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Abstract
In this work, we propose an adaptive variation on the classical Heavy-ball method for convex
quadratic minimization. The adaptivity crucially relies on so-called “Polyak step-sizes”, which
consists in using the knowledge of the optimal value of the optimization problem at hand instead of
problem parameters such as a few eigenvalues of the Hessian of the problem. This method happens
to also be equivalent to a variation of the classical conjugate gradient method, and thereby inherits
many of its attractive features, including its finite-time convergence, instance optimality, and its
worst-case convergence rates.

The classical gradient method with Polyak step-sizes is known to behave very well in situations
in which it can be used, and the question of whether incorporating momentum in this method is
possible and can improve the method itself appeared to be open. We provide a definitive answer
to this question for minimizing convex quadratic functions, a arguably necessary first step for
developing such methods in more general setups.

1. Introduction

Consider the convex quadratic minimization problem in the form

min
x∈Rd

{
f(x) ,

1

2
〈x, Hx〉+ 〈h, x〉 , 1

2
〈x− x?, H(x− x?)〉+ f?

}
(1)

where H < 0 is a symmetric positive semi-definite matrix, and we denote f? the minimum value of
f . In the context of large-scale optimization (i.e. d � 1), we are often interested in using first-order
iterative methods for solving eq. (1). There are many known and celebrated iterative methods for
solving such quadratic problems, including conjugate gradient, Heavy-ball methods (a.k.a., Polyak
momentum), Chebyshev methods, and gradient descent. Each of those methods having different
specifications, the choice of the method largely depends on the application at hand. In particular, a
typical drawback of momentum-based methods is that they generally require the knowledge of some
problem parameters (such as extreme values of the spectrum of H). This problem is typically not as
critical for simpler gradient descent schemes with no momentum, although it generally still requires
some knowledge on problem parameters if we want to avoid using linesearch-based strategies. This
limitation motivates the search for adaptive strategies, fixing step-size using past observations about
the problem at hand. In the context of (sub)gradient descent, a famous adaptive strategy is the
so-called Polyak step-size, which relies on the knowledge of the optimal value f?:

xt+1 = xt − γt∇f(xt), with γt =
f(xt)− f?
‖∇f(xt)‖2

. (2)
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Polyak steps were originally proposed in Polyak [23] for nonsmooth convex minimization; it is
also discussed in Boyd et al. [5] and a few variants are proposed by, e.g., [1, 11, 14] including for
stochastic minimization. In terms of speed, this strategy (and variants) enjoy similar theoretical
convergence properties as those for gradient descent. This methods appears to perform quite well in
applications where f? can be efficiently estimated—see, e.g., [13] for an adaptation of the method for
estimating it online. Therefore, a remaining open question in this context is whether the performances
of this method can be improved by incorporating momentum in it. A first answer to this question was
provided by Barré et al. [1], although it is not clear that it can match the same convergence properties
as optimal first-order methods.
In this work, we answer this question for the class of quadratic problems. In short, it turns out that
the following conjugate gradient-like iterative procedure

xt+1 = argmin
x

{
‖x− x?‖2 s.t. x ∈ x0 + span{∇f(x0),∇f(x1), . . . ,∇f(xt)}

}
, (3)

can be rewritten exactly as a Heavy-ball type method whose parameters are chosen adaptively using
the value of f?. This might come as a surprise, as the iteration eq. (3) might seem impractical due to
its formulation relying on the knowledge of x?. More precisely, eq. (3) is exactly equivalent to:

xt+1 = xt − (1 +mt)× ht∇f(xt) +mt(xt − xt−1), (4)

with parameters

∀t ≥ 0, ht ,
2(f(xt)− f?)

‖∇f(xt)‖2
, (5)

m0 , 0 and ∀t ≥ 1, mt ,
−(f(xt)− f?)〈∇f(xt),∇f(xt−1)〉

(f(xt−1)− f?)‖∇f(xt)‖2 + (f(xt)− f?)〈∇f(xt),∇f(xt−1)〉
.

In eq. (4), mt corresponds to the momentum coefficient and ht to a step-size. With the tuning
of section 1, this step-size is twice the Polyak step-size in eq. (2). This Heavy-ball momentum
method with Polyak step-sizes is summarized in Algorithm 1 and illustrated in Figure 1. Due to
its equivalence with eq. (3), the Heavy-ball method eq. (4) inherits nice advantageous properties of
conjugate gradient-type methods, including:

(i) finite-time convergence: the problem eq. (1) is solved exactly after at most d iterations,
(ii) instance optimality: for all H < 0, no first-order method satisfying

xt+1 ∈ x0 + span{∇f(x0), . . . ,∇f(xt)} results in a smaller ‖xt − x?‖,
(iii) it inherits optimal worst-case convergence rates on quadratic functions.

Of course, a few of those points needs to be nuanced in practice due to finite precision arithmetic.
The equivalence between eq. (3) and eq. (4) is formally stated in the following theorem.

Theorem 1.1 Let (xt)t∈N be the sequence defined by the recursion eq. (3), namely such that for any t,
xt+1 is the Euclidean projection of x? onto the affine subspace x0+span{∇f(x0),∇f(x1), . . . ,∇f(xt)}.
Then (xt)t∈N is the sequence generated by Algorithm 1.
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Algorithm 1 Adaptive Heavy-ball algorithm

Input T and f : x 7→ f(x) , 1
2〈x− x?, H(x− x?)〉+ f?

Initialize x0 ∈ Rd, m0 = 0
for t = 0 · · ·T − 1 do

ht =
2(f(xt)−f?)
‖∇f(xt)‖2

xt+1 = xt − (1 +mt)× ht∇f(xt) +mt(xt − xt−1)

mt+1 =
−(f(xt+1)−f?)〈∇f(xt+1),∇f(xt)〉

(f(xt)−f?)‖∇f(xt+1)‖2+(f(xt+1)−f?)〈∇f(xt+1),∇f(xt)〉
end
Result: xT

Figure 1: Comparison in semi-log scale over 50 iterations of different first-order methods applied
on a 25-dimensional quadratic objective with condition number 10. GD with constant
step-size, GD with Polyak step-size and GD with variant of Polyak step-size refer to
the GD method tuned respectively with the step-size γ = 2/(L + µ), γt = (f(xt) −
f?)/‖∇f(xt)‖2 and γt = 2(f(xt) − f?)/‖∇f(xt)‖2. HB with constant tuning is the
HB method tuned with constant parameters γt = (2/(

√
L +

√
µ))2 and mt = ((

√
L −

√
µ)(

√
L+

√
µ))2 while HB with Polyak step-size based tuning refers to Algorithm 1.
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Theorem 1.1 turns out to be a particular case of a more general result stating that the iterates of
any conjugate gradient-type method described with a polynomial Q as

xt+1 = argminx {〈x− x?, Q(H)(x− x?)〉 s.t. x ∈ x0 + span{∇f(x0), . . . ,∇f(xt)}} ,
(Q-minimization)

are equivalently written in terms of an adaptive Heavy-ball iteration. In particular, eq. (3) corresponds
to eq. (Q-minimization) with Q(x) = 1. Similarly, classical conjugate gradient method corresponds
to eq. (Q-minimization) with Q(x) = x (this fact is quite famous, see, e.g., [20]). We were surprised
not to find this general result written as is in the literature, and we therefore provide it in Section 2.
The key point of this work is that the equivalent Heavy-ball reformulation of eq. (3) can be written in
terms of f?, thereby obtaining a momentum-based Polyak step-size.

Notations. We denote 4 the order between symmetric matrices; SpH the spectrum of the matrix
H , namely its set of eigenvalues; Rd[X] the set of polynomials with degree at most d.

1.1. Preliminary material

Worst-case optimality. Solving eq. (1) is a very important problem and several methods have been
proposed to achieve this goal. They are compared with each other through notions of performance.
This consists of evaluating the precision of an algorithm over the functions of a given class after a
given number T of iterations. The main framework is worst-case analysis and the precision is the
value of a given metric, e.g. the distance of the last iterate to the optimizer ‖xT − x?‖, the function
value of the last iterate f(xT ) − f(x?), or its gradient norm ‖∇f(xT )‖. The worst-case analysis
framework consists of finding the guarantees of a method that hold for each and every function of a
given class, as for instance the class of L-smooth µ-strongly convex quadratic functions described
as quadratic functions verifying µI � H � LI for given 0 < µ ≤ L. The gradient descent (GD)
method characterized by the update

xt+1 = xt − γt∇f(xt) (6)

therefore verifies ‖xt − x?‖ = O((L−µ
L+µ)

t) on all such functions for γt = 2
L+µ . Thanks to a

relationship with polynomial analysis, Golub and Varga [9] proved that the Chebyshev method,
described as

xt+1 = xt − γt∇f(xt) +mt(xt − xt−1), (7)

for a well chosen tuning of the parameters γt and mt (mt = (
√
L−√

µ√
L+

√
µ
)2

1+((
√
L−√

µ)/(
√
L+

√
µ))2(t−1)

1+((
√
L−√

µ)/(
√
L+

√
µ))2(t+1)

,

γt = 2
L+µ(1 + mt)), is worst-case optimal on this class of function, achieving the guarantee

‖xt − x?‖ = O((
√
L−√

µ√
L+

√
µ
)t) (often referred to as “acceleration”). Methods based on this two-

term recursion are called “Heavy-ball” or “Polyak momentum” [22]. In particular, the stationary

regime of the Chebyshev method is the Heavy-ball (HB) method tuned with mt = (
√
L−√

µ√
L+

√
µ
)2 and

γt =
2

L+µ(1 +mt) = ( 2√
L+

√
µ
)2 and achieves the worst-case guarantee ‖xt − x?‖ = O(t(1−

√
κ

1+
√
κ
)t),

close to the optimal one achieved by the Chebyshev method. Note that eq. (7) is another formulation
of eq. (4) where γt = (1 + mt) × ht. In all the aforementioned tuning, ht has the same value:
ht =

2
L+µ (see Section 3 for more detailed discussion on this).
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Span of gradients and Krylov subspaces. All methods described above can be defined using a
recursion:

xt = x0 −
t−1∑
i=0

γ
(t)
i ∇f(xi) (8)

for some sequence (γ
(t)
i )i∈J0,t−1K as suggested in [16, 17]. Note that the recursion eq. (8) can also

be explicitly written as xt = x0 −H
∑t−1

i=0 γ
(t)
i xi, and therefore, xt − x0 ∈ Hspan({xi}i∈J0,t−1K).

We deduce by recursion that xt − x0 ∈ HKt(H,x0) where Kt(H,x0) , span({H ix0}i∈J0,t−1K)
is called order-t Krylov subspace generated by H and x0. This creates a link between first-order
algorithms and polynomials, summarized in the following lemma (which is implicitly used in Golub
and Varga [9] and formally stated, e.g., in [10, Proposition 4.1]).

Lemma 1.2 Let f be quadratic convex (1). The iterates xt satisfy

xt ∈ x0 + span{∇f(x0), . . . ,∇f(xt−1)} , (9)

where x0 is the initial approximation of x?, if and only if there exists a sequence of polynomials
(Pt)t∈N, each of degree at most 1 more than the highest degree of all previous polynomials and P0 of
degree 0 (hence the degree of Pt is at most t), such that

∀ t, xt − x? = Pt(H)(x0 − x?), Pt(0) = 1 . (10)

Similar to the way we use this technique below, this lemma has already been extensively used to
design methods; see, e.g., dAspremont et al. [7, Chapter 1] or the blog post by Pedregosa [21] for
gentle introductions to this technique. For instance, we can use this technique for optimizing the
step-size of the gradient method, or to derive the Chebyshev method, which optimizes the worst-case
on the class of smooth and strongly convex quadratic functions [see 8]. More recently, Goujaud et al.
[10] used it to derive a method which can take advantage of a possible gap in the spectrum of H .
This approach has also been used for other applications such as accelerated gossip algorithms [3].

Adaptive methods. In Lemma 1.2, while Pt(H) is a polynomial evaluated on the matrix H , its
scalar coefficients might or might not depend on H . If they depend on H , we say that the associated
method is adaptive. Non-adaptive methods suffer from two main drawbacks: (i) they use the same
parameters for all the functions within the class of problems, not taking advantage of the observed
quantities; (ii) the underlying parameters must scale with the function class parameters, and therefore
depends on the values of L and µ, which are generally difficult to estimate (and actually do not
correspond to first-order information, as they rely on the Hessian of the function at hand). Ultimately,
adaptive methods aim at solving those issues by choosing parameters (step-size, momentum, etc.) on
the fly.

Polyak steps. It is straightforward that a gradient descent update verifies on any convex function f
that ‖xt+1 − x?‖2 ≤ ‖xt − x?‖2 − 2γt(f − f?) + γ2t ‖∇f(xt)‖2. [23] argues that, based on this
inequality, the best guaranteed progression is then achieved for γt =

f(xt)−f?
‖∇f(xt)‖2 . This choice is called

“Polyak step-size” and has been studied intensively even recently [11, 14].
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Other variants of the latter have been proposed. For instance [1, Variant 1] suggested the step-
size γt = 2 f(xt)−f?

‖∇f(xt)‖2 . This also optimizes the exact progress of one gradient descent update over
quadratics realizing a projection of xt − x? over the orthogonal subspace of ∇f(xt).

Therefore, the Polyak step-size strategy applied to the gradient descent method achieves the same
worst-case guarantee of the well tuned fixed step-size gradient descent method, while not relying on
Hessian information. Moreover, due to its adaptivity to each function, and since generic functions
do not look like worst-cases, the Polyak step-size strategy applied to the gradient descent method
performs very well in practice (See Figure 1 and [1, Figure 1]), sometimes even beating the well
tuned non-adaptive Heavy-ball method even if the worst-case guarantees are sorted in a different
order.

Instance-optimality. While optimal worst-case method of the form of eq. (8) have been found with
predetermined parameters, it would be better to find a method under the form of eq. (8) that is optimal
(for some performance metric), not only on worst-case analysis, but on each function individually,
taking advantage of the adaptivity of the parameters. The well-known conjugate gradient method
achieves this goal when the performance metric is the function value of the last iterate. The MinRes
method attacks the problem minimizing the gradient norm of the last iterate.

Contributions. In this work we derive iterative methods of the form of eq. (8) (which iterates lie in
the span of previously observed gradients) that are instance-optimal for a variety of performance
metrics. All those methods updates are variations of the Heavy-ball two-term recursion eq. (7) with
only parameters γt and mt changing from one method to another. Finally, we show (see Theorem 1.1)
that for a well chosen yet classical performance metric, this associated method Algorithm 1 is not
relying on second-order information at all (not even L and µ). Instead it is using a classical variant
of the Polyak step-size 2(f(xt)−f?)

‖∇f(xt)‖2 , providing an answer to the question “can we accelerate methods
with Polyak step-size?”.

1.2. Related works

Polyak step-sizes were proposed in [23]. Despite the dependency on f?, the Polyak step-size is
more studied theoretically and used in practice due to its efficiency when applied to real world
problems. Recent works [e.g. 6, 14] argue that this dependency is not a practical issue for many
problems which we can assume verify f? = 0 (see Appendix B). A few variants of the Polyak
step-size strategy were proposed by Barré et al. [1], including a version incorporating a Nesterov-type
momentum [18], achieving a worst-case guarantee of ‖xt − x?‖2 = O((1− 2(µ/L)2/3)2t) over the
class of (non-necessarily quadratic) L-smooth µ-strongly convex functions, thereby improving over
previous works on adaptive first-order methods. However, the proposed method does not allow to
remove the dependency on L, and does not achieve the black-box complexity of smooth strongly
convex minimization [19]. In [14], the authors study the stochastic Polyak step-size, whereas [6]
applies it to Mirror descent.

Many alternative adaptive methods have been proposed in the past. Among them, let us men-
tion [2] which introduced the so-called Barzilai-Borwein step-size rule, and the more recent [15]
which developed a step-size policy that adapts to the local geometry with convergence guarantees
beyond quadratic minimization.
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2. Main theorem

This section states and proves Theorem 1.1. In short, given a certain function f (characterized by
H and x? here) and a starting point x0, we search for an iterative procedure, possibly adaptive,
verifying the polynomial-based expression eq. (10) such that xt converges as fast as possible to
x? for some predefined performance metric. Most classical ways to measure the performance of
such optimization schemes include the distance to optimum ‖xt − x?‖2, the function accuracy gap
f(xt) − f?, the squared gradient norm ‖∇f(xt)‖2, and linear combinations of the former. Let us
abstract those notions by denoting the performance measure of choice by 〈xt − x?, Q(H)(xt − x?)〉
(with Q a predefined polynomial that is positive on R>0). Then, we consider the iterative scheme
given by (Q-minimization).

xt+1 = argminx {〈x− x?, Q(H)(x− x?)〉 s.t. x ∈ x0 + span{∇f(x0), . . . ,∇f(xt)}} ,
(Q-minimization)

The next theorem provides an explicit instance-optimal method to solve eq. (Q-minimization).

Theorem 2.1 (Main) The unique solution to eq. (Q-minimization) is given by the Heavy-ball proce-
dure

xt+1 = xt − (1 +mt)× ht∇f(xt) +mt(xt − xt−1) (11)

where {
ht = 〈xt−x?, HQ(H)(xt−x?)〉

〈xt−x?, H2Q(H)(xt−x?)〉 ;

mt = −btht
1+btht

, with bt =
〈xt−x?, H2Q(H)(xt−1−x?)〉
〈xt−1−x?, HQ(H)(xt−1−x?)〉 .

(12)

Remark that setting Q(X) = X leads to a nice expression of the conjugate gradient method.
Indeed, setting Q(X) = X corresponds to optimally minimizing the excess loss f(xt)− f?.

As already known, the conjugate gradient method requires the knowledge of H (or a Hessian
vector product) to proceed. This is also a priori the case for all other choices of Q(·). In the case of
Q(X) = 1, which corresponds to minimizing the distance to the optimum (see eq. (3)), we can use
an alternate writing making use of f?:{

ht = 2(f(xt)−f?)
‖∇f(xt)‖2

mt = −btht
1+btht

, with bt =
〈∇f(xt),∇f(xt−1)〉

2(f(xt−1)−f?)
.

(13)

Remark 2.2 (Step-size parametrization.) While the γt plays a different role in eq. (7) and eq. (6),
they both usually are called “step-size” by default. But we noticed that both in Chebyshev method and
the Heavy-ball method (optimally tuned), ht =

γt
1+mt

is exactly 2
L+µ , value of the optimal step-size

for gradient descent. In section 1, we notice again that the value of ht is the optimal step-size for
a single step of gradient descent. For this reason, we believe that the natural parametrization of
the Heavy-ball methods should be xt+1 = xt − (1 +mt)× ht∇f(xt) +mt(xt − xt−1) and that ht
should be referred to as the “natural” step-size. Indeed, when one thinks of the Heavy-ball method
with Polyak step-sizes, they would set γt to the Polyak step-size, not ht =

γt
1+mt

. We therefore provide
a novel view on what should be tested.
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3. Concluding remarks and discussion

Polyak step-sizes are known for their general good working performances when the optimal value
to the optimization problem at hand is known. The question of whether Polyak step-sizes can be
used together with momentum for obtaining accelerated first-order methods appears to be an open
question [1], which we answer in the simpler case of convex quadratic minimization. In this context,
we argue that not only this tuning works well, but also it pops up naturally when investigating
instance-optimal first-order iterative methods. Furthermore, we believe it is a necessary step for
being able to understand more general optimization settings beyond quadratics. As our method does
not seem to work well beyond quadratics, we leave further investigations on this topic for future
work.

Among our competitors, we note that the celebrated conjugate gradient (CG) method is another
instance-optimal algorithm for quadratics. Whereas our method minimizes the distance to the solution
at each iteration, CG is instance-optimal for minimizing function values at each iteration. Perhaps
interestingly, the two methods appeared to behave similarly in our numerical experiments. That being
said, the main practical differences between the two methods are that CG Heavy-ball-like formulation
naturally relies on higher order information while Polyak step-sizes do require knowledge of f?. In
typical optimization problems, this value is not known. However, there are a few settings where this
value is actually well-known, typically when f? = 0 generically (in machine learning, this setting
is known as the “interpolation” regime; an alternative could be to use Polyak-steps as a competitor
to MinRes). Finally, let us mention that although a few generalization of CG, often referred to as
nonlinear conjugate gradient, were studied in the literature (see, e.g., [4, 12, 20]).
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Appendix A. Proof of main theorem

Theorem A.1 (Main) The unique solution to eq. (Q-minimization) is given by the Heavy-ball
procedure

xt+1 = xt − (1 +mt)× ht∇f(xt) +mt(xt − xt−1) (14)

where {
ht = 〈xt−x?, HQ(H)(xt−x?)〉

〈xt−x?, H2Q(H)(xt−x?)〉 ;

mt = −btht
1+btht

, with bt =
〈xt−x?, H2Q(H)(xt−1−x?)〉
〈xt−1−x?, HQ(H)(xt−1−x?)〉 .

(15)

Proof.

Designing methods from the polynomial point of view. As suggested by Lemma 1.2, we look
for an iterative method which can be expressed in the form xt − x? = Pt(H)(x0 − x?), where Pt is
a tth degree polynomial with Pt(0) = 1. Furthermore, as we look for an instance-optimal method,
the latter polynomial must be instance-specific, and the coefficients of Pt should depend on H (and
should describe the iterative procedure (Q-minimization)).

Recalling that H is real symmetric matrix, we denote by λ ∈ Sp(H) its eigenvalues and by vλ th
associated orthonormal basis of eigenvectors, leading to H =

∑
λ∈Sp(H) λvλv

T
λ . The quantity to be

minimized can now be written as:

〈xt − x?, Q(H)(xt − x?)〉 = 〈x0 − x?, Pt(H)TQ(H)Pt(H)(x0 − x?)〉 (16)

=
∑

λ∈Sp(H)

Q(λ)Pt(λ)
2〈x0 − x?, vλ〉2 (17)

=

∫
λ∈R+

Pt(λ)
2 dλQ(λ) (18)
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with λQ the discrete measure
∑

λ∈Sp(H)Q(λ)〈x0 − x?, vλ〉2 δλ (we sometimes use the shorthand
notation

∫
P 2
t dλQ for eq. (18) in what follows). It is clear that eq. (18) is 0 if and only if Pt(λ) = 0

for all λ ∈ Sp(H). As a consequence, we conclude that (i) choosing the right sequence of polynomi-
als leads to convergence in exactly | Sp(H)| iterations, and (ii) 〈P (1), P (2)〉Q ,

∫
P (1)P (2) dλQ is

an inner product on R| Sp(H)|−1[X]. We therefore want to solve{
minimize
Pt∈Rt[X]

‖Pt‖2Q
subject to Pt(0) = 1

(19)

for any t ≤ | Sp(H)| − 1 where ‖P‖2Q , 〈P, P 〉Q =
∫
P 2 dλQ denotes the underlying norm of

the inner product 〈·, ·〉Q. For t ≥ | Sp(H)|, we consider instead Pt as a multiple of the polynomial∏
λ∈Sp(H)(X − λ) in X . The next steps are somewhat standard and follow a classical pattern for

solving eq. (19) (see, e.g. Berthier et al. [3] and the references therein).

From minimal norm to orthogonality. The solution to eq. (19) is the projection of the polynomial
0 over the affine space {P ∈ Rt[X] | P (0) = 1} with respect to the inner product 〈·, ·〉Q. A necessary
and sufficient condition for P to be the solution of problem eq. (19) is therefore to verify 〈0 −
P,∆P 〉Q = 0 for any ∆P in the vectorial subspace {P ∈ Rt[X] | P (0) = 0} = XRt−1[X]. Hence
Pt solves problem eq. (19) iff

〈Pt, XR〉Q = 0,∀R ∈ Rt−1[X]. (20)

Note however, that for any (P,R) ∈ R[X]2,

〈P,XR〉Q =

∫
λ∈R+

P (λ)× λR(λ) dλQ(λ)

=

∫
λ∈R+

P (λ)×R(λ) dλXQ(λ)

, 〈P,R〉XQ

with dλXQ(λ) , λdλQ(λ) =
∑

λ∈Sp(H)

λQ(λ) × 〈x0 − x?, vλ〉2 δλ. Using the latter inner product,

the condition for Pt to be the solution to problem eq. (19) becomes:

Pt ∈ Rt−1[X]⊥XQ (21)

Hence, (Pt)t∈N is a family of orthogonal polynomials for the inner product 〈·, ·〉XQ.

From orthogonality to recursion. We now focus on finding an explicit expression for the polyno-
mials Pt. As for all families of orthogonal polynomials, (Pt)t∈N can be obtained through a two-term
recursion of the form:

Pt+1(X) = (atX + bt)Pt(X) + ctPt−1(X), for some (at, bt, ct) ∈ R3, (22)

which is easy to verify by induction. Our goal is to find at, bt and ct. First, notice that (atX +
bt)Pt(X) + ctPt−1(X) is orthogonal to Rt−2[X] independently of the values of at, bt and ct. Those
three coefficients can be found via the following three conditions: (i) 〈Pt+1, Pt〉XQ = 0, (ii)
〈Pt+1, Pt−1〉XQ = 0, and (iii) Pt+1(0) = 1.

11
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More precisely, it is clear that at 6= 0 for Pt+1 to be of degree t+1. Therefore, one can factorize
by at. Reparametrizing eq. (22), one can write

Pt+1(X) =
(ãt −X)Pt(X) + b̃tPt−1(X)

c̃t
, with (ãt, b̃t, c̃t) ∈ R3.

Moreover, evaluation at X = 0 gives ãt+b̃t
c̃t

= 1, thereby enforcing c̃t = ãt + b̃t. It remains to
verify the two orthogonality conditions (independent of c̃t):

ãt〈Pt, Pt〉XQ +b̃t〈Pt−1, Pt〉XQ = 〈XPt(X), Pt(X)〉XQ,

ãt〈Pt, Pt−1〉XQ +b̃t〈Pt−1, Pt−1〉XQ = 〈XPt(X), Pt−1(X)〉XQ.

Note that this system of equations is decoupled since 〈Pt−1, Pt〉XQ = 0, and we finally arrive to

Pt+1(X) =
(ãt −X)Pt(X) + b̃tPt−1(X)

ãt + b̃t
, (23)

with  ãt =
〈XPt(X),Pt(X)〉XQ

〈Pt,Pt〉XQ
,

b̃t =
〈XPt(X),Pt−1(X)〉XQ

〈Pt−1,Pt−1〉XQ
.

(24)

From a polynomial recursion to an iterative optimization method. For reaching the final desired
result, we simply multiply eq. (23) (evaluated in H) by x0 − x?:

xt+1 − x? =
ãt(xt − x?)−H(xt − x?) + b̃t(xt−1 − x?)

ãt + b̃t
,

= xt − x? −
1

ãt + b̃t
∇f(xt) +

−b̃t

ãt + b̃t
(xt − xt−1),

thereby reaching the desired

xt+1 = xt − ht∇f(xt) +mt(xt − xt−1) (25)

with

ht =
1

ãt + b̃t
, and mt =

−b̃t

ãt + b̃t
. (26)

From eq. (25), we recognize a Heavy-ball method with some variable step-size ht and momentum
term mt, thereby concluding the proof. �

Appendix B. Numerical experiments

In this section, we compare gradient descent, Heavy-ball and conjugate gradient method in an
adaptive setting or not. Figure 2 shows the performance of all these methods on a quadratic objective
with known minimal value f?. The hessian of this quadratic objective has been generating from a
sequence of eigenvalues with geometric increase, and a random orthogonal transformation. The
difference between Figure 1 and Figure 2 is the dimension of the problem as well as the condition
number of the objective function. Due to finite precision arithmetic, the finite-time convergence is

12
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not visible when the condition number is too large. However both figures show that our method and
the conjugate gradient algorithm behave similarly and faster than the other methods. The code can
be found on this GitHub repository.

Figure 2: Comparison in semi-log scale over 2000 iterations of different first-order methods applied
on a 1000-dimensional quadratic objective with condition number 105. GD with constant
step-size, GD with Polyak step-size and GD with variant of Polyak step-size refer to
the GD method tuned respectively with the step-size γ = 2/(L + µ), γt = (f(xt) −
f?)/‖∇f(xt)‖2 and γt = 2(f(xt) − f?)/‖∇f(xt)‖2. HB with constant tuning is the
HB method tuned with constant parameters γt = (2/(

√
L +

√
µ))2 and mt = ((

√
L −

√
µ)(

√
L+

√
µ))2 while HB with Polyak step-size based tuning refers to Algorithm 1.
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