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Abstract

We present a novel application of SHAP (SHapley Additive
exPlanations) to explain the decisions made by Reinforce-
ment Learning (RL) models used for Alzheimer’s Disease
(AD) progression prediction. Leveraging RL to predict the
variation in brain cognition and model 10-year cognition tra-
jectories using only baseline year-0 data, we employ SHAP to
explain the model’s decision-making process. Our approach
provides detailed insights into the key factors influencing AD
progression predictions, offering both global and individual,
patient-level explainability. Our results show that while the
RL model is able to achieve a mean absolute error on par
with supervised learning methods, the model fails to properly
capture established markers of Alzheimer’s Disease such as
amyloid accumulation when put through the lens of post-hoc
explanation methods like SHAP. By bridging the gap between
predictive power and transparency, our work empowers clin-
icians and researchers to gain a deeper understanding of AD
progression and better understand machine learning methods
proposed for healthcare, thereby facilitating more informed
decision-making in AD-related research. Our code is avail-
able at https://github.com/rfali/xrlad.

Introduction
Alzheimer’s disease (AD) is a progressive, irreversible, neu-
rodegenerative disease that affects millions of individu-
als worldwide. AD is characterized by the progressive de-
crease in brain size and the eventual death of neurons. It
causes memory deterioration, language deterioration, cog-
nitive deficits, and impairments in judgment and commu-
nication. Understanding the factors driving AD progres-
sion and developing accurate prediction models are crucial
for early diagnosis, intervention, and improved patient out-
comes (Porsteinsson et al. 2021).

While machine learning models have shown promise in
predicting AD progression, their lack of interpretability and
explainability pose a significant challenge to their adoption
(Vellido 2020). Interpretability refers to the ability to under-
stand the internal mechanisms and workings of a model. A
model is interpretable if humans can understand its predic-
tions or decisions in a straightforward and intuitive manner.
Interpretable models often have clear, transparent structures
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Figure 1: SHAP is used to explain an interpretable, domain
knowledge based RL model’s cognition trajectory predic-
tions over 10-years for Alzheimer’s Disease progression.

and make use of features that are easily understandable to
humans. For example, linear models or decision trees are
generally considered interpretable because their decision-
making process can be easily traced and understood. In-
terpretability in supervised machine learning, where mod-
els are trained on labeled data, differs from unsupervised
machine learning, where models learn patterns from unla-
beled data. In supervised learning, interpretability focuses
on understanding the relationship between input features and
the model’s predictions. However, in reinforcement learning
(RL), interpretability becomes more challenging due to the
inherent sequential decision-making nature of the problem,
as well as the traditionally large state and action spaces as-
sociated with RL environments (Vouros 2022).

Explainability, on the other hand, refers to the ability to
provide explanations for predictions or decisions made by
a model. Even if a model is complex and not easily inter-
pretable, it can still be considered explainable if it can pro-
vide explanations for why it made a particular prediction
or decision. These explanations help users understand the
factors or features that contributed to the model’s output.
Explainability techniques often involve generating post-hoc
explanations, such as feature importance scores, attention
maps, or textual explanations, to clarify the model’s rea-
soning. Explainability in healthcare not only helps in un-
derstanding the factors that contribute to progression of a



disease but also enables clinicians to make informed deci-
sions regarding patient care (Bogdanovic, Eftimov, and Sim-
janoska 2022).

In this work, we apply the SHAP (SHapley Additive ex-
Planations) method (Lundberg and Lee 2017) to enhance
the explainability of an interpretable RL model proposed for
AD progression prediction by Saboo et al. (2021). By mod-
eling the brain as a system of differential equations based
on causal relationships (hence interpretable), the RL agent
learns to predict change in cognition (actions) as it tries
to optimize cognition while minimizing associated costs.
SHAP provides a method of assigning feature importance
scores and quantifying the contribution of each feature to
the RL decisions. By leveraging SHAP, we gain valuable in-
sights into the relative importance of different features, shed-
ding light on the factors driving AD progression in a more
explainable manner. The main contributions of this work
are:

• We propose an explainable, reinforcement learning based
disease prediction model for Alzheimer’s Disease that
can predict 10-year cognition trajectories from baseline
year-0 data.

• The proposed interpretable and explainable RL model
offers both global and local level predictions and their
associated explanations. The global level explanations
identify and rank the most important featuresconsidered
by the model when making cognition predictions over
successive years on a dataset containing 1660 samples.
The local explanations are per-sample, which can iden-
tify how the model predicts and explains its predictions
for a particular patient’s sample data.

• Among the three feature vectors, the model ranks the
cognition score at the previous time step (year) as the
most important feature in making the next prediction of
the cognition score, followed by the brain region size,
and lastly by amyloid accumulation in a region.

• The model’s explainability aspect also highlights poten-
tial failure modes since the model, while being accurate
in predicting long-term cognition trajectories, does not
consider amyloid accumulation an important feature vec-
tor in its prediction, which is contrary to some clinical
studies (Feld et al. 2014).

Related Work
Modeling Alzheimer’s Disease Progression
Research into modeling the progression of Alzheimer’s dis-
ease can be generally classified into mechanistic models
and data-driven models. Mechanistic models rely on domain
knowledge to encode relationships among variables through
algebraic and/or differential equations (Vértes et al. 2012;
Li et al. 2016; Frässle et al. 2018; Galioulline et al. 2023).
Data-driven models encompass a spectrum of techniques,
including Bayesian models (Fruehwirt et al. 2018), event-
based models (Fonteijn et al. 2012), mixed-effects models
(Oxtoby et al. 2018; Liu et al. 2023), and machine learning
models (Lin et al. 2018; Tabarestani et al. 2018; Saboo et al.
2020). These models leverage biomarker data to establish

connections between disease pathology, region size, cogni-
tive function, and demographic factors. See Frizzell et al.
(2022); Balakrishnan, Sreeja, and Panackal (2023) for re-
cent literature reviews on the use of AI/ML for AD diag-
nosis. These techniques exhibit a relatively low reliance on
domain-specific knowledge and are effective for short-term
forecasting. More recently, Saboo et al. (2021) combined
mechanistic models and reinforcement learning to propose a
hybrid model that leverages RL’s ability to model a sequen-
tial decision making problem and predict AD’s progression
over time based on baseline imaging/cognition data and de-
mographic features.

Explainable RL (XRL)
Along with the increased application of RL to real-world
problems, there has been a surge in research dedicated to ex-
plainability of these models (Puiutta and Veith 2020). XRL
research can be categorized in various ways. Here we give a
brief overview of the recent literature surveys and the vari-
ous methods used to categorize XRL works.

The most prominent method of categorization splits XRL
methods into (a) transparent and (b) post-hoc explainabil-
ity methods (Arrieta et al. 2020). SHAP is categorized as a
post-hoc explainability method, which uses interaction data
to explain the model’s predictions (Heuillet, Couthouis, and
Dı́az-Rodrı́guez 2021). SHAP uses the magnitude of influ-
ence from each variable in the environment after training to
quantify the interactions between and contributions of each
variable towards the final prediction of the model. As per the
taxonomy by Qing et al. (2022), SHAP falls into the Model-
Explaining and Explanation-Generating category. This cate-
gory describes methods that generate explanations from the
model without being explicitly self-explainable.

XRL methods can also be categorized into one of these
categories: Feature Importance, Learning Process and MDP,
or Policy-Level (Milani et al. 2022). In particular, the Fea-
ture Importance category is divided into (a) Learn Intrin-
sically Interpretable Policy, (b) Convert to Interpretable
Format, and (c) Directly Generate Explanation. SHAP
falls within the Directly Generate Explanation subcategory
within Feature Importance category. SHAP generates an ex-
planation after training from a non-interpretable policy. This
enables the understanding of the factors that influence a
model towards its final predictions.

Although SHAP is a very popular method owing to the
widespread use of the associated library, it has seen very lim-
ited use in RL applications (Kumar, Vishal, and Ravi 2022;
Raz et al. 2022), primarily because of the traditionally large
state and action spaces associated with RL environments and
perhaps also because of the lack of a standardized way for
implementing RL models. Thus, we hope this work will be
able to shed more light on the use of Post-Hoc Explanation-
Generating tools such as SHAP in the growing field of XRL,
especially in problem settings with low-dimensional state
and action spaces.

Background
In Reinforcement Learning, an agent is tasked with the ob-
jective of sequentially interacting with a given environment



to accrue rewards over time, where actions leading to favor-
able outcomes are positively reinforced, while suboptimal
actions incur penalties. The RL problem is typically formu-
lated as a Markov Decision Process (Puterman 2014). The
MDP is defined by a tuple < S,A, P,R, γ >, where S rep-
resents a set of states, A is the set of available actions, P : S
x A → P(S) is the transition probability function, R : S x
A → R is the reward function, and γ is the discount factor.
By leveraging the Markov Decision Process (MDP), a for-
malized policy π : S → P(A) can be established to describe
the behavior of the agent. The policy predicts the probability
of taking action a given state s by mapping states to a distri-
bution of actions. From state st, which is sampled from the
policy π, the agent receives a reward rt and transitions to
the next state st+1. In an episodic problem, the process con-
tinues until the agent reaches a terminal state. The expected
total sum of discounted rewards by starting in state s and
following policy π for the rest of the episode gives a value
function V π(s). The goal of the agent is to find the optimal
policy π∗ that maximizes the expected discounted cumula-
tive reward. This can be formulated as finding a policy π
such that V π∗

(s) ≥ V π(s) for all states s, where V π(s) is
the expected discounted cumulative reward gained during an
episode starting from state s while following policy π.

We now provide a brief overview of the RL model used to
predict AD progression, based on the works of Saboo et al.
(2021). The model leverages domain knowledge to estab-
lish causal relationships between various factors involved
in AD progression. To summarize, Amyloid beta (Aβ), a
key factor in AD and measured using florbetapir-PET, prop-
agates between brain regions, influencing brain structure
measured via MRI, activity measured via fMRI, and cog-
nition measured through tests like Mini-Mental State Exam-
ination (MMSE), Alzheimer’s Disease Assessment Scale -
Cognitive Subscale 11 and 13 (ADAS11 and ADAS13). The
model defines a hypothetical variable, Ctask, which repre-
sents cognitive demand and impacts brain activity. Brain ac-
tivity, in turn, affects cognition and contributes to neurode-
generation. The model also considers the energetic cost as-
sociated with brain activity, which can further contribute to
neurodegeneration.

The model defines these relationships using appropriate
sets of differential equations (DEs). The brain is modeled
as a graph GS = (V,E), where a node v ∈ V represents
a brain region, and an edge e ∈ E represents a tract. Let
Xv(t) denote the size of a brain region v ∈ V at time t, and
X(t) = [X1(t), X2(t), ..., X|V |(t)]. Dv(t) is the instanta-
neous amyloid accumulation in region v ∈ V at time t. The
total amount of amyloid in a region is φv(t). Yv(t) denotes
the activity in region v ∈ V in support of cognition C(t)
at time t. Although cognition, brain size (Xv), and activity
(Yv) are related, the exact relationship among them is un-
known and cannot be easily learned from limited data. The
energetic cost M(t) represents the brain’s energy consump-
tion, which is proportional to its overall activity Yv(t) and
serves as a cost associated with supporting cognition.

The brain is modeled as a graph Gs = (V,E), where
each node v ∈ V represents a brain region, and each
edge e ∈ E represents a tract. Let Xv(t) indicate the

size of brain region v ∈ V at time t, and let X(t) =
[X1(t), X2(t), . . . , X|V |(t)].

A network diffusion model is used to model change of
amyloid in a region over time as it captures the propagation
of Aβ through tracts. Dv(t) is the instantaneous amyloid
accumulation in region v ∈ V at time t, the change in which
can be represented as

dDv(t)

dt
= −βHDv(t) (1)

where D(t) = [D1(t), D2(t), . . . , D|V |(t)], H is the Lapla-
cian of the adjacency matrix of the graph Gs, and β is a
constant. The total amyloid in a region ϕv(t) can then be
expressed as

ϕv(t) =

∫ t

0

Dv(s) ds (2)

To support cognition, multiple brain regions work in syn-
chrony. We denote the activity in region v ∈ V in support
of cognition C(t) at time t as Yv(t). The hypothetical term
information processing, Iv(t) ∈ R≥0, is introduced to relate
a region’s size and activity to its ”contribution” to cognition.
The resulting model for cognition, C(t), supported by the
brain at time t can be modeled as

C(t) =
∑
v∈V

Iv(t) (3)

The activity, Yv(t), in a region depends on both its infor-
mation processing and its size. The relationship between ac-
tivity and information processing is proportional, while the
relationship between activity and size is inversely propor-
tional. The relationship between the three features is mod-
eled as

Yv(t) = γ
Iv(t)

Xv(t)
∀v ∈ V (4)

The brain consumes energy to support cognition. The en-
ergy consumption for a region is proportional to the activity
in that region. Therefore the total energy cost of the brain
can be modeled as

M(t) =
∑
v∈V

Yv(t) (5)

Neurodegeneration, the change in brain size, is influ-
enced by two factors: amyloid deposition and brain activity.
Previous equations and models inferred a linear relationship
between the rate at which a brain region degenerates and
Aβ deposition. Brain degeneration is also be accelerated by
brain activity. The following equation is a representation
of how brain activity, neurodegeneration, and Aβ are
considered related in this model.

dXv(t)

dt
= −αvDv(t)− αvYv(t) ∀v ∈ V (6)

The demographics of individual patients can affect the
progression of Alzheimer’s Disease. To account for the in-
fluence of demographics in the model, parameters α1, α2, β,
γ were introduced in previous equations. For demographics



Figure 2: The RL Model. The state S(t) includes the brain regions’ size, amyloid accumulation, cognition (information pro-
cessing) at the previous time step, and demographic features. The action A(t) specifies the change in information processing for
one time step (year). The environment simulates brain dynamics and captures causal relationships encoded using Differential
Equations. The reward R(t) balances cognitive demand and energy cost. During training, the agent trains on single time steps
for 1M steps, while during evaluation, baseline year-0 data is used to generate 10-year cognition trajectories.

at baseline Z0, let f be a function that approximates these
parameter constants, such that

(α1, α2, β, γ) = f(Z0) (7)

We refer the reader to (Saboo et al. 2021) for more details
on methods used for this parameter estimation.

DEs provide relationships between some, but not all, fac-
tors relevant to AD. To address missing relationships, the
model formulates an optimization problem, which it solves
using reinforcement learning. Figure 2 explains how the RL
model works. The environment is represented as a simulator
that encompasses the equations governing various factors,
including D(t), ϕ(t), X(t), Y (t), I(t), C(t), and M(t). The
state at time t, denoted as S(t), comprises the current sizes
of the brain regions X(t), the Amyloid accumulation D(t),
and the information processed by each region at the previous
time step I(t − 1). The action at time t, A(t) ∈ A specifies
the change in information processed by each brain region
from the previous time step, i.e., ∆Iv(t) ∈ R ∀v ∈ V . For-
mally, the state and action spaces are defined as:

S(t) = (X(t), D(t), I(t− 1)) (8)

A = (∆I1(t), . . . ,∆I|V |(t)) (9)

Iv(t) = Iv(t− 1) + ∆Iv(t);
∑
v∈V

Iv(t) ≤ Ctask (10)

The goal of the RL agent is to calculate the optimal infor-
mation processing in each brain region, which all together
add up to the total cognition of the brain. In order to do
so, it must balance the trade-off between two competing cri-
teria: (i) minimizing the discrepancy between the cognitive
demand of a task Ctask and the actual cognition available in
the brain C(t), and (ii) minimizing the cost M(t) associ-
ated with supporting cognition. The reward R(t) at time t
is defined as follows, where λ is a parameter controlling the
trade-off between the mismatch and the cost, and the agent’s
goal is to maximize this reward given by

R(t) = − [λ(Ctask − C(t)) +M(t)] (11)

This is the objective function for the optimization problem
of distributing cognitive workload optimally across all brain
regions (Saboo et al. 2021). The model predicts disease pro-
gression by considering the interactions between the DEs,
effectively creating a simulator, and the actions taken by the
RL agent.

Using SHAP to explain RL model’s predictions
Shapley Values
Shapley values (Shapley 1953), rooted in cooperative game
theory, assign a value to each player based on their marginal
contribution to different coalitions (subsets of players) to
fairly allocate the total payoff of the game to each player.
The Shapley value of a player is based on their marginal



(a) Summary Plot showing the ranked features by importance for the two model outputs

(b) Beeswarm plot for the action ∆IPFC (c) Beeswarm plot for the action ∆IHC

Figure 3: SHAP Plots for all patient predictions highlighting the input features in the model’s decision making. The model
ranks the cognition measured at the previous time step as being the most important feature, followed by brain region size, and
lastly amyloid accumulation. Moreover, (a) depicts the corresponding share of each feature for a given prediction class (shown
in different colors). Figures (b) and (c) depict the beeswarm plots for each region, assigning distinctive colors to sample values
(red high, blue low). Experiments were conducted for 1660 patient samples using 5-fold cross validation, and each fold was
repeated 5 times with different random seeds.

contributions to all possible combinations in which they par-
ticipate. Mathematically, the Shapley value for a player i in
a game with N players is defined as

ϕi(v) =
∑

S⊆N\{i}

|S|! · (|N | − |S| − 1)!

|N |!
[v(S∪{i})−v(S)]

(12)
where ϕi(v) is the Shapley value of player i, v(S) is the

value of the coalition, |N | is the total number of players, and
|S| is the number of players in coalition S.

SHapley Additive exPlanations (SHAP)
Lundberg and Lee (2017) build on Shapley values and its ex-
tensions to develop a model-agnostic explainability frame-
work called SHAP (SHapley Additive exPlanations), offer-
ing a robust and coherent approach to interpreting model
predictions. In context of Eq 12, ϕi(v) is the Shapley value
of a specific feature in the model, v(S) is the prediction
made by the RL model for a specific set of features, |N |
is the total number of the input features, and S ranges over

all possible coalitions excluding feature i. This signifies that
when calculating the Shapley value for a specific feature i,
all possible combinations of features without i are consid-
ered. The value of S changes as different subsets of features
are examined. This way, SHAP values attribute a model’s
prediction to distinct features, explaining their influence on
the model’s output.

Specifically, the SHAP framework can be used to achieve
two types of explainability. Global explainability: By aggre-
gating SHAP values computed for each individual instance
across the entire dataset, the framework provides a compre-
hensive perspective on the behavior of the model in predict-
ing AD across a diverse spectrum of cases. This can help to
identify consistent features that significantly influence pre-
dictions. Local explainability: By delving into the process
of individual predictions for AD and considering the unique
impact of each input feature, the SHAP framework can pro-
vide microscopic insights into the rationale behind specific
predictions. This is pivotal for understanding the model’s
decision-making on a case-by-case basis, shedding light on
the prominent factors guiding predictions for individual pa-



tients. Figure 1 visualizes the context of our experiment,
where we input the RL model as well as the state space S(t)
to the SHAP library and generate global and local explana-
tions.

Experimental Setup
We used Alzheimer’s Disease data from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI). We selected in-
dividuals with baseline measurements of cognition, demo-
graphics, MRI, and florbetapir PET scans, along with lon-
gitudinal cognitive measurements and at least 2 follow-up
assessments comprising both PET and MRI scans, as rec-
ommended by Saboo et al. (2021). Follow-up visits were
not required to be consecutive, and data spanning up to 10
years after baseline were retained. Cognitive assessments
were preserved for all available time points up to and in-
cluding year 10, irrespective of MRI/PET availability. This
resulted in a dataset of 160 patients, encompassing 52 cog-
nitively normal (CN), 23 with significant memory concern
(SMC), 58 with early mild cognitive impairment (EMCI),
and 27 with late mild cognitive impairment (LMCI). De-
mographic features included age, gender, education, and the
presence of the APOE-ϵ4 genotype. Our analysis focused on
a 2-node graph representation (GS) with nodes denoting the
hippocampus (HC) and the prefrontal cortex (PFC) due to
their relevance to cognition and Alzheimer’s disease pathol-
ogy. Hippocampal and prefrontal cortex volumes were used
to represent brain structure (X(t)), with raw hippocampal
volumes normalized and PFC volumes scaled by the median
ratio of PFC to hippocampus. PET-scan derived Standard-
ized Uptake Value Ratio (SUVR) values for PFC and hip-
pocampus served as measures of Aβ deposition (ϕ(t)). We
utilized the Mini Mental State Examination (MMSE) score
as a measure of cognition, adjusting it to range from 0 to 10.
We used Trust Region Policy Optimization (TRPO) (Schul-
man et al. 2015) in this work (details in Supplementary).

Results
TRPO achieved a mean absolute error of 0.572, on par with
baselines from supervised machine learning (Saboo et al.
2021). The primary aim of this section is to examine the
SHAP plots, extracting information about the model’s be-
havior, and analyzing if the model’s behavior aligns with es-
tablished research within the field of AD.

Global Explanations Global explanations are visualized
using bar and beeswarm SHAP plots (Figure 3). The bar plot
ranks features by mean absolute SHAP value for information
processing in the Prefrontal Cortex region (IPFC(t = 0))
and the Hippocampus region (IHC(t = 0)). Features with
higher mean absolute values are placed at the top, indicating
their greater influence. The beeswarm plot assigns distinc-
tive colors to sample values, illustrating how high and low
feature values impact the model’s behavior.

The bar plot in Figure 3(a) offers a global explanation of
the RL model’s predictions used in this work. The mean ab-
solute value for each feature in each class is calculated and
plotted. Saboo et al. (2021) attribute brain cognition to brain
activity, Yv(t), and amyloid accumulation, Dv(t). They also

highlight the direct correlation between Yv(t), Xv(t) and
Iv(t). Hence, with Iv(t − 1) and Xv(t) being shown as the
most important features, figure 3(a) illustrates brain activity
having greater significance in the RL model’s prediction of
∆Iv(t) than amyloid accumulation.

Similar to the bar plot, the beeswarm plots depicted in
Figures 3(b) and 3(c) identify features Iv(t−1) and Xv(t) as
being most impactful in the model’s prediction of ∆Iv(t) for
the two regions. Figure 3(b) shows that high feature values
of XHC and low feature values of IPFC(t−1), IHC(t−1),
and XHC increase the predicted ∆IPFC(t). Figure 3(c)
shows that low feature values for IPFC(t−1) and IHC(t−1)
increase the model’s prediction of ∆IHC(t) while high fea-
ture values of XHC increase the predicted cognition score.
These plots help contextualize the model’s behavior.

Local Explanations The SHAP plots used for local ex-
planations include the decision, waterfall, and force plots
(Figure 4). These plots display how input features affect the
model behavior for a single sample. For the decision and wa-
terfall plots, the expected value for all samples is plotted at
the bottom. Each feature is then added to the plot starting
with the least important feature at the bottom. Each feature
has a SHAP value that pushes the expected value either pos-
itively or negatively. Once all features are added, the plot
reaches the actual predicted value for that particular sample.
This value is posted at the top of the plot. Features pushing
the prediction higher are shown in red, whereas those push-
ing the prediction lower are in blue. The force plot serves
the same function as the decision and waterfall plot but the
plot is visualized along the x-axis.

Figure 4 explains how each feature impacts the model’s
prediction of ∆Iv(t) for the Prefrontal Cortex and the Hip-
pocampus of a single patient at the baseline year. Figure
4(a), 4(c), and 4(e) explain the Prefrontal Cortex while Fig-
ure 4(b), 4(d) and 4(f) explain the Hippocampus region. The
observed patterns in the global explanation plots are also
visible in the plots for local explanations. We see that hip-
pocampus size is the most important contributing factor to
∆IPFC(t) in both brain regions, contributing positively in
the Hippocampus and negatively in the Prefrontal Cortex.
This is followed by the information processing of the Hip-
pocampus at the previous timestep which contributes posi-
tively in both regions, and the information processing of the
Prefrontal Cortex at the previous timestep, which contributes
negatively. Amyloid accumulation in both regions has little
effect. Interestingly, Prefrontal Cortex size has a significant
effect on ∆IPFC(t), but no effect on ∆IHC(t).

These global and local explanations point to the hy-
pothesis that brain activity plays a more pivotal role
in brain degradation than amyloid accumulation. Jagust
and Mormino (2011) and Hampel et al. (2021) discuss
the prominent Alzheimer’s disease theory centered on β-
amyloid (Aβ) protein deposition initiating cognitive decline.
Jagust and Mormino (2011) explore the connection between
lifelong brain activity patterns and Aβ deposition and sug-
gest that manipulating neural activity could impact Aβ lev-
els. This underscores the role of neural activity alongside Aβ
in the cognitive decline process.



(a) Force Plot for IPFC(t = 0) (b) Force Plot for IHC(t = 0)

(c) Waterfall Plot for IPFC(t = 0) (d) Waterfall Plot for IHC(t = 0)

(e) Decision Plot for IPFC(t = 0) (f) Decision Plot for IHC(t = 0)

Figure 4: SHAP Plots for a single prediction: (a) and (b) Force Plots for Information processing Iv(t = 0) of both PFC and HC
regions, (c) and (d) Waterfall Plots for both regions, (e) and (f) Decision Plots for both regions. Features pushing the prediction
higher are shown in red, whereas those pushing the prediction lower are in blue.

Per-Patient Analysis

We also conduct an analysis on each patient to determine
the effect these factors have on individuals as the disease
progresses. Figure 5 shows the results for a particular pa-
tient (Patient Record ID 4294), who was selected for their
maximum decrease in MMSE score. Figures 5(a), 5(c), and
5(e) show the accuracy of the RL model in predicting the to-
tal cognition C(t), Prefrontal Cortex Size XPFC , and Hip-
pocampus Size XHC respectively as Alzheimer’s disease
progresses in the patient.

Subfigure 5(b) shows how each feature affects the final
SHAP value of the model, which corresponds to the change
in cognition ∆C(t). In this patient, the information process-
ing at the previous time step for Hippocmapus region has the
greatest effect on the change in cognition, followed by the
information processing of that region. It is also evident that
the information processing of the hippocampus contributes
more to the total cognition than the information processing
of the prefrontal cortex in this patient.

Figures 5(d) and 5(f) show the effect of XPFC and
XHC in their respective regions on the change in cogni-

tion. For both regions, they initially contribute positively
to the change in cognition, but as brain region size de-
creases, their effect also decreases and becomes negative.
Guo et al. (2013) observed similar effects, where a larger
initial brain size helped slow down Alzheimer’s progression,
but as degradation proceeded it also increased in rate. From
these figures, we can conclude that Alzheimer’s progression
is dynamic and dependent upon the individual it affects.

Discussion
The swift progress of machine learning, notably with the rise
of deep learning, has greatly influenced diverse domains.
The integration of ML models in healthcare has been ap-
proached with caution, and for good reason. It is essential
that these models are thoroughly understood and made ex-
plainable before they can be confidently utilized. We posit
that the methodology presented in this work represents a step
in this direction. By integrating machine learning models
with explainability to predict cognition trajectories for early
diagnosis, we aim to facilitate the gradual and manageable
adoption of these tools. Limitation in capturing established



(a) RL Prediction vs. Ground Truth for Total Cognition (b) Summary Bar Plot for ∆IPFC(t) and IHC(t = 0)

(c) RL Prediction vs. Ground Truth for PFC size (d) Effect of PFC’s size on Predicted PFC Cognition over 10 years

(e) RL Prediction vs. Ground Truth for HC size (f) Effect of HC’s size on Predicted HC Cognition over 10 years

Figure 5: RL Trajectories and SHAP Plots for a particular patient (Record ID 4294), aggregated across 5 seeds

AD markers like amyloid accumulation also highlights the
need to improve these prediction models. Furthermore, the
practical application of the insights gleaned from this work
by clinicians could significantly enhance its value.

Conclusion
We demonstrate the use of RL and SHAP to predict and
explain important features in Alzheimer’s Disease progres-
sion. The reinforcement learning model employed can pre-
dict cognition trajectories up to 10 years post-diagnosis.
SHAP analysis revealed that increased information process-

ing and reduced brain region size significantly contribute
to cognition decline in both of the studied brain regions.
Our research aims to aid neurologists and researchers with
Alzheimer’s causality determination and treatment planning,
especially early intervention and long-term prediction using
clinical and demographic features. Future work can expand
the scope by incorporating more brain regions to the model
using domain knowledge. Moreover, extending this study on
an even larger dataset would reveal its true performance and
hidden biases. The ultimate goal is to translate these findings
into actionable insights that can improve patient care.
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Supplementary Materials
RL Method
The environment of differential equations modeling the factors of Alzheimer’s progression combined with the optimization
of the objective/reward functions allows the use of model-free and on-policy RL methods to solve the optimization task. In
this work, we used Trust Region Policy Optimization (TRPO) (Schulman et al. 2015), which is an on-policy algorithm that
guarantees monotonic policy improvement. The key idea to TRPO is to constrain the local variation of the parameters to a
“trust region” in the policy-space to ensure the update steps of the policy remains predictive. The constrain on the variation of
parameter is determined by KL Divergence. The objective function can be described as:

max E(st,at)∼π[
πθ(at|st)
π(at|st)

Âπ(st, at)] (13)

s.t. DKL(πθ(.|s)||π(.|s)) ≤ δ, ∀s
TRPO is known for its stability and ability to handle complex, high-dimensional action spaces. In this work, TRPO acts as

the learning agent that calculates the change in information processing for each of the two brain regions (the hippocampus and
prefrontal cortex) for each time step (year) while optimizing the given reward function.

We provide the hyperparameters for our experiments in Table 1 and tabular results in Table 2.

Hyperparameters Values
Batch size 1000

Epochs 1000
GAE λ 0.97

Max Cognition (Ctask) 10.0
Scale Observations True

Action limit ± 2.0
Score MMSE

Max timesteps 11 (years)
Number of seeds 5

Table 1: Hyperparameters and configurations used in our experiments with TRPO

Result Metric Values
Mean Absolute Error (test) 0.572

Mean Reward achieved (test) -6.882

Table 2: Results achieved with TRPO


