
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

FedUP:Querying Large-Scale Federations of SPARQL Endpoints
Anonymous Author(s)

ABSTRACT
Processing SPARQL queries over large federations of SPARQL end-

points is crucial for keeping the Semantic Web decentralized. De-

spite the existence of hundreds of SPARQL endpoints, current fed-

eration engines only scale to dozens. One major issue comes from

the current definition of the source selection problem, i.e., finding

the minimal set of SPARQL endpoints to contact per triple pattern.

Even if such a source selection is minimal, only a few combinations

of sources may return results. Consequently, most of the query

processing time is wasted evaluating combinations that return no

results. In this paper, we introduce the concept of Result-Aware

query plans. This concept ensures that every subquery of the query

plan effectively contributes to the result of the query. To compute

a Result-Aware query plan, we propose FedUP, a new federation

engine able to produce Result-Aware query plans by tracking the

provenance of query results. However, getting query results re-

quires computing source selection, and computing source selection

requires query results. To break this vicious cycle, FedUP computes

results and provenances on tiny quotient summaries of federations

at the cost of source selection accuracy. Experimental results on

federated benchmarks demonstrate that FedUP outperforms state-

of-the-art federation engines by orders of magnitude in the context

of large-scale federations.

ACM Reference Format:
Anonymous Author(s). 2023. FedUP: Querying Large-Scale Federations of

SPARQL Endpoints. In Proceedings of The Web Conference (WWW’24). ACM,

New York, NY, USA, 10 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Context and motivation. Processing SPARQL queries over

large federations of SPARQL endpoints is crucial for keeping the

Semantic Web decentralized. Despite the existence of hundreds of

SPARQL endpoints [13, 24], current federation engines [6, 19, 20, 22]

only scale to dozens [9]. This is a severe issue for developing an ef-

fective, usable, and decentralized Semantic Web based on federation

engines and federations of SPARQL endpoints.

Related work and problem: Federated query processing has 3

conceptual steps [2]:

(1) source selection and query decomposition

(2) query optimization

(3) query execution

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

WWW’24, May 2024, Singapore
© 2023 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

SELECT DISTINCT ?product ?localProdLabelWHERE {
?lProd rdfs : label ?lProdLabel . #tp1 @ rs6, rs0
?lProd bsbm:productFeature ?lProdFeature . #tp2 @ rs6, rs0
?lProd bsbm:productPropertyNumeric1 ?simProperty1 . #tp3 @ rs6, rs0
?lProd bsbm:productPropertyNumeric2 ?simProperty2 . #tp4 @ rs6, rs0
?lProd owl:sameAs ?product . #tp5 @ rs6, rs0
?lProdFeature owl:sameAs ?prodFeature . #tp6 @ rs6, rs0
?lProdXYZ bsbm:productFeature ?lProdFeatureXYZ . #tp7 @ v3, v3
?lProdXYZ bsbm:productPropertyNumeric1 ?origProperty1 . #tp8 @ v3, v3
?lProdXYZ bsbm:productPropertyNumeric2 ?origProperty2 . #tp9 @ v3, v3
?lProdXYZ owl:sameAs bsbm:Product136030 . #tp10@ v3, v3
?lProdFeatureXYZ owl:sameAs ?prodFeature . #tp11@ v3, v3
FILTER (...)} ORDER BY ?lProdLabel LIMIT 5

Figure 1: Cross Domain Query 𝑞05 of FedShop [9] along with
its optimal source selection over a federation of 20 shops.

Table 1: 𝑞05 execution times using FedShop’s reference, a
state-of-the-art federation engine, and our proposal FedUP.

20 shops 200 shops

RSA 50ms 1.5s

CostFed 2.45s > 1h

Our proposal (FedUP) 244ms 12.4s

One major issue comes from the current definition of the source
selection problem, i.e., finding the minimal set of SPARQL endpoints

to contact per triple pattern [19]. Even if such a source selection

is minimal, only a few combinations of sources may return re-

sults. Consequently, most of the query processing time is wasted

evaluating combinations that return no results. To illustrate, Fig-

ure 1 presents the query 𝑞05 of the FedShop benchmark [9], along

with the set of sources to contact per triple pattern. Triple patterns

that share the same single data source are merged into exclusive

groups [22], e.g., 𝑡𝑝7 − 𝑡𝑝11 are grouped together to be executed

on 𝑣3.

Then, the objective of the optimizer is to generate an execution plan

that minimizes the number of intermediate results and the commu-

nication costs. Thanks to heuristics and/or statistics, it can decide a

particular join order and physical operators. In order to avoid huge

data transfer of general predicates such as the sameAs predicate in

𝑡𝑝4 and 𝑡𝑝5, the query optimizer may decide a BoundJoin [22].

Finally, during query execution, a physical query plan for 𝑞05 based

on relevant source per triple pattern and BoundJoin operator checks

every 64 combinations of sources even when 2 combinations only

effectively return results:

(1) [𝑟𝑠6, 𝑟𝑠6, 𝑟𝑠6, 𝑟𝑠6, 𝑟𝑠6, 𝑟𝑠6, 𝑣3, 𝑣3, 𝑣3, 𝑣3, 𝑣3]
(2) [𝑟𝑠0, 𝑟𝑠0, 𝑟𝑠0, 𝑟𝑠0, 𝑟𝑠0, 𝑟𝑠0, 𝑣3, 𝑣3, 𝑣3, 𝑣3, 𝑣3]
As the number of useless combinations increases with federation

size, state-of-the-art federation engines suffer from serious perfor-

mance issues as reported in Table 1. While FedShop empirically

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW’24, May 2024, Singapore Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

http://𝑫1 http://𝑫2

“Scorpions” D1:Scorpions

foaf:name

D2:Hanover

foaf:based_near

D2:Germany

geo:parentFeature

“Federal Republic

of Germany”

geo:names

http://𝑫3 http://𝑫4

“Karftwerk” D3:Karftwerk

foaf:name

D4:Berlin

foaf:based_near

D4:Germany

geo:parentFeature

“Federal Republic

of Germany”

geo:names

#tp1 #tp2 #tp3 #tp4

Figure 2: Federation 𝐹1 with 4 endpoints storing information about Scorpions and Kraftwerk, 2 bands from Germany.

demonstrates that an engine could evaluate 𝑞05 in less than 2𝑠

(RSA), CostFed, the best federation engine on FedShop, needs 3𝑠 to

finish evaluating 𝑞05 with 20 sources and more than one hour with

200 sources
1
. Our proposal FedUP can process 𝑞05 in 12.4𝑠 on the

federation of 200 endpoints.

Approach and contributions: In this paper, we introduce the

concept of Result-Aware query plans. It ensures that every sub-

query of the query plan effectively contributes to the results of the

query. We propose FedUP, a new federation engine that builds such

plans by tracking the provenance of query results. However, getting

query results requires computing source selection, while comput-

ing source selection requires query results. To break this vicious

cycle, FedUP computes results and provenances on tiny quotient

summaries [4] of federations, but at the cost of the source selection

accuracy. The contributions of this paper are the following:

• We define and formalize the concept of Result-Aware query

plans. Any federation query optimizer can safely use such

a query plan. The overall idea is to normalize the logical

plan and prune subexpressions that do not contribute to

the final results of the query.

• Wedescribe an algorithm that computes Result-Aware query

plans. The proof of the correctness of the algorithm is de-

tailed in the appendix.

• We present how we compute quotient summaries and how

Result-Aware query plans can be effectively obtained by

running our algorithm on such summaries.

• Weevaluate FedUP on LargeRDFBench [21] and FedShop [9].

Our experiments empirically demonstrate that: (i) FedUP

is on par with state-of-the-art federation engines [20, 22]

on small federations. (ii) FedUP drastically outperforms

state-of-the-art federation engines on large federations of

SPARQL endpoints.

This paper is organized as follows: Section 2 presents the back-

ground and motivations. Section 3 defines the Result-Aware source

selection problem and presents our solution to this problem. Sec-

tion 4 presents our experimental results conducted on federations of

endpoints. Section 5 reviews related work about federation engines.

Section 6 concludes and outlines future work.

1
We stopped the execution after 1 hour.

2 BACKGROUND AND MOTIVATIONS
We assume that the reader is familiar with the concepts of RDF and

core SPARQL [16, 23], i.e., triple patterns (tp), basic graph patterns

(BGP), AND, UNION, FILTER, and OPTIONAL graph patterns.

Definition 2.1 (SPARQL Federation [7, 12]). A SPARQL federation

𝐹 is a set of federation members (𝐺, 𝐼𝑠𝑝𝑎𝑟𝑞𝑙) where 𝐺 is an RDF

graph and 𝐼𝑠𝑝𝑎𝑟𝑞𝑙 is a SPARQL endpoint interface to access 𝐺 .

Definition 2.2 (Federated Query Evaluation [7]). The evaluation
J𝑄K𝐹 of a federated query 𝑄 over a federation 𝐹 is a set of so-

lutions mappings defined as J𝑄K𝐹 = J𝑄K𝐺𝑢𝑛𝑖𝑜𝑛
where 𝐺𝑢𝑛𝑖𝑜𝑛 =

∪(𝐺, 𝐼) ∈𝐹𝐺 .

One major challenge for federation engines consists in solving

the source selection problem, i.e., finding the minimal set of federa-

tion members to contact for each triple pattern of the query.

Problem 1 (Source Selection [19]). Given a SPARQL query
𝑄 and a federation 𝐹 , find the minimal set of federation members
𝑅(𝑡𝑝) ⊆ 𝐹 for each triple pattern 𝑡𝑝 ∈ 𝑄 where∀(𝐺, 𝐼) ∈ 𝑅(𝑡𝑝), ∃𝜇 ∈
J𝑄K𝐹 such that 𝜇 (𝑡𝑝) ∈ 𝐺 .

The result of source selection can be represented as FedQPL

expressions [7, 8]. FedQPL is a language to represent logical query

plans over heterogeneous federations.

Definition 2.3 (FedQPL expression [7, 8]). A FedQPL expression is

an expression 𝜑 that can be constructed from the following gram-

mar, in which 𝑟𝑒𝑞, 𝑓 𝑖𝑙𝑡𝑒𝑟 ,𝑚𝑗 ,𝑚𝑢, and 𝑙𝑒 𝑓 𝑡 𝑗𝑜𝑖𝑛 are terminal sym-

bols, 𝑡𝑝 is a triple pattern, 𝑓 is a federation member, 𝑅 is a SPARQL

filter condition, and Φ is a non-empty set of FedQPL expressions.

𝜑 F 𝑟𝑒𝑞
𝑡𝑝

𝑓
| 𝑓 𝑖𝑙𝑡𝑒𝑟𝑅 (𝜑) | 𝑚𝑢Φ | 𝑚𝑗Φ | leftjoin(𝜑, 𝜑)

Definition 2.4 (FedQPL semantics [7, 8]). Let𝜑 be a FedQPL expres-

sion, the solutions mappings obtained with 𝜑 , denoted by 𝑠𝑜𝑙𝑠 (𝜑),
is a set of solutions mappings that is defined recursively as follows:

(1) If 𝜑 is of the form 𝑟𝑒𝑞
𝑡𝑝

𝑓
then

𝑠𝑜𝑙𝑠 (𝜑) = J𝑡𝑝K𝑓
(2) If 𝜑 is of the form 𝑓 𝑖𝑙𝑡𝑒𝑟𝑅 (𝜑 ′) then

𝑠𝑜𝑙𝑠 (𝜑 ′) = {𝜇 |𝜇 ∈ 𝑠𝑜𝑙𝑠 (𝜑 ′) ∧ 𝜇 ⊨ 𝑅}
(3) If 𝜑 is of the form𝑚𝑗Φ where Φ = {𝜑1, · · · , 𝜑𝑛} then

𝑠𝑜𝑙𝑠 (𝜑) = 𝑠𝑜𝑙𝑠 (𝜑1) ⊲⊳ · · · ⊲⊳ 𝑠𝑜𝑙𝑠 (𝜑𝑛)
(4) If 𝜑 is of the form𝑚𝑢Φ where Φ = {𝜑1, · · · , 𝜑𝑛} then

𝑠𝑜𝑙𝑠 (𝜑) = 𝑠𝑜𝑙𝑠 (𝜑1) ∪ · · · ∪ 𝑠𝑜𝑙𝑠 (𝜑𝑛)
(5) If 𝜑 is of the form 𝑙𝑒 𝑓 𝑡 𝑗𝑜𝑖𝑛(𝜑1, 𝜑2) then

𝑠𝑜𝑙𝑠 (𝜑) = 𝑠𝑜𝑙𝑠 (𝜑1)d|><|𝑠𝑜𝑙𝑠 (𝜑2)
2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

FedUP: Querying Large-Scale Federations of SPARQL Endpoints WWW’24, May 2024, Singapore

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

mj

mu

𝑟𝑒𝑞
𝑡𝑝1

𝐷1

𝑟𝑒𝑞
𝑡𝑝1

𝐷3

mu

𝑟𝑒𝑞
𝑡𝑝2

𝐷1

𝑟𝑒𝑞
𝑡𝑝2

𝐷3

mu

𝑟𝑒𝑞
𝑡𝑝3

𝐷2

𝑟𝑒𝑞
𝑡𝑝3

𝐷4

mu

𝑟𝑒𝑞
𝑡𝑝4

𝐷2

𝑟𝑒𝑞
𝑡𝑝4

𝐷4

Scorpions Karftwerk

(a) 𝑆6𝑗 : The joins-over-unions logical plan fails to capture the rela-
tionship between bindings.

mu

mj

𝑟𝑒𝑞
𝑡𝑝1

𝐷1

𝑟𝑒𝑞
𝑡𝑝2

𝐷1

𝑟𝑒𝑞
𝑡𝑝3

𝐷2

𝑟𝑒𝑞
𝑡𝑝4

𝐷2

mj

𝑟𝑒𝑞
𝑡𝑝1

𝐷3

𝑟𝑒𝑞
𝑡𝑝2

𝐷3

𝑟𝑒𝑞
𝑡𝑝3

𝐷4

𝑟𝑒𝑞
𝑡𝑝4

𝐷4

Scorpions Karftwerk

(b) 𝑆6𝑢 The unions-over-joins logical plan provides 2 sub-trees accu-
rately capturing the 2 combinations required to create the results.

Figure 3: Logical plans for query S6 over the 𝐹 federation expressed in FedQPL Language.

Example 1 (Query 𝑆6 over Federation 𝐹1). Consider the federation

𝐹1 in Figure 2 and the query 𝑆6 from FedBench [21]. 𝑆6 returns the

names of artists located near the Federal Republic of Germany:

SELECT ∗WHERE {
? artist foaf :name ?name . #tp1 @ D1, D3
? artist foaf :based_near ? location . #tp2 @ D1, D3
? location geo:parentFeature ?germany . #tp3 @ D2, D4
?germany geo:name "Federal Republic of Germany" . } #tp4 @ D2, D4

The evaluation of 𝑆6 over 𝐹1 returns 2 solutions mappings:

?artist ?name ?location ?germany

𝜇1 http://D1/Scorpions Scorpions http://D2/Hanover http://D2/Germany

𝜇2 http://D1/Kraftwerk Kraftwerk http://D4/Berlin http://D4/Germany

Example 2 (Joins-over-unions logical plans). The minimal source

selection of the query 𝑆6 over the federation 𝐹1 is𝑅(𝑡𝑝1) = {𝐷1, 𝐷3},
𝑅(𝑡𝑝2) = {𝐷1, 𝐷3}, 𝑅(𝑡𝑝3) = {𝐷2, 𝐷4}, and 𝑅(𝑡𝑝4) = {𝐷2, 𝐷4}.
Such a source selection can be represented as a joins-over-unions

FedQPL expression as depicted in Figure 3a:

𝑆6𝑗 = mj {mu {𝑟𝑒𝑞𝑡𝑝1
𝐷1

, 𝑟𝑒𝑞
𝑡𝑝1

𝐷3

},mu {𝑟𝑒𝑞𝑡𝑝2
𝐷1

, 𝑟𝑒𝑞
𝑡𝑝2

𝐷3

},

mu {𝑟𝑒𝑞𝑡𝑝3
𝐷3

, 𝑟𝑒𝑞
𝑡𝑝3

𝐷2

},mu {𝑟𝑒𝑞𝑡𝑝4
𝐷2

, 𝑟𝑒𝑞
𝑡𝑝4

𝐷4

}}

To evaluate 𝑆6𝑗 , federation engines must implement the opera-

tors and generate at least as many SERVICE queries as the number

of 𝑟𝑒𝑞 in 𝑆6𝑗 . Gathering 𝑟𝑒𝑞 in exclusive groups constitutes a major

performance improvement as it lowers the number of SERVICE
queries, pushing more computation on SPARQL endpoints. How-

ever, 𝑆6𝑗 cannot apply such an optimization.

The main issue with the current definition of source selection

is that important information is missing. Based on the results of

𝑆6, the evaluation of the query 𝑆6 only requires two series of

joins: {𝑡𝑝1 → 𝐷1, 𝑡𝑝2 → 𝐷1, 𝑡𝑝3 → 𝐷2, 𝑡𝑝4 → 𝐷2} for 𝜇1, and
{𝑡𝑝1 → 𝐷3, 𝑡𝑝2 → 𝐷3, 𝑡𝑝3 → 𝐷4, 𝑡𝑝4 → 𝐷4} for 𝜇2. However,
with unions (𝑚𝑢) under joins (𝑚𝑗), this information is hidden from

the query optimizer, preventing it from considering other options,

and potentially finding better plans. All existing federation engines

generate such joins-over-unions plans [7]. By design, they remain

blind to many optimizations that their counterpart, unions-over-

joins, can perform:

Example 3 (Unions-over-joins logical plans). Using the results of

𝑆6 over 𝐹1, an alternative to 𝑆6𝑗 is the unions-over-joins FedQPL

expression 𝑆6𝑢 depicted in Figure 3b:

𝑆6𝑢 = mu {mj {𝑟𝑒𝑞𝑡𝑝1
𝐷1

, 𝑟𝑒𝑞
𝑡𝑝2

𝐷1

, 𝑟𝑒𝑞
𝑡𝑝3

𝐷2

, 𝑟𝑒𝑞
𝑡𝑝4

𝐷2

},

mj {𝑟𝑒𝑞𝑡𝑝1
𝐷3

, 𝑟𝑒𝑞
𝑡𝑝2

𝐷3

, 𝑟𝑒𝑞
𝑡𝑝3

𝐷4

, 𝑟𝑒𝑞
𝑡𝑝4

𝐷4

}}

Using 𝑆6𝑢 , federation engines only evaluate joins that actually

contribute to the final results of 𝑆6. Moreover, 𝑆6𝑢 allows federation

engines to identify more exclusive groups than 𝑆6𝑗 . For example,

triple patterns 𝑡𝑝1 and 𝑡𝑝2 are grouped together, as well as 𝑡𝑝3 and

𝑡𝑝4:

𝑆6′𝑢 = mu {mj {𝑟𝑒𝑞𝑡𝑝1,𝑡𝑝2
𝐷1

, 𝑟𝑒𝑞
𝑡𝑝3,𝑡𝑝4

𝐷2

},mj {𝑟𝑒𝑞𝑡𝑝1,𝑡𝑝2
𝐷3

, 𝑟𝑒𝑞
𝑡𝑝3,𝑡𝑝4

𝐷4

}}

In summary, the current source selection definition hides im-

portant information about which sources should be combined to

find results. With just a set of relevant sources per triple pattern, it

is impossible to know which combinations of sources contribute

to the final results of queries. Consequently, many valuable query

plans such as 𝑆6𝑢 remain invisible to the query optimizer. This

problem is at the origin of the poor performance of current federa-

tion engines on the FedShop benchmark [9]. Solving this problem

requires defining a new kind of source selection able to reveal the

relevant combination of sources.

3 FEDUP: A RESULT-AWARE FEDERATION
ENGINE

In this section, we introduce our approach to building a Result-

Aware federation engine. We consider a federation 𝐹 and a core

SPARQL query𝑄 composed of BGP patterns with Union, Filters, and

Optional.We consider𝜑 a valid FedQPL expression for a query𝑄 [7].

In the following, we rely on set-based semantics of SPARQL [16].

As stated in the previous section, existing source selection do not

reveal which combinations of relevant sources effectively produce

results. Without this information, a class of query plans cannot be

explored, such as the union-over-join query plans.

To overcome this problem, a source selection should produce

logical plans following a union-over-join grammar where each

sub-expression effectively contributes to the final results of the

query.

The first step to generate a union-over-join query plan is to

rewrite 𝜑 using equivalence rules.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW’24, May 2024, Singapore Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Definition 3.1 (Equivalence rules [7, 16]). Let 𝜑1, 𝜑2, and 𝜑3 be

FedQPL expressions that are valid for 𝐹 . It holds that2:

(R1) join (𝜑1, 𝜑2)
𝐹≡ join (𝜑2, 𝜑1);

(R2) union (𝜑1, 𝜑2)
𝐹≡ union (𝜑2, 𝜑1);

(R3) union (𝜑1, 𝜑1)
𝐹≡ 𝜑1;

(R4) join (𝜑1, join (𝜑2, 𝜑3))
𝐹≡ join (join (𝜑1, 𝜑2) , 𝜑3);

(R5) union (𝜑1 , union (𝜑2, 𝜑3))
𝐹≡ union (union (𝜑1, 𝜑2) , 𝜑3);

(R6) join (𝜑1 , union (𝜑2, 𝜑3))
𝐹≡ union (join (𝜑1, 𝜑2) , join (𝜑1, 𝜑3)).

(R7) leftjoin(union(𝜑1, 𝜑2), 𝜑3)
𝐹≡ union(leftjoin(𝜑1, 𝜑3), leftjoin(𝜑2, 𝜑3))

To illustrate, we applied the equivalence rules [𝑅1 − 𝑅7] to 𝑆6𝑗
of the example 2 and generated 𝑆6

,
𝑗
:

𝑆6
,
𝑗
= mu {mj {𝑟𝑒𝑞𝑡𝑝1

𝐷1

, 𝑟𝑒𝑞
𝑡𝑝2

𝐷1

, 𝑟𝑒𝑞
𝑡𝑝3

𝐷2

, 𝑟𝑒𝑞
𝑡𝑝4

𝐷2

},
... × 14

mj {𝑟𝑒𝑞𝑡𝑝1
𝐷3

, 𝑟𝑒𝑞
𝑡𝑝2

𝐷3

, 𝑟𝑒𝑞
𝑡𝑝3

𝐷4

, 𝑟𝑒𝑞
𝑡𝑝4

𝐷4

}}

We know that only the first and last subexpressions contribute

to the results. Consequently, 𝑆6𝐽 is not a Result-Aware source se-

lection for the query 𝑆6. However, if we remove the 14 useless

subexpressions, i.e., those returning empty results, we obtain the

query plan of 𝑆6𝑢 of example 3, a union-over-join query plan with

only subexpressions contributing to the final results of 𝑆6.

Definition 3.2 (Result-Aware property). Let 𝜑 be a normalized

FedQPL expression using [R1-R7] equivalence rules, for a query 𝑄

over a federation 𝐹 . 𝜑 is Result-Aware if:

∀𝜑 ′ ⊆ 𝜑, ∃𝜇 ∈ 𝑠𝑜𝑙𝑠 (𝜑 ′) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ∃𝜇′ ∈ J𝑄K𝐹 , 𝜇′ ⊆ 𝜇

If we only consider SPARQL queries based on conjunctive queries

with UNION and FILTER, the normal form of 𝜑 follows a Union-

over-joins grammar 𝑆∪_(⊲⊳) defined as:

𝑆∪_(⊲⊳) = mu {(mj {(𝑟𝑒𝑞𝑡𝑝
𝐷
)+})

+
}

In the presence of Optional clauses, we need to extend the gram-

mar of the class 𝑆∪_(⊲⊳) to include leftjoin:


𝑎𝑢 ::= 𝑎 𝑗 | mu Φ𝑢

𝑎 𝑗 ::= 𝑎𝑏 | mj Φ𝑏 | leftjoin(𝑎 𝑗 , 𝑎𝑢)
𝑎𝑏 ::= 𝑟𝑒𝑞

𝑡𝑝

𝐷

Definition 3.3 (Result-Aware source selection Problem). Given a

SPARQL query Q and federation 𝐹 , find a 𝜑 for 𝑄 such that 𝜑 is

Result-Aware.

As a Result-Aware source selection is normalized, then pruned

with useless subexpressions, some subexpressions can appear sev-

eral times in 𝜑 . We do not require to factorize the duplicated subex-

pressions as we consider that this should be handled by the query

optimizer.

Algorithm 1: Source Selection A for a query 𝑄 over a

federation 𝐹 .

1 Function A(𝑄, 𝐹): ⊲ Root of the logical plan

2 return mu A′ (𝑄, 𝐹)
3 Function A’(𝑄, 𝐹): ⊲ Explores every graph pattern 𝑄

4 Φ𝑜 ← ∅
5 if 𝑄 is a triple pattern 𝑡𝑝 then
6 Φ𝑜 ← Φ𝑜 ∪ {𝑟𝑒𝑞𝑡𝑝𝑓 | 𝑓 ∈ 𝐹 }
7 else if 𝑄 is (𝑃1 AND 𝑃2) then ⊲ 𝑃1 ⊲⊳ 𝑃2
8 Φ1,Φ2 ← A′ (𝑃1, 𝐹),A′ (𝑃2, 𝐹)
9 Φ𝑜 ← Φ𝑜 ∪ {mj{𝜑1, 𝜑2} | 𝜑1 ∈ Φ1 ∧ 𝜑2 ∈ Φ2}

10 else if 𝑄 is (𝑃1 UNION 𝑃2) then ⊲ 𝑃1 ∪ 𝑃2
11 Φ1,Φ2 ← A′ (𝑃1, 𝐹),A′ (𝑃2, 𝐹)
12 Φ𝑜 ← Φ𝑜 ∪ {𝜑 | 𝜑 ∈ Φ1 ∨ 𝜑 ∈ Φ2}
13 else if 𝑄 is (𝑃1 OPTIONAL 𝑃2) then ⊲ 𝑃1d|><| 𝑃2
14 Φ1,Φ2 ← A′ (𝑃1, 𝐹),A′ (𝑃2, 𝐹)
15 for 𝜑1 ∈ Φ1 do
16 Φ

𝜑1

𝑗𝑜𝑖𝑛
← {𝜑2 |𝜑2 ∈ Φ2 ∧ 𝑠𝑜𝑙𝑠 (mj{𝜑1, 𝜑2}) ≠ ∅}

17 if Φ𝜑1

𝑗𝑜𝑖𝑛
= ∅ then Φ𝑜 ← Φ𝑜 ∪ {𝜑1}

18 else Φ𝑜 ← Φ𝑜 ∪ {leftjoin(𝜑1,mu Φ
𝜑1

𝑗𝑜𝑖𝑛
)}

19 else if 𝑄 is (𝑃 FILTER 𝑅) then
20 Φ← A′ (𝑃, 𝐹)
21 Φ𝑜 ← Φ𝑜 ∪ {filter𝑅 (𝜑) | 𝜑 ∈ Φ}
22 return {𝜑 |𝜑 ∈ Φ𝑜 ∧ 𝑠𝑜𝑙𝑠 (𝜑) ≠ ∅}

3.1 Solving the Result-Aware source selection
problem

Algorithm 1 builds a Result-Aware source selection for query 𝑄

over a federation 𝐹 based on a set of recursive rules. The algorithm

is designed with 2 main ideas:

(1) Build a union-over-join plan.

(2) Just keep expressions that contribute to the final results of

the query.

To reach this objective, the algorithm evaluates the query on

the federation, extracts provenance from solution mappings, and

produces the corresponding FedQPL expression.

To ensure that every produced 𝜑 expression is based on results,

we rely on 𝑠𝑜𝑙𝑠 (𝜑) as a function that returns the mappings resulting

in the evaluation of the expression 𝜑 over 𝐹 . Proofs of correctness,

completeness and result-awareness are available in appendix A.2.

We illustrate this algorithm on Query 𝑆6 of the example 2 over

Federation 𝐹1 of Figure 2. First, the algorithm merges all upcoming

subexpressions with a multi-union at Line 1. Then, it enters Line 7

with (𝑡𝑝1 AND (𝑡𝑝2 AND (𝑡𝑝3 AND 𝑡𝑝4))). Line 3 states that evaluating

𝑡𝑝3 and 𝑡𝑝4 both returns {𝑟𝑒𝑞𝑡𝑝
𝐷2

, 𝑟𝑒𝑞
𝑡𝑝

𝐷4

}. Then, Line 22 checks that
their intersections return mappings. Here, mj {𝑟𝑒𝑞𝑡𝑝3

𝐷2

, 𝑟𝑒𝑞
𝑡𝑝4

𝐷2

} and
mj {𝑟𝑒𝑞𝑡𝑝3

𝐷4

, 𝑟𝑒𝑞
𝑡𝑝4

𝐷4

} indeed return mappings, but most importantly:

mj {𝑟𝑒𝑞𝑡𝑝3
𝐷2

, 𝑟𝑒𝑞
𝑡𝑝4

𝐷4

} = ∅

mj {𝑟𝑒𝑞𝑡𝑝3
𝐷4

, 𝑟𝑒𝑞
𝑡𝑝4

𝐷2

} = ∅

2leftjoin(𝜑1,𝑢𝑛𝑖𝑜𝑛 (𝜑2, 𝜑3))
𝐹≡ 𝑢𝑛𝑖𝑜𝑛 (leftjoin(𝜑1, 𝜑2), leftjoin(𝜑1, 𝜑3)) does not

hold. See counter example in Appendix A.1.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

FedUP: Querying Large-Scale Federations of SPARQL Endpoints WWW’24, May 2024, Singapore

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

mu

leftjoin

𝑟𝑒𝑞
𝑡𝑝1

𝐷1

mj

𝑟𝑒𝑞
𝑡𝑝2

𝐷2

𝑟𝑒𝑞
𝑡𝑝3

𝐷2

leftjoin

𝑟𝑒𝑞
𝑡𝑝1

𝐷3

mj

𝑟𝑒𝑞
𝑡𝑝2

𝐷4

𝑟𝑒𝑞
𝑡𝑝3

𝐷4

Figure 4: Logical plan for Query 𝑆7 with OPTIONAL.

Only the former expressions are kept, the latter ones are discarded.

After applying the joining rule for every triple pattern and simpli-

fying nested multi-join expressions, we obtain Figure 3b’s expected

plan:

mu {mj {𝑟𝑒𝑞𝑡𝑝1
𝐷1

, 𝑟𝑒𝑞
𝑡𝑝2

𝐷1

, 𝑟𝑒𝑞
𝑡𝑝3

𝐷2

, 𝑟𝑒𝑞
𝑡𝑝4

𝐷2

},

mj {𝑟𝑒𝑞𝑡𝑝1
𝐷3

, 𝑟𝑒𝑞
𝑡𝑝2

𝐷3

, 𝑟𝑒𝑞
𝑡𝑝3

𝐷4

, 𝑟𝑒𝑞
𝑡𝑝4

𝐷4

}}
The 4 exclusive groups are easily identified: tp1.tp2 at 𝐷1 and 𝐷3,

tp3.tp4 at 𝐷2 and 𝐷4.

Example 4 (Optional Query 𝑆7 over Federation 𝐹1). To illustrate

Result-Aware query plan in the presence of OPTIONAL, we consider
the query 𝑆7:

SELECT ∗ WHERE {
? artist foaf :based_near ? location . #tp1
OPTIONAL {
? location geo:parentFeature ?germany . #tp2
?germany geo:name "Federal Republic of Germany" . }} #tp3

For such a query 𝑆7, and as depicted in Figure 4, Algorithm 1

produces a multi-union of 2 left joins:

𝑆7𝑢 = mu {leftjoin(𝑟𝑒𝑞𝑡𝑝1
𝐷1

,mu {mj {𝑟𝑒𝑞𝑡𝑝2
𝐷2

, 𝑟𝑒𝑞
𝑡𝑝3

𝐷2

}})

leftjoin(𝑟𝑒𝑞𝑡𝑝1
𝐷3

,mu {mj {𝑟𝑒𝑞𝑡𝑝2
𝐷4

, 𝑟𝑒𝑞
𝑡𝑝3

𝐷4

}})

Thanks to the line 16, OPTIONAL is ensured to be Result-Aware.

The evaluation of 𝑆7𝑢 on 𝐹1 returns the expected results.

3.2 FedUP on summaries
FedUP introduces a vicious cycle: our source selection requires

query results, and query results require computing source selection.

To tackle this issue, we execute Algorithm 1 on a tiny quotient

summary [4, 5] of the federation.

Definition 3.4 (Quotient RDF summary [5]). Given an RDF graph

𝐺 and an RDF node equivalence relation𝜓 , the summary of 𝐺 by

𝜓 , which is an RDF graph denoted𝜓 (𝐺), is the quotient of 𝐺 by𝜓 .

Quotient summaries have many interesting properties that are

relevant in the context of the source selection problem. First, queries

that have answers on 𝐹 also have answers on𝜓 (𝐹), enabling FedUP
to ensure complete results. Abusing notation,𝜓 (𝐹) is the quotient
summary of 𝐹 , i.e., the federation obtained by replacing all RDF

graphs𝐺 in 𝐹 by the quotient summary of𝐺 . Second, quotient sum-

maries are RDF graphs. The source selection algorithm is the same

whether it is executed over the federation or a quotient summary

of the federation. Finally, quotient summaries preserve edges in

graphs.

Definition 3.5 (Summary representativeness [5]). Given a SPARQL

query 𝑄 , a federation 𝐹 , and an RDF node equivalence relation𝜓 ,

if J𝑄K𝐹 ≠ ∅ then we have J𝜓 (𝑄)K𝜓 (𝐹) ≠ ∅.

FedUP uses𝜓ℎ as the RDF node equivalence relation to summa-

rize SPARQL federations. It is defined as follows:

𝜓ℎ (𝑛𝑜𝑑𝑒) =
{
𝑎𝑢𝑡ℎ𝑜𝑟𝑖𝑡𝑦 (𝑛𝑜𝑑𝑒) if node is an IRI

“𝑎𝑛𝑦” if node is a Literal

}
𝜓ℎ is based on the HiBISCuS summary [19], and replaces IRIs by

their authority and Literals by “lit”. To illustrate, the quotient of

the federation 𝐹1 by𝜓ℎ is a federation𝜓ℎ (𝐹1) comprising 8 quads:

http://D1 foaf:based_near http://D2 http://D1

http://D1 foaf:name “any” http://D1

http://D2 geo:parentFeature http://D2 http://D2

http://D2 geo:names “any” http://D2

http://D3 foaf:based_near http://D4 http://D3

http://D3 foaf:name “any” http://D3

http://D4 geo:parentFeature http://D4 http://D4

http://D4 geo:names “any” http://D4

On this simple example, both 𝐹1 and 𝜓ℎ (𝐹1) have the same size.

However, in practice, 𝜓ℎ generates summaries that are orders of

magnitude smaller than original federations as shown in Figure 2.

Although very compact, experimental results demonstrate that

quotient summaries generated by𝜓ℎ allows FedUP to find efficient

query plans. The intuition behind𝜓ℎ is that authorities alone allow

federation engines to identify which endpoints host a specific triple.

To build Result-Aware source selection, FedUP applies the same

summary function𝜓ℎ to triple patterns of the input query. As𝜓ℎ
projects all literals on one constant, most query filters cannot be

properly evaluated and are removed. Our motivating query 𝑆6

remains identical, except for the literal “Federal Republic of
Germany” that becomes “any”. As the Result-Aware property is

now ensured on the summary and not on the original federation,

some subexpressions of the query plan may return empty results

on the federation.

To illustrate, applying the Algorithm 1 on the summary graph

𝜓ℎ (𝐹) with the modified query 𝑆6 returns a multi-union of 12 multi-

joins instead of 2 on 𝐹 . However, experimental results demonstrate

that query plans generated using summaries remain very efficient.

4 EXPERIMENTAL STUDY

This experimental study aims to empirically answer the follow-

ing questions:

(1) Does FedUP perform better than existing engines on LargeRDF-

Bench?

(2) Does FedUP perform better than existing engines when the size

of the federation grows?

To conduct the experiment study, we implemented FedUP on

top of FedX [22]. FedUP produces Result-Aware source selection

plans that are optimized and executed by FedX. Similarly to many

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW’24, May 2024, Singapore Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Figure 5: Query execution time achieved by federation engines for simple and complex queries of LargeRDFBench.

Table 2: The size of the summaries of the federation engines.

FedShop20 FedShop200 LargeRDFBench

Federation 5,167,810 quads 41,821,489 quads 1,004,491,996 quads

FedUP 76KB (0.6K quads) 767KB (1K quads) 705KB (6K quads)

CostFed 9MB 95MB 11MB

HiBISCuS 892KB 9MB 539KB

SemaGrow 1,8MB 18MB

state-of-the-art federation engines [20, 22], FedUP performs an ad-

ditional pruning step by performing ASK queries in the presence

of general predicate with constant. The summary and ASK queries

allow FedUP to build accurate logical plans even in large-scale feder-

ations. Code, configurations, queries, and datasets are available on

the GitHub platform at https://anonymous.4open.science/r/FedUP-

experiments-7F21.

4.1 Experimental Setup
We used 2 benchmarks:

(1) LargeRDFBench [18] is the most commonly used bench-

mark to evaluate the performance of federation engines [1,

6, 19, 20, 22]. The benchmark is explicitly designed to rep-

resent federated SPARQL queries on real-world datasets. In

our experiments, the workload comprises 14 simple queries

(𝑆) and 10 complex queries (𝐶). Each dataset is loaded into a

separate endpoint, resulting in a total of 14 endpoints. These

queries cover all types of core SPARQL operators such as

UNION, OPTIONAL, and FILTER. However, LargeRDFBench
cannot scale on the number of sources.

(2) FedShop [9] is a new Benchmark allowing to scale on the

number of sources. FedShop [9] is designed to study the

scalability of federation engines in terms of the number of

endpoints. It provides queries and datasets from 20 end-

points up to 200 endpoints. The queries cover all types of

core SPARQL operators. The query workload consists of 10

instances for each of the 12 templates, resulting in 120 in-

stances. Each instance is generated by replacing placehold-

ers in the template with randomly selected values. Query

templates are organized into 3 levels of source selection

difficulties: Single-Domain (SD), Multi-Domain (MD), and

Cross-Domain (CD). SD queries are restricted to a single

sourcewith no global join variables and bound triple pattern

subjects. MD queries can be assessed on multiple sources

without global join variables and unbound subjects. CD

queries can be broken down into subqueries, each evalu-

ated on different sources, requiring global join variables.

To run FedUP, we computed the quotient summaries for Larg-

eRDFBench and FedShop. Table 2 represents the size of the sum-

maries for each federation engine. The summaries of FedUP remains

very compact, although multiplying the size of the federation by

10 increases the size of FedUP’s summary by a multiplicative factor

of 10 in FedShop.

For the two experiments, all federation graphs are stored as

named graphs in a single Virtuoso endpoint (Version 7.2.7.3234-

pthreads).

To run our experiments, we used a local cloud instance with

Ubuntu 20.04.4 LTS, a AMD EPYC 7513-Core processor with 16 vC-

PUs allocated to the VM, 1TB SSD, and 64GB of RAM. The Virtuoso

endpoint hosting the data, as well as the federation engines, ran on

the same machine.

4.2 LargeRDFBench: Parity among engines
In this experiment, we compared FedUP with FedX [22], HiBIS-

CuS [19] (Ask dominant), and CostFed [20] (Ask dominant). We

also included the SPARQL 1.1 Service queries available in the Larg-

eRDFBench that we executed with Apache Jena. These queries are

hand-crafted with predefined source selection.

Figure 5 presents the performance of the different engines. The

x-axis represents the competitors for each query, and the y-axis

displays the execution time on a logarithmic scale. This execution

time is defined as the time spent by each federation engine from

source selection to federated query execution. Each query under-

went 5 runs, and the reported measurements in Figure 5 are the

averages of these runs. We set a 20-minute timeout before stopping

the federated query execution.

The x-axis represents the competitors for each query, and the

y-axis displays the execution time on a logarithmic scale. This

execution time is defined as the time spent by each federation

engine from source selection to federated query execution. Each

6

https://anonymous.4open.science/r/FedUP-experiments-7F21
https://anonymous.4open.science/r/FedUP-experiments-7F21

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

FedUP: Querying Large-Scale Federations of SPARQL Endpoints WWW’24, May 2024, Singapore

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Figure 6: Query execution time of federation engines on FedShop queries for 20 and 200 endpoints.

query underwent 5 runs, and the reported measurements in Figure 5

are the averages of these runs. We set a 20-minute timeout before

stopping the federated query execution.

Figure 5 shows that most of the time, federation engines yield

comparable execution time. Federation engines build logical plans

that are equivalent. This is attributed to either the simplicity of

queries (20 out of 24 queries require a single combination of sources),

or their low selectivity regarding source selection for FedUP tomake

a difference.

Figure 5 shows that, most notably on Query 𝑆13, CostFed out-

performs its competitors by order of magnitudes, which highlights

the need for better join ordering: when disabled, CostFed executes

Query 𝑆13 in 10𝑠 instead of 50𝑚𝑠 .

Overall, FedUP does not provide significant improvements over

state-of-the-art on LargeRDFBench. In the LargeRDFBench context,

Join-over-Unions query plans are also Result-Aware query plans.

4.3 FedShop: FedUP outperforms other engines
In this experiment, we compared FedUP with FedX [22], Sema-

grow [6], and CostFed [20] (Ask Dominant). Fedshop comes with

RSA queries written as SPARQL 1.1 Service queries that we executed

with Apache Jena. These queries are hand-crafted with predefined

source selection that follows union-over-joins logical plans.

Figure 6 reports the performance of federation engines in terms

of execution time. We run the 10 configurations of FedShop but

only reported results for the 20 and 200 endpoints configurations.

The x-axis denotes the query templates.

For each templated query, each bar on the x-axis represents the

evaluated engine, while its height represents the average execution

time of the templated queries on a logarithmic scale. On the left, the

federation comprises 20 endpoints, while on the right, the federation

comprises 200 endpoints. The timeout is configured for 120 seconds

to align with FedShop’s focus on interactive eCommerce use-cases,

where end-users anticipate receiving results quickly.

Figure 6 shows that, for all queries, FedUP outperforms its com-

petitors from 1 to 3 orders of magnitude in terms of execution time.

On SD queries, FedUP’s summary allows it to efficiently find the

best logical plan comprising a single exclusive group. FedUP built

its quotient summary using the authority of URIs, and since SD

queries stay on a single domain, evaluating the source selection

query on this summary is fast and accurate. Competitors find the

same plan but spend most of the time in source selection. For in-

stance, CostFed spends 1𝑠 of source selection for 10𝑚𝑠 of actual

execution on template 𝑞12 when there are 200 endpoints.

On MD queries, FedUP remains close to the baseline except for

𝑞04 with 200 endpoints. Similarly to SD queries, FedUP’s summary

allows it to efficiently find the minimal set of combinations, each

comprising a single exclusive group. The baseline and FedUP prove

that a federation engine could execute these queries under 2𝑠 , how-

ever, competing engines present drastically worse execution times,

even reaching the 2-minute timeout on occasions when 200 end-

points are involved. Their source selection process is fast but builds

joins-over-unions plans that cannot be transformed into efficient

physical plans: not only do they fail to identify exclusive groups,

but they create combinations without results that still need to be

checked at execution time, hence wasting resources. For 𝑞04, FedUP

and CostFed build equivalent plans that need to check numerous

combinations without results, hence providing similar performance.

On CD queries, FedUP remains close to the baseline as well. It

extensively uses ASK queries to kickstart its source selection query

execution, restricting the research space of solutions mappings

to build its logical plans. For 𝑞07, its plans are equivalent to the

SPARQL 1.1 baseline. However, for 𝑞05, FedUP creates plans of 200

combinations while the baseline needs 17 combinations on average,

hence spending more time to evaluate the federated query.

Figure 6 shows that half of the time, FedUP performs better

than the RSA SPARQL 1.1 queries. Indeed, FedUP benefits from

parallel execution, where up to 8 FedX instances are in charge of

executing subparts of the logical plan. The baseline uses Apache

Jena to evaluate its SERVICE queries and, therefore, does not benefit
from such a feature.

Overall, FedUP outperforms state-of-the-art federations engines

by order of magnitudes. Thanks to its summary and ASK queries,
FedUP quickly produces better logical plans. Consequently, FedUP

can execute the federated query before reaching the timeout even

on large-scale federations comprising up to 200 endpoints.

5 RELATEDWORK
Given a federation of SPARQL endpoints, federation engines pro-

cess SPARQL queries in three steps[2]: (i) Source selection and

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW’24, May 2024, Singapore Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

query decomposition, (ii) query optimization, and (iii) query execu-

tion.

Currently, the first step produces a logical plan[7] with a set of

sources to contact per triple pattern [20]. Some engines suppose the

existence of summaries computed over the federation of SPARQL

endpoints [3, 6, 10, 10, 11, 14, 15, 17, 19, 20, 25]. Others are Zero-

knowledge, FedX or Lusail [1, 22] just require a catalog of SPARQL

endpoints.

To minimize the number of relevant sources per triple pattern,

some engines such as [22] perform triple pattern-aware source

selection, i.e., they send ask queries on endpoints to be sure that a

triple pattern return at least one result. Other engines such as [19,

20] perform BGP-aware source selection, i.e., they detect and prune

sources that do not contribute to the final results of the query.

However, BGP-aware source selection produces a join-over-union

plan that may not be Result-Aware.

Once the source selection is established if several triple patterns

share the same single source, it is possible to group them into

exclusive groups as proposed by FedX [22]. Exclusive groups are

more likely to happen with Result-Aware query plans, as shown in

Figure 3b compared to Figure 3a

Lusail [1] improved the grouping of sources by determining if

join variables are local or global using set-differences. Such tech-

nique is zero-knowledge as set-difference is computed online using

simple filter-not-exist queries. The Lusail grouping approach can

be applied on top of existing source selection techniques, including

Result-Aware source selection.

6 CONCLUSION
In this paper, we introduced the new concept of Result-Aware source

selection . Result-Aware query plans ensure that all combinations

of relevant sources contribute to the final results of the query.

Building a Result-Aware query plan is driven by results; however,

query results are unavailable when computing source selection.

We solved this issue by computing a Result-Aware query plan on

quotient summaries. Of course, summaries introduce inaccuracies;

however, the results of benchmarks demonstrate huge performance

improvements, especially when the size of the federation grows.

On the FedShop Benchmark, Result-Aware query plan outperforms

traditional approaches by one order of magnitude, offering new

perspectives for federated query processing.

In future work, we plan to support the MINUS/Filter, not EXISTS,

in SPARQL queries. There is also important room for improvement

for optimizing unions-over-joins query plan. 𝜑 expression can be

factorized, and join order can be improved to fill the remaining gap

with RSA queries in the FedShop benchmark.

REFERENCES
[1] Ibrahim Abdelaziz, Essam Mansour, Mourad Ouzzani, Ashraf Aboulnaga, and

Panos Kalnis. Lusail: A system for querying linked data at scale. Proc. VLDB
Endow., 11(4):485–498, 2017.

[2] Maribel Acosta, Olaf Hartig, and Juan Sequeda. Federated RDF query processing.

Encyclopedia of Big Data Technologies, 2019.
[3] Maribel Acosta, Maria-Esther Vidal, Tomas Lampo, Julio Castillo, and Edna Ruck-

haus. ANAPSID: an adaptive query processing engine for SPARQL endpoints.

In 10th International Semantic Web Conference (ISWC2011, pages 18–34. Springer,
2011.

[4] Sejla Cebiric, François Goasdoué, Haridimos Kondylakis, Dimitris Kotzinos, Ioana

Manolescu, Georgia Troullinou, and Mussab Zneika. Summarizing semantic

graphs: a survey. VLDB J., 28(3):295–327, 2019.
[5] Sejla Cebiric, François Goasdoué, and IoanaManolescu. A framework for efficient

representative summarization of RDF graphs. In Nadeschda Nikitina, Dezhao

Song, Achille Fokoue, and Peter Haase, editors, Proceedings of the ISWC 2017
Posters & Demonstrations and Industry Tracks co-located with 16th International
Semantic Web Conference (ISWC 2017), Vienna, Austria, October 23rd - to - 25th,
2017, volume 1963 of CEUR Workshop Proceedings. CEUR-WS.org, 2017.

[6] Angelos Charalambidis, Antonis Troumpoukis, and Stasinos Konstantopoulos.

SemaGrow: Optimizing federated SPARQL queries. In Proceedings of the 11th
International Conference on Semantic Systems, pages 121–128, 2015.

[7] Sijin Cheng and Olaf Hartig. FedQPL: A language for logical query plans over

heterogeneous federations of RDF data sources. In the 22nd International Con-
ference on Information Integration and Web-Based Applications & Services, page
436–445. Association for Computing Machinery, 2021.

[8] Sijin Cheng and Olaf Hartig. Towards query processing over heterogeneous

federations of RDF data sources. In The Semantic Web: ESWC 2022 Satellite Events.
Springer, 2022.

[9] Minh-Hoang Dang, Julien Aimonier-Davat, Hala Skaf-Molli, and Yotlan Le Crom.

Fedshop: A benchmark for testing the scalability of sparql federation engines.

In The Semantic Web - ISWC 2023 - 22th International Semantic Web Conference,
Athens, Greece, November 6-10, 2023, Proceedings, 2023.

[10] Kemele M. Endris, Mikhail Galkin, Ioanna Lytra, Mohamed Nadjib Mami, Maria-

Esther Vidal, and Sören Auer. MULDER: Querying the linked data web by

bridging RDF molecule templates. In International Conference on Database and
Expert Systems Applications (DEXA). Springer, 2017.

[11] Olaf Görlitz and Steffen Staab. Splendid: SPARQL endpoint federation exploit-

ing void descriptions. In Proceedings of the Second International Conference on
Consuming Linked Data, volume 782, pages 13–24. CEUR-WS. org, 2011.

[12] Lars Heling and Maribel Acosta. Federated sparql query processing over hetero-

geneous linked data fragments. In Proceedings of the ACM Web Conference 2022,
pages 1047–1057, 2022.

[13] PierreMaillot, Olivier Corby, Catherine Faron, Fabien Gandon, and FranckMichel.

Indegx: A model and a framework for indexing RDF knowledge graphs with

sparql-based test suits. J. Web Semant., 76:100775, 2023.
[14] Gabriela Montoya, Hala Skaf-Molli, and Katja Hose. The Odyssey approach for

optimizing federated SPARQL queries. In International Semantic Web Conference
(ISWC), pages 471–489. Springer, 2017.

[15] Gabriela Montoya, Hala Skaf-Molli, Pascal Molli, and Maria-Esther Vidal. De-

composing federated queries in presence of replicated fragments. Journal of Web
Semantics, 42:1–18, 2017.

[16] Jorge Pérez, Marcelo Arenas, and Claudio Gutiérrez. Semantics and complexity

of SPARQL. ACM Transations on Database Systems, 34(3):16:1–16:45, 2009.
[17] Bastian Quilitz and Ulf Leser. Querying distributed RDF data sources with

SPARQL. In Extended Semantic Web Conference (ESWC), pages 524–538. Springer,
2008.

[18] Muhammad Saleem, Ali Hasnain, and Axel-Cyrille Ngonga Ngomo. Largerdf-

bench: A billion triples benchmark for SPARQL endpoint federation. J. Web
Semant., 48:85–125, 2018.

[19] Muhammad Saleem and Axel-Cyrille Ngonga Ngomo. HiBISCuS: Hypergraph-

based source selection for SPARQL endpoint federation. In European Semantic
Web Conference (ESWC), pages 176–191. Springer, 2014.

[20] Muhammad Saleem, Alexander Potocki, Tommaso Soru, Olaf Hartig, and Axel-

Cyrille Ngonga Ngomo. CostFed: Cost-based query optimization for SPARQL

endpoint federation. In 14th International Conference on Semantic Systems (SE-
MANTICS), pages 163–174. Elsevier, 2018.

[21] Michael Schmidt, Olaf Görlitz, Peter Haase, Günter Ladwig, Andreas Schwarte,

and Thanh Tran. Fedbench: A benchmark suite for federated semantic data

query processing. In 10th International Semantic Web Conference, ISWC 2011,
Lecture Notes in Computer Science. Springer, 2011.

[22] Andreas Schwarte, Peter Haase, Katja Hose, Ralf Schenkel, and Michael Schmidt.

FedX: Optimization techniques for federated query processing on linked data.

In International Semantic Web Conference (ISWC). Springer, 2011.
[23] Harris Steve and Seaborne Andy. SPARQL 1.1 query language. In Recommenda-

tion W3C, 2013.
[24] Pierre-Yves Vandenbussche, Jürgen Umbrich, Luca Matteis, Aidan Hogan, and

Carlos Buil Aranda. SPARQLES: monitoring public SPARQL endpoints. Semantic
Web, 8(6):1049–1065, 2017.

[25] Maria-Esther Vidal, Simón Castillo, Maribel Acosta, Gabriela Montoya, and

Guillermo Palma. On the selection of SPARQL endpoints to efficiently execute

federated SPARQL queries. Trans. Large Scale Data Knowl. Centered Syst., 25:109–
149, 2016.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

FedUP: Querying Large-Scale Federations of SPARQL Endpoints WWW’24, May 2024, Singapore

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

A APPENDIX
A.1 Equivalence Rules
Let 𝜑1, 𝜑2, and 𝜑3 be FedQPL expressions that are valid for 𝐹 . In a

federation context, it does not holds that:

(R8) leftjoin(𝜑1,𝑢𝑛𝑖𝑜𝑛 (𝜑2, 𝜑3))
𝐹≡ 𝑢𝑛𝑖𝑜𝑛 (leftjoin(𝜑1, 𝜑2), leftjoin(𝜑1, 𝜑3))

To illustrate, let us consider the query 𝑄𝑜 with 1 OPTIONAL and

2 triple patterns:

SELECT ∗ WHERE {
? a r t i s t f o a f : based_near ? l o c a t i o n . # tp1
OPTIONAL { ? l o c a t i o n geo : p a r en t F e a t u r e ? germany . } } # tp2

The federation 𝐹 comprises 2 members 𝑓1 and 𝑓2 with 3 triples as

follows:

http://f1/Scorpions foaf:based_near http://f1/Hanover http://f1

http://f1/Kraftwerk foaf:based_near http://f2/Berlin http://f1

http://f2/Berlin geo:parentFeature http://f2/Germany http://f2

With such a federation 𝐹 and query 𝑄𝑜 , the FedQPL expression is:

𝜑𝑜 = leftjoin(𝑟𝑒𝑞𝑡𝑝1
𝑓1

,mu {𝑟𝑒𝑞𝑡𝑝2
𝑓1

, 𝑟𝑒𝑞
𝑡𝑝2

𝑓2
})

The evaluation J𝜑𝑜K𝐹 of 𝜑𝑜 over 𝐹 returns:

?artist ?location ?germany

𝜇1 http://f1/Scorpions http://f1/Hanover

𝜇2 http://f1/Kraftwerk http://f2/Berlin http://f2/Germany

However, after applying the equivalence rule 𝑅8 on 𝜑𝑜 , we get the

following expression 𝜑𝑜 ′ :

𝜑𝑜 ′ = mu {leftjoin(𝑟𝑒𝑞𝑡𝑝1
𝑓1

, 𝑟𝑒𝑞
𝑡𝑝2

𝑓1
), leftjoin(𝑟𝑒𝑞𝑡𝑝1

𝑓1
, 𝑟𝑒𝑞

𝑡𝑝2

𝑓2
)}

The evaluation of 𝜑𝑜 ′ over 𝐹 returns unexpected results:

?artist ?location ?germany

𝜇1 http://f1/Scorpions http://f1/Hanover

𝜇2 http://f1/Kraftwerk http://f2/Berlin http://f2/Germany

𝜇3 http://f1/Kraftwerk http://f2/Berlin

A.2 A returns complete and correct results
Proof. (Completeness) Let 𝑄 be a SPARQL query and 𝐹 be a

federation, A(𝑄, 𝐹) returns complete results if and only if ∀𝜇 ∈
J𝑄K𝐹 , 𝜇 ∈ 𝑠𝑜𝑙𝑠 (A(𝑄, 𝐹)). To demonstrate that A returns complete

results, we use the FedQPL equivalences with the SPARQL algebra

as defined in Definition 6 [7].We proceed by contradiction assuming

that ∃𝜇 ∉ 𝑠𝑜𝑙𝑠 (A(𝑄, 𝐹)), 𝜇 ∈ J𝑄K𝐹 .

• If 𝑄 is a triple pattern 𝑡𝑝 then 𝜇 ∉ 𝑠𝑜𝑙𝑠 (A(𝑄, 𝐹))
⇔ 𝜇 ∉

⋃
𝑓 ∈𝐹 𝑠𝑜𝑙𝑠 (𝑟𝑒𝑞

𝑡𝑝

𝑓
)

⇔ 𝜇 ∉
⋃

𝑓 ∈𝐹 J𝑡𝑝K𝑓
⇔ 𝜇 ∉ J𝑄K𝐹

• If 𝑄 is 𝑃1 AND 𝑃2 then 𝜇 ∉ 𝑠𝑜𝑙𝑠 (A(𝑄, 𝐹))
⇔ 𝜇 ∉

⋃
𝜑1,𝜑2∈Φ1,Φ2

𝑠𝑜𝑙𝑠 (𝑚𝑗{𝜑1, 𝜑2})
⇔ 𝜇 ∉ (⋃𝜑1∈Φ1

𝑠𝑜𝑙𝑠 (𝜑1)) ⊲⊳ (
⋃

𝜑2∈Φ2
𝑠𝑜𝑙𝑠 (𝜑2))

⇔ 𝜇 ∉ J𝑃1K𝐹 ⊲⊳ J𝑃2K𝐹
⇔ 𝜇 ∉ J𝑄K𝐹

• If 𝑄 is 𝑃1 UNION 𝑃2 then 𝜇 ∉ 𝑠𝑜𝑙𝑠 (A(𝑄, 𝐹))
⇔ 𝜇 ∉ (⋃𝜑1∈Φ1

𝑠𝑜𝑙𝑠 (𝜑1)) ∪ (
⋃

𝜑2∈Φ2
𝑠𝑜𝑙𝑠 (𝜑2))

⇔ 𝜇 ∉ J𝑃1K𝐹 ∪ J𝑃2K𝐹
⇔ 𝜇 ∉ J𝑄K𝐹

• If 𝑄 is 𝑃1 FILTER 𝑅 then 𝜇 ∉ 𝑠𝑜𝑙𝑠 (A(𝑄, 𝐹))
⇔ 𝜇 ∉

⋃
𝜑∈Φ 𝑠𝑜𝑙𝑠 (𝑓 𝑖𝑙𝑡𝑒𝑟𝑅 (𝜑))

⇔ 𝜇 ∉ {𝜇′ | 𝜇′ ∈ ⋃𝜑∈Φ 𝑠𝑜𝑙𝑠 (𝜑) ∧ 𝜇′ ⊨ 𝑅}
⇔ 𝜇 ∉ {𝜇′ | 𝜇′ ∈ J𝑃1K𝐹 ∧ 𝜇′ ⊨ 𝑅}
⇔ 𝜇 ∉ J𝑄K𝐹

• If 𝑄 is 𝑃1 OPTIONAL 𝑃2 then 𝜇 ∉ 𝑠𝑜𝑙𝑠 (A(𝑄, 𝐹))
⇔ 𝜇 ∉

⋃
𝜑1∈Φ1

leftjoin(𝜑1,Φ𝜑1

𝑗𝑜𝑖𝑛
)

⇔ 𝜇 ∉ (𝑋 ∪ ((⋃𝜑1∈Φ1
𝑠𝑜𝑙𝑠 (𝜑1)) \ 𝑋))

⇔ 𝜇 ∉ (𝑌 ∪ ((⋃𝜑1∈Φ1
𝑠𝑜𝑙𝑠 (𝜑1)) \ 𝑌))

⇔ 𝜇 ∉
(
J𝑃1 ⊲⊳ 𝑃2K𝐹 ∪ (J𝑃1K𝐹 \ J𝑃1 ⊲⊳ 𝑃2K𝐹)

)
⇔ 𝜇 ∉ J𝑄K𝐹
Φ
𝜑1

𝑗𝑜𝑖𝑛
= {𝜑2 | 𝜑2 ∈ Φ2 ∧ 𝑠𝑜𝑙𝑠 (𝑚𝑗{𝜑1, 𝜑2}) ≠ ∅}

𝑋 =
⋃

𝜑1∈Φ1
𝑠𝑜𝑙𝑠 (𝑚𝑗{𝜑1,𝑚𝑢{Φ𝜑1

𝑗𝑜𝑖𝑛
}})

𝑌 =
⋃

𝜑1∈Φ1
𝑠𝑜𝑙𝑠 (𝑚𝑗{𝜑1,𝑚𝑢{𝜑2 | 𝜑2 ∈ Φ2}})

□

Proof. (Correctness) Let 𝑄 be a SPARQL query and 𝐹 be a

federation, A(𝑄, 𝐹) returns correct results if and only if ∀𝜇 ∈
A(𝑄, 𝐹), 𝜇 ∈ J𝑄K𝐹 . The proof of correctness is analogous to the

proof of completeness. □

A.3 A returns Result-Aware FedQPL
expressions

Proof. Let 𝑄 be a SPARQL query and 𝐹 be a federation such

that J𝑄K𝐹 ≠ ∅. Let 𝜑 = A(𝑄, 𝐹) be a FedQPL expression that is

not Result-Aware. Consequently, it exists 𝜑 ′ ⊆ 𝜑 such that 𝜑 ′ does
not contribute to J𝑄K𝐹 .

• If 𝑄 is a triple pattern 𝑡𝑝 , 𝜑 is not Result-Aware if it exists

𝜑 ′ in Φ𝑇𝑃 such that 𝑠𝑜𝑙𝑠 (𝜑 ′) = ∅, which is impossible by

definition of Φ𝑇𝑃 . Consequently, 𝜑 is Result-Aware.

• If 𝑄 is 𝑃1 AND 𝑃2, 𝜑 is not Result-Aware if

(1) it exists 𝜑 ′ in Φ𝐽𝑂𝐼𝑁 such that 𝑠𝑜𝑙𝑠 (𝜑 ′) = ∅, which is

impossible by definition of Φ𝐽𝑂𝐼𝑁 .

(2) it exists 𝜑1 in Φ1 such that 𝜑1 does not contribute to

J𝑄K𝐹 . If 𝜑1 ⊂ 𝜑 , it exists 𝜑 𝑗𝑜𝑖𝑛 =𝑚𝑗{𝜑1, 𝜑2} in Φ𝐽𝑂𝐼𝑁 .

By definition, if 𝑠𝑜𝑙𝑠 (𝜑 𝑗𝑜𝑖𝑛) ≠ ∅, both 𝜑1 and 𝜑2 con-

tribute to 𝑠𝑜𝑙𝑠 (𝜑 𝑗𝑜𝑖𝑛). As 𝜑 𝑗𝑜𝑖𝑛 contributes to J𝑄K𝐹 , 𝜑1
also contributes to J𝑄K𝐹 .

(3) it exists 𝜑2 in Φ2 such that 𝜑2 does not contribute to

J𝑄K𝐹 . For the same reason as 𝜑1, if 𝜑2 ⊂ 𝜑 , 𝜑2 con-

tributes to J𝑄K𝐹 .
(4) it exists 𝜑 ′ ⊂ 𝜑1 where 𝜑1 ∈ Φ1 such that 𝜑1 con-

tributes to J𝑄K𝐹 but 𝜑 ′ does not. By induction, we as-

sume that A(𝑃1, 𝐹) generates a Result-Aware FedQPL
expression. As A(𝑃1, 𝐹) = 𝑚𝑢Φ1, all FedQPL expres-

sions and subexpressions in Φ1 contribute to J𝑃1K𝐹 . As
𝜑1 contributes to J𝑄K𝐹 , all subexpressions 𝜑 ′ ⊂ 𝜑1 also

contributes to J𝑄K𝐹 .
(5) it exists𝜑 ′ ⊂ 𝜑2 where𝜑2 ∈ Φ2 such that𝜑2 contributes

to J𝑄K𝐹 , but 𝜑 ′ does not. Using the same reasoning as

for 𝜑 ′ ⊂ 𝜑1, we demonstrate that all subexpressions

𝜑 ′ ⊂ 𝜑2 contributes to J𝑄K𝐹 .
As a result, if 𝑄 is 𝑃1 AND 𝑃2, it does not exist 𝜑

′ ⊂ 𝜑 such

that 𝜑 ′ does not contribute to J𝑄K𝐹 , consequently, 𝜑 is

Result-Aware.

• If 𝑄 is 𝑃1 OPTIONAL 𝑃2, 𝜑 is not Result-Aware if

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

WWW’24, May 2024, Singapore Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

(1) it exists 𝜑 ′ in Φ𝑂𝑃𝑇 such that 𝑠𝑜𝑙𝑠 (𝜑 ′) = ∅, which is

impossible by definition of Φ𝑂𝑃𝑇 .

(2) it exists 𝜑1 ∈ Φ1 such that 𝜑1 does not contribute to

J𝑄K𝐹 . If 𝜑1 ⊂ 𝜑 , there are two cases: (a) 𝜑1 ∈ Φ𝑂𝑃𝑇 \Φ1.

In this case, it exists 𝜑𝑜𝑝𝑡 = leftjoin(𝜑1,𝑚𝑢Φ
𝜑1

𝑗𝑜𝑖𝑛
) in

Φ𝑂𝑃𝑇 . By definition, if 𝑠𝑜𝑙𝑠 (𝜑𝑜𝑝𝑡) ≠ ∅, 𝜑1 contributes
to J𝑄K𝐹 . (b)𝜑1 ∈ Φ𝑂𝑃𝑇 ∩Φ1. In this case,𝜑1 contributes

to J𝑄K𝐹 by definition of Φ𝑂𝑃𝑇 .

(3) it exists 𝜑2 ∈ Φ2 such that 𝜑2 does not contribute to

J𝑄K𝐹 . If 𝜑2 ⊂ 𝜑 , it exists 𝜑𝑜𝑝𝑡 = leftjoin(𝜑1,𝑚𝑢Φ
𝜑1

𝑗𝑜𝑖𝑛
)

in Φ𝑂𝑃𝑇 such that 𝜑2 ∈ Φ
𝜑1

𝑗𝑜𝑖𝑛
. By definition, if 𝜑2 ∈

Φ
𝜑1

𝑗𝑜𝑖𝑛
then 𝑠𝑜𝑙𝑠 (𝑚𝑗{𝜑1, 𝜑2}) ≠ ∅, and 𝜑2 contributes

to 𝑠𝑜𝑙𝑠 (𝜑𝑜𝑝𝑡). Consequently, 𝜑2 contributes to J𝑄K𝐹 .
(4) it exists𝜑 ′ ⊂ 𝜑1 where𝜑1 ∈ Φ1 such that𝜑1 contributes

to J𝑄K𝐹 but 𝜑 ′ does not. Using the same reasoning as

for 𝜑 ′ ⊂ 𝜑1 when 𝑄 is 𝑃1 AND 𝑃2, we demonstrate that

all subexpressions 𝜑 ′ ⊂ 𝜑2 contributes to J𝑄K𝐹 when

𝑄 is 𝑃1 OPTIONAL 𝑃2.
(5) it exists𝜑 ′ ⊂ 𝜑2 where𝜑2 ∈ Φ2 such that𝜑2 contributes

to J𝑄K𝐹 but 𝜑 ′ does not. We use the same reasoning as

for 𝜑 ′ ⊂ 𝜑1.

As a result, if 𝑄 is 𝑃1 OPTIONAL 𝑃2, it does not exist 𝜑
′ ⊂ 𝜑

such that 𝜑 ′ does not contribute to J𝑄K𝐹 , consequently, 𝜑
is Result-Aware.

• If 𝑄 is 𝑃1 FILTER 𝑅, 𝜑 is not Result-Aware if

(1) it exists 𝜑 ′ in Φ𝐹𝐼𝐿𝑇𝐸𝑅 such that 𝑠𝑜𝑙𝑠 (𝜑 ′) = ∅, which
is impossible by definition of Φ𝐹𝐼𝐿𝑇𝐸𝑅 .

(2) it exists𝜑 ′ inΦ such that𝜑 ′ does not contribute to J𝑄K𝐹 .
If 𝜑 ′ ⊂ 𝜑 , it exists 𝜑𝑓 𝑖𝑙𝑡𝑒𝑟 = 𝑓 𝑖𝑙𝑡𝑒𝑟𝑅 (𝜑 ′) in Φ𝐹𝐼𝐿𝑇𝐸𝑅 .

By definition, if 𝑠𝑜𝑙𝑠 (𝜑𝑓 𝑖𝑙𝑡𝑒𝑟) ≠ ∅, 𝜑 ′ contributes to
𝑠𝑜𝑙𝑠 (𝜑𝑓 𝑖𝑙𝑡𝑒𝑟). Consequently, 𝜑 ′ contributes to J𝑄K𝐹 .

(3) it exists 𝜑 ′′ ⊂ 𝜑 ′ where 𝜑 ′ ∈ Φ such that 𝜑 ′ contributes
to J𝑄K𝐹 but 𝜑 ′′ does not. Using the same reasoning as

for 𝜑 ′ ⊂ 𝜑1 when𝑄 is 𝑃1 AND 𝑃2, we demonstrate that

all subexpressions 𝜑 ′′ ⊂ 𝜑 ′ contributes to J𝑄K𝐹 when

𝑄 is 𝑃 FILTER 𝑅.
As a result, if 𝑄 is 𝑃 FILTER 𝑅, it does not exist 𝜑 ′ ⊂ 𝜑

such that 𝜑 ′ does not contribute to J𝑄K𝐹 , consequently, 𝜑
is Result-Aware.

• If 𝑄 is 𝑃1 UNION 𝑃2, 𝜑 is not Result-Aware if

(1) it exists 𝜑 ′ in Φ𝑈𝑁𝐼𝑂𝑁 such that 𝑠𝑜𝑙𝑠 (𝜑 ′) = ∅, which
is impossible by definition of Φ𝑈𝑁𝐼𝑂𝑁 .

(2) it exists𝜑 ′ ⊂ 𝜑1 where𝜑1 ∈ Φ1 such that𝜑1 contributes

to J𝑄K𝐹 but 𝜑 ′ does not. Using the same reasoning as

for 𝜑 ′ ⊂ 𝜑1 when 𝑄 is 𝑃1 AND 𝑃2, we demonstrate that

all subexpressions 𝜑 ′ ⊂ 𝜑2 contributes to J𝑄K𝐹 when

𝑄 is 𝑃1 UNION 𝑃2.
(3) it exists𝜑 ′ ⊂ 𝜑2 where𝜑2 ∈ Φ2 such that𝜑2 contributes

to J𝑄K𝐹 but 𝜑 ′ does not. We use the same reasoning as

for 𝜑 ′ ⊂ 𝜑1.

As a result, if 𝑄 is 𝑃1 UNION 𝑃2, it does not exist 𝜑
′ ⊂ 𝜑

such that 𝜑 ′ does not contribute to J𝑄K𝐹 , consequently, 𝜑
is Result-Aware.

□

10

	Abstract
	1 Introduction
	2 Background and motivations
	3 FedUP: A Result-Aware Federation Engine
	3.1 Solving the Result-Aware source selection problem
	3.2 FedUP on summaries

	4 Experimental Study
	4.1 Experimental Setup
	4.2 LargeRDFBench: Parity among engines
	4.3 FedShop: FedUP outperforms other engines

	5 Related Work
	6 Conclusion
	References
	A Appendix
	A.1 Equivalence Rules
	A.2 A returns complete and correct results
	A.3 A returns Result-Aware FedQPL expressions

