully learns the human behaviors. Figure shows the collision rate
coverages to the ground truth value which means the robot successfully learns a human-dependent
reward function. In the beginning, the reward functions are randomly generated. The robot and
human move randomly and the collision rarely happens. While updating the reward functions, the
robot and the human move toward the goal locations, and collisions occur which leads to an increas-

Under review as a conference paper at ICLR 2025

ing collision rate. Then the reward functions are better learned to avoid collision and the collision
rate decreases. From Figure we can see that the goal-reaching rate converges to the ground
truth value. With the learned reward functions, both the robot and the human can reach their goals.
Overall, the learned robot’s reward function leads to a high goal-reaching probability with a low
collision probability after 100 iteration updates. Figure|3(e)| shows a sample trajectory with learned
reward functions and Figure [3(f)| plots the distances between the robot and the human in Figure[3(e)]
The robot and the human reach their goals and keep the distance above the safe distance.

8.3 SECURITY

We run a cyber-security experiment to test the proposed algorithm. Consider a defender (learner)
and an attacker (expert) interacting in an attack graph in Figure [d Detailed setups are shown in the
Appendix Section [A.10.3] The defender aims to protect the system and the attacker aims to attack
the system as much as possible. The accessed value for the defender is the negative value of the
attacker’s reward. The cardinalities for the discrete state space and the discrete action space are 256
and 8 respectively.

=}
ENR- Y

N

— GSIIRL
—— MARL
—— MA-RL

-
Defender reward
|
IS
Attacker reward

)
3

\- / \\- /f 0 10 20 30 40 50 0 10 20 30 40 50
Iteration number Iteration number

Figure 4: Cyber security simulation results. Left: Attack graph. Middle: Defender’s reward. Right:
Attacker’s reward. The cumulative rewards are calculated in the same way described in Figure

From Figure] the randomly generated reward functions are updated through 50 iterations. Starting
with random reward functions, both the defender and the attacker act randomly. Therefore, the
cumulative reward of the defender is high and that of the attacker is low at the beginning. As the
reward functions keep being updated, the attacker starts to attack more nodes, and the defender tries
to block the attacks. Finally, the cumulative rewards converge to the ground truth values.

8.4 RESULTS ANALYSIS

In this section, we summarize the final results of the cumulative rewards in three experiments as
follows:

Learner MPE HRI CS

MARL 5.43 + 1.66 —20.224+3.34 | —16.96+1.45
MA-IRL 5.12 4+ 4.08 —20.63+1.07 | —17.08+3.21
GSIIRL 4.54+1.81 —21.694+1.87 | —17.38+3.59
Expert MPE HRI CS

MARL —16.914+2.01 | —12.98+4.78 | 6.96 + 1.45
MA-IRL —20.374+4.27 | —13.52+2.57 | 7.03 + 3.21
GSIIRL —19.534+2.50 | —13.16+1.03 | 6.76 £+ 3.59

Table 1: The cumulative reward comparison. Top: The cumulative reward of the learner. Bottom:
The cumulative reward of the expert. MARL uses ground truth reward functions. MA-IRL and
GSIIRL use learned reward functions from the last iteration.

From Table[Tand Figure @), (3), (@), the cumulative reward results of the MA-IRL and the GSIIRL
coverage to the results of the MARL. We can see the cumulative reward results of the GSIIRL is
comparable to that of the MA-IRL while the GSIIRL requires less information than the MA-IRL.
The GSIIRL only requires the interactions of the expert and the accessed values of the expert-
dependent reward function instead of the demonstrations generated through the ground truth reward
functions of the learner and the expert for the MA-IRL.

9 CONCLUSION

This paper develops a general-sum interactive inverse reinforcement learning framework to learn the
reward functions and policies of the learner and the expert during the interactions. This framework
includes the fully cooperative framework and the fully competitive framework as special cases.
Then we propose the GSIIRL algorithm and theoretically quantify its convergence rate. From the
experiments, we show the effectiveness of the GSIIRL in both continuous and discrete environments.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the twenty-first international conference on Machine learning, 2004.

Riku Arakawa, Sosuke Kobayashi, Yuya Unno, Yuta Tsuboi, and Shin-ichi Maeda. Dqn-
tamer: Human-in-the-loop reinforcement learning with intractable feedback. arXiv preprint
arXiv:1810.11748, 2018.

Aniket Bera, Tanmay Randhavane, and Dinesh Manocha. Modelling multi-channel emotions using
facial expression and trajectory cues for improving socially-aware robot navigation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp.
0-0, 2019.

Thomas Kleine Biining, Anne-Marie George, and Christos Dimitrakakis. Interactive inverse rein-
forcement learning for cooperative games. In International Conference on Machine Learning, pp.
2393-2413. PMLR, 2022.

Mohamed El-Shamouty, Xinyang Wu, Shanqi Yang, Marcel Albus, and Marco F Huber. Towards
safe human-robot collaboration using deep reinforcement learning. In 2020 IEEE international
conference on robotics and automation (ICRA), pp. 4899—4905. IEEE, 2020.

Mahmoud Elnaggar and Nicola Bezzo. An irl approach for cyber-physical attack intention prediction
and recovery. In 2018 Annual American Control Conference (ACC), pp. 222-227. IEEE, 2018.

Saeed Ghadimi and Mengdi Wang. Approximation methods for bilevel programming. arXiv preprint
arXiv:1802.02246, 2018.

Denizalp Goktas, Amy Greenwald, Sadie Zhao, Alec Koppel, and Sumitra Ganesh. Efficient inverse
multiagent learning. In The Twelfth International Conference on Learning Representations.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies. In International conference on machine learning, pp. 1352-1361.
PMLR, 2017.

Dylan Hadfield-Menell, Stuart J Russell, Pieter Abbeel, and Anca Dragan. Cooperative inverse
reinforcement learning. Advances in neural information processing systems, 29, 2016.

Chi Jin, Praneeth Netrapalli, and Michael Jordan. What is local optimality in nonconvex-nonconcave
minimax optimization? In International conference on machine learning, pp. 4880-4889. PMLR,
2020.

Parameswaran Kamalaruban, Rati Devidze, Volkan Cevher, and Adish Singla. Interactive teaching
algorithms for inverse reinforcement learning. arXiv preprint arXiv:1905.11867, 2019.

Charles D Kolstad and Leon S Lasdon. Derivative evaluation and computational experience with
large bilevel mathematical programs. Journal of optimization theory and applications, 65:485—
499, 1990.

Jakub Grudzien Kuba, Ruiqging Chen, Muning Wen, Ying Wen, Fanglei Sun, Jun Wang, and Yaodong
Yang. Trust region policy optimisation in multi-agent reinforcement learning. arXiv preprint
arXiv:2109.11251, 2021.

Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and Stefano Soatto. Meta-learning with
differentiable convex optimization. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 10657-10665, 2019.

Xiaomin Lin, Stephen C Adams, and Peter A Beling. Multi-agent inverse reinforcement learning
for certain general-sum stochastic games. Journal of Artificial Intelligence Research, 66:473-502,
2019.

Shicheng Liu and Minghui Zhu. Distributed inverse constrained reinforcement learning for multi-
agent systems. Advances in Neural Information Processing Systems, 35:33444-33456, 2022.

11

Under review as a conference paper at ICLR 2025

Shicheng Liu and Minghui Zhu. Learning multi-agent behaviors from distributed and streaming
demonstrations. In Thirty-seventh Conference on Neural Information Processing Systems, 2023a.

Shicheng Liu and Minghui Zhu. Meta inverse constrained reinforcement learning: Convergence
guarantee and generalization analysis. In The Twelfth International Conference on Learning Rep-
resentations, 2023b.

Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAl Pieter Abbeel, and Igor Mordatch. Multi-
agent actor-critic for mixed cooperative-competitive environments. Advances in neural informa-
tion processing systems, 30, 2017.

Thomas M Moerland, Joost Broekens, Aske Plaat, Catholijn M Jonker, et al. Model-based rein-
forcement learning: A survey. Foundations and Trends® in Machine Learning, 16(1):1-118,
2023.

Andrew Y Ng and Stuart Russell. Algorithms for inverse reinforcement learning. In International
Conference on Machine Learning, 2000.

Andrzej S Nowak. On a new class of nonzero-sum discounted stochastic games having stationary
nash equilibrium points. International Journal of Game Theory, 32(1):121, 2003.

Billy Okal and Kai O Arras. Learning socially normative robot navigation behaviors with bayesian
inverse reinforcement learning. In 2016 IEEE international conference on robotics and automa-
tion (ICRA), pp. 2889-2895. IEEE, 2016.

Malayandi Palaniappan, Dhruv Malik, Dylan Hadfield-Menell, Anca Dragan, and Stuart Russell.
Efficient cooperative inverse reinforcement learning. In Proc. ICML Workshop on Reliable Ma-
chine Learning in the Wild, 2017.

Fabian Pedregosa. Hyperparameter optimization with approximate gradient. In International con-
ference on machine learning, pp. 737-746. PMLR, 2016.

James C Spall. Multivariate stochastic approximation using a simultaneous perturbation gradient
approximation. IEEE transactions on automatic control, 37(3):332-341, 1992.

John C Strikwerda. Finite difference schemes and partial differential equations. SIAM, 2004.

Jordan Terry, Benjamin Black, Nathaniel Grammel, Mario Jayakumar, Ananth Hari, Ryan Sullivan,
Luis S Santos, Clemens Dieffendahl, Caroline Horsch, Rodrigo Perez-Vicente, et al. Petting-
zoo: Gym for multi-agent reinforcement learning. Advances in Neural Information Processing
Systems, 34:15032-15043, 2021.

Lingxiao Wang, Qi Cai, Zhuoran Yang, and Zhaoran Wang. Neural policy gradient methods: Global
optimality and rates of convergence. arXiv preprint arXiv:1909.01150, 2019.

Xingyu Wang and Diego Klabjan. Competitive multi-agent inverse reinforcement learning with
sub-optimal demonstrations. In International Conference on Machine Learning, pp. 5143-5151.
PMLR, 2018.

Siyuan Xu and Minghui Zhu. Meta value learning for fast policy-centric optimal motion planning.
In Robotics science and systems, 2022.

Siyuan Xu and Minghui Zhu. Efficient gradient approximation method for constrained bilevel op-
timization. Proceedings of the AAAI Conference on Artificial Intelligence, 37(10):12509-12517,
Jun. 2023.

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The
surprising effectiveness of ppo in cooperative multi-agent games. Advances in Neural Information
Processing Systems, 35:24611-24624, 2022.

Lantao Yu, Jiaming Song, and Stefano Ermon. Multi-agent adversarial inverse reinforcement learn-
ing. In International Conference on Machine Learning, pp. 7194-7201. PMLR, 2019.

12

Under review as a conference paper at ICLR 2025

Siliang Zeng, Chenliang Li, Alfredo Garcia, and Mingyi Hong. Maximum-likelihood inverse re-
inforcement learning with finite-time guarantees. Advances in Neural Information Processing
Systems, 35:10122-10135, 2022.

Kaiqing Zhang, Alec Koppel, Hao Zhu, and Tamer Basar. Global convergence of policy gradient
methods to (almost) locally optimal policies. SIAM Journal on Control and Optimization, 58(6):
3586-3612, 2020.

Xiangyuan Zhang, Kaiqing Zhang, Erik Miehling, and Tamer Basar. Non-cooperative inverse rein-
forcement learning. Advances in neural information processing systems, 32, 2019.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey. Maximum entropy inverse
reinforcement learning. Association for the Advancement of Artificial Intelligence, 8:1433-1438,
2008.

Brian D Ziebart, J] Andrew Bagnell, and Anind K Dey. Modeling interaction via the principle of
maximum causal entropy. International Conference on Machine Learning, 2010.

13

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 NOTION AND NOTATIONS

Define f(60,00) 2 Joa(n?:0) + Joi(x%:02), where Joq(x%:0) £ B [T wf(;(,ab)]
is the cumulatlve expert-dependent reward of the learner and Jel() £
01:0e

) o Y'ri(st,al)] is the cumulative expert-independent reward of the learner.
Deﬁne the reward gradlent expectation of the expert from the state-action pair (s,a) as

te(s,a) oL 0e [Zt o V'V 10 (s'a)]s® = s,a° = a, the reward gradient expec-
tation of the expert from the state s as pe(s) = [, o [o co fe(s,a)daydac, pe(s,a) =

2010 . .

a [Zt o ' IV, rfe (s a)\s = s] Analogously, define the reward gradient expectation of
the learner as yi(wf0c) £ Em% [T 4V, rld(s a)] the reward gradient expectation of
the learner from the state- actron pair (s,a) as p(s) £ E™" S A Ve, (st at)] s = s,
wi(s,a) = woL-te [Zt o 'ytV(;lrld(s at)[s® = s,aO = a|, the reward gradient expec-
tation of the learner from the state s as (s) = [. [, c. mi(s,a)dada.. Define the

cumulative expert-independent reward of the learner from the state-action pair (s,a) as
6;,0¢ — .
Jei(s,a) 2 E™ S Atr(shal)|s® = s5,a° = a] and define the cumulative expert-

independent reward of the learner from the state s as Jo;(s) 2 E™ [(st ab)|s0 =).
Define Py(s) as the probability distribution of the initial state.

During the proofs, symbols (i) to (viii) are used to represent what theorems or methods are used to
get the current step. The symbol (4) represents chain rule, the symbol (ii) represents the linearity
of expectation, the symbol (iii) represents the close form of geometric series, the symbol (iv)
represents the triangle inequality, the symbol (v) represents the holder’s inequality, the symbol (vi)
represents Taylor’s theorem, the symbol (vii) means the usage of other equations in this paper, and
the symbol (viii) means keeping expansion.

A.2 FUNDAMENTAL RESULT FOR POLICY

This section lists the expressions for important gradients in continuous state-action space. Based on
the idea of the soft Q learning (Haarnoja et al.,2017), we can get:

Qo (s,0) = 10 (s, a) + (s, a) + 18 (s,a) +W/ SP(SIIS»G)VSOﬁ(S')dS'7 (5)
s'e

Vy%st(s) =1n / / exp(Q** (s, a))da,da, (6)
ar€a; JaeCae

exp(Q*7! (s, a))

01,0
e exp(VooTi(s))

(7

ay, aels) =

As the lower-level optimization problem is a maximum likelihood problem, it is important to
know Vg, In (7%) for the SGD of the lower-level optimization problem. The process for get-
ting Vg, ln(91.9¢) is shown below.

From the expression of 7%, we can get Vg, In(70%) = Vy Q*°ft(s,a) — Vg, V5°F(s), there-
fore, we can calculate Vo Q*°7t(s,a) and Vg _V*°/t(s) separately.

14

Under review as a conference paper at ICLR 2025

Based on the equation of V*°%*(s), the gradient V, V*°/*(s) could be calculated as follows:

V@gvsoft(s),
(i) faZEal faeEae vee exp(QSOft(sa a))daldae
Jurcar Ja,ca, exP(Q*°F (s, a))darda

(vid) fazeaz faeeac eXp(QSOft (S’ Cl))VQe QSOft (S’ a)daldae
a exp(V=o/i(s)) ’

(lii)/ / wgl’ae(al7ae|s)(V9€re(s,a)

aj€a; Jae€ae

+7/ P(s'|5,a)Vy, VoIt (s")ds) dayda,,
s'esS

Py (8)
(’ugz)/ / ﬂ_ezﬁe(al,ae|s)(V9€7"e(S7CL) +’Y/ P(S/|S,CL)
aj€a; Jac€ae

s'eS
([[g als) o apal)
aleal a,€ae

+ fy/ P(s"|s',a},a.)V, VI (s")ds"|da}da,ds")dada.,
s'’eS

T-1
_ Eﬂ'eZ;Se [Z ’YtVOCTe(staatMSO _ S],
t=0

= Ne(s)a

where the first (vii) uses the expression in equation (6) and (7), and the second (i) uses the
expression in equation (5]
Similarly, we can get Vg, Q*°7*(s, a) from Q*°/*(s, a).

Veeroft(Sa a)v
) Ty re(s,a) + 7/ P(s'|s,a) Vo, V*oTH(s")ds")dayda,
s'esS
g €)
(vith) g0 [Z 7'V, re(s',a")|s® = s,a° = al,
=0
= Me(sva)7

where (vi?) uses the expression in equation (5)).
By summing the results of equation and (9), we can get Vq_In(7%-%) as follows:

Vo, ln(ﬂal’ee (a, acls)) = Vgeroft(s, a) — VgeVsoft(s) = pe(s,a) — pe(s). (10)

The way to get Vg, In(7%%) is same as that of Vg In(7%?%), and the gradient
Vo, In(7%% (a;, ac|s)) = (s, a) — p(s).

A.3 THE PROOF OF LEMMA[I]

In this section, we derived gradients that are necessary for our method.

Define Pp(s' = s,af = a;,a . where (s,a) € D o, ,as
d>

Te

¢ 0 otherwise

the probability of (s, a) occurring at time ¢ in the demonstration set D o, . With the fundamental
1d:Te

t_ o gt t_
‘i a1 st=s,a];=a;,a; = ac
_ae)

15

Under review as a conference paper at ICLR 2025

result of the policy, we can derive the Vg_L(6;,6.) and prove the Lemma as follows:

(95,9),

= - Z v / / / Pp(st = s,a! = ar,a’, = a.)Ve, In(7%%)da.dayds + N,
€S Jaj€a; JacEae

S

(vid) 27 / / / p(s" = s,af = ar,al = ac)(Vo,re(s,a)
€S Jaj€a; JacEae

t=0

0 ec L
+E™" Z N 1Y, 1 (st at)|st = s, af = 4, a = al

t'=t+1
_ gt Z A g, re (s, at)|st = s])dacdayds + N,
t'=t
@) _ / / / (s" = s,a] = a,al, = a.)(Vo,re(s, a)dacdads
seS Jar€a; Jac€ae

0 0 0
—/ / / Pp(s” =s,a] = aj,a, = ae)
seS Jaj€a; Jac€ae

T—
E [z V'V, re (s, at)|s0 = s])da.da;ds + N\,
t=0

= p1e(7%%) = fie(D o,) + A,

Tia:Te

where (vii) uses the expression of equation (10).

A.4 OTHER NEEDED GRADIENTS

Lemma 3. Suppose Assumption holds, the first-order gradients Vo, L(0;,0,) = p(m%:%) —
A R =
(Do,). Vo f(01,00) = ™[50 7 (' a') = pu(s) (Jea(s' a) + Jea(s',a')) 1] +

pu (m o), Vo f(01,0.) = E™"" [0 [(MP(S sae) - ue(st))(Jed(Stvat) + Jei(s',a")) "]
The second-order gradlents V% 0. L(01,0.) = a [Zt o V' (pe(s,a) — ,ue(Nw(s,a)t],

201:0¢

Vi (91,9) = i [(ue(stva) — he(s"))pe(s',a)" + V3§ rie(s',a")]] -
dzz OZt 0 Vtv&rre (ia Zt)+>‘

0;,6¢

Proof. Through the same process of calculating Vg_L(6;, 6) we can get the gradient Vg, L(0;,6.)
following the same process in Lemma where ji; (m%:%) & wft-0e [Zt o V'Vo,ra(st, ab)).

The process for getting Vg, (6, 0..) is shown below.
From the equation of f(6;,6.), we can see that Vg, f(6;,0,) = Vg, Jeq(7%%) + Vg, Joi(7%:0),
then Vg, Joq(7% %) and Vy, J.;(w%-%) can be calculated separately.

16

Under review as a conference paper at ICLR 2025

0l795)

The calculation of deriving Vg, Jeq(m is as follows:

Veljed(’frel’ee)a
© / Po(s”) / / (Vo,m(a0, a]s%) Tea(s®, a9, a®)T
s0esS a?€al aOEae

+7T(a‘l’ e|3)Vez ed(s afl, 5)]da?daods
:/ Foe / / (Vo,m(af, a]s) Jua(s, af ,a2)" + w(af, al|s") (Ve rfi(s°, af, af)
s0esS al €a; Jal€a.

+'y/ P(s's°,a?,a%) Ve, Jea(s'))ds"|da) dads®,
sles

(vidd)
i / Po(s°) / / (Vom(af, 250 Tea(s, 00, 0T + m(a?, a%]s°) [V, 14 (5°, af, a?)
s0esS a?Eal a%€ac

oo [P [[Vamadalls) s ol o)
stes aj€a; Jal€ae
+7T(alv e|5)(Vglrlé(sl,all,aé) +7\/ P(S2|517al17aé)vf)zJed(sz))d‘S?]dsl}da?da’gdsov
s2e8S
T-1

e Vo, m(al,al|st
= B A (UL)T V(s

2"\ a afs")

T-1
_ gt AN (Vo (%) Toa(s', a') + V(i (s", ah)))],
t=0

Z’y (st at) = (")) Jea(s', @) T)) + gu (%),

where (vii) use the expression of the equation (10| .
Similarly, we can get Vg, J; (7%%) as follows:

veljei(']rel’ee)v

L R [[Va0l
s%es a €a; Jal€a,

+m(a},ad|s”) (Vo, Jei(s°, af a P))]da?daods

(vuz)
Po(s” / / a0, a2|5°) Vg, In(r(a?, a]s°)) Jui (2, a2 a0)
s0eS a16al aOEae

+ataf o)y | SP(sl|s°,a?,a2>va,,Jei<sl>ds11da?da2ds°,
ste

T-1

D2 Guls'sa') = u(s") Jeis', a)],

t=0

(gi) Eﬂ_el Oe

where (vm) use the expression of the equatlon .
By summing the result of Vg, Jeq(m 01,9¢) and Vo, Jei(m 01,9¢), the result of Vo, f(01,0.) is as follows:

Velf(0l70€)7
01,60 =
= B" 1 A st at) — pu(sh) Tea(s',)T+ g (00
t=0
0,0 i
+ETDY A (st at) — pu(sh)) Jei(st at) T,
t=0
T-—1

@) E™ ST A (st at) — pu(sh)) (Jea(st, at) + Jei(st,) 7)) + pa(w0).
0

~
I

17

Under review as a conference paper at ICLR 2025

The Vg, f(0;,0.) is calculated in the same way as the Vg, f(6;, 6.).

The process for getting VgeL(F)l, 6.) is shown below.
As we proved in Lemma , the gradient Vo, L(0;,0.) = e (m%%) —

we can take the derivative of each term separately.
The derivative of y. (7% %) w.r.t 6. is calculated as follows:

V9 /~Le(Ou.0e)7

(4)

SN R N R /% (R E R
s0eS aVeca; Jald€a,

+Tr(al’ e‘s)V@ :u("(s al7 e)]da da(e)dsov

- / Po(s") / / Voum(a?, %)) se(s°, o, a0)”
s0esS a?Eal al€ac

He(D 01

T1a:Te

)+ A, as a resullt,

+m(af, agls®)(V5,ré(s°,af ad) + P(Sllsoaa?aag)Voeue(sl))dsl]da?dagdso,

('uzn)
[on [(Tamaal Ol a)”
s0es alEal a%€ac

+7T(al7 e‘s)[gpr (8 alaae)

T / P(s']5°,af, %) / / Vo.m(al alls pe(s, ab,al)”
sles al€a; Jalca,

e allo) (V6 kol [Pl ab al) Vo,)l o,
s2eS

000 7(af, agls')
=B 7(%%(81&@) + V5,1l (s, a")),
o m(az, at|s’)
T-1
= B (32 (Vo In(x" % ue(s',a') T + V3 rle (5", a))],
(Vi) 0 et_ﬁ_l
=TETD D A (pe(sh at) = pe(s)pe(s',)T + VG rle (s
t=0

where (vii) use the expresswn of the equation (10).

a')]],

With the result of Vg_ . (779), the derivative of Vg, L(6;,6.) w.r.t 6. is as follows:

V. L(61,0.) = Vo, (Vo,L(61,6.)),
= Vo, (ne(n"%) = fie(D, o, ,) + M),

(2) E‘ﬂ'el’@(3 [i W’t[(ue(stﬂt) - :ue(st))//fe(st a) + va 7" (S at)]]

t=0
1Tl
3 Z ’ytvgerzc(slt, a’) + A
i=0 t=0
Through the same process of calculating V_ . (7% %), the result is as follows:
o T—1
Vi L0, 0e DA (pe(s) — pe(s) (s a) "]
t:O

18

Under review as a conference paper at ICLR 2025

A.5 PROPERTIES OF THE LOWER LEVEL OPTIMIZATION PROBLEM

Lemma 4. Suppose Assumption |l| holds, for any 0, € R™ and 0, € R™, L is continuously twice
differentiable in (0;,0.).

For any 6, € R™, Vy_L(61,0.) is Lipschitz continuous (w.r.t 0.) with constant LLee > 0.

Forany 6, € R"™ and 0, € R™, we have |V, L(6,,05)|| < ClLy,o, for some constant Cr,, , > 0.
For any 6; € R™, VgleeL(ﬁ_l,Ge) and VgeeeL(éhﬁe) are Lipschitz continuous (w.r.t 0,) with
constants L, , >0and Ly, , >0

For any 0, € R™, Vj, L(0:,02) and V§ 4 L(6;,02) are Lipschitz continuous (w.r.t 6;) with
constants Ly, , >0and Ly, , >0

Proof. Suppose that h is a real-valued function defined and differentiable on an interval H C R".
If [[Vh]| is bounded on L, then h is a Lipschitz function on H. So we need to prove V3 , L(6;,0.)

is bounded. From Assumption we can show that 3Ry, > 0, | Vr? | < Ry,.

T—1 ;
. ()
i@l < B 1322 Ragls” = o] < fR_”v’
t=0

where (7) uses the close form of geometric series.
As a result, ||i;(s)|| is bounded, proved through the same way, ||uc(s)|, |li(s, @)l ||pe(s, a)l
are also bounded. Based on the Lemma [3| all elements of Vge OGL(GZ, 0.) are finite, therefore,

V5,6, L(01,6c)|| is bounded and the Vg, L(6:,6,) is Lipschitz continuous.
In the same way of proving |V , L(6;,0.)|| is bounded, we can show || V5 o L(6;, 6.)|| is bounded.

We need to prove Vo 4 L(6;,0.) and V3 5 4 L(6;,0.) are bounded. The proof of V3 , , L(6;,0.)
is bounded as follows:

V.0, L(01,0c),
T-1

= Vo, (E™"" [At (els.a) — pe(s)) (s, a)T]),
t=0

) T—1
QB[S A (Vo pe(5,0)) (5.)7 + pe(5,0) (Vo pu (s,)T
t=0

~ (Vo e(s)pu(s,0)") = ne(s)(Ve, (s, a)")).
Each gradient inside the expectation could be derived through the process of deriving Vg, 1 (7% %)
in the proof of Lemma [3] and these gradients are all finite with the same way of proving
V5.0, L(01,6c)]|| is bounded. The third-order gradient Vi 4 , L(6;,6.) is bounded with the smae

process. Therefore, the third-order gradients of L(6;, 6..) are all bounded.
Through the same procedure, we can prove V§ 4 o L(6;,6.) and V} 4 5 L(6), 6.) are bounded.

At the same time, the existence of V7§ o L(6;,0.), V5 4 L(6;,0.) are shown. Analogously, the
existence of V3, L(6,0.), V5 g, L(6;,0.) could be proved in the same way. The third-order
gradients of L(0;, 0.) are bounded. Therefore, L is continuously twice differentiable in (6;, 6..)

A.6 PROPERTIES OF THE UPPER-LEVEL OPTIMIZATION PROBLEM

Lemma 5. Suppose Assumption |l| holds, for any 0, € R™, Vg, f(01;6.) and Vo_f(01;0.) are
Lipschitz continuous (w.r.t 0.) with constants Ly, > 0and Ly, > 0.

For any 03 € R™, Vq_ f(0,;02) is Lipschitz continuous (w.r.t 8;) with constants f/fee >0

19

Under review as a conference paper at ICLR 2025

For any 61 € R™ and 05 € R™, we have ||V, f(01;02)| < Cy,. for some Cy, > 0.

Proof.
0,,0 P9 N 410) 7
1 Tea(x®%)) < B [tz:;vwls =5l s 5

where (7) uses the close form of geometric series.
So the cumulative expert-dependent reward value J.4 is bounded, analogously, the cumulative
expert-independent reward value J.; is bounded.

Voo f(01;0c),

T-1

= Vo, (B™ 1 A (st a') — () (Jea(s', a') + Jei(s®, ') 7] + pu(n®:%),
t=0
) oo T-1
QB ST A (Vo u(s'y at) — Vo, u(sh)) (Jea(st, at) + Jes(st, at))”
t=0

+ (s’ a") = (")) (Vo, Jeals', a') + Ve, Jei(s', ")) "] + Vo, pu (n%).

Refer to the proof of Lemma EI, all elements in Vy,g_ f(0;;0.) are finite, itself is bounded. Analo-
gously, Vg_g. f(6;;0.) is bounded under the same proofing process.
Through the same procedure , we can prove Vg, f(6;; 6.) is bounded.
All element of Vg_f(61;63) are bounded. Therefore, all elements for Vy_ f(6;; 6.) is bounded and
it is bounded.

O

A.7 PROPERTIES OF THE APPROXIMATION ERRORS

Define bia (k) = V3,5, L(01(k), 0c(k)) — V55, L(01(K), Oc (k). b22(k) = Vo L(01(k)»9e(1f))
V0. LOK). 0 (k). ba(k) = Vo f(Ou(k),0c(k) — Vo f(Or(k)0c(R)). ba(k) =
Vo f(6u(k), 6 (k) — Vo, f(6i(k), Oc (k). b(k) = [V, L(O1(K), 0c (k)] Vo, f(01(R), Oc (k) —
[Vo.0. L(0(K), 0c (k)" Vo, f(O1(K), 0c(k)) at iteration K, bu(k) = V/(O(k).0u(k))

Vf(6:(k),0.(k)) at the iteration k. Through the same procedure in the proof of the Lemmal[5] we
can get conclude that each element of forth-order gradient of L(6;,0.) is bounded by the constant
C', and each element of the third-order gradient of f(6;(k),0.(k)) is bounded by C'y.

Lemma 6. The biases bia(k), baa(k), b1 (k), ba(k), b(k), and b, (k) are bounded,

2 m
Joray | < SOV o 1y900 4 (m — 100,
o)) < SV s)70 4 (m 1) e0),
e P D R

ooty < SN s o102 4 (m — 1),

o) < X2l D ECHTIN 0 (3 — 1)) + m — 1)),

Under review as a conference paper at ICLR 2025

160 (K)|

2
< SO 15 _ (180 + (n = Vo)
. 201, 5, CLp?(k) + 2C1, o VmACyp? (k)

By/mA2
{[m3 ~m = 1af + om— Do) + P s a2 4 (m - 1)

p*(k)CL(Cy,, CL + vVmACy)
362

{[m® = (m = 1)"Jaf + (m — 1)’ ara}?,

Proof. According to the Lemma 1 in (Spall, [1992), the approximation error byo;(k) for
VgleeL(Gl, 6.) is

CLp2(k)

b1 (k) < {[m?® = (m —1)3]a? 4+ (m — 1)3a;03},

where b19;(k) represent the [th term of the bias b19;(k) at kth iteration.

1B22(R)|| < {Im® = (m = 1)°Jaf + (m — 1)’asag}.

Crp*(k)y/m
6
Analogously, the boo(k), b1 (k) and b (k) are also bounded.

With the V2, L(0,(k),0.(k)) and Vo, f(0i(k),0.(k)), we estimate the
[V5.0.L(01(k), 0. (k)] =V, f(6i(k), 0. (k)) through conjugate gradient.

IV, L(O1(K). e (k)| = 1V, 9, L(01(K), 0 (k) + boa (k)| = INL + boz (K)]].

Then we can tune the parameters of bz (k) such as A, ag and oy to let || [@geee (01,0.)]71 <
and make sure the V3 , L(6;,0.) > 31

Vf*x

[6(R)I,
= [|E[[V, 0, L(Ou(K), 0 (k)] Vo, f(Bi(k), 6c ()
[Ve 0, L(01(K), 0c(K))] "' Vo, f(0u(K), 0c ()],

= B[NV o, L(O1(K), 0c (k)] (V3,0 L(01(K), O (k) — V3o L(61(K), 0c(K)))
(V2.9 L(O1(K), 0. (k)] "1 Vo, f(Or(K), 0 (k))|| + V3.9, L(O1(K), 0 (k)] ba (k).

21193, LK) 8. (DI 93,0, LK) 6.(k)) — V3., LOWK) 8. (k)]
V3,0, LOU), 8.0)) ¥, £ Ok + (93,6, LAY 0)] k]
(i) 2C;,, |[baa (k) | + 2v/mA[Iba (k) |

< M2 ’

< 267%(Ci§i%2426¥p200){hn3—-On——lfﬂa?+'0n“1)%”‘%}’

where (vii) uses the result of Lemma (5).

21

Under review as a conference paper at ICLR 2025

[1ba(K)| = E[IVf(0i(K), 0 (k)] = IV f (O (k), Oe (R))II,

) B0, £ 01(F), 0 (K)) — V3,0, L(Ou(E), B () [V3.0, L(O1(F), 0o (R))] "
Veef(el<)7 e())H] - va(9l(/f)a9e(/f))”7

= Vo, f(6i(K), 0e (k) + bi (k) — (V5,0, L(Oi(K), O (K)) + br2(k))

([V6.0. L(01(K), 0 (k)] Vo, f(01(k), 0 (k) + b(R)) || — [V f (Bu(k), b (k)]

s ()] + 2,0, LR, B BN BGR)]
IV LB R), 6. () V0, £Ou(k), 6 () [z () + o () 1K)
&GOV s (- 1ad + (0 - 1)Pena)

n QCLelee CLPQ(]C) + 26'[,919(3 \/ﬁ)\Cfpg (ki) {
6y/mA2
Cy,. Crp*(k
oo 0 — (= 17+~ Peve)

2" (k)C1(Cy, Co + VIACY)
362

[m® — (m = 1)°Jaf + (m — 1)’ aya}

{lm® = (m = 1°]a} + (m — 1)’ mag}?,

where the first (vii) uses the result of Lemma (2)), and the second (vii) uses the result of Lemma

). O

A.8 PROOF OF THEOREM[2|

From the Lemma 2.2 of (Ghadimi & Wang| 2018), ||V f(8;(k), 0.(k)) — V f(6:(k), 0% (0, (k)| <
Cl0Z(0u(K)) — Oc()[l. [IVF(0i(K), 9*(9z(k’))) — Vf(0u(k), 0(0:(F))I| < Lyll0u(k") — 0u(R)||

L C (L +C)C
where O — Lfel n n Cfee[Li\lee + Leeei\2 Lelee},L‘f _ w + Lfgl +

c L
Cr,. | Lelej\ LI Leeef\ Fote) Qp = A"e denotes the condition number of L(6;,0.), M =

maxg, e, [|0c(0) — 62(0)) . Do, = maxy yeq {llz —yl}-
The proof of Theorem [2]is as follows:

Lfe,i Cr Lo,0e

22

Under review as a conference paper at ICLR 2025

Proof. First we compute the variance of V f(6;(k), 6. (k)).

IV £ (61(k), 6 (k)]

L [, (0u(k), 0 (K)) — V36, LOL(K), 0. ())[VE, 6, L(Oi(K). 0
= Vo, f (01(k), 0c (k) + br(k) = (V5,0 L(01(K), 0c (k) + brz (k)

([V5.0. L(Ou(k), 0 (k)] ™ Vo, f(Ou(k), e (k) + b(k))],

2190, £ (61 0), 0O + o1 (D] + 92, LOUE), 8. (R IV, L(O1R), 6.)]
0,760, 0 + V3,5, L(61(), 0 I DO + 153 (k) IV, L O1(R), 6. ()]
V0, £(61(k). 0. (o) + 102 (R 1B
ey, ¢

CL eCfe 207, eCfe(CLPQ(k)JrCpr(k)) . i
P T e {m® — (m — 1702 + (m — 1)7arad)

Cro. Cyp*(k)y/n
t A~ (= 1af + (0= D0aiaj)
n 2Cp® (k)v/nCr,, (Cop*(k) + Cyp? (k)
36/mA2

{["* = (n = D)%) + (n = D’arag H{m® — (m = 1)*Jaf + (m — 1)’ aag},
where the first (vii) uses the result of Lemma (2)), and the second (vii) uses the result of Lemma (5
and Lemma (6).
Since V f(6;(k), 0.(k)) is bounded,

Var(@fwl(k), e (k))),

< (g, + SOV 103 (1 1)40f + (- 10

CLelse Cfse 2CL9196 Cfee (CLp2 (k) + Cfpz(k))
T mn 62
2 n .
+ S SO (05 — (1 1))} + (— 1Pra)
n 2Cp? (k)/nCy, (Crp®(k) + Cp?(k))
36/mA\2
{In" ~ (1~ 1%]0 + (n — DoradHm? — (m —~ 1)7]o? + (m — 1*aral))2

Then we need to find the total bias, the total bias b;(k) is the sum of the bias from approximation

and V f(6:(k), 0c (k) — V £ (6:(k), 0 (61(k)))

[16¢ (R,
= [E[Vf(0i(k), 0(F))] — Vf(ﬁz(k)ﬁ*(k))ll,

QL th

0. ax ORI,
S 16.0) = 0200 |
where (vii) adds the approximation error m(%)tk |160.(0) — 0%(6;(k)) from the lower level.

Next step is to find the bound for E[||V £(0,(k), 0% (0,(k)))]|?].

F(O(k+1),02(0:(k + 1)),

L FO0R,02080) + (7 £, 020u00), 005+ 1)~ 0k) + S+ 1) — R

(k)] Vo, F(B1(k), 6 (K))II,
)

= (n=1)%ai + (n — 1)’ mag}

{[m® = (m = 1°Jaf + (m — 1)’ mag}

(vit)
< o (R + [l

= F(OUR). 62 (k) — (7 F(0,0R). 02Ou(R). T F(0,R). 0.(8)) + L5 1% 101 (k) . k) 2

23

Under review as a conference paper at ICLR 2025

The expectation of f(6;(k + 1),0;(0;(k + 1))) becomes:
E[f(0u(k +1),0¢(0u(k + 1)))],
< f(Ou(R), 02(6:1(F))) — (V[(0:(F), 02 (61(k))), V f(0u(K), 6 (6:(F))) + be ()

+ L0 517 0,01, 02000) + 91008, 0.(8) — W F(01). 02O,
< F(OR), 02 (0(1))) — (¥ F(OUK), 02 (B1(1))), V £ (k) 02 (8u())) + by (k)
4 B0y (9 (000, 0. 49) + 2L B 01 (8). 0261061

Ly (VO (k), 02 (01(k))). be k),
= 1R, 020 (k)) — (o, — 0
~ (- Lfai><w<ez<k> O20u(1))). b (K)) + L2V ar (S 6,06). 0.(8) + L2 [y)2

Choose o < - and with the fact 2(V f(6,(k). 07 (0u(k))), by (K)) < [V £(6n(k). 02 (0n(k)))|> +
(|2 (K)|I2.

MV Ouk), 02 (6:(k)))I?

2
Lyag

E[f(0u(k + 1), 0¢(0u(k + 1)))],
< f(0u(k), 62(6:(F))) — %va(é’z(k),92(91(76)))”2

« L:a2 ~
+ S e (R)1P + =R Var(V £ (0 (), 0 (),
Rearrange terms,

K-1

> SNV 0uh), 0:(60(k)]),
k=0
a? A
< 1(6:0), 82 (61(0))) — J* +Z U o) + EEEVar(S (00 0. (1))

For ||b; (k)||?, itis the linear combmatlon ofp (k),p®(k), ps(k),pQ(k‘)(giﬂ)4, p‘%k)(%)tk , (%)th.

For Var(Vf(6;(k),0.(k)))), it is the linear combination of 1,p?(k), p*(k),p®(k), p®(k). For
simplification, we use Cy; > 0,7 = 1,2, ... to represent the constant for all combinations of terms
involve p(k), . and ¢;. Then we can continue the calculation as follows:

1 K-l
7 2 EUIVFOu(k), 02 (0u(k)))?],
=0
9 | K-l
2
< o /00,0260 + = Z [Be(R)1* + LyonVar(V £ (6:(k), 6 (k))),
(viid) 2(f(6:(0), 62 (6:(0))) f*)+Cle i+ ©2 3 o 4+ O KZ
= K K 2P x 2Pk + 5
k=0 k=0 k=0
Csa "~ 20 Q=1 Cos = 4, QL =1, . Css x~,QL— 1.,
+ p~(k)()+ =2 > (k))™ (5—/—)™
Kk:O Qr+1 Kk:O Qr+1 KkOQL +1
K-1 K—1 K—1 K—1
057 CSS 2 s9 C’910
+ % ak+ = arp” (k) + = g % ap’(
k=0 k=0 k=0 k=0
Co1 =
+ 2 k),
k=0
where (vm) expands each term of ||b,(k)||? and Var(Vf(6;(k),6.(k)))). Choose p(k) = z
k= 7 f ty = (Vk+ 1. Since 0 < 82: < 1, we can conclude Zf;olpz(k)(giﬁ)tk <

24

Under review as a conference paper at ICLR 2025

Z,If 01 p?(k) when QL . 1 # 0, then the convergence rate is as follows:

Z 19500, 0: 0P < 2 4 S 4 Lot
A K5 oo RS EIVS60).0:00)

]
E[Vf(0,(k),0%(0,(k)))] decreases at the rate of O(\/% + &+

— 0, which shows that
). O

1
KVK
A.8.1 PROOF OF COROLLARY 2]l

Define the cumulative reward function of the expert as J.(7) = E™ [Et o Yirbe(st,at)]. If rfe
is a linear reward function, we have % £ (0., ¢(s,a.)) where the feature ¢(s, ap) € R.

and dy, 1s the dimension of f.. Then the expert’s feature expectation is formulated as i z(7) =
E’T[Zt _o Y'o(s', al)]. From Theoreml we can get || (mg,) — puf(me)||? decreases in O(\F)

K
Proof.
Je(mo,) — Je(me) = (O, py(mo,) — pig(me))

< 96" - e

< pnax (Oc, fuf (7o) — pry (me))

(2) 0

< a0l (ma,) = ()

= llpg(mo.) — pg(me)ll,

(viz)

L

VK

where (vii) uses the result ||pf(mg,) — pp(me)||* decreases in O(\/—%) and C5 is the constant
number which includes all influence factors other than K. O

A.9 PROOF OF THEOREM/[I]

The prove of Theorem [I] is as follows: According to the Algorithm 1 in (Ziebart et all
2008), we need to compute the state frequency for the . (w%%). TFor each state-action
pair, it needs to recursively compute for up to 7' iterations. As there are 7' state-action
pairs in one demonstration, the computation complexity for the p(7%%) is O(T?) is
we see 1 as the deterministic factor. Analogously, the computatlonal complexity for

pu(m00), (s, @), pe(s), pu(s, a), pu(s), Jei(s, @), Jea(n”0), Jei(m%%) are O(T?).

For SPSA, the required terms are f(6;,60.), Vo, L(60;,0.), Ve, L(0,,0.), these terms are the linear
combination of O(T?) computational complexity terms, so their computational complexities are
also O(T?).

If we directly compute the terms instead of approximating, use the expression of
0,06

Vo f(01,0.) = B [0 2 [(m(s', at) — () (Jea(s', at) + Jei(s, at)T]] + pu(m:0)

as an example, y;(s) is inside an expectation from ¢t = 0 to T' — 1, we need to sum up p;(s)

for T times. As a result, the computational complexity for Vg, f(0;,0.) is O(T2). Analogously,
Vo, f(01,0c), V9. L(61,0c), V5 o L(01,6.) are all same.

Back to SPSA, more policies need to be found compared to directly compute the gradient. For
soft q learning (Haarnoja et al.l 2017), we can find that for each epoch, there are T iterations for
t (t from 0 to T'— 1). In each ¢, we need O(T') to compute the parameters for both single-agent
and multi-agent cases. Therefore the computational cost for each epoch is O(T?) and the overall
computational cost is O(eT?) where e is the total number of epochs. The computational cost of
the multi-agent RL is dominated by O(T?). As a result, the computational complexity of SPSA is
dominated by O(T?). Since the calculation of the hypergradient requires second-order gradients
(Lemma' 2), directly calculating the hypergradient is dominated by O(T'3).

25

Under review as a conference paper at ICLR 2025

A.10 EXPERIMENT DETAIL

The details of the experiments are shown in this section. All Python3 codes are run on a Windows
10 desktop with 13th Gen Intel(R) Core(TM) i7-13700KF CPU and 32 GB of RAM. For each
combination of algorithms and environments, we run 10 times to calculate mean values and standard
deviations at each iteration. Then the calculated mean values and standard deviations are plotted as
shown in Section [§]figures.

A.10.1 MPE

The state, action, and observation spaces for the adversary and good agents are continuous. For the
adversary, it can observe the relative distance to the landmarks and the good agents, therefore the
observation of the adversary is 0, = [pi1 — Pa, Pi2 — Pa, Pg1 — Pas Pg2 — Pa] Where py is the position
of the first landmark, p;5 is the position of the second landmark, p,; is the position of the first good
agent, pyo is the position of the second good agent. For each good agent, it can observe the relative
distance to the target landmark, the landmarks, the adversary, and another good agent, therefore the
observations for two good agents are 041 = [pu — DPg1,Pi1 — DPg1,Pi2 — Pgl,Pa — PglsPg2 — pgl]
and 0ga = [Pu — Pg2, P11 — Pg2,Pi2 — Pg2,Pa — Pg2,Pg1 — Pg2] Where py is the position of the
target landmark. The actions of the adversary and the good agents are the velocities between 0
and 1 in four directions (left, right, down, up). Two good agents share the same return, which is
rewarded based on the minimum distance of any agent to the target landmark and is penalized based
on the distance between the adversary and the target landmark, therefore the reward of good agents
is ry = —min(||py — pgill2, [lPe2 — Pg1ll2) + [|Pe — Pall2- The reward of the adversary is based on
the distance to the target of the adversary, therefore r, = —||ptqa — Pal|2, Where p;, is the position of
the adversary’s target. In our simulation, we consider observations as states of the MG, the distance
—min(||py — pgill2, [[Pr2 — pg1ll2) as the adversary-independent reward function, and the distance
lper — pall2 as the feedback received by the good agents.

A.10.2 HUMAN-ROBOT INTERACTION

In the simulation, the policies for the human and the robot are calculated through Multi-Agent Deep
Deterministic Policy Gradient (MADDPG) (Lowe et al.,[2017). During the training process, noises
are added to the action to increase the exploration. Once the policies are generated, the further
calculations use deterministic policies.

The state of the robot is its location s, = (x,,y.) € R2, the action of the robot includes the
horizontal and vertical velocities and defined as a, = (vyq, vry), Where v, € [—0.1,0.1], v,y €
[~0.1,0.1]. Similarly, the state of the human is s, = (zp,y,) € R, the action of the human is
ap, = (Upg, Vny), where vp, € [—0.1,0.1], vpy € [—0.1,0.1]. At each time step ¢, the robot chooses
the action a,.(t) based on the current joint state (s,.(t), s, (t)) and moves to the next state x,.(t+1) =
Zr () +Urz(t), yr (t+1) = yr(t) +vry (t). Analogously, the motion dynamics of the human is given
by zp(t + 1) = xp(t) + vpe(t), yn(t + 1) = yn(t) + vny(t). In the experiment, the robot starts
from an initial state s,.(0) € [—0.25,0.25] x [—0.4, 0.5] and aims to reach a circle goal region whose
center is at (0, 0.5) with radius 0.05. The human starts from s, (0) € [0.4,0.5] x [—0.25,0.25] and
aims to reach a circle goal region whose center is at (—0.5, 0) with radius 0.05. Both the robot and
the human are penalized when a collision happens.

A.10.3 SECURITY

There are 8 nodes and 10 edges. Each node represents a machine and each edge represents an exploit
between two nodes. The decision-making of the defender and the attacker is modeled as an MG.
The state s € {0, 1}%, represents the condition of each node where the value 1 means the current
node is compromised by the attacker, and the value 0 is vice versa. In each action pair, the attacker
chooses one edge to attack and the defender chooses one edge to block. Suppose the attack chooses
to attack the edge {i, j}. If the node i is already compromised and the defender does not block this
edge, there is a probability for node j to be compromised. For other situations, the node j keeps
clean. Each edge has a cost for the attacker to utilize and a cost for the defender to block. The attack
receives a reward when it successfully compromises a new node. The net reward of the attacker for
each state-action pair is the sum of the reward and the cost. For the defender, the expert-dependent

26

Under review as a conference paper at ICLR 2025

reward is the opposite of the attacker’s reward and the expert-independent reward is the cost to block
edges.

For the security simulation, the attack graph is randomly generated. We use Q-learning to find the
policies for the attacker and the defender. During the training process, the attacker and the defender
have a 70% possibility to choose between the best action with 60% possibility and the second best
action with 40% possibility. Otherwise, the attacker and the defender randomly choose one action
from the action space. When we exploit the learned policies, the attacker and the defender choose
between the best action with 60% possibility and the second best action with 40% possibility.

A.11 LIMITATION

Currently, the GSIIRL is based on the fully observed MG. However, in some cases, the learner can
not observe all information about the environment. Therefore, the limitation of the GSIIRL is not
considering the partially observed situation and we will develop an advanced algorithm to solve this
limitation in the future.

27

	Introduction
	Related work
	Motivating example
	Model and problem statement
	Problem formulation
	Algorithm
	Inner loop
	Outer loop

	Analytical result
	Computational complexity
	Convergence rate

	Experiment
	Multi-Agent Particle Environments
	Human-Robot Interaction
	Security
	Results Analysis

	Conclusion
	Appendix
	Notion and notations
	Fundamental result for policy
	The proof of Lemma 1
	Other needed gradients
	Properties of the lower level optimization problem
	Properties of the upper-level optimization problem
	 Properties of the approximation errors
	 Proof of Theorem 2
	Proof of Corollary 2.1

	Proof of Theorem 1
	Experiment Detail
	MPE
	Human-robot interaction
	Security

	Limitation

