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Abstract

Capture-the-Flag (CTF) competitions offer a challenging benchmark for testing AI
reasoning in cybersecurity. However, large language models (LLMs) still perform
far below expert level. This project proposes CTFers, a reinforcement learning
framework that trains LLMs to autonomously solve CTF challenges and compete
against other LLMs in adversarial settings. Using structured feedback, sandboxed
environments, and Generalized Rehearsal Policy Optimization (GRPO), CTFers
enables models to iteratively refine exploitation and defense strategies. Our goal
is to bridge the gap between static prompt-based reasoning and adaptive cyber
reasoning, advancing toward self-improving AI agents capable of mastering both
offensive and defensive security tasks.

1 Introduction

Capture-the-Flag (CTF) competitions have long been recognized as a gold standard for assessing
problem-solving and reasoning skills in cybersecurity [10, 18]. Each CTF challenge requires a
solver to understand complex system behavior, analyze vulnerabilities, craft exploits, or design
countermeasures. These skills require the use of analytical reasoning and practical tools. Recent
studies such as NYU CTF Bench [10] and CyBench [16] have begun to quantify how well large
language models (LLMs) can perform in this domain. Despite impressive progress in reasoning and
coding, even state-of-the-art models like Claude 4.5 [2] achieve only around 55% accuracy, far below
human experts [16].

Most prior work evaluates LLMs through static prompting or chain-of-thought reasoning [15, 8],
where models passively generate answers to pre-defined problems. However, cybersecurity reasoning
is inherently interactive and adversarial: agents must iteratively test hypotheses, execute tools, and
adapt to dynamic feedback. This gap calls for a new paradigm that allows LLMs not only to solve
CTF challenges but also to learn from their interactions with the environment and even compete
against other agents.

To address this, we propose CTFers, a reinforcement-learning-based framework that trains LLMs
to autonomously hack and defend in realistic CTF environments. CTFers integrates Generalized
Rehearsal Policy Optimization (GRPO) [12] to enable stable on-policy learning from structured
feedback signals such as exploit success or defense robustness. The system supports both single-
agent learning—where an LLM iteratively improves by interacting with sandboxed challenges—and
multi-agent adversarial play, where two LLMs compete in attack-versus-defense scenarios based
on environments such as CAGE [3, 4] or CybORG [3]. By combining imitation learning from CTF
traces [18] and RL-based fine-tuning, CTFers aims to bridge the gap between static reasoning and
adaptive cyber intelligence.

Through experiments on CTF-Dojo [18], NYU CTF Bench [10], and CyBench [16], this work seeks
to demonstrate the emergence of self-improving cyber reasoning behaviors in LLMs. Ultimately, we
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envision CTFers as a step toward autonomous AI security agents that can continuously learn to hack,
defend, and evolve in the face of novel digital threats.

2 Problem Definition

We formulate CTF solving as a sequential decision-making problem in a reinforcement learning (RL)
framework. At each timestep t, the agent interacts with an environment representing a cybersecurity
challenge.

2.1 Single-Agent CTF Solving

Let E denote a CTF environment, defined by a tuple

E = (S,A, P,R, γ),

where S is the set of states (e.g., challenge descriptions, command-line outputs, or execution traces),
A is the action space (e.g., textual commands, code snippets, or reasoning steps), P (st+1|st, at) is
the environment transition function, R(st, at) is the reward function, and γ is the discount factor.

At each step, the LLM policy πθ(at|st) generates an action conditioned on the observed state. The
objective of the agent is to maximize the expected cumulative reward:

J(θ) = Eπθ

[
T∑

t=0

γtR(st, at)

]
,

where the reward R is defined according to the task progress. Here is an example:

R(st, at) =


+1, if the flag is successfully captured;
+0.1, if partial progress is made (e.g., vulnerability identified);
−0.01, for invalid actions or crashes.

This formulation allows the LLM to iteratively refine its reasoning and exploitation strategy through
structured feedback.

2.2 Multi-Agent Adversarial Setting

Beyond single-agent solving, CTFers extends to a two-agent adversarial environment

E(2) = (S,AA,AD, RA, RD),

where an attacker LLM (πθA ) attempts to exploit vulnerabilities, and a defender LLM (πθD ) seeks to
patch or mitigate them. The game is competitive, with opposite reward functions:

RA = −RD, RA(st, at) =

{
+1, if exploit succeeds;
0, if attack is blocked.

Training proceeds alternately, allowing both agents to improve via reinforcement learning using the
same GRPO objective:

θ ← θ + η∇θJ(θ),

where η is the learning rate.

2.3 Training Objectives

Formally, the goal of CTFers is to learn policies

π∗
θA , π

∗
θD = argmax

πθA

E[RA], argmax
πθD

E[RD],

such that both attacker and defender agents evolve toward more sophisticated, self-improving cyber-
security reasoning behaviors across diverse CTF tasks.
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3 Related Work

3.1 LLMs for Cybersecurity and CTF Challenges

The use of large language models (LLMs) in cybersecurity, particularly for Capture-the-Flag (CTF)
competitions, has attracted increasing attention. Early works evaluate the ability of LLMs to tackle
security puzzles via prompting. For instance, Shao et al. [9] present an empirical evaluation
of multiple LLMs on CTF tasks, showing that while LLMs surpass average human participants
under certain settings, significant gaps remain in autonomous challenge solving. Tann et al. [13]
investigate LLM performance on CTF challenges and certification-questions, revealing limitations
in complex vulnerability exploitation and multi-step reasoning. More recently, frameworks such as
CRAKEN [11] propose knowledge-based LLM agents for cybersecurity tasks, and Cyber-Zero [19]
synthesizes agent trajectories for training cybersecurity agents without runtime instrumentation. On
the benchmark side, the creation of specialized CTF / crypto datasets such as AICrypto [14] further
enables rigorous assessments of LLMs’ security-reasoning capabilities. These works demonstrate the
promise of LLMs in security domains, but largely rely on static evaluation or prompting; they rarely
incorporate iterative environment interaction, feedback loops or adversarial agent setups.

3.2 Reinforcement Learning for LLM Reasoning and Agentic Behavior

Parallel to the domain-specific work on cybersecurity, there is a rich line of research applying
reinforcement learning (RL) and agentic methods to LLMs in broader reasoning, planning and
tool-use contexts. For example, Hao et al. [5] introduce RL of Thoughts (RLoT), where a lightweight
RL navigator selects logic blocks at inference time to enhance LLM reasoning on benchmarks such
as AIME or MATH. Surveys such as Zhang et al. [17] and Liu et al. [7] comprehensively review
RL methods for large reasoning models and LLMs’ lifecycle respectively. Moreover, empirical
studies like Jin et al. [6] examine RL for reasoning-search interleaved agents, highlighting key
design choices around reward shaping, action design, and tool invocation. These works show that
RL methods are increasingly used to refine LLM behavior beyond supervised/few-shot prompting;
however, applications in adversarial interactive domains (such as attacker-defender CTFs) remain
under-explored.

4 Proposed Method

4.1 Motivation

While recent advances[16, 10, 19] have established both the performance of LLMs on static CTF
benchmarks and the benefits of reinforcement learning (RL) for reasoning, yet there remains a
clear gap at their intersection: little work explores multi-agent attacker–defender dynamics, or the
integration of sandboxed environment interaction with specialized policy optimization.

To bridge this gap, we propose CTFers, a reinforcement-learning-based framework that integrates
LLMs with interactive CTF environments, supporting both single-agent challenge solving and multi-
agent adversarial play. Our goal is to move beyond static prompting toward self-improving cyber
agents capable of hacking and defending adaptively in dynamic, feedback-rich settings.

4.2 Datasets and Benchmarks

We plan to train and evaluate CTFers on the following datasets and benchmark suites:

• Training datasets:
– CTF-Dojo[18] – contains 658 CTF challenges and 486 traces, suitable for imitation

pretraining and environment construction.
– Cyber-Zero[19] – a large-scale dataset with tool-based interactions and multi-step

challenge traces.

• Evaluation benchmarks:
– NYU CTF Bench[10] – a public leaderboard for LLM CTF solving performance.
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– CyBench[16] – the most recent and challenging benchmark, where current top model
Claude 4.5 achieve about 55%.

For adversarial experiments, we will also use RL-based simulation environments such as the CAGE
Challenge series[3], where attacker and defender agents compete in networked cyber arenas.

4.3 Baseline Approaches

We will compare CTFers against several strong baselines:

• State-of-the-art LLMs (GPT-5 and Claude 4.5) using prompting and reasoning.
• EnIGMA [1] – an agentic LLM framework combining reasoning and tool-use, shown to

outperform static prompting on CTF tasks.
• Standard reinforcement-learning baselines such as PPO and GRPO variants, as used in prior

cyber defense simulations like CAGE [3].

4.4 Method Implementation

CTFers is designed in two stages: a Single-Agent Solving Phase followed by a Multi-Agent
Adversarial Phase. Both phases embed LLM policies within reinforcement learning loops in
sandboxed CTF environments.

Single-Agent Solving Phase.

1. Environment construction: Each challenge is wrapped as a Gym-style interface E =
(S,A, P,R, γ). States st include challenge descriptions, logs, and runtime outputs; actions
at correspond to reasoning steps, tool calls, or code snippets.

2. Imitation pretraining: Using traces from CTF-Dojo to initialize the policy πθ(a | s) via
supervised learning, improving early exploration efficiency.

3. RL fine-tuning: We then apply Generalized Rehearsal Policy Optimization (GRPO) to
maximize

J(θ) = Eπθ

[∑
t

γtR(st, at)

]
,

allowing stable on-policy learning while retaining useful trajectories.
4. Evaluation: The resulting model is evaluated on NYU CTF Bench and CyBench for solve

rate, sample efficiency, and reward convergence.

Multi-Agent Adversarial Phase.

1. Arena setup: We adopt two interacting agents—an attacker πθA and defender πθD—within
CAGE/CybORG. Attacker actions include reconnaissance, exploitation, and lateral move-
ment; defender actions include patching and isolation.

2. Training: We alternately train πθA and πθD using on-policy GRPO, periodically freezing
one to encourage adversarial adaptation and co-evolution.

3. Generalization: Both agents are evaluated on unseen network topologies and opponent
strategies to assess robustness.
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