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Abstract

This paper introduces the SOAR framework for imitation learning. SOAR is an
algorithmic template that learns a policy from expert demonstrations with a primal
dual style algorithm that alternates cost and policy updates. Within the policy
updates, the SOAR framework uses an actor critic method with multiple critics to
estimate the critic uncertainty and build an optimistic critic fundamental to drive
exploration.
When instantiated in the tabular setting, we get a provable algorithm with guaran-
tees that matches the best known results in the desired accuracy parameter ϵ.
Practically, the SOAR template can boost the performance of any imitation learn-
ing algorithm based on Soft Actror Critic (SAC). As an example, we show that
SOAR can boost consistently the performance of the following SAC-based imi-
tation learning algorithms: f -IRL, ML-IRL and CSIL. Overall, thanks to SOAR,
the required number of episodes to achieve the same performance is reduced by
half.

1 Introduction

Several recent state of the art imitation learning (IL) algorithms Ni et al. [2021], Zeng et al. [2022],
Garg et al. [2021], Watson et al. [2023], Viano et al. [2022b] are built on Soft Actor Critic (SAC)
Haarnoja et al. [2018] to perform the policy updates. SAC uses entropy regularized policy updates
to maintain a strictly positive probability of taking each action. However, this is known to be an
inefficient exploration strategy if deployed alone Cesa-Bianchi et al. [2017].

Indeed, several recent theoretical imitation learning achieve performance guarantees by adding ex-
ploration bonuses on top of the regularized policy updates, which encourage the learner to visit
state-action pairs that have not been visited previously. Unfortunately, such works are only available
in the tabular setting Shani et al. [2021], Xu et al. [2023] and in the linear setting Viano et al. [2024].
The design of the exploration bonuses in these works is strictly tight to the tabular or linear structure
of the transition dynamics, therefore, these analyses offer little insight on how to design an efficient
exploration mechanism using neural network function approximation.

There is, therefore, a lack of a technique that satisfies the following two requirements.
• It is statistically and computationally efficient in the tabular setting.
• It can be implemented easily in continuous states and actions problems requiring neural

networks function approximation.

In this paper, we present a general template, dubbed Soft Optimistic Actor cRitic Imitation Learning
(SOAR-IL) satisfying these requirements.

The main idea is to act according to an optimistic critic within the SAC block on which many IL
algorithms rely. Here, optimism means appropriately underestimating the expected cumulative cost
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Figure 1: Summary of experimental results. Each plot compares the average normalized return across 4
MuJoCo environments with 16 expert trajectories for a base algorithm and its SOAR-enhanced version. SOAR
replaces the single critic in SAC-based methods with multiple critics to compute an optimistic estimate. Across
all algorithms, incorporating SOAR consistently improves performance. ML-IRL (SA) stands for ML-IRL
Zeng et al. [2022] from expert state-action demonstrations.

incurred by playing a policy in the environment. This principle known as optimism in the face of
uncertainty has led to several successful algorithms in the bandits community.

While optimism is often achieved using the structure of the problem (tabular, linear, etc.), in this
work, we build optimistic estimators using an ensemble technique. That is, multiple estimators for
the same quantity are maintained and aggregated to obtain an optimistic estimator. This technique
scales well with deep imitation learning. To summarize, we have the following contributions.

Theoretical contribution We show that there exists a computationally efficient algorithm that
uses an ensemble based exploration technique that gives access to O(ϵ−2) expert trajectories and
O(ϵ−2) interactions in a tabular MDP outputs a policy such that its cumulative expected cost is at
most ϵ higher than the expert cumulative expected cost with high probability.

Practical Contribution We apply an ensemble-based exploration technique, SOAR, to boost the
performance of deep imitation learning algorithms built on SAC, demonstrating its effectiveness on
MuJoCo environments. Specifically, we show that incorporating SOAR consistently boosts the per-
formance of base methods such as Coherent Soft Imitation Learning (CSIL)Watson et al. [2023],
Maximum Likelihood IRL (ML-IRL)Zeng et al. [2022] and RKL Ni et al. [2021]. As shown in Fig-
ure 1, our approach consistently outperforms the base algorithms across all MuJoCo environments.
Notably, SOAR achieves the best performance of the baselines requiring only approximately half
the number of learning episodes.

2 Preliminaries and Notation

The environment is abstracted as Markov Decision Process (MDP) Puterman [1994] which consists
of a tuple (S,A, P, c,ν0, γ) where S is the state space, A is the action space, P : S × A → ∆S is
the transition kernel, that is, P (s′|s, a) denotes the probability of landing in state s′ after choosing
action a in state s. Moreover, ν0 is a distribution over states from which the initial state is sampled.
Finally, c : S ×A → [0, 1] is the cost function, and γ ∈ [0, 1) is called the discount factor.

Value functions and occupancy measures We define the state value function at state s ∈ S for
the policy π under the cost function c as V πc (s) ≜ E

[∑∞
h=0 γ

hc(sh, ah)|s1 = s
]
. The expectation

over both the randomness of the transition dynamics and the one of the learner’s policy. Another
convenient quantity is the occupancy measure of a policy π denoted as dπ ∈ ∆S×A and defined as
follows dπ(s, a) ≜ (1−γ)

∑∞
h=0 γ

hP [s, a is visited after h steps acting with π]. We can also define
the state occupancy measure as dπ(s) ≜ (1−γ)

∑∞
h=0 γ

hP [s is visited after h steps acting with π].
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Imitation Learning In imitation learning, the learner is given a dataset DπE of expert trajectories
collected by an unknown expert policy πE.1 By trajectory τ k, we mean the sequence of states
and actions sampled rolling out the policy πk for a number of steps sampled from the distribution
Geometric(1 − γ). Given DπE , the learner adopts an algorithm A to learn a policy πout such that〈
ν0, V

π̂k

ctrue
− V πE

ctrue

〉
≤ ϵ with high probability.

We use the notation es to denote a vector in R|S| zero everywhere but in the coordinate correspond-
ing to the state s ( for an arbitrary ordering of the states). Analogously, we use es,a to denote a
vector in R|S||A| zero everywhere but in the (s, a)th entry which equals one.

3 The Algorithm

Algorithm 1 SOAR-Imitation Learning

Require: Reward step size α, Expert dataset DπE , Discount factor γ, Policy step size η.
1: Initialize π1 as uniform distribution over A.
2: Initialize empty replay buffer,i.e. D0 = {}
3: for k = 1 to K do
4: τk ← COLLECTTRAJECTORY(πk)
5: Add τk to replay buffer,i.e. Dk = Dk−1 ∪ τk.
6: ck ← UPDATECOST(ck−1,DπE ,Dk, α)
7: for ℓ = 1 to L do
8: Compute estimator Qkℓ .
9: end for

10: Qk = OPTIMISTICQ(
{
Qkℓ
}L
ℓ=1

).
11: πk(a|s) = POLICYUPDATE(η, {Qτ (s, a)}kτ=1)
12: end for

In this Section, we describe Algorithm 1. A meta-algorithm that encompasses several existing im-
itation learning algorithms. Inside each iteration of the main for loop, the learner collects a new
trajectory sampling actions from the policy πk (Line 4 in Algorithm 1) and then performs the fol-
lowing steps.

• The Cost update. At Line 6 of Algorithm 1, the learner updates an estimate of the
true unknown cost function with the algorithm-dependent routine UPDATECOST. For in-
stance, Generative Adversarial Imitation Learning (GAIL), Adversarial Inverse Reinforce-
ment Learning (AIRL), and Discriminator Actor Critic (DAC) Ho and Ermon [2016], Fu
et al. [2018], Kostrikov et al. [2019] use a reward derived from a discriminator neural net-
work trained to distinguish state-action pairs visited by the expert from those visited by the
learner.
Using a fixed cost function obtained from a behavioral cloning warm up is, instead, the
approach taken in CSIL Watson et al. [2023]. Moreover, updating the reward to minimize
an information theoretic divergence between expert and learner state occupancy measure
is the approach taken in RKL Ni et al. [2021]. Finally, Zeng et al. [2022] updates the cost
using online gradient descent (OGD) Zinkevich [2003].

• The state-action value function update. In the for loop at Lines 7-9 of Algorithm 1, the
learner updates L different critics trained on different subsets of the data sampled from the
replay buffer Dk denoted as

{
Dkℓ
}L
ℓ=1

. For a fixed state-action pair each dataset contains
independent samples from P (·|s, a). This allows creating L jointly independent random
variables

{
Qkℓ
}L
ℓ=1

that estimate the ideal value iteration update (i.e. ck + γPV k) which
cannot be implemented exactly due to the lack of knowledge on P .
In Section 3.1, we provide an explicit way to computeL slightly optimistic estimates for the
tabular setting. Moreover, in the deep imitation learning experiments, we train L different

1In order, to accommodate state-only and state-action with a unified analysis we overload the notation for
the expert dataset. DπE denotes a collection of samples from the expert state occupancy measure in the former
case and a collection of state-actions sampled from the state-action occupancy measure in the latter case.
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critics via temporal difference, as it is commonly done in Soft Actor Critic implementation
( see Haarnoja et al. [2018] ).
Finally, in Line 10 of Algorithm 1, the L critics are aggregated to generate an estimate
Qk+1 which is, with high probability, optimistic i.e. Qk+1 ≤ ck + γPV k. In other
words, it underestimates the update that could have been performed by value iteration if
the transition matrix P was known to the learner. We provide aggregation routines that
satisfy this requirement if L is large enough.

• The policy update As the last step of each inner loop, the learner updates the policy using
the optimistic state-action value function estimate. In the tabular case, we will instan-
tiate the update using an online mirror descent (OMD) step Beck and Teboulle [2003],
Nemirovskij and Yudin [1983] (also known as the multiplicative weights update Warmuth
et al. [1997], Auer et al. [1995]). As it will be evident from Section 4, this update we
can ensure that the KL divergence between consecutive policies is upper bounded in terms
of the policy step size η. For the continuous state-action experiments, the online mirror
descent is approximated via a gradient descent step on the SAC loss.

Remark 3.1. Notice that only one pair of critics is used in the implementation of SAC (L = 1)
that serves as base RL algorithm for several commonly used IL algorithms ( GAIL Ho and Ermon
[2016], AIRL Fu et al. [2018], IQ-Learn Garg et al. [2021], PPIL Viano et al. [2022b], RKL Ni et al.
[2021] and ML-IRL Zeng et al. [2022]). As proven in Corollary 4.11, L = 1 is not enough to ensure
optimism, not even in the tabular case. In our experiments, we show that a value of L larger than 1
is beneficial in all the MuJoCo environments we tested on.

3.1 Algorithm with guarantees in the tabular case

We consider an instance of Algorithm 1 in the tabular case for which we will prove theoretical
sample efficiency guarantees. We present the pseudocode in Algorithm 2.

For what concerns the analysis, the first step is to extract the policy achieving the sample complexity
guarantees above via an online-to-batch conversion. That is, the output policy is sampled uniformly
from a collection of K policies

{
πk
}K
k=1

. The sample complexity result follows from proving

that the policies
{
πk
}K
k=1

produced by Algorithm 2 is a sequence with sublinear regret in high
probability. More formally, we define the regret as follows.
Definition 3.2. Regret The regret is defined as follows

Regret(K) ≜
1

1− γ

K∑
k=1

〈
ctrue, d

πk

− dπE

〉
Remark 3.3. Notice that the regret defined in this way satisfies Regret(K) =∑K
k=1

〈
ν0, V

πk

ctrue
− V πE

ctrue

〉
. For this reason, we require the factor (1 − γ)−1 in the defini-

tion.

Omitting dependencies on the horizon and the state action spaces cardinality, we will guarantee that

Regret(K) ≤ O(K1/2 +K |DπE |
−1/2

),

with high probability. Notice that this bound is sublinear in K, for |DπE | = O(K). To obtain
such bound, we adopt the following decomposition for (1− γ)Regret(K) adapted from Shani et al.
[2021] to accommodate the infinite horizon setting.

K∑
k=1

〈
ck, dπ

k

− dπE

〉
︸ ︷︷ ︸
:=(1−γ)Regretπ(K,πE)

+

K∑
k=1

〈
ctrue − ck, dπ

k

− dπE

〉
︸ ︷︷ ︸

:=(1−γ)Regretc(K,ctrue)

(1)

The algorithmic design for the tabular setting aims at updating the cost variable so that the term
Regretc grows sublinearly (see Line 7 in Algorithm 2).

We consider both cases of imitation from state-action expert data (Lines 4-6 of
COSTUPDATETABULAR ) and state-only expert data (Lines 2-3 of COSTUPDATETABULAR). These
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cases differ only in the stochastic loss for the cost update. Notice that we overload the notation to
address both state-only and state-action imitation learning with a unified analysis. In particular, d̂πk

is an unbiased estimate of the learner occupancy measure. For state-only imitation learning we use
d̂πk = esk

Lk
and estimated expert occupancy measure equals to d̂πE = |DπE |

−1∑
s∈DπE

es while

for state-action imitation learning d̂πk = esk
Lk ,a

k

Lk
and d̂πE = |DπE |

−1∑
s,a∈DπE

es,a. The formal
bound on Regretc is given in Theorem 4.3.

The rest of the algorithm aims to provide a sublinear bound on Regretπ . In particular, the updates

for the estimated transition kernels
{
P̂ kℓ

}L
ℓ=1

in Lines 8-12 of Algorithm 2 serves to build L slightly

optimistic 2 estimate of the ideal value function update.

In the routine OPTIMISTICQTABULAR, we propose two aggregation rules to generate the optimistic
Q value estimate to be used in the policy update step. The first one, takes the minimum of the L
estimators as in Equation (Min), while the second option Equation (Mean-Std) considers the mean
of the L estimators minus a factor proportional to the empirical standard deviation. By Samuelson’s
inequality Samuelson [1968], we prove that the second option is more optimistic.

Finally, an iteration of the tabular case algorithm is concluded by the policy update implemented via
OMD.

Having described our main techniques we are in the position of stating our main theoretical results
hereafter.

Theorem 3.4. Main Result For any MDP, let us consider either the update Equation (Min) or
Equation (Mean-Std), it holds that with probability 1 − 5δ that Regret(K)

K of Tabular SOAR-IL (Al-
gorithm 2) is upper bounded by

Õ

√ |S|4 |A| log(1/δ)
(1− γ)5K

+

√
|S|2 |A| log (|S| |A| /δ) (log(|S|) + 2)2

(1− γ)2 |DπE |
.

Therefore, choosing K = Õ
(

|S|4|A| log(1/δ)
(1−γ)5ϵ2

)
and |DπE | =

|S|2|A| log(|S||A|/δ)(log(|S|)+2)2

ϵ2(1−γ)2 it holds

that the mixture policy π̂K satisfies
〈
ν0, V

π̂k

ctrue − V
πE
ctrue

〉
≤ ϵ with probability at least 1− 5δ.

Remark 3.5. The bound on |DπE | is the bound on the number of either state-only or state-action
expert trajectories depending on the setting considered.
Remark 3.6. The gurantees are stated for the mixture policy π̂K , i.e. the policy which has an oc-
cupancy measure equal to the average occupancy measure of the policies in the no-regret sequence.
That is, it holds that dπ̂

K

= K−1
∑K
k=1 d

πk

. The policy π̂K cannot be computed without knowl-
edge of P but sampling a trajectory from it can be done by choosing an index k ∼ Unif([K]) at
the beginning of each new episode and continuing rolling out the policy πk for a number of steps
sampled from Geom(1− γ).
Remark 3.7. In the case of state-only expert dataset the provided upper bounds for K and |DπE | are
optimal up to log factors in the precision parameters ϵ. Indeed, these upper bounds match the lower
bounds in Moulin et al. [2025].

4 Theoretical analysis

We need to start with an important remark on the structure of the MDP considered in the proof.
Remark 4.1. For technical reasons, in particular for the proof of Corollary 4.11, we consider as
intermediate step in the proof MDPs where from each state action pairs is possible to observe a
transition to only two other possible states. While this restriction on the dynamics appears to be
limiting any MDP can be cast into this form at the cost of a quadratic blow up in the number of
states, from |S| to |S|2. To see this, for a general MDP where from a given state action pair a
transition to all possible |S| states can be observed is equivalent to a binarized MDP where this one

2The optimism is achieved by adding 2 in the denominator of the estimated transition kernels.
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layer transition is represented with a tree of depth at most log2 (|S|) with binary transitions only.
Moreover, the discount factor in the binarized MDP should be set to γbin = γ− log2|S| to maintain
the return unchanged. We consider in this section a binarized MDP with |S| states in this section and
we squared the number of states in stating Theorem 3.4 which holds for general MDPs. Moreover,
in stating the result for general MDP we also inflated the effective horizon by a factor log2 |S| as
shown in Lemma E.6.

As mentioned, the proof is decomposed into two main parts: (i) bounding the policy regret Regretπ
and (ii) bounding the cost updates regret Regretc. In particular, we can prove the two following
results.

Theorem 4.2. Policy Regret In a binarized MDP with |S| states and discount factor γ, it holds that
with probability 1− 3δ, for any policy π⋆, Regretπ(K,π

⋆) is upper bounded by

log |A|
η(1− γ)

+
ηK

(1− γ)4
+ Õ


√
K |S|2 |A| log(1/δ)

(1− γ)2


and for η =

√
log|A|(1−γ)3

K it holds that using the update in (Min) or in (Mean-Std) it holds that

Regret(K,π⋆) is upper bounded by Õ
(√

K|S|2|A| log(1/δ)
(1−γ)5

)
.

Theorem 4.3. Cost Regret In a binarized MDP with |S| states and discount factor γ, it holds that
with probability 1− 2δ, (1− γ)Regretc(K; ctrue) is upper bounded by

4
√
K log(1/δ) +K

√
|S| |A| log (|S| |A| /δ)

2 |DπE |

Remark 4.4. Once Theorems 4.2 and 4.3 are proven the bound on Theorem 3.4 follows trivially by
a union bound and bounding Regretπ and Regretc with Theorem 4.2 and Theorem 4.3 respectively
and dividing everything by K (because in Theorem 3.4 we consider the quantity Regret(K)/K).
Finally, we also divide by 1− γ, to match the definition of Regret(K) in Definition 3.2.

4.1 Proof Sketch of Theorem 4.2

The regret decomposition towards the proof of Theorem 4.2 leverages the following Lemma.

Lemma 4.5. Consider the MDP M = (S,A, P, c,ν0, γ) and two policies π, π′ : S → ∆A.

Then consider for any Q̂ ∈ R|S||A| and V̂ π(s) =
〈
π(·|s), Q̂(s, ·)

〉
and Qπ

′
, V π

′
be respectively

the state-action and state value function of the policy π in MDP M . Then, it holds that (1 −
γ)
〈
ν0, V̂

π − V π′
〉

equals〈
dπ

′
, Q̂− c− γP V̂ π

〉
+ Es∼dπ′

[〈
Q̂(s, ·, π(·|s)− π′(·|s)

〉]
.

Remark 4.6. This Lemma is a generalization of the well-known performance difference Lemma
Kakade [2001] to the case of inexact value functions. Indeed, notice that if Q̂ = Qπ , then the
first term in the decomposition equals zero and the result boils down to the standard performance
difference Lemma. For arbitrary Q̂, the first term is a temporal difference error averaged by the
occupancy measure dπ

′
.

We can apply two times Lemma 4.5 on each of the summands of the sum from k = 1 toK, to obtain
a convenient decomposition of Regretπ . Denoting δk(s, a) ≜ ck(s, a)+γPV k(s, a)−Qk+1(s, a)

and gk(s, a) ≜ Qk+1(s, a)−Qk(s, a), we have that

(1− γ)Regretπ(K;π⋆) =

(1− γ)
K∑
k=1

〈
ν0, V

πk

ck − V
k + V k − V π

⋆

ck

〉
=
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K∑
k=1

Es∼dπ⋆

[〈
Qk(s, ·), πk(s)− π⋆(s)

〉]
(BTRL)

+

K∑
k=1

∑
s,a

[
dπ

k

(s, a)− dπ
⋆

(s, a)
]
·
[
δk(s, a)

]
(Optimism)

+

K∑
k=1

E
s,a∼dπk

[
gk(s, a)

]
−

K∑
k=1

Es,a∼dπ⋆

[
gk(s, a)

]
(Shift)

Next, we bound each of these terms individually. Starting from the first term, the next Lemma shows
that our policy update (Line 14 of Algorithm 2) can be seen as an instance of Be the regularized
leader (BTRL) ( see e.g. Orabona [2023] ). Therefore, it guarantees that for any sequence

{
Qk
}K
k=1

,
the term (BTRL) is bounded as follows.

Lemma 4.7. Let us consider the sequence of policies
{
πk
}K
k=1

generated by Algorithm 2 for all

η > 0 then it holds that (BTRL) ≤ log|A|
η .

Next, we show that thanks to the multiplicative weights update for the policy the KL di-
vergence between consecutive policies is upper bounded by the policy step size η, i.e.
DKL(π

k+1(·|s), πk(·|s)) ≤ O(η) for all s ∈ S . Thanks to this slow changing property, we can
prove the following bound on (Shift).

Lemma 4.8. For the sequence of policies
{
πk
}K
k=1

generated by Algorithm 2, for all η > 0, it holds
that (Shift) ≤ ηK

(1−γ)3 .

Remark 4.9. The step size choice for η in Theorem 4.2 is made to trade off optimally the bounds in
Lemmas 4.7 and 4.8.

Finally, the most technical part of the proof aims at bounding the term (Optimism).
Lemma 4.10. Let us consider an MDP where maxs,a∈S×A supp(P (·|s, a)) = 2. For each k ∈ [K],
if the Qk+1 in Algorithm 2, are updated according to (Min) or (Mean-Std), the iterates produced by
Algorithm 2 satisfy with probability 1− 3δ that

(Optimism) ≤ Õ


√
K |S|2 |A| log(1/δ)

1− γ

 .

Proof sketch of Lemma 4.10 The proof of this Lemma, leverages that the temporal difference errors
δk(s, a) produced by Algorithm 2 are positive with high probability as shown by the next result3.
Corollary 4.11. Consider an MDP where maxs,a∈S×A supp(P (·|s, a)) = 2, then for L ≥
36 log

(
|S||A|K

δ

)
it holds that with probability at least 1− δ

min
ℓ∈[L]

P̂ kℓ V
k(s, a) ≤ PV k(s, a) ∀ s, a ∈ S ×A, ∀ k ∈ [K].

Corollary 4.11 implies that −
〈
dπ

⋆

, δk
〉
≤ 0 for all k ∈ [K] and therefore that (Optimism) ≤∑K

k=1

〈
dπ

k

, δk
〉

.

Remark 4.12. The above inequality, it is crucial for obtaining the result. Indeed, it upper bounds
(Optimism) with the on-policy temporal difference errors 4 which are small enough to ensure sub-
linear regret. To see this (informally) consider two cases. First, let us assume that dπ

k

is relatively
large for some action pair. Then, that action pair is expected to be visited often in the rollouts and
therefore δk is expected to be small. Vice versa, if δk for a certain state-action pair is large, this
means that for that state-action pair dπ

k

is relatively small. Overall, we always expect the product
3In the main text, we present the proof for the update in (Min). The case of update as in (Mean-Std) is

deferred to the Appendix.
4That is the temporal difference errors δk averaged by the learner occupancy measures dπ

k
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〈
dπ

k

, δk
〉

to be a small quantity. Notice that the same arguments could not have been carried out

replacing dπ
k

with dπ
⋆

because the rollouts used in Algorithm 2 are not sampled with π⋆.

To formalize the above intuition, we upper bound the temporal difference errors with the inverse of
the number of times each state-action pair is visited.

Lemma 4.13. (Simplified Version of Lemma D.5 ) Let us consider a binarized MDP with |S| states
and discount factor γ. With probability 1− δ, it holds that for all s, a ∈ S ×A and for all k ∈ [K],

δk(s, a) ≤ Õ

(√
L |S| log(1/δ)

(Nk(s, a) + 1)(1− γ)2

)
.

Therefore, by concentration inequalities and noticing that skLk , a
k
Lk ∼ dπ

k

, it holds that with high
probability

K∑
k=1

〈
dπ

k

, δk
〉
= Õ

(
K∑
k=1

δk(skLk , a
k
Lk)

)

≤ Õ

(
K∑
k=1

√
L |S| log(1/δ)

(Nk(sk
Lk , a

k
Lk) + 1)(1− γ)2

)

≤ Õ


√√√√K

K∑
k=1

L |S| log(1/δ)
(Nk(sk

Lk , a
k
Lk) + 1)(1− γ)2

 .

At this point, the proof is concluded by bounding the last sum over K with a standard numerical
sequences argument (see Lemma E.2).

Optimal choice of the number of critics network L It is important to notice that Corollary 4.11
and Lemma 4.13 creates a tradeoff for what concerns the optimal choice of the number of critics.
In particular, from Corollary 4.11, L should be chosen large enough to ensure that optimism holds
with high enough probability. On the other hand, one can notice that Lemma 4.13 upper bounds the
expected on policy temporal difference error as O(L) therefore a smaller number of critics ensures
a tighter bound. All in all, the best choice is the smallest L that ensures optimism with probability at
least 1 − δ, that is L = 36 log

(
|S||A|K

δ

)
. The tradeoff with respect to the number of critics is also

observed in a practical ablation study (see Figures 5 and 4) .

4.2 Proof Sketch of Theorem 4.3

The proof of this term is considerably easier than the bound of the regret for the policy player
because we have exact knowledge of the decision variables domain 5. The first step in the proof is
to decompose (1− γ)Regretc as follows

K∑
k=1

〈
ctrue − ck, d̂πk − d̂πE

〉
+

K∑
k=1

〈
ctrue − ck, dπ

k

− d̂πk
〉

+

K∑
k=1

〈
ctrue − ck, d̂πE − dπE

〉
.

The first term in the decomposition is upper bounded by O(
√
K) via a standard online gradi-

ent descent analysis Zinkevich [2003]. Since d̂πk is an unbiased estimate of the learner occu-
pancy measure, the second term in the decomposition is the sum of a martingale difference se-
quence. Therefore, an application of the Azuma-Hoeffding inequality ensures that this term grows
as Õ

(
log(1/δ)

√
K
)

with probability at least 1− δ.

5C is taken to be the ℓ∞-ball of radius 1
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Finally, the last term is bounded as Õ
(
K log(1/δ) |DπE |

−1/2
)

with probability at least 1− δ. This
is done, proving that for the empirical average estimators for the expert occupancy measure it holds
that

∥∥∥dπE − d̂πE

∥∥∥
1
≤ |DπE |

−1/2
log(1/δ) with probability at least 1 − δ. A union bound concludes

the proof of Theorem 4.3. The formal proof is deferred to the Appendix.

5 SOAR for continuous state and actions problems.

In this section, we explain how Algorithm 1 is instantiated in imitation learning problems with con-
tinuous states and action spaces, which therefore requires neural networks to approximate the value
function and policy updates. Since in our analysis for the tabular case, we need to use multiplicative
weights/softmax updates, we decided to use SAC, which is an approximation of such updates in the
continuous state-action setting.

However, the standard SAC keeps only one network, often called the critic network, to estimate the
Q values. On the other hand, we use a pair of them to avoid the excessive overestimation noticed in
Double DQN van Hasselt et al. [2015]. Since it uses only one pair of critics, SAC cannot achieve
optimism reliably with high probability.

To fix this issue, we consider multiple critics and we used as an optimistic estimate the mean mi-
nus the standard deviation of the ensemble as explained in Algorithm 5. In addition, the standard
deviation needs to be truncated at a threshold, as was done in the tabular analysis, to avoid the
value function estimators growing out of the attainable range. For any state s, the estimated value
functions are truncated in the interval

[
0, (1− γ)−1

]
.

Each of the estimators (critics) {Qℓ}Lℓ=1 is trained in the same way (minimizing the squared Bell-
man error as in standard SAC ) on a different dataset collected by the same actor. That is, on
independent identically distributed datasets. For completeness, the SAC critic training is included
in Algorithm 7 in Appendix H. In the continuous setting, it is clearly not possible to compute the
optimistic state-action value at every state-action pair. Thankfully, it suffices to compute the op-
timistic state action value function Q, invoking the routine OPTIMISTICQ-NN, only for the state-
actions in a minibatchD = {si, ai}Ni=1. Indeed, the policy network weights does not require perfect
knowledge of Q over S × A but only an Adam Kingma and Ba [2015] update step on the loss
Lπ = 1

N

∑N
i=1 (−η log π(ai|si) +Q(si, ai)) .

In the next section, we show that for multiple choices of UPDATECOST (ML-IRL, CSIL and RKL)
replacing the standard SAC critic update routine with OPTIMISTICQ-NN leads to improved perfor-
mance. Experiments in the Appendix confirm this finding.

6 Conclusions and Open Questions

While there has been interest in developing heuristically effective exploration techniques in deep
RL, the same is not true for deep IL. For example, even in the detailed study What matters in Ad-
versarial Imitation Learning ? Orsini et al. [2021] the effectiveness of deep exploration techniques
is not investigated. Prior to our work, only few studied the benefits of exploration in imitation
learning, mostly in the state-only regime Kidambi et al. [2021]. However, their theoretical algo-
rithm uses bonuses that cannot be implemented with neural networks. Similarly, the recent work Xu
et al. [2024] uses exploration technique in Deep IL but requires solving a complicated non-concave
maximization problem. Our approach is remarkably easier to implement. It achieves convincing em-
pirical results results and enjoys theoretical guarantees. Moreover, our framework can be expected
to be beneficial for any existing or future deep IL algorithm using SAC for policy updates.

Open Questions On the theoretical side, we plan to analyze the ensemble exploration technique
in the linear MDP case. From the practical one, we will investigate if the exploration enhanced
versions of DQN Osband et al. [2016a, 2018] can speed up imitation learning from visual input.
Finally, the same idea might find application in the LLM finetuning given the recently highlighted
potential of IL for this task Wulfmeier et al. [2024], Foster et al. [2024].
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A Omitted Pseudocodes

Algorithm 2 Tabular SOAR-IL

Require: Step size η, Expert dataset DπE , Discount factor γ, Reward step size α, N0(s, a) = 0 for
all s, a, number of estimators L = 36 log (|S| |A|K/δ).

1: Initialize π1 as uniform distribution over A
2: for k = 1 to K do
3: Sample trajectory length Lk ∼ Geometric(1− γ).
4: τk =

{
(skt , a

k
t )
}Lk

t=1
rolling out πk for Lk steps.

5: Update counts for all skt , a
k
t ∈ τk:

Nk(skt , a
k
t ) = Nk−1(skt , a

k
t ) + 1.

6: Add skt , a
k
t , s

k
t+1 to the datasets with index ℓ = Nk(skt , a

k
t ) mod L,

Dkℓ = Dk−1
ℓ ∪

{
skt , a

k
t

}
, Rkℓ = Rk−1

ℓ ∪
{
skt , a

k
t , s

k
t+1

}
.

7: ck = COSTUPDATETABULAR(ck−1, τk,DπE).
8: for ℓ = 1 to L do
9: Nk

ℓ (s, a, s
′) =

∑
s̄,ā,s̄′∈Rk

ℓ
1{s̄,ā,s̄′=s,a,s′}.

10: Nk
ℓ (s, a) =

∑
s̄,ā∈Dk

ℓ
1{s̄,ā=s,a}.

11: P̂ kℓ (·|s, a) =
Nk

ℓ (s,a,·)
Nk

ℓ (s,a)+2

12: end for
13: Qk+1 = OPTIMISTICQTABULAR(V k,

{
P̂ kℓ

}L
ℓ=1

, ck).

14: πk+1(a|s) ∝ πk(a|s) exp
(
−ηQk+1(s, a)

)
15: V k+1(s) =

〈
πk+1(·|s), Qk+1(s, ·)

〉
16: end for
17: Return The mixture policy π̂K .

Algorithm 3 COSTUPDATETABULAR

Require: Current cost vector ck−1, trajectory τk, expert dataset DπE .
1: if STATE-ONLY = TRUE then
2: d̂πk = esk

Lk
.

3: d̂πE = |DπE |
−1∑

s∈DπE
es

4: else
5: d̂πk = esk

Lk ,a
k

Lk
.

6: d̂πE = |DπE |
−1∑

s,a∈DπE
es,a

7: end if
8: Return: ck ← ΠC

[
ck−1 − α(d̂πE − d̂πk)

]
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Algorithm 4 OPTIMISTICQTABULAR

Require: current state value function estimate V k, ensemble of estimated transitions
{
P̂ kℓ

}L
ℓ=1

,

cost ck.
1: // Option 1

return Qk+1 = ck + γ min
ℓ∈[L]

P̂ kℓ V
k (Min)

2: // Option 2

return Qk+1 = ck + γmax

[
1

L

L∑
ℓ=1

P̂ kℓ V
k − σk, 0

]
(Mean-Std)

3: with σk =

√∑L
ℓ=1

(
P̂ kℓ V

k − 1
L

∑L
ℓ′=1 P̂

k
ℓ′V

k
)2
.

Algorithm 5 OPTIMISTICQ-NN

Require: Replay buffer D, Estimators {Qℓ}Lℓ=1, maximum standard deviation σ.
1: {si}Ni=1 ← sample observations from D
2: ai ← π(si)

3: Q̄(si, ai) =
1
L

∑L
ℓ=1Qℓ(si, ai)

4: std-Q(sℓ, aℓ) =

√
1
L

∑L
ℓ=1

(
Qℓ(si, ai)− Q̄(si, ai)

)2
5: std-Q(si, ai)← Clip(std-Q(si, ai), 0, σ).
6: Q(si, ai) = Q̄(si, ai)− std-Q(si, ai)
7: Return: Q(si, ai) for all i = 1, . . . , N .

B Experiments

We perform experiments for both state only and state action IL on the following MuJoCo Todorov
et al. [2012] environments: Ant, Hopper, Walker2d, and Humanoid.

For the state-only IL setting, we showcase the improvement on RKL Ni et al. [2021] and ML-IRL
(State-Only) Zeng et al. [2022]. In both cases, we found that using L = 4 critic networks and an
appropriately chosen value for the standard deviation clipping threshold σ consistently improves
upon the baseline. In the Appendix F, we conduct an ablation study for L and σ.

We denote our derived algorithms as RKL+SOAR and ML-IRL+SOAR. In addition to observing an
improvement over standard RKL and ML-IRL, we outperform the state-only version of the recently
introduced OPT-AIL algorithm Xu et al. [2024] (see Figure 2) which incorporates an alternative,
more complicated, deep exploration technique.

For the state-action experiments, we plug in the SOAR template on CSIL and the state-action version
of ML-IRL. We coined the derived versions CSIL+SOAR and ML-IRL+SOAR (see Appendix H for
detailed pseudocodes of these algorithms). We also compare with GAIL Ho and Ermon [2016],
SQIL Reddy et al. [2019b], and OPT-AIL. We observe that the exploration mechanism injected by
the SOAR principle allows us to achieve reliably superior results (see Figure 3).

Further details about the hyperparameters are provided in the Appendix F. Moreover, we notice that
for all the algorithms in the higher-dimensional and thus more challenging environments (Ant-v5
and Humanoid-v5), the advantage of the SOAR exploration technique becomes more evident.

The experts trajectory are obtained from policy networks trained via SAC. The expert returns are
reported in Table 1.

We highlight that the SOAR algorithmic idea can be used also for other imitation learning algorithms
based on SAC such as AdRIL Swamy et al. [2021] and SMILING Wu et al. [2024].
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Figure 2: Experiments from State-Only Expert Trajectories. 16 expert trajectories, average over 5 seeds,
L = 4 Clipping values σ - ML-IRL: [Ant: 10.0, Hopper: 50.0, Walker2d: 0.5, Humanoid: 5.0], rkl: [Ant: 0.8,
Hopper: 50.0, Walker2d: 30.0, Humanoid: 100.0]

Figure 3: Experiments from State-Action Expert Trajectories. 16 expert trajectories, average over 5 seeds,
L = 4. Clipping values σ - CSIL: [Ant: 10.0, Hopper: 5.0, Walker2d: 0.5, Humanoid: 0.1], ML-IRL(SA):
[Ant: 5.0, Hopper: 10.0, Walker2d: 0.5, Humanoid: 50.0]

B.1 Experiment on a hard exploration task

An anonymous reviewer pointed out that the MuJoCo benchmark is not the hardest for what concern
exploration. This is a very valid suggestion that we address here. This will also allow to understand
better the role of the number of critics L. Therefore, to highlight even more the importance of
exploration especially in imitation learning from states only we run SOAR-IL in the worst case
construction used in the lower bound for the number of environment interaction in [Moulin et al.,
2025, Theorem 19]. This is a simple two states MDP ( a low reward state and a high reward state )
with 20 actions per state. From the high reward state all actions are identical. From the low reward
state, all actions are identical but the one chosen by the deterministic expert which has just a slightly
higher probability to lead to the high reward state from the low reward state. Even observing the
expert state occupancy measure perfectly, it is difficult for the learner to find out which is the action
which the expert took. That is because all actions are almost identical but one. We can see that with
only 1 network, the mean of the learner does not reach the expert performance and the variance is
very high meaning that some seeds are successful and others fail. This is in perfect agreement with
Corollary 4.11 which predicts that for low values of the number of critics L, the optimistic properties
of the critic estimators can not be guaranteed with high probability. For L = 2, the environment is
solved successfully albeit with a higher variance than the case L = 3. Increasing L further leads
to worst results in terms of MDP samples needed to solve the task. This is because according to
Lemma 4.13 the upper bound on the expected on policy temporal difference error scales with L so
an excessively large L should be avoided. We used α = 0.5, η = 4, and we scaled the standard
deviation bonus by 0.001.

Table 1: Expert returns
Method Ant-v5 Hopper-v5 Humanoid-v5 Walker2d-v5
Expert 4061.41 3500.87 5237.48 5580.39
return ± 730.58 ± 4.33 ± 414.69 ± 20.30
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Figure 4: Ablation for L on hard exploration task. State only imitation experiment in a hard exploration
environment (used in the lower bound from [Moulin et al., 2025, Theorem 19]) . Results averaged over 5 seeds,
for a dataset of 100 states sampled from the expert occupancy measure.

C Related Works

IL Theory The first theoretical guarantees obtained for the imitation learning problem dates back
to the work of Abbeel and Ng [2004] and Syed and Schapire [2007] which notably used the idea
of no-regret learning. However, their work requires either knowledge of the environment transitions
or they require a suboptimal in the precision parameter ε amount of expert trajectories to estimate
those. Our theoretical guarantees are in the same setting of previous works like Shani et al. [2021]
and Xu et al. [2023] which do not require knowledge of the environment transitions a priori but
assumes online trajectory access to the environment. The main difference that their work focuses
on the easier finite horizon setting. Additionally, their exploration techniques only applies to the
tabular setting. Indeed, in the MuJoCo experiments in Shani et al. [2021], the authors do not attempt
to implement the exploration mechanism required for their theoretical guarantees. In a similar way,
also Xu et al. [2023] can not be implemented beyond the tabular setting because it relies on a reward
free procedure requiring bonuses proportional to the number of visits to each state action pair. Ren
et al. [2024] suggest an algorithm which does not require exploration but it can not improve upon be-
havioural cloning in terms of expert trajectories. Rajaraman et al. [2020, 2021b], Foster et al. [2024]
analyze instead offline imitation learning (behavioural cloning) where no additional interaction with
the environment is allowed. This setting is more general but it comes at the cost of additional as-
sumptions such as policy realizability or worst depedence on the horizon on the required number
of trajectories. Foster et al. [2024] presents an analysis for general policy classes but they require
a maximum likelihood oracle which can not be implemented exactly when using neural network
function approximation.

There has been also a variety of studies tackling the problem of computationally efficient algo-
rithm with linear function approximation such as Kamoutsi et al. [2021], Viano et al. [2022b, 2024],
Rajaraman et al. [2021a], Swamy et al. [2022]. However, their proof techniques are strictly depend-
ing on the linearity of the dynamics therefore the experiments in continuous control tasks require
changes in the algorithmic design. Albeit our guarantees are restricted to the tabular setting, the
algorithm can be implemented with no modifications with neural networks.

Several works focus on the setting where expert queries are allowed at any state visited during the
MDP interaction Ross and Bagnell [2010], Ross et al. [2011], Swamy et al. [2021] or that require
a generative model for the algorithm updates Swamy et al. [2022]. Another recent work requires
a generative model to sample the initial state of the trajectory from the expert occupancy measure
Swamy et al. [2023]. Our algorithm requires sampling only trajectories in the MDP therefore it does
not leverage the aforementioned generative model assumption. In contrast, the setting of this work
matches the most practical one adopted for example in Ho et al. [2016], Ho and Ermon [2016], Fu
et al. [2018], Reddy et al. [2019a], Dadashi et al. [2021], Watson et al. [2023], Garg et al. [2021],
Ni et al. [2021]. In this case, the expert policy can not be queried and the learner access only a
precollected dataset of expert demonstrations.

Theory for IL from States Only This setting has been firstly studied in Sun et al. [2019b] in
the finite horizon setting and with general function approximation their work does not use explo-
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ration mechanism. However their work requires an additional realizability assumption of the expert
value function, it can only learn a difficult to store and deploy non stationary policy and provides
suboptimal guarantees on τE in terms of the horizon dependence.

The follow up from Arora et al. [2020], still requires the realizability of the state value function
which is not needed in our work. The work of Kidambi et al. [2021] uses the idea of exploration
in state only finite horizon imitation learning. Their analysis for tabular MDP gives a bound on K
which has a worst horizon dependence and it requires the design of exploration bonuses tight to the
structural properties of the MDP. Therefore, their NN experiments requires an empirical approxima-
tion of such bonuses while the SOAR framework applies naturally.

Wu et al. [2024] imposes expert score function realizability and that the expected state norm remains
bounded during learning. The algorithm has provable guarantees but it requires an expensive RL in
the loop routine that we avoid in our work.

Exploration Techniques in Deep RL Ensemble of Q networks has also been used for training
stabilization Anschel et al. [2017]. Zhang et al. [2025] introduces exploration technique based on
multiple actors. Ciosek et al. [2019] does not have theoretical guarantees but it uses the idea of con-
structing an optimistic critic using mean plus standard deviation but only to define an exploratory
policy with which collecting data. Our approach instead maintains only one actor policy which is
updated with the optimistic Q estimate. Parker-Holder et al. [2020], Lyu et al. [2022] exploration
with ensemble of actors rather than critics. Kurutach et al. [2018], Chua et al. [2018] uses an en-
semble of networks trained to learn the transition model to improve the sample complexity in model
based RL. Henaff et al. [2022] learns instead an inverse dynamics model and via an encoder and
decoder model and uses the features output by the encoder to compute elliptical potential bonuses
which are standard in linear bandits Abbasi-Yadkori et al. [2011]. Moskovitz et al. [2021] improved
TD-3 Fujimoto et al. [2018] using an ensemble of critics and a bandit algorithm to find an aggre-
gation rule balancing well the amount of optimism required by online exploration and pessimism
required by off policy algorithms such as TD-3.

In addition, there are several deep RL work that takes a bayesian point of view to the problem,
these algorithms often achieve remarkable performance but the algorithm implemented with deep
networks requires usually adjustments creating a mismatch compared to the provable algorithms in
the tabular case. Among those Luis et al. [2023], Zhou et al. [2020], O’Donoghue et al. [2018] use
the Bellman equation for the state value function variance to train a network (dubbed U network)
that models the uncertainty of the network predicting theQ values. They respectively prove that this
trick improves the performances of SAC, PPO Schulman et al. [2017] and DQNMnih et al. [2015].
Curi et al. [2020] uses the model uncertainty estimate in the update of the actor.

Moreover, building on the theoretical analysis of PSRL Osband and Van Roy [2014] and RLSVI
Osband et al. [2016b] that show sublinear bayesian regret bound. At any step, these algorithms
sample from a posterior distribution either an MDP where to plan or a value function to follow
greedly at each step. Between one step and the other the posterior is updated given the new data.
While the theorical analysis in the above works prescribe a randomization at the value function
parameters level, in the deep RL version, dubbed Boostrapped DQN Osband et al. [2016a], the
perturbation is performed implicitly maintaining a set of Q networks and sampling uniformly at
each round according to which network the agent chooses the greedy action. Chen et al. [2017]
improved upon Bootstrapped DQN using an aggregation rule. That is acting greedy with respect to
the mean plus standard deviation of the q ensemble. Osband et al. [2018] further builds on this idea
adding a differ prior to each network in the ensemble to increase diversity. Finally, Osband et al.
[2023a] replaces the uniform sampling in Osband et al. [2016a] with a learned distribution with an
epistemic network Osband et al. [2023b].

Furthermore, motivated by the bayesian regret bound proven in O’Donoghue [2021] in the tabular
case and the one in O’Donoghue [2023], Tarbouriech et al. [2024] proves a regret bound in the
function approximation setting and showcased convincing performance in the Atari benchmark.
Their algorithm requires to know the variance of the cost posterior distribution which is not available
in the neural network experiments. Therefore, it is estimated using the standard deviation of an
ensemble of cost network. In our work, we use an ensemble of Q networks and not cost networks.

Additionally, Ishfaq et al. [2021] analyzed ensemble exploration techniques in the general function
approximation setting. Their ensemble consists of different critics trained on the same state actions
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dataset but with rewards perturbed with a gaussian random vector. Ishfaq et al. [2023, 2024] looked
at efficient implementation of Thompson sampling in Deep RL and obtained convincing results in
Atari and providing guarantees for linear MDPs and general function approximation respectively.
Moreover, Ishfaq et al. [2025] extended the above results for continuous action spaces. Unfortu-
nately, these methods do not apply directly to imitation learning because they require a fixed reward
function.

Exploration techniques in Deep IL As mentioned only few works investigated exploration tech-
niques in Deep IL. Apart from the previously mentioned works, Yu et al. [2020] adopts a model
based approach and used exploration bonuses based on prediction error of the next observed state
(a.k.a. curiosity driven exploration Pathak et al. [2017], Burda et al. [2018]). Finally we notice
that ensembles have been used in IL theory IL also for goals different to exploration. In particular,
Swamy et al. [2022] partitioned the expert dataset in two subdataset and show that these technique
allows for improved expert sample complexity bounds when the expert is deterministic.

State-only imitation learning Torabi et al. [2018b] tackled the problem of imitation learning from
states only modifying the discriminator of GAIL Ho and Ermon [2016] to take as input state next
state pairs instead of state action pairs. Further practical improvements have been proposed in Zhu
et al. [2020] that allows for the use of off-policy data. The works Yang et al. [2019], Nair et al.
[2017], Pathak et al. [2018], Radosavovic et al. [2021] use the idea of an inverse dynamic model
while Edwards et al. [2019], Ganai et al. [2023] develops a practical algorithm aiming at estimating
the forward dynamic model. Furthermore, Torabi et al. [2018a] introduces a twist in behavioral
cloning using inverse dynamic modelling to make it applicable to state only expert datasets. A
comprehensive literature review can be found in Torabi et al. [2019]. More recently, features/state
only imitation learning has found application in non markovian decision making problems Qin et al.
[2024]. Sikchi et al. [2022] introduce an algorithm that takes advantage of an offline ranker between
trajectories to get strong empirical results in LfO setting. Another line of works Gupta et al. [2017],
Sermanet et al. [2018], Liu et al. [2019], Viano et al. [2021, 2022a], Gangwani and Peng [2020],
Cao and Sadigh [2021], Gangwani et al. [2022] motivate imitation learning from observation alone
arguing that the expert providing the demonstrations and the learner acts in slightly different envi-
ronments. In Kim et al. [2022a], Sikchi et al. [2024], the authors proposed convex programming
based methods to imitate an expert policy from expert state only demonstration and auxiliary ar-
bitrary state action pairs. Several works Ni et al. [2021], Kim et al. [2022b], Ma et al. [2022], Yu
et al. [2023] introduce empirical methods to minimize an f -divergence between expert and learner
state occupancy measure. Complementary, Chang et al. [2023] minimizes the Wasserstein distance
between expert and learner state occupancy measure. Their numerical results are convincing but no
sample complexity bounds are provided. Convincing results have been obtained also in Chang et al.
[2024] that uses the idea of boosting and in Wu et al. [2024] which uses a diffusion models inspired
loss to update the cost.

D Theoretical Analysis

D.1 Upper bounding the policy regret

Corollary D.1. Consider an MDP where maxs,a∈S×A supp(P (·|s, a)) = 2, then for L ≥
36 log

(
|S||A|K

δ

)
it holds that with probability at least 1− δ

min
ℓ∈[L]

P̂ kℓ V
k(s, a) ≤ PV k(s, a) ∀ s, a ∈ S ×A, ∀ k ∈ [K].

Proof. Let us fix a state-action-next state triplet s, a, s′, a batch index ℓ ∈ [L] and an iteration index
k ∈ [K]. Then, we consider the following stochastic estimator for the probability of transitioning to
s′ from state s taking action a.

P̂ kℓ (s
′|s, a) = Nk

ℓ (s, a, s
′)

Nk
ℓ (s, a) + 2

=

∑
s̄,ā,s̄′∈Rk

ℓ
1{s̄,ā,s̄′=s,a,s′}

Nk
ℓ (s, a) + 2

=

∑
s̄,ā,s̄′∈Rk

ℓ :s̄,ā=s,a
1{s̄′=s′}

Nk
ℓ (s, a) + 2

.
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Notice that in above estimators the denominator corresponds to the number of visits of the pair s, a
up to the time k ∈ [K] within the batch ℓ ∈ [L], i.e. Nk

ℓ (s, a), increased by 2 for technical reasons.
At the numerator instead we have the sum of Nk

ℓ (s, a) indicators functions which equals one when
the state following the state action pair s, a is equal to s′. Each of this indicator is a random variable
distributed according to a Bernoulli random variable with mean P (s′|s, a). At this point, we can use
the technique introduced in Cassel et al. [2024]. In particular, we will show that

P
[
P̂ kℓ (s

′|s, a) ≤ P (s′|s, a)
]
≥ 1

4
∀s, a, s′ ∈ S ×A× children(s),∀k ∈ [K],∀ℓ ∈ [L].

We distinguish 3 cases: Nk
ℓ (s, a) = 0, Nk

ℓ (s, a) = 1, Nk
ℓ (s, a) ≥ 2. If Nk

ℓ (s, a) = 0, then, we have
that

P̂ kℓ (s
′|s, a) = 0 ≤ P (s′|s, a).

If Nk
ℓ (s, a) = 1, we distinguish two cases. If P (s′|s, a) ≥ 1

3 , then

P̂ kℓ (s
′|s, a) ≤ 1

3
≤ P (s′|s, a).

Otherwise, if Nk
ℓ (s, a) = 1, and P (s′|s, a) ≤ 1

3 then

P
[
1{s̄′=s′}

3
≤ P (s′|s, a)

]
= P

[
1{s̄′=s′} = 0

]
= 1− P (s′|s, a) ≥ 2

3
≥ 1

4
.

Finally, for Nk
ℓ (s, a) ≥ 2,we have that for P (s′|s, a) ≥ 1− 1

Nk
ℓ (s,a)

it holds that

P̂ kℓ (s
′|s, a) ≤ Nk

ℓ (s, a)

Nk
ℓ (s, a) + 2

= 1− 2

Nk
ℓ (s, a) + 2

≤ 1− 1

Nk
ℓ (s, a)

≤ P (s′|s, a),

where the last inequality holds for Nk
ℓ ≥ 2. Otherwise, for P (s′|s, a) ≤ 1 − 1

Nk
ℓ (s,a)

we can apply
[Cassel et al., 2024, Lemma 2] (adapted from [Wiklund, 2023, Corollary 1] ) to obtain

P
[
P̂ kℓ (s

′|s, a) ≤ P (s′|s, a)
]
≥ P

 ∑
s̄,ā,s̄′∈Rk

ℓ :s̄,ā=s,a

1{s̄′=s′} ≤ Nk
ℓ (s, a)P (s

′|s, a)

 ≥ 1

4
.

At this point notice that for any positive vector V ∈ [0, (1− γ)−1]|S|, it holds that

P
[
P̂ kℓ (s

′|s, a) ≤ P (s′|s, a) ∀s′ ∈ children(s)
]
= P

[
P̂ kℓ (s

′|s, a)V (s′) ≤ P (s′|s, a)V (s′) ∀s′ ∈ children(s)
]

≤ P

[∑
s′∈S

P̂ kℓ (s
′|s, a)V (s′) ≤

∑
s′∈S

P (s′|s, a)V (s′)

]
where the inequality holds because of the following implication between events

P̂ kℓ (s
′|s, a)V (s′) ≤ P (s′|s, a)V (s′) ∀s′ ∈ children(s) =⇒

∑
s′∈children(s)

P̂ kℓ (s
′|s, a)V (s′) ≤

∑
s′∈children(s)

P (s′|s, a)V (s′).

Moreover, since the estimation at each state s′ is independent we have that

P
[
P̂ kℓ (s

′|s, a) ≤ P (s′|s, a) ∀s′ ∈ children(s)
]
=

∏
s′∈children(s)

P
[
P̂ kℓ (s

′|s, a) ≤ P (s′|s, a)
]
≥
(
1

4

)|children(s)|

Then, for any s, a ∈ S ×A is concluded by the following chain of inequalities

P

min
ℓ∈[L]

∑
s′∈children(s)

P̂ kℓ (s
′|s, a)V (s′) ≥

∑
s′∈children(s)

P (s′|s, a)V (s′)


= P

 ∑
s′∈children(s)

P̂ kℓ (s
′|s, a)V (s′) ≥

∑
s′∈children(s)

P (s′|s, a)V (s′) ∀ℓ ∈ [L]


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=
∏
ℓ∈[L]

1− P

 ∑
s′∈children(s)

P̂ kℓ (s
′|s, a)V (s′) ≤

∑
s′∈children(s)

P (s′|s, a)V (s′)


≤
∏
ℓ∈[L]

(
1− P

[
P̂ kℓ (s

′|s, a) ≤ P (s′|s, a) ∀s′ ∈ children(s)
])

≤
∏
ℓ∈[L]

(
1− 1

4

|children(s)|
)
≤ e−L log

(
4|children(s)|

4|children(s)|−1

)
.

Therefore, choosing L ≥ log(1/δ)

log
(

4|children(s)|

4|children(s)|−1

) , we ensure that

P
[
min
ℓ∈[L]

P̂ kℓ V
k(s, a) ≥ PV k(s, a)

]
≤ δ.

For |children(s)| = 2, we have that
(
log
(

4|children(s)|

4|children(s)|−1

))−1

≤ 36, therefore with a union bound

over the sets S,A and [K] we conclude that for L ≥ 36 log
(

|S||A|K
δ

)
, it holds that

P
[
min
ℓ∈[L]

P̂ kℓ V
k(s, a) ≤ PV k(s, a) ∀ s, a, k ∈ S ×A× [K]

]
≥ 1− δ.

D.2 Policy Regret Decomposition

Theorem 4.2. Policy Regret In a binarized MDP with |S| states and discount factor γ, it holds that
with probability 1− 3δ, for any policy π⋆, Regretπ(K,π

⋆) is upper bounded by

log |A|
η(1− γ)

+
ηK

(1− γ)4
+ Õ


√
K |S|2 |A| log(1/δ)

(1− γ)2


and for η =

√
log|A|(1−γ)3

K it holds that using the update in (Min) or in (Mean-Std) it holds that

Regret(K,π⋆) is upper bounded by Õ
(√

K|S|2|A| log(1/δ)
(1−γ)5

)
.

Proof. The theorem is proven with the following regret decomposition in virtue of Lemma 4.5
already presented in the main text. Denoting δk(s, a) ≜ ck(s, a) + γPV k(s, a) − Qk+1(s, a)

and gk(s, a) ≜ Qk+1(s, a)−Qk(s, a)

(1− γ)Regretπ(K;π⋆) =

K∑
k=1

Es∼dπ⋆

[〈
Qk(s, ·), πk(s)− π⋆(s)

〉]
(BTRL)

+

K∑
k=1

∑
s,a

[
dπ

k

(s, a)− dπ
⋆

(s, a)
]
·
[
δk(s, a)

]
(Optimism)

+

K∑
k=1

E
s,a∼dπk

[
gk(s, a)

]
−

K∑
k=1

Es,a∼dπ⋆

[
gk(s, a)

]
(Shift)

At this point, we bound each term with the following Lemmas, we obtain√
log |A|K
(1− γ)5

+ Õ


√
K |S|2 |A| log(1/δ)

(1− γ)2


≤ Õ

√K |S|2 |A| log(1/δ)
(1− γ)5

 .
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Bound on (BTRL) Then, we continue bounding the first term invoking the following lemma.

Lemma D.2. Let us consider the sequence of policies
{
πk
}K
k=1

generated by Algorithm 2 for all

η > 0 then it holds that (BTRL) ≤ log|A|
η .

Proof.

K∑
k=1

Es∼dπ⋆
ρek

[〈
Qk(s, ·), πk(s)− π⋆(s)

〉]
=
∑
k∈K

Es∼dπ⋆

[〈
Qk(s, ·), πk(s)− π⋆(s)

〉]
= Es∼dπ⋆

[∑
k∈K

〈
Qk(s, ·), πk(s)− π⋆(s)

〉]
(2)

Then, applying a standard regret bound for Be the Regularized Leader (BTRL) it holds that for all
s ∈ S ∑

k∈K

〈
Qk(s, ·), πk(s)− π⋆(s)

〉
=

log |A|
η

Then, plugging into (2) we conclude that

(BTRL) ≤ log |A|
η

.

Bound on (Shift) We follow the idea from Moulin and Neu [2023] of controlling this term proving
that two consecutive policies will have occupancy measures within a O(η) total variation distance.

Lemma D.3. For the sequence of policies
{
πk
}K
k=1

generated by Algorithm 2, for all η > 0, it
holds that (Shift) ≤ ηK

(1−γ)3 .

Proof. Let us denote Qmax = (1− γ)−1

K∑
k=1

〈
dπ

k

, Qk −Qk+1
〉
=

(〈
dπ

1

, Q1
〉
+

K−1∑
2

〈
Qk, dπ

k

− dπ
k−1
〉
−
〈
dπ

K

, QK
〉)

≤ Qmax +
ηQ2

max(K − 2)

(1− γ)
≤ ηQ2

max(K − 1)

(1− γ)
.

In the first inequality, we used Lemma E.4. Finally, noticing that

−
K∑
k=1

〈
dπ

⋆

, Qk −Qk+1
〉
=
〈
dπ

⋆

, QK −Q1
〉
≤ Qmax

and that

(Shift) =
K∑
k=1

〈
dπ

k

, Qk −Qk+1
〉
−

K∑
k=1

〈
dπ

⋆

, Qk −Qk+1
〉

allows us to conclude the proof summing the two bounds.

Bound on (Optimism)
Lemma D.4. Let us consider an MDP where maxs,a∈S×A supp(P (·|s, a)) = 2. For each k ∈ [K],
if the Qk+1 in Algorithm 2, are updated according to (Min) or (Mean-Std), the iterates produced by
Algorithm 2 satisfy with probability 1− 3δ that

(Optimism) ≤ Õ


√
K |S|2 |A| log(1/δ)

1− γ

 .
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Proof. For the optimism term we can observe that using the update of the Q values, we have that

δk(s, a) = γ(PV k(s, a)− min
ℓ∈[L]

P̂ kℓ V
k(s, a))

Therefore, in virtue of Corollary 4.11 with probability 1− δ it holds that

δk(s, a) ≥ 0 ∀ s, a ∈ S ×A.

Therefore, with probability 1− δ, we have that

K∑
k=1

∑
s,a

[
dπ

k

(s, a)− dπ
⋆

(s, a)
]
·
[
δk(s, a)

]
≤

K∑
k=1

∑
s,a

dπ
k

(s, a)δk(s, a)

= γ

K∑
k=1

E
s,a∼dπk

[
PV k(s, a)− min

ℓ∈[L]
P̂ kℓ V

k(s, a)

]
At this point, using Lemma D.5 and a union bound we have that with probability 1 − 2δ, it holds
that
K∑
k=1

∑
s,a

[
dπ

k

(s, a)− dπ
⋆

(s, a)
]
·
[
δk(s, a)

]
≤ γ

K∑
k=1

E
s,a∼dπk

[√
|S|

(Nk(s, a)/L+ 1)(1− γ)2
log

(
|S| |A|LK2(K + 1)

(1− γ)δ

)]

+ γ

K∑
k=1

E
s,a∼dπk

[
2

(Nk(s, a)/L+ 1)(1− γ)

]
+ 4

≤

√√√√K

K∑
k=1

E
s,a∼dπk

[
|S|

(Nk(s, a)/L+ 1)(1− γ)2
log

(
|S| |A|LK2(K + 1)

(1− γ)δ

)]

+ γ

K∑
k=1

E
s,a∼dπk

[
2

(Nk(s, a)/L+ 1)(1− γ)

]
+ 4

At this point, since Lk is geometrically distributed for every k ∈ [K] it holds that Lk ≤ Lmax :=
log(K/δ)
(1−γ) for all k ∈ [K] with probability 1 − δ. Therefore, we can invoke Lemma E.2 to bound∑K
k=1 Es,a∼dπk

[
2

(Nk(s,a)/L+1)

]
. Another union bound ensures that with probability 1 − 3δ, we

have that
K∑
k=1

∑
s,a

[
dπ

k

(s, a)− dπ
⋆

(s, a)
]
·
[
δk(s, a)

]
≤ 1

1− γ

√
K |S| log

(
|S| |A|LK2(K + 1)

(1− γ)δ

)
(2L |S| |A| log (KLmax) + 4 log (2K/δ))

+
2

1− γ
(2L |S| |A| log (KLmax) + 4 log (2K/δ))

= Õ


√
K |S|2 |A| log(1/δ)

1− γ

 .

where the Õ notation hides logarithmic factors in K, 1− γ, |S| and |A|.

Now, we prove the part of the Theorem that considers the update for Qk+1 given in (Mean-Std).
Under this update, we have that

δk(s, a) = γ

PV k(s, a)−max

 1

L

L∑
ℓ=1

P̂ kℓ V
k(s, a)−

√√√√ L∑
ℓ=1

(
P̂ kℓ V

k(s, a)− 1

L

L∑
ℓ=1

P̂ kℓ V
k(s, a)

)2

, 0



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Then, applying Samuelson’s inequality Lemma E.5, we have that

min
ℓ∈[L]

P̂ kℓ V
k(s, a) ≥ 1

L

L∑
ℓ=1

P̂ kℓ V
k(s, a)−

√√√√ L∑
ℓ=1

(
P̂ kℓ V

k(s, a)− 1

L

L∑
ℓ=1

P̂ kℓ V
k(s, a)

)2

moreover, it holds that
min
ℓ∈[L]

P̂ kℓ V
k(s, a) ≥ 0

Therefore,

min
ℓ∈[L]

P̂ kℓ V
k(s, a) ≥ max

 1

L

L∑
ℓ=1

P̂ kℓ V
k(s, a)−

√√√√ L∑
ℓ=1

(
P̂ kℓ V

k(s, a)− 1

L

L∑
ℓ=1

P̂ kℓ V
k(s, a)

)2

, 0


which implies

δk(s, a) ≥ γ
(
PV k(s, a)− min

ℓ∈[L]
P̂ kℓ V

k(s, a)

)
≥ 0

where the last inequality holds with probability 1 − δ thanks to Corollary 4.11. Therefore, with
probability 1− δ, we have that

K∑
k=1

∑
s,a

[
dπ

k

(s, a)− dπ
⋆

(s, a)
]
·
[
δk(s, a)

]
≤

K∑
k=1

∑
s,a

dπ
k

(s, a)δk(s, a)

≤ γ
K∑
k=1

E
s,a∼dπk

 1

L

L∑
ℓ=1

(
PV k(s, a)− P̂ kℓ V k(s, a)

)
+

√√√√ L∑
ℓ=1

(
P̂ kℓ V

k(s, a)− 1

L

L∑
ℓ=1

P̂ kℓ V
k(s, a)

)2
 ,

where the last inequality holds removing the maximum. For the first term, we can use Lemma D.5
and continue as in the previous proof to show that with probability 1− δ

γ

K∑
k=1

E
s,a∼dπk

[
1

L

L∑
ℓ=1

(
PV k(s, a)− P̂ kℓ V k(s, a)

)]
≤ Õ


√
K |S|2 |A| log(1/δ)

1− γ

 .

So, we are left with bounding the term

γ

K∑
k=1

E
s,a∼dπk


√√√√ L∑

ℓ=1

(
P̂ kℓ V

k(s, a)− 1

L

L∑
ℓ′=1

P̂ kℓ′V
k(s, a)

)2


To this end, by Jensen’s inequality we have that

γ

K∑
k=1

E
s,a∼dπk


√√√√ L∑

ℓ=1

(
P̂ kℓ V

k(s, a)− 1

L

L∑
ℓ′=1

P̂ kℓ′V
k(s, a)

)2


≤ γ
K∑
k=1

E
s,a∼dπk


√√√√ 1

L

L∑
ℓ′=1

L∑
ℓ=1

(
P̂ kℓ V

k(s, a)− P̂ kℓ′V k(s, a)
)2

≤ γ
K∑
k=1

E
s,a∼dπk


√√√√ 2

L

L∑
ℓ′=1

L∑
ℓ=1

(
P̂ kℓ V

k(s, a)− PV k(s, a)
)2

≤ γ
K∑
k=1

E
s,a∼dπk


√√√√2

L∑
ℓ=1

(
P̂ kℓ V

k(s, a)− PV k(s, a)
)2

27



At this point, notice that invoking Lemma D.5, we have that for all ℓ ∈ [L] with probability 1− δ(
P̂ kℓ V

k(s, a)− PV k(s, a)
)2

≤

(√
|S|

(Nk(s, a)/L+ 1)(1− γ)2
log

(
|S| |A|LK2(K + 1)

(1− γ)δ

)
+

2

K
+

2

(Nk(s, a)/L+ 1)(1− γ)

)2

≤ 3 |S|
(Nk(s, a)/L+ 1)(1− γ)2

log

(
|S| |A|LK2(K + 1)

(1− γ)δ

)
+

12

K2
+

12

(Nk(s, a)/L+ 1)2(1− γ)2

= Õ

(
3 |S| log

(
1
δ

)
(Nk(s, a)/L+ 1)(1− γ)2

)
.

Therefore, plugging into the previous display we obtain

γ

K∑
k=1

E
s,a∼dπk


√√√√ L∑

ℓ=1

(
P̂ kℓ V

k(s, a)− 1

L

L∑
ℓ′=1

P̂ kℓ′V
k(s, a)

)2


≤
K∑
k=1

E
s,a∼dπk


√√√√ L∑

ℓ=1

Õ

(
3 |S| log

(
1
δ

)
(Nk(s, a)/L+ 1)(1− γ)2

)
≤

√√√√K

K∑
k=1

E
s,a∼dπk

[
L∑
ℓ=1

Õ

(
3 |S| log

(
1
δ

)
(Nk(s, a)/L+ 1)(1− γ)2

)]

≤ Õ


√√√√K

K∑
k=1

E
s,a∼dπk

[
3 |S|L2 log

(
1
δ

)
(Nk(s, a) + 1)(1− γ)2

]
≤ Õ


√√√√ |S|2 log ( 1δ )K

(1− γ)2
K∑
k=1

E
s,a∼dπk

[
1

Nk(s, a) + 1

]
Finally, we bound E

s,a∼dπk

[
1

Nk(s,a)+1

]
using Lemma E.2 under the event Lk ≤ Lmax := log(K/δ)

(1−γ)
which holds with probability 1− δ. Thanks to an union bound we have that with probability 1− 2δ,

γ

K∑
k=1

E
s,a∼dπk


√√√√ L∑

ℓ=1

(
P̂ kℓ V

k(s, a)− 1

L

L∑
ℓ′=1

P̂ kℓ′V
k(s, a)

)2


≤ Õ

√ |S|2 log ( 1δ )K
(1− γ)2

|S| |A| log (KLmax) + 4 log (2KLmax/δ)


≤ Õ


√
K |S|2 |A| log(1/δ)

1− γ

 .

Therefore, the proof is concluded also for the case of Q value being updated as in (Mean-Std).

Lemma D.5. With probability 1− δ, it holds that for all s, a ∈ S ×A,

PV k(s, a)− P̂ kℓ V k(s, a) ≤

√
|S|

(Nk(s, a)/L+ 1)(1− γ)2
log

(
|S| |A|LK2(K + 1)

(1− γ)δ

)
+

2

K

+
2

(Nk(s, a)/L+ 1)(1− γ)
∀ℓ, k ∈ [L]× [K]
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In particular, the above statement implies that for all k ∈ [K]

PV k(s, a)− min
ℓ∈[L]

P̂ kℓ V
k(s, a) ≤

√
|S|

(Nk(s, a)/L+ 1)(1− γ)2
log

(
|S| |A|LK2(K + 1)

(1− γ)δ

)
+

2

K

+
2

(Nk(s, a)/L+ 1)(1− γ)

Proof. Let us introduce the value class of the possible value functions generated by Algorithm 2. i.e.
V =

{
f ∈ R|S| | ∥f∥∞ ≤

1
1−γ , f(s) ≥ 0 ∀s ∈ S

}
. Let us introduce a ϵcov-covering set Cϵcov(V)

such that for any V ∈ V there exists Ṽ ∈ Cϵcov(V) such that
∥∥∥Ṽ − V ∥∥∥

∞
≤ ϵcov. Therefore let

us denote by Ṽ k the element of Cϵcov(V) such that
∥∥∥V k − Ṽ k∥∥∥

∞
≤ ϵcov. Then, let us consider a

generic Ṽ ∈ Cϵcov(V),

PṼ (s, a)− 1

Nk
ℓ (s, a)

∑
s̄,ā,s′∈Rk

ℓ

Ṽ (s′)1{s,a=s̄,ā} =
1

Nk
ℓ (s, a)

∑
s̄,ā,s′∈Rk

ℓ

PṼ (s, a)1{s,a=s̄,ā}

− 1

Nk
ℓ (s, a)

∑
s̄,ā,s′∈Rk

ℓ

Ṽ (s′)1{s,a=s̄,ā}

=
1

Nk
ℓ (s, a)

∑
s̄,ā,s′∈Rk

ℓ

(
PṼ (s, a)− Ṽ (s′)

)
1{s,a=s̄,ā}

Then, notice that denoting s′n(s, a) the state sample after s, a the nth time the state action pair was
visited we have that∑

s̄,ā,s′∈Rk
ℓ

(
PṼ (s, a)− Ṽ (s′)

)
1{s,a=s̄,ā} =

Nk
ℓ (s,a)∑
n=1

(
PṼ (s, a)− Ṽ (s′n(s, a))

)
Applying directly the Azuma Hoeffding inequality is not possible because the number of elements
in the sum, i.e. the number of visits Nk

ℓ (s, a) is not a random variable independent on the random

variables {s′n(s, a)}
Nk

ℓ (s,a)
n=1 (see [Lattimore and Szepesvári, 2020, Exercise 7.1] ).

Therefore, we first apply the Azuma Hoeffding inequality for a specific k and for a specific value of
the visits Nk

ℓ (s, a). That is, it holds that with probability 1− δ

∑
s̄,ā,s′∈Rk

ℓ

(
PṼ (s, a)− Ṽ (s′)

)
1{s,a=s̄,ā} ≤

√
Nk
ℓ (s, a) log(1/δ)

2(1− γ)2

Therefore via a union bound for k ∈ [K] and Nk
ℓ (s, a) ∈ {0, 1, . . . ,K} we have that with probabil-

ity 1− δ it holds that for all k ∈ [K]

∑
s̄,ā,s′∈Rk

ℓ

(
PṼ (s, a)− Ṽ (s′)

)
1{s,a=s̄,ā} ≤

√
Nk
ℓ (s, a) log(K(K + 1)/δ)

2(1− γ)2
.

Therefore, we can conclude that with probability at least 1− δ for all k ∈ [K]

PṼ (s, a)− 1

Nk
ℓ (s, a)

∑
s̄,ā,s′∈Rk

ℓ

Ṽ (s′)1{s,a=s̄,ā} ≤

√
log(K(K + 1)/δ)

2Nk
ℓ (s, a)(1− γ)2

.

Now, by a another union bound over Cϵcov(V) , [K], [L] and S ×A and denoting

P̄ kℓ Ṽ (s, a) :=
1

Nk
ℓ (s, a)

∑
s̄,ā,s′∈Rk

ℓ

Ṽ (s′)1{s,a=s̄,ā},
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it holds that

P

[
PṼ (s, a)− P̄ kℓ Ṽ (s, a) ≤

√
log(K(K + 1) |S| |A| |Cϵcov(V)|L/δ)

Nk
ℓ (s, a)(1− γ)2

∀s, a, ℓ, k ∈ S ×A× [L]× [K], Ṽ ∈ V

]
≥ 1− δ

Therefore, now let us consider the element Ṽ k ∈ Cϵcov(V) such that
∥∥∥V k − Ṽ k∥∥∥

∞
≤ ϵcov. Then,

we have that for all ℓ ∈ [L]

PV k(s, a)− P̄ kℓ V k(s, a) = PṼ k(s, a)− P̄ kℓ Ṽ k(s, a) + (P − P̄ kℓ )(Ṽ k − V k)
= PṼ k(s, a)− P̄ kℓ Ṽ k(s, a) + 2ϵcov

≤

√
log(K(K + 1) |S| |A| |Cϵcov(V)|L/δ)

Nk
ℓ (s, a)(1− γ)2

+ 2ϵcov

≤

√
|S|

Nk
ℓ (s, a)(1− γ)2

log

(
K(K + 1) |S| |A|L

(1− γ)ϵcovδ

)
+ 2ϵcov

With ϵcov = K−1, we get

PV k(s, a)− P̄ kℓ V k(s, a) ≤

√
|S|

Nk
ℓ (s, a)(1− γ)2

log

(
|S| |A|LK2(K + 1)

(1− γ)δ

)
+

2

K

Then, we can continue as follows

P̂ kℓ V
k(s, a) =

Nk
ℓ (s, a)

Nk
ℓ (s, a) + 2

P̄ kℓ V
k(s, a)

≥ Nk
ℓ (s, a)

Nk
ℓ (s, a) + 2

[
PV k(s, a)−

√
|S|

Nk
ℓ (s, a)(1− γ)2

log

(
|S| |A|LK2(K + 1)

(1− γ)δ

)
− 2

K

]

= PV k(s, a)− 2

Nk
ℓ (s, a) + 2

PV k(s, a)−

√
|S|

(Nk
ℓ (s, a) + 2)(1− γ)2

log

(
|S| |A|LK2(K + 1)

(1− γ)δ

)
− 2

K

≥ PV k(s, a)− 2

(Nk
ℓ (s, a) + 2)(1− γ)

−

√
|S|

(Nk
ℓ (s, a) + 2)(1− γ)2

log

(
|S| |A|LK2(K + 1)

(1− γ)δ

)
− 2

K

Finally, rearranging and using that Nk
ℓ (s, a) =

⌊
Nk(s,a)

L

⌋
≥ Nk(s,a)

L − 1, we obtain that with
probability 1− δ, it holds that for all ℓ ∈ [L], k ∈ [K], s, a ∈ S ×A

PV k(s, a)− P̂ kℓ V k(s, a) ≤

√
|S|

(Nk(s, a)/L+ 1)(1− γ)2
log

(
|S| |A|LK2(K + 1)

(1− γ)δ

)
+

2

K

+
2

(Nk(s, a)/L+ 1)(1− γ)

D.3 Upper bound the regret of the reward player

Theorem 4.3. Cost Regret In a binarized MDP with |S| states and discount factor γ, it holds that
with probability 1− 2δ, (1− γ)Regretc(K; ctrue) is upper bounded by

4
√
K log(1/δ) +K

√
|S| |A| log (|S| |A| /δ)

2 |DπE |

Proof. We decompose the regret as follows
K∑
k=1

〈
ctrue − ck, dπ

k

− dπE

〉
=

K∑
k=1

〈
ctrue − ck, esk

Lk
− d̂πE

〉
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+

K∑
k=1

〈
ctrue − ck, dπ

k

− esk
Lk

〉
+

K∑
k=1

〈
ctrue − ck, d̂πE − dπE

〉
For the first term, we can invoke a standard online gradient descent bound and get

K∑
k=1

〈
ctrue − ck, esk

Lk
− d̂πE

〉
≤ 2

η
+ ηK

∥∥∥d̂πE

∥∥∥
2
/2

≤ 2

η
+ ηK

∥∥∥d̂πE

∥∥∥
1
/2

≤ 2

η
+
ηK

2

Therefore choosing η =
√

4
K , we get

K∑
k=1

〈
ctrue − ck, esk

Lk
− d̂πE

〉
≤ 2
√
K.

Then, we can handle the remaining two terms. In particular
∑K
k=1

〈
ctrue − ck, dπ

k − esk
Lk

〉
is the

sum of a martingale difference sequence. Therefore, applying the Azuma-Hoeffding inequality it
holds that with probability 1− δ

K∑
k=1

〈
ctrue − ck, dπ

k

− esk
Lk

〉
≤
√
2K log(1/δ)

where we used that
∣∣∣〈ctrue − ck, dπk − esk

Lk

〉∣∣∣ ≤ 2 for all k ∈ [K]. Finally for the expert concen-
tration term, we have that

K∑
k=1

〈
ctrue − ck, d̂πE − dπE

〉
≤ K

√
|S| |A| ∥dπE − dπE∥∞

Then, for any fixed state action pair s, a with probability 1 − δ/(|S| |A|) by Azuma-Hoeffding
inequality it holds that

dπE(s)− dπE(s) =
1

|DπE |
∑

s′∈DπE

1{s′=s} − dπE(s) ≤

√
log(|S| |A| δ−1)

2 |DπE |

Therefore, by a union bound it holds that with probability 1− δ,

∥dπE − dπE∥∞ ≤

√
log(|S| |A| δ−1)

2 |DπE |
.

Putting together, the bounds on the three terms allow to conclude the proof.

E Technical Lemmas

Lemma E.1. Consider the MDP M = (S,A, P, c,ν0, γ) and two policies π, π′ : S → ∆A.

Then consider for any Q̂ ∈ R|S||A| and V̂ π(s) =
〈
π(·|s), Q̂(s, ·)

〉
and Qπ

′
, V π

′
be respectively

the state-action and state value function of the policy π in MDP M . Then, it holds that (1 −
γ)
〈
ν0, V̂

π − V π′
〉

equals〈
dπ

′
, Q̂− c− γP V̂ π

〉
+ Es∼dπ′

[〈
Q̂(s, ·, π(·|s)− π′(·|s)

〉]
.
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Proof. 〈
dπ

′
, Q̂
〉
=
〈
dπ

′
, Q̂− c− γP V̂ π

〉
+
〈
dπ

′
, c+ γP V̂ π

〉
Then, using the property of occupancy measure we have that

〈
dπ

′
, c
〉
= (1− γ)

〈
ν0, V

π′
〉

where

V π
′

is the value function of the policy π′ in the MDP. Then, it holds that〈
dπ

′
, Q̂
〉
=
〈
dπ

′
, Q̂− c− γP V̂ π

〉
+ (1− γ)

〈
ν0, V

π′
〉
+
〈
dπ

′
, γP V̂ π

〉
=
〈
dπ

′
, Q̂− c− γP V̂ π

〉
+ (1− γ)

〈
ν0, V

π′
〉
+
〈
γPT dπ

′
, V̂ π

〉
=
〈
dπ

′
, Q̂− c− γP V̂ π

〉
+ (1− γ)

〈
ν0, V

π′
〉
+
〈
ET dπ

′
− (1− γ)ν0, V̂

π
〉

=
〈
dπ

′
, Q̂− c− γP V̂ π

〉
+ (1− γ)

〈
ν0, V

π′
− V̂ π

〉
+
〈
ET dπ

′
, V̂ π

〉
.

Rearranging and using the definition of V̂ π yields the conclusion.

Lemma E.2. Let us assume that Lk ≤ Lmax for all k ∈ [K]. Then, it holds that with probability
1− δ

K∑
k=1

E
s,a∼dπk

[
1

Nk(s, a)/L+ 1

]
≤ 2L |S| |A| log (KLmax) + 4 log (2KLmax/δ)

Proof. Let us assume that Lk ≤ Lmax for all k ∈ [K]. It holds that with probability 1− δ

K∑
k=1

Es,a∼dπk

[
1

Nk(s, a)/L+ 1

]
≤ 2

K∑
k=1

Lk∑
t=1

1

Nk(skt , a
k
t )/L+ 1

+ 4 log (2KLmax/δ)

≤ 2
∑

s,a∈S×A

K∑
k=1

Lk∑
t=1

1{s,a=skt ,akt }
Nk(s, a)/L+ 1

+ 4 log (2KLmax/δ)

≤ 2L
∑

s,a∈S×A

K∑
k=1

Lk∑
t=1

1{s,a=skt ,akt }
Nk(s, a) + 1

+ 4 log (2KLmax/δ)

≤ 2L
∑

s,a∈S×A

K∑
k=1

Lk∑
t=1

1{s,a=skt ,akt }∑k
τ=1

∑Lτ

t=1 1{s,a=sτt ,aτt } + 1
+ 4 log (2KLmax/δ)

≤ 2L
∑

s,a∈S×A
log

 K∑
k=1

Lk∑
t=1

1{s,a=skt ,akt }

+ 4 log (2KLmax/δ)

≤ 2L |S| |A| log (KLmax) + 4 log (2KLmax/δ)

where we used Lemma E.3 for f(x) = x−1.

Lemma E.3. Let a0 ≥ 0 and f [0,∞)→ [0,∞) be a non increasing function , then

T∑
t=1

αtf(a0 +

T∑
t=1

αt) ≤
∫ ∑T

t=1 at

a0

f(x)dx

Proof. See Orabona [2023] Lemma 4.13.

Lemma E.4. The sequence of policies
{
πk
}K
k=1

generated by Algorithm 2 and let dπ denote the
occupancy measure for the policy π. Then it holds that

∀k ∈ [K]
∥∥∥dπk

− dπ
k+1
∥∥∥
1
≤ ηQmax

(1− γ)
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Proof. By Lemma A.1 in Sun et al. [2019a] it holds that∥∥∥dπk

− dπ
k+1
∥∥∥
1
≤ 1

1− γ
E
x∼dπk

[∥∥πk(·|x)− πk+1(·|x)
∥∥
1

]
Then, we notice that by 1-strong convexity of the KL divergence it holds that

1

2
E
x∼dπk

[∥∥πk(·|x)− πk+1(·|x)
∥∥2
1

]
≤ 1

2
E
x∼dπk

[
DKL(π

k+1(·|x), πk(·|x))
]

≤ 1

2
E
x∼dπk

∑
a∈A

πk+1(a|x)

(
−ηQk(x, a)− log

(∑
a∈A

πk(a|x) exp(−ηQk(x, a))

))

= −η
2
E
x∼dπk

∑
a∈A

πk+1(a|x)Qk(x, a)−
1

2
E
x∼dπk log

(∑
a∈A

πk(a|x) exp(−ηQk(x, a))

)
≤ −η

2
E
x∼dπk

∑
a∈A

πk+1(a|x)Qk(x, a) +
η

2
E
x∼dπk

∑
a∈A

πk(a|x)Qk(x, a)

where the last inequality follows by Jensen’s inequality and convexity of− log. Hence, we continue
the upper bound as follows

1

2
E
x∼dπk

[∥∥πk(·|x)− πk+1(·|x)
∥∥2
1

]
=
η

2
E
x∼dπk

∑
a∈A

Qk(x, a) · (πk(·|x)− πk+1(·|x))

≤ ηQmax

2
· Ex∼dπk

[∥∥πk(·|x)− πk+1(·|x)
∥∥
1

]
Which implies, by Jensen’s inequality and diving both sides by 1

2Ex∼dπk

[∥∥πk(·|x)− πk+1(·|x)
∥∥
1

]
that

Ex∼dπk

[∥∥πk(·|x)− πk+1(·|x)
∥∥
1

]
≤ ηQmax.

Lemma E.5. Samuelson’s inequality Let us consider L scalars {Xℓ}Lℓ=1 and denote the sample

mean as X̄ = L−1
∑L
ℓ=1Xℓ and the empirical standard deviation as σ̂ =

√∑L
ℓ=1(Xℓ−X̄)2

L−1 , then it
holds that

X̄ −
√
L− 1σ̂ ≤ Xℓ ≤ X̄ +

√
L− 1σ̂ ∀ ℓ ∈ [L]

Proof. Let us consider an arbitrary vector v ∈ RL. Then, we have that ∥v∥∞ ≤ ∥v∥2. At this point
let us consider v = [X1 − X̄, . . . , XL − X̄]T . Moreover, let us define as ℓ⋆ the index such that
∥v∥∞ =

∣∣Xℓ⋆ − X̄
∣∣. Then, we have that for all ℓ ∈ [L],

∣∣Xℓ − X̄
∣∣ ≤ ∣∣Xℓ⋆ − X̄

∣∣ ≤
√√√√ L∑

ℓ=1

(Xℓ − X̄)2 =
√
L− 1σ̂.

Therefore, rewriting the absolute value it holds that

X̄ −
√
L− 1σ̂ ≤ Xℓ ≤ X̄ +

√
L− 1σ̂

The next lemma says that the effective horizon in the original MDP and the binarized MDP is equal
up to a log2 (|S|) factor.

Lemma E.6. It holds that
1

1− γ1/ log2|S| ≤
log2 |S|+ 2

1− γ
.
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Proof.

1

1− γ1/ log2|S| =
1

1− γ
1− γ

1− γ1/ log2|S|

=
1

1− γ
1− γlog2|S|

bin

1− γbin

=
1

1− γ

log2|S|+1∑
t=0

γtbin

≤ log2 |S|+ 2

1− γ
.

F Implementation details

Environment: We use the Hopper-v5, Ant-v5, HalfCheetah-v5, and Walker2d-v5 environments
from OpenAI Gym.

Expert Samples: The expert policy is trained using SAC. The training configuration uses 3000
epochs. The agent explores randomly for the first 10 episodes before starting policy learning. A
replay buffer of 1 million experiences is used, with a batch size of 100 and a learning rate of 1e-3.
The temperature parameter (α) is set to 0.2. The policy updates occur every 50 steps, with 1 update
per interval. After training 64 experts trajectories are collected to be used later for the agent training.

IL algorithms implementation: Our starting code base is taken from the repository of f-IRL6 Ni
et al. [2021], and the implementation of the other algorithms are based on this one. For more details
about the implementation please refer to our repository. The most important hyperparameters are
reported in Table 2

• ML-IRL, f-IRL and rkl: These algorithms were already implemented in the f-IRL repos-
itory. The method leverages SAC as the underlying reinforcement learning algorithm and
different type of objectives for the cost update. The multi-Q-network exploration bonus
is implemented inside the SAC update, there we keep track of multiple Q-networks and
use their mean and standard deviation to update the policy. The clipping is applied on the
standard deviation which serves as the exploration bonus.

• CSIL: We started from the f-IRL implementation, maintaining the same hyperparameters
for a fair comparison. The key modification was removing reward model training from the
RL loop, instead training it only once before entering the loop using behavioral cloning and
L2 normalization, after which the reward model remained fixed throughout the training.

• OPT-AIL (state-only and state-action): We started from the implementation of ML-IRL
and added the OPT-AIL exploration bonus, incorporating optimism-regularized Bellman
error minimization for Q-value functions as described in the original article Xu et al. [2024].
The updated Q-loss can be formulated as:

LQ = E
[
(Qθ(s, a)− (r + γ(1− d)(Qθ̄(s′, a′)− α log π(a′|s′))))2

]
− λE[Qθ(s, a)]

(3)
Where: - Qθ is the current Q-network - Qθ̄ is the target Q-network - r is the learned reward
- γ is the discount factor - d is the done flag - α is the entropy coefficient - λ is the optimism
regularization parameter - The expectation is taken across the data distribution D sampled
from the replay buffer, which includes state-action-reward-next state-done transitions and
individual state-action pairs.

• SQIL Reddy et al. [2019b]: was implemented by initializing a replay buffer with expert
trajectories and assigning them a reward of 1, while collecting additional on-policy trajec-
tories from the agent’s current policy with a reward of 0. During training, the SAC agent

6https://github.com/twni2016/f-IRL/tree/main
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Table 2: Core Hyperparameters Across Environments
Parameter Walker2d Humanoid Hopper Ant

Number of Iterations 1.5 M 1 M 1 M 1.2 M
Reward Network size [64, 64] [64, 64] [64, 64] [128, 128]
Policy Network size [256, 256] [256, 256] [256, 256] [256, 256]
Reward Learning Rate 1e-4 1e-4 1e-4 1e-4
SAC Learning Rate 1e-3 1e-3 1e-3 1e-3

Figure 5: Mean return of ML-IRL Ant-v5 with a different number of neural networks. The grid
search for the clipping values was performed over the following values [0.1 0.5 1 5 10 50]. Results
are averaged over 3 seeds.

learns from both expert and agent-generated transitions, effectively learning to imitate ex-
pert behavior through the asymmetric reward structure. The agent updates its policy by
sampling from this mixed replay buffer, where the expert transitions provide a high-reward
signal to guide the learning process.

• GAILs: we used the implementation available from Stable-Baselines3 Raffin et al.
[2021]. This is the only method not based on SAC.

F.1 Hyperparameters tuning

To determine how different numbers of neural networks changed the performance, we conducted an
ablation study on both the clipping value and the number of neural networks. We performed this
analysis for the ML-IRL algorithm on the Ant-V5 environment. We chose this environment since
previous experiments showed that its higher complexity led to higher variance in the performance
of different algorithms. It was necessary to perform a grid search on the number of neural networks
because we noticed that different numbers of neural networks preferred different clipping values.

The results are reported in Figure 5. As we observed, in all cases, adding more neural networks
leads to better performances. However, this improvement does not increase proportionally with the
number of neural networks; in fact, the run with 10 neural networks is outperformed by the one with
4. This led us to select 4 as the fixed value of neural networks, also justified by the much slower
training time of the 10-network case.

For every environment and algorithm, we performed a grid search over different clipping values.
The range of clipping values varied across algorithms. Figure 6 shows the different values used in
the search and their impact on performance. The difference in performance across clipping values
is small in simpler environments (e.g., Hopper or Walker2d) while it becomes more evident in more
complex environments with larger state-action spaces. These plots also show the necessity of the
clipping for the exploration bonus. In most environments and algorithms, when a large clipping
value is applied, it leads to performance degradation.
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(a) CSIL Comparison (b) ML-IRL Comparison

(c) ML-IRL-SA Comparison (d) RKL Comparison

Figure 6: Comparison of clipping values across different environments, showing the effect on aver-
age return for each environment.

Empirically, the Q-network’s standard deviation diverges due to unclipped Q-values. Without value
clipping, high Q-values for specific state-action pairs increase the probability of being visited, caus-
ing more of these pairs to accumulate in the replay buffer across different rollouts and potentially
amplifying the standard deviation across the q-network for the next update. This justifies the neces-
sity of a clipping value on the exploration bonus.
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G Experiments with single expert trajectory

Here we report the we report the result of the experiments using a single trajectory. Our findings
indicate that the performance remained consistent regardless of the number of trajectories used and
the performance are comparable to the ones with 16 trajectories. Notable differences in performance
improvement were observed in Humanoid-v5 and ant state environments in the state only settings,
where a more pronounced gap was evident.

Figure 7: Experiments from State-Only Expert Trajectories. 1 expert trajectories, average over 3 seeds,
L = 4 Clipping values σ - ML-IRL: [Ant: 0.1, Hopper: 0.1, Walker2d: 50.0, Humanoid: 0.5], rkl: [Ant: 0.1,
Hopper: 0.5, Walker2d: 1.0, Humanoid: 50.0]

Figure 8: Experiments from State-Action Expert Trajectories. 1 expert trajectories, average over 3 seeds,
L = 4. Clipping values σ - CSIL: [Ant: 0.5, Hopper: 50.0, Walker2d: 0.1, Humanoid: 0.1], ML-IRL(SA):
[Ant: 0.1, Hopper: 0.5, Walker2d: 0.1, Humanoid: 1.0]

H Omitted Pseudocodes

This section introduces the omitted pseudocodes to clarify the implementation of the algorithms
based on SOAR. We first give a pseudocode (see Algorithm 6) that mirrors Algorithm 1 in the
setting where deep neural network approximation is needed due to the continuous structure of the
state-action space. The critic training is the same as in the standard SAC Haarnoja et al. [2018] but
we report it in Algorithm 7 for safe completeness. Notice that we adopt the double critic training
originally proposed in van Hasselt et al. [2015] to avoid an excessive underestimation of the critics
value7.

7Notice that van Hasselt et al. [2015] talks about excessive overestimation of the prediction target in the
critic training rather than underestimation. This difference is due to the fact that their paper casts RL as reward
maximization while we adopt a cost minimization perspective. For the same reason we take the maximum
between the two critics rather than the minimum as done in van Hasselt et al. [2015].
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Algorithm 6 Base Method + SOAR pseudocode

Require: Policy step size η, cost step size α, expert dataset DτE , discount factor γ, maximum
standard deviation parameter σ,

1: Initialize actor network πψ1 randomly.
2: Initialize the cost network cw1 randomly.
3: Initialize the L critics {Qθ11 , . . . , Qθ1L} randomly.
4: Initialize the L target critics {Qθ1,targ

1
, . . . , Qθ1,targ

L
} randomly.

5: Initialize L empty replay buffers
{
Dkℓ
}L
ℓ=1

. (One for each critic)
6: for k = 1 to K do
7: τkℓ ← COLLECTTRAJECTORY(π) for each ℓ ∈ [L].
8: Add τkℓ to replay buffer Dkℓ ← D

k−1
ℓ ∪ τkℓ .

9: Let Dk = ∪Lℓ=1Dkℓ
10: cwk ← UPDATECOST(cwk−1 ,DπE ,Dk, α) using the Base Method (such as CSIL, f -IRL or

ML-IRL ).
11: for ℓ = 1 to L do
12: Qθk+1

ℓ
, Q

θk+1,targ
ℓ

= UPDATECRITICS(Dkℓ , πψk , η, γ, cθk)

13: end for
14:

{
Qk+1(s, a)

}
s,a∈Dk = OPTIMISTICQ-NN(Dk,

{
Qθk+1

ℓ

}L
ℓ=1

, σ) (see Algorithm 5)

15: Define the loss Lkπ = 1
|Dk|

∑
s,a∈Dk

(
−η log πψk(a|s) +Qk+1(s, a)

)
.

16: Update policy weights to ψk+1 using Adam Kingma and Ba [2015] on the loss Lkπ .
17: end for
18: Return π

Algorithm 7 UPDATECRITICS

Require: Dkℓ , πψk , α, γ, cw

1: Let B = {si, ai, r, s′i, donei}Ni=1 be a minibatch sampled from D
2: a′i ← π(s′i) for all i ∈ [N ].

3: Define Q
θk,targ
ℓ

(si, ai)← max
(
Q
θ
k,targ,(1)
ℓ

(si, ai), Qθk,targ,(2)
ℓ

(si, ai)
)

for all si, ai ∈ B.

4: Backupi ← cw(si, ai) + γ(1− donei)
(
Q
θk,targ
ℓ

(si, ai) + α log πψk(a′i|s′i)
)

5: L
θ
k,(1)
ℓ

= 1
N

∑N
i=1

(
Q
θ
k,(1)
ℓ

(si, ai)− Backupi
)2

6: L
θ
k,(2)
ℓ

= 1
N

∑N
i=1

(
Q
θ
k,(2)
ℓ

(si, ai)− Backupi
)2

7: θk+1,(1)
ℓ ← θ

k,(1)
ℓ − ηQ∇Lθk,(1)

ℓ

8: θk+1,(2)
ℓ ← θ

k,(2)
ℓ − ηQ∇Lθk,(2)

ℓ

.

9: θk+1,targ,(1) ← (1− τtarg)θ
k,targ,(1) + τtargθ

k,(1).
10: θk+1,targ,(2) ← (1− τtarg)θ

k,targ,(2) + τtargθ
k,(2).

11: Qθk+1
ℓ

(s, a) = max
(
Q
θ
k+1,(1)
ℓ

(s, a), Q
θ
k+1,(2)
ℓ

(s, a)
)

for all s, a ∈ Dk.

12: Q
θk+1,targ
ℓ

(s, a) = max
(
Q
θ
k+1,targ,(1)
ℓ

(s, a), Q
θ
k+1,targ,(2)
ℓ

(s, a)
)

for all s, a ∈ Dk.
13: return Qθk+1

ℓ
, Q

θk+1,targ
ℓ

.

H.1 Instantiating the cost update

We show after how the algorithmic template in Algorithm 1 captures different imitation learning
algorithms just changing the cost update. For example, f -IRL with the reversed KL divergence
(RKL) can be seen as Algorithm 1 with the cost update described in Algorithm 8. Moreover, our
SOAR+RKL is obtained plugging in the cost update in Algorithm 8 in Algorithm 6.
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Algorithm 8 UPDATECOST for RKL (f -IRL for reversed KL divergence) Ni et al. [2021]

Require: c,DπE ,Dπk , α, divergence generating function f(x) = − log(x) for the reversed KL
divergence, prior distribution over trajectories p(τ).

1: ρw(τ) =
1
Z p(τ)e

−cw(τ)

2: χ⋆ ← argmaxω Es∼DπE
[logDχ(s)] + Es∼Dk [log(1−Dχ(s))]

3: Estimate the density ratio:
4: ρE(s)

ρw(s) =
Dχ⋆ (s)

1−Dχ⋆ (s)

5: Compute the stochastic gradient

∇̂w =
1

T
Eτ∼ρw

[
T∑
t=1

hf

(
ρE(st)

ρw(st)

)
·

(
−

T∑
t=1

∇θcw(st)

)]

− 1

T
Eτ∼ρw

[
T∑
t=1

hf

(
ρE(st)

ρθ(st)

)]
· Eτ∼ρθ

[(
−

T∑
t=1

∇θcw(st)

)]

6: w ← w − α∇̂w
7: Return cw

Next, we present the cost update for the algorithm ML-IRL Zeng et al. [2022]. We present it for
the state-action version. The state-only version is obtained simply omitting the action dependence
everywhere.

Algorithm 9 UPDATECOST for ML-IRL (State-Action version) Zeng et al. [2022]

Require: cw,DπE , τ
k =

{
skt , a

k
t

}Lk

t=1
, α.

1: Sample a state-action trajectory τE =
{
sEt , a

E
t

}LE

t=1
from the expert dataset DπE where LE is a

geometric random variable with parameter (1− γ)−1.
2: Compute the stochastic loss

L̂w =

LE∑
t=0

γtcw(s
E
t , a

E
t )−

Lk∑
t=0

γtcw(s
k
t , a

k
t )

3: w ← w − α∇wL̂w
4: Return cw

To conclude, we present the cost update for CSIL. Notice that since the cost used by CSIL does
not leverage the information of the policy at iteration k we can move the cost update before the
main loop and keep a constant cost function fixed during the training of the policy. Notice that the
CSIL the reward is simply given by the log probabilities learned by the behavioural cloning policy.
Therefore the reward parameters in CSIL coincides with the parameters of the behavioral cloning
policy network. We point out that using a reward of this form is similarly done in Vieillard et al.
[2020]. We plan to explore further the connection between Munchausen RL and CSIL in future
work.

Algorithm 10 UPDATECOST for CSIL Watson et al. [2023]

Require: DπE .
1: Compute the behavioral cloning policy finding an approximate solution to the following prob-

lem.
w⋆ = argmax

w

∑
s,a∈DπE

log πw(a|s)

2: Return cw⋆(s, a) = − log πw⋆(a|s)
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