
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PRF: PARALLEL RESONATE AND FIRE NEURON FOR
LONG SEQUENCE LEARNING IN SPIKING NEURAL NET-
WORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recently, there is growing demand for effective and efficient long sequence mod-
eling, with State Space Models (SSMs) proving to be effective for long sequence
tasks. To further reduce energy consumption, SSMs can be adapted to Spiking Neu-
ral Networks (SNNs) using spiking functions. However, current spiking-formalized
SSMs approaches still rely on float-point matrix-vector multiplication during infer-
ence, undermining SNNs’ energy advantage. In this work, we address the efficiency
and performance challenges of long sequence learning in SNNs simultaneously.
First, we propose a decoupled reset method for parallel spiking neuron training,
reducing the typical Leaky Integrate-and-Fire (LIF) model’s training time from
O(L2) to O(L logL), effectively speeding up the training by 6.57× to 16.50× on
sequence lengths 1, 024 to 32, 768. To our best knowledge, this is the first time that
parallel computation with a reset mechanism is implemented achieving equivalence
to its sequential counterpart. Secondly, to capture long-range dependencies, we
propose a Parallel Resonate and Fire (PRF) neuron, which leverages an oscillating
membrane potential driven by a resonate mechanism from a differentiable reset
function in the complex domain. The PRF enables efficient long sequence learning
while maintaining parallel training. Finally, we demonstrate that the proposed
spike-driven architecture using PRF achieves performance comparable to Struc-
tured SSMs (S4), with two orders of magnitude reduction in energy consumption,
outperforming Transformer on Long Range Arena tasks. 1

1 INTRODUCTION

Long Sequence Modeling. Long sequence modeling is a fundamental problem in machine learn-
ing. This significant advancement has yielded wide-ranging impact across various fields (such as
Transformer (Vaswani et al., 2017) and Mamba (Gu & Dao, 2023)), including reinforcement learning
(e.g., robotics and autonomous driving) (Chen et al., 2021), autoregressive task (e.g., large language
models) (Zhao et al., 2023), generative tasks (e.g., diffusion model) (Peebles & Xie, 2023) and etc.
The Transformer architecture (Vaswani et al., 2017), which combines token mixing with self-attention
and channel mixing with dense matrices, has been successfully applied in these fields, since sequence
data (with length L) is well modeled by the self-attention mechanism.

State space models (SSMs) (Gu et al., 2022a) effectively address the limitations of self-attention
machanism in processing long sequences by reducing computational complexity from O(L2) to O(L)
during inference (Feng et al., 2024). The recurrent form of SSMs allows themselves to scale to longer
sequence lengths more efficiently. Furthermore, the (Structured) SSMs utilize orthogonal polynomial
bases to initialize recurrent weights (Gu et al., 2020) for token mixing, and to compress input history
(Gu et al., 2021) into hidden state that enables long sequence learning yielding superior performance
than Transformer models on long sequence tasks (Gu et al., 2022a). As a result, variants of SSMs
(e.g. Mamba (Gu & Dao, 2023)) are successfully applied across various fields. However, SSMs
still requires large number of float-point matrix-vector multiplications for both token mixing and
channel mixing to effectively extract information. These dense matrix multiplication computations
scale quadratically with model size (D), consuming significant amount of energy during inference.

1The GitHub repository will be released after paper accepted.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Spiking Neural Networks. SNNs benefit from the ability to convert the Float-Point (FP) Multiply
Accumulate (MAC) computations into sparse Accumulate (AC) computations through their spike-
driven mechanism (Hu et al., 2021; Yao et al., 2024). Prior arts incorporated the spiking function
at the input of token and channel mixing in SSMs to reduce energy consumption in channel mixing
(Stan & Rhodes, 2023; Bal & Sengupta, 2024; Shen et al., 2024). However, the token mixing
operation within the SSMs blocks has yet been optimized, resulting in extensive FP matrix-vector
multiplications and thus compromising the overall energy efficiency (Stan & Rhodes, 2023). To avoid
FP matrix-vector multiplication computations in both channel mixing and token mixing, it is also
crucial to reduce the complexity of token mixing. Therefore, we must revisit and design novel the
spiking neurons in SNNs to enabl effective long sequence learning capabilities, while maintaining
computation efficiency.

The Challenges for SNNs. There are two challenges in implementing long sequence learning in
SNNs. (i) First, the Backpropagation Through Time (BPTT) is the commonly used training method
for SNNs (Wu et al., 2018). However, BPTT leads to a quadratic growth in training time with
respect to sequence length, scaling as O(L2) (Kag & Saligrama, 2021). While there are some
existing SNN efficient training methods that can improve training efficiency (Bellec et al., 2020;
Xiao et al., 2022; Yin et al., 2023), they are still outperformed by BPTT for longer sequences (Meng
et al., 2023). (ii) Secondly, commonly used spiking neuron models struggle to capture long-range
dependencies. Specifically, the widely used LIF neuron has difficulty in capturing and distinguishing
dependencies in membrane potential over long intervals, which limits its performance on long-range
tasks.Previous work attempted to address the training efficiency and performance improvement
separately by improving neuron models (Fang et al., 2024; Spieler et al., 2024). (Fang et al., 2024;
Spieler et al., 2024). However, efforts made to tackle these challenges on long sequence tasks at the
same time remains unveiled. In this work, we aim for addressing these two challenges simultaneously.
Our contributions are summarized as follows:

• To accelerate the training process, we propose a novel decoupled reset method to implement
parallel training that is equivalent to sequential training. This approach accelerates the back
propagation by three orders of magnitude and can be applied to any types of spiking neurons.

• To effectively extract long range dependencies, we propose the Parallel Resonate and Fire
(PRF) neuron with oscillating membrane potential in complex domain leveraging an adaptive
and differentiable reset mechanism.

• To minimize inference energy, we further incorporate PRF into the design of Spike-Driven
Temporal and Channel Mixer (SD-TCM) module. This module achieves performance
comparable to S4 in long range arena tasks while reducing the inference energy by two
orders of magnitude.

2 RELATED WORK

State Space Models A general discrete form of SSMs is given by the equation: ut = Aut−1+Bxt,
yt = Cut, where A ∈ RH×H , B ∈ RD×H , C ∈ RH×D matrices is shape with the model size D
and hidden size H . The success of the Structured SSMs (S4) arises from the fact that the coefficients
of the orthogonal bases are solved to fit an arbitrary sequence curve (Gu et al., 2020). By leveraging
orthogonal polynomial bases for initializing structured matrices A and B, S4 effectively compresses
input history and outperforms transformers in long-range sequence tasks (Gu et al., 2021). Subsequent
variants of SSMs have also achieved great success on long sequence task (Gu et al., 2022a; Goel et al.,
2022b; Gu et al., 2023; 2022b; Orvieto et al., 2023). However, these SSMs-based model still exist
power consumption issues that scale quadratically with model size D. This is largely due to the use
of the dense matrices for channel mixing after yt, such as in the GLU block (Dauphin et al., 2017),
which requires 2D2 computation in matrices, leading to a significant number of FP-MAC operations.

Spikinglized SSMs The spike mechanism can alleviate the energy problem in dense matrices by
converting the FP-MAC as sparse FP-AC computation. Some spiking-formalized (spikinglized)
approaches integrate the spike function into SSMs after token mixing to reduce the FP-MAC com-
putation of channel mixing. For instance, Oliver et al.(Stan & Rhodes, 2023) make intersection of
SNNs with S4D model (Gu et al., 2022b) for long-range sequence modelling, by adding Heaviside
function to token mixing output, yt, at each SSMs layer. Similarly, Abhronil et al.(Bal & Sengupta,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2024) combine stochastic spiking function at the output of yt. These spikinglized method can
harvest the long sequence learning capability of SSMs models, but also retain nonlinear activation
computation and FP matrix-vector multiplications, as they retain the A, B and C matrices during
recurrent inference. However, this retention limits the energy efficiency advantages of SNNs and
poses challenges for deploying the model on neuromorphic chips. Therefore, we aim to further
optimize the inference process by reducing matrices A and B to vectors and eliminating C. This
requires rethinking the role of spiking neurons in long sequence learning.

3 PROBLEM FORMULATION

In this section, we first introduce the commonly used Leaky Integrate-and-Fire (LIF) neuron, then we
describe the two main challenge for long range learning ability with spiking neuron.

3.1 THE LEAKY INTEGRATE-AND-FIRE (LIF) NEURON

The LIF model is a widely used spiking neuron model. It simulates neurons by integrating input
signals and firing spikes when the membrane potential exceeds a threshold. The dynamic of membrane
potential u(t) is followed by:

du(t)

dt
= −1

τ
(u(t)− ureset) +

R

τ
c(t), (1)

where the c(t) is the input current. The constants τ , ureset, and R denote the membrane time constant,
reset potential, and resistance. We use R = τ as in previous work. When u(t) reaches the threshold
Vth, the neuron fires a spike, and then u(t) resets to ureset. The discrete LIF model is expressed as:

ut = β · (ut−1 − Vthst−1) + ct, (2)

st = H(ut − Vth) =

{
1, if ut ≥ Vth

0, otherwise
, (3)

where β ≜ 1− 1
τ ∈ (0, 1), and the discrete timesteps t = 1, 2, . . . , T , the initial situation s0 = u0 = 0.

After firing, the membrane potential resets according to previous spike st−1. This spiking neuron
face two primary challenges for long sequence tasks: (i) The coupled reset prevents parallel training
along timesteps, causing training time significantly for long sequences. (ii) The commonly used
LIF neuron model struggles to capture long-range dependencies, hindering the performance on long
sequence tasks. The overview as shown in Figure 1.

(c) Problem2: Fast Decay (e) Resonate to Distinguish

(a) Problem1: Reset Hinders Parallelization (b) Decoupled Reset to Parallel

Integrate

Leaky

Reset

Fire
𝐔1:𝑇
′

𝐒1:𝑇

(d) Problem2: Slow Decay

𝑢𝑡
𝑉th

𝑡

𝑢𝑡
𝑉th

𝑡
Cause Dependency Vanishing But Cause Dependency Ambiguity

𝑉th

𝑡

𝑉th

𝑡

𝑢𝑡

𝑢𝑡

Solve Dependency Vanishing

𝑐𝑡0
𝑐𝑇

𝑐𝑡0′ 𝑐𝑇
𝑐𝑇

𝑐𝑇𝑢𝑡
𝑉th

𝑡

𝑢𝑡
𝑉th

𝑡

Case 1 Case 2

𝑐𝑡0

𝑐𝑇

𝑐𝑇𝑐𝑡0 = 0

𝑠1

𝑢1 𝑶(𝑳𝐥𝐨𝐠𝑳)

𝑫1:𝑇

𝑶 𝑳𝟐

𝑠2

𝑢2

𝑠3

𝑢3

𝑠𝑇

𝑢𝑇

Sequential Computation B
ac

k
w

ar
d

s

P
ro

p
ag

at
io

n

B
ac

k
w

ar
d

s

P
ro

p
ag

at
io

n

time time

𝑢1
′

𝑢𝑇
′

𝑠1

𝑠𝑇

Decoupled

Reset

𝑐𝑡0

𝑐𝑡0′

Figure 1: (a) The reset mechanism prevents parallel computation of timesteps as the state update
relies on previous spike output, causing O(L2) timing cost. (b) The proposed decoupled reset
mechanism enables parallel computation. (c) Fast decay causes long-range dependencies to vanish in
the membrane potential. (d) Slow decay could generate dependency over long sequence, but causes
dependency ambiguity. (e) The resonate mechanism with membrane potential helps distinguish
relevant inputs.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.2 PROBLEM 1: COUPLED RESET PREVENTS PARALLELISM ALONG TIMESTEPS

The first problem is that the training cost of LIF-based sequential computation increases exponentially
as the number of timesteps extends, with a complexity of O(L2). This occurs because BPTT method
requires the computational graph to expand along the time dimension (Kag & Saligrama, 2021).
While the sequential computation of linear combination can be parallelized to reduce the time cost
complexity from O(L2) to O(LlogL) during training, as done in SSMs. However, the ut dependency
on previous spikes output st−1 with nonlinear Heaviside function. By recursively expanding ut and
simplifying in Equation 4:

ut = ct + βct−1 + ...+ βt−1c1 − βVth(st−1 + st−2 + ...+ s1). (4)

The reset mechanism causes ut to depend on all previous spike outputs. This coupling hinders the
neuron’s ability to perform parallel computations, further limiting effective parallel computation for
both ut and st, as illustrated in Figure 1 (a). This forces the spiking neuron to compute sequentially.
Consequently, as the number of timesteps increases during training, the time cost grows quadratically.
To address this issue, we propose the decoupled reset method, which facilitates parallel computation
of spiking neurons with the reset mechanism (Illustrated in Figure 1 (b) and discussed in detail in
Method 4.1).

3.3 PROBLEM 2: COMMONLY USED LIF STRUGGLE WITH LONG-RANGE DEPENDENCIES

The second problem is that the commonly used LIF model struggles to capture and distinguish the
dependencies in the membrane potential over long interval. This limitation arises due to the dilemma
of decay factor β in the membrane potential dynamics. When β is small, the membrane potential
decreases rapidly. This Fast Decay cause the neuron to quickly forget past inputs (Figure 1 (c)).
For example, in Case 1, if there are two inputs, ct0 and cT , separated by T time steps, result in
uT becoming independent of ct0 . Similarly, in Case 2, with zero input ct0 , the result is identical
with Case 1. This failure to retain long-term information leads to the vanishing of dependencies.
Conversely, when β is large, the membrane potential retains its value over an extended period T
(Figure 1 (d)). This Slow Decay can solve the dependency vanishing problem, but causing ambiguity
between closely spaced inputs. For instance, input ct0 = ct′0 with t′0 = t0 + δt result in similar
membrane potentials, there is small difference between the membrane potential uT = β(T) · ct0 + cT
in Case 1 and the uT = β(T−δt) · ct′0 + cT in Case 2, as shown in Figure 1 (d). To address this
challenge, we propose enhancing the neuron’s dynamics by incorporating resonate mechanism. This
allows neurons to remain sensitive to input, even after a long interval of T . (Illustrated in Figure 1 (e)
and discussed in detail in Method 4.2).

4 METHOD

In this section, we present our approach to address two primary challenges in SNNs: parallel training
and long-range dependency learning. For parallel training, we decouple the reset mechanism from the
integrate computation to implement parallel training while maintaining equivalence with sequential
computation. For long-range dependency learning, we propose the Parallel Resonate and Fire (PRF)
Neuron by incorporating the reset process as an imaginary part into the time constant, enabling the
neuron to achieve long-range learning ability.

4.1 DECOUPLED RESET FOR PARALLEL COMPUTATION

To enable parallel computation, we need to decouple the causal relationship with previous spikes, by
separating the linear combination part from the nonlinear causal dependency part. To achieve this,
we first substitute the Equation 4 into the Equation 3 by expanding the ut in the Heaviside function.
Then we merge the reset part into the threshold Vth. As such, Equation 3 is rewritten as Equation 5:

st = H(ct + βct−1 + ...+ βt−1c1︸ ︷︷ ︸
Leaky and Integrate ≜ u′

t

−Vth · (β · (st−1 + st−2 + ...+ s1) + 1)︸ ︷︷ ︸
decoupled reset ≜ dt

), (5)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where the linear combination of leaky and integrate part is defined as u′
t, the second part is defined as

the decoupled reset dt. Now the spike output is:

st = H (u′
t − dt) =

{
1, if u′

t ≥ dt
0, otherwise

, (6)

where this spike output st depends on u′
t and dt. Note that the first part is linear combination of

u′
t = βu′

t−1+ ct, we define the sequence of U′
T as the ordered set {u′

1, u
′
2, ..., u

′
T } over all timesteps

(detailed notation is described in Appendix A). This linear combination of u′
t can be computed using

convolution and further accelerated by converting the convolution into multiplication after applying
the Fast Fourier Transform: U′

T = CT ∗ KT = F−1 (F(CT)⊙F(KT)), with the O(LlogL)
computation complexity, avoiding the O(L2) training time in BPTT.

After efficient parallel computation of u′
t, the dt still remains the dependency relationship with

previous spikes st. To further decouple this dependency from the spike output st, the key idea is
converting the recursive form to the iterative form. We first define the dependency part as At, as
shown in Equation 7. Now, we only need to convert the At from its recursive form into an iterative
form. By separating the last spike from all previous spikes, we obtain Equation 8. The left part of
this equation corresponds to Equation 6, while the right part refers to the recursive dependency itself,
leading to Equation 9 and Equation 10:

At ≜st−1 + st−2 + ...+ s1 (7)
=st−1 + (st−2 + ...+ s1) (8)

=H
(
u′
t−1 − dt−1

)
+At−1 (9)

=

{
1 +At−1, if u′

t−1 ≥ dt−1

At−1, if u′
t−1 < dt−1

, (10)

where the sequence of dt is calculated according to the sequence of u′
t, by dynamically updating At:

dt = Vth · (βAt + 1), A0 = u′
0 = 0. (11)

At this point, all recursive forms have been converted into dynamic equations. The formation of dt is
completely independent of st. The decoupled reset function DT = fD(U′

T) is deduced as shown in
Equation 10 and 11, where dt can be dynamically scanned from all u′

t with O(L) complexity.

In summary, we convert the all calculation of st with O(L2) complexity into a combination of u′
t with

O(L logL) complexity and subsequently dt with O(L) complexity, achieving a training speed-up
of approximately L/(logL + 1). To summarize, this approach facilitates parallel computation:

U′
T = CT ∗KT (12a)

= F−1 (F(CT)⊙F(KT)) (12b)

DT = fD(U′
T) (12c)

ST = H(U′
T −DT) (12d)

U′
T = (u′

1, u
′
2, . . . , u

′
T) (13a)

CT = (c1, c2, . . . , cT) (13b)

KT = (β0, β1, . . . , βT−1) (13c)
DT = (d1, d2, . . . , dT) (13d)

Where the outputs ST = (s1, s2, . . . , sT) from Equation 12d is equivalent with the sequential
generated from Equation 3. The kernel vector KT with β = 1− 1

τ .By combining the above equations,
we obtain the parallel computation process, as shown in Algorithm.1 and 2 in Appendix.B.Although
parallelized LIF solves the training problem for long sequences (Experiment 5.1), it still does
not perform well on long sequences (Experiment 5.2), due to the common issue of long-range
dependencies in LIF models (Problem 3.3).

4.2 RESONATE FOR LONG-RANGE LEARNING ABILITY

To address the challenge of capturing long-range dependencies in spiking neural networks, we
introduce the Parallel Resonate-and-Fire (PRF) neuron. This neuron model extends the standard LIF
neuron by incorporating a resonance mechanism into its dynamics, enabling it to retain information
over longer periods while maintaining computational efficiency.

Firstly, recall the commonly used LIF model from Equation 1, the dynamics are given by: du(t)
dt =

γu(t)− γureset + c(t), where γ ≜ −1/τ . To introduce more dynamic behavior, we use r(t) and θ

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

to replace ureset and γ in the reset part, in respectively. Then the dynamic are rewritren as:
du(t)

dt
= γu(t)− θr(t) + c(t). (14)

To introduce membrane potential oscillations, we define a complex decay constant γ̃ = γ+ iθ, where
i =
√
−1. In the vanilla LIF model, the reset r(t) is a non-continuous conditional function with

θ = γ in Equation 14, and the reset result is instantaneous process:

dr(t)

dt
=

{
Vthδ(t), if u(t) ≥ Vth

0, if u(t) < Vth
. (15)

While this reset has proven effective, it poses challenges for efficient computation. We introduce
a reset function that is both effective and computationally simple for both forward and backward
propagation. We define the reset function to satisfy the condition: ũ(t) ≜ u(t) + ir(t). Substituting
this definition into Equation 14, we obtain the PRF model:

dũ(t)

dt
= γ̃ũ(t) + c(t), (16)

where the real part ℜ{ũ(t)} corresponds to the membrane potential dynamics. This formulation
incorporates the reset mechanism into the time constant via the imaginary component θ, introducing
resonance into the neuron’s behavior. When θ = 0, the model reduces to the standard LIF neuron
without reset. If we extend the Equation 16, we can be expressed in matrix form:(

u̇(t)
ṙ(t)

)
=

(
γ −θ
θ γ

)(
u(t)
r(t)

)
+

(
c(t)
0

)
, (17)

which give us the insight that this reset process is continuous function:
dr(t)

dt
= γu(t) + θr(t), (18)

where this formulation treats the reset as a continuous function controlled by θ, allowing for a more
gradual and reset process.

We then discretize the model (Equation 16) (details are provided in Appendix C), yielding the sequen-
tial and parallel formulations of the PRF neuron, as shown in Equation 19 and 20 in respectively:

ũt = exp(∆γ̃)ũt−1 +∆ct (19a)
st = H (ℜ{ũt} − Vth) (19b)
γ̃ = γ + iθ (19c)

ŨT = F−1
(
F (CT)⊙F(K̃T)

)
(20a)

ST = H
(
ℜ{ŨT } − Vth

)
(20b)

Now the membrane potential ũt ∈ C ,where ∆ is the time step size. The details of parallel
computation is described in Algorithm.3. Where CT = (c1, c2, . . . , cT) is the input current sequence,
and the kernel K̃T is calculated by:

K̃T =
(
∆A(0),∆A(1), . . . ,∆A(T−1)

)
, (21)

with A = exp (∆γ̃). By incorporating the imaginary component θ, the neuron exhibits oscillatory
behavior, allowing it to resonate at specific input frequencies (see Appendix D for details). This
oscillation phenomenon can be found in biological neurons (Izhikevich, 2001). Our model differs from
variants of resonant models, like BHRF (Higuchi et al., 2024), which combine adaptive thresholds
and refractory mechanisms. Instead, we incorporate the reset directly into the time constant through
the imaginary component while enabling efficient parallel computation for training. Furthermore, the
PRF neuron can also be deployed on neuromorphic chips for inference after parallel training, requiring
only two additional multiplications and one more addition than LIF (see details in Appendix E).

4.3 THEORY ANALYSIS

(1) Sequential Perspective on Dynamic. Decoupling the reset can be viewed as transforming the
reduction in membrane potential caused by increased threshold value. This means that the soft reset
mechanism could be equivalent to the adaptive threshold mechanism (Bellec et al., 2020) as deduced
in the Theorem 1. Furthermore, the LIF model without a reset can be considered a specific instance of
a PRF, as demonstrated in Theorem 2. Moreover, the ut in PRF will converge as shown in Theorem
3. This indicates that the membrane potential of PRF is stable and bounded.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Theorem 1. Let Vth = 1 and ρ = 1 in Adaptive-LIF model, then the LIF neuron with soft reset
model is equivalent to the Adaptive-LIF without reset mechanism. (The proof See Appendix.F.1)

Theorem 2. Let ∆ = 1 and θ = 0, then the PRF model could degenerate as Valina LIF model
without reset mechanism. (The proof see Appendix.F.2)

Theorem 3. If the inputs ct ∼ N (0, σ2) follow a normal distribution, then the membrane potential
of PRF will converge as a distribution ut ∼ N (0, τ∆

2 σ2), as t→ +∞. (The proof see Appendix.F.3)

(2) Parallel Perspective on Gradients. The issue of membrane potential dependence described in
Problem 3.3 is fundamentally a problem of gradients, which are correlated with the kernel and
previous spikes. Assuming the input current is Cl

T = W lSl−1
T across all T , the gradients are

proportional to:

∇W lL ∝ ∂L
∂ul

T

T∑
t=1

∂ul
T

∂ul
t

∂ul
t

∂W l︸ ︷︷ ︸
Sequential Perspective

∝
T∑

t=1

β(t)sl−1
t =

〈
KT ,S

l−1
T :1

〉
,︸ ︷︷ ︸

Parallel Perspective

(22)

here ⟨·, ·⟩ denotes the inner product, Sl−1
T = (sl−1

1 , sl−1
2 , . . . , sl−1

T) is the sequence of spike outputs
from the previous layer l − 1, and KT represents the parallelism kernel. The subscript (T : 1)
indicates the sequence reversal. A small β causes gradient vanishing due to a narrow receptive
field, making it likely for sparse spikes to fall outside this field and yield an inner product close
to zero. Conversely, a large β results in a long-range, slow-decaying kernel, leading to overly
consistent gradient values across spike positions. However, an oscillating kernel with a large β can
adjust the gradient at different spike positions, smoothing the gradients and improving the neuron’s
representational capability (see Appendix G for details). Experiment 5.2 verifies this insight.

4.4 ARCHITECTURE

The Spike-Driven Token and Channel Mixer (SD-TCM) Module (Figure 2, with further details
in Appendix H) is inspired by token and channel mixing in Transformer and S4 architectures.
For token mixing, we use a PRN Neuron followed by a Linear layer, while for channel mixing,
the Neuron is replaced by a Spatial Neuron. The Spatial Neuron, a variant of the LIF Neuron,
focuses on instantaneous information at each timestep by setting the time constant τ close to 1:
limτ→1+ ut =

(
1− 1

τ

)
ut−1 + ct ≈ ct. This simplifies the output to st = H(ct − Vth), resembling

motor neurons in biology with rapid decay.

During training, a trainable amplitude α acts as a gate, and during inference, α can be merged into
the Linear layer: (αst)×W ≡ st × (αW). Membrane shortcut residual connections are used to
maintain event-driven, spike-based communication. As shown in Table 1, the PRF requires only
O(5D) computational complexity, while SSMs and Spikinglized SSMs require O(H2 + 2DH).
This makes the architecture rely only on FP-AC and element-wise multiplication, reducing energy
consumption and simplifying deployment on neuromorphic chips. As a result, it achieves lower
computational complexity and energy consumption (see analysis in Appendix I).

PRF Neuron

Spatial Neuron

+

+

Embedding Input

Output

E
n
co

d
er

 B
lo

ck
 ×

 𝑳

SD-TCM

Add & Norm

Spike-Driven Temporal & Channel Mixer

𝒖𝑡

𝒄𝑡

𝒄𝑡

𝒔𝑡

𝒔𝑡

Spikes {0, 1}

Element-Wise Addition+

Membrane Potential

Decoding

Linear

Linear

Figure 2: Diagram of the SD-TCM.

Table 1: The comparison for inference complexity. Full table
in Appendix.I (H: hidden dimension, D: model dimension,
H denotes Heaviside function, fr: firing rate ∈ (0, 1)).

Token Mixing Dynamic Equation Infer. Complexity

SSMs ut = AH×Hut−1 +BD×Hxt

yt = CH×Dut
O(H2 + 2DH)

Spikinglized SSMs ut = AH×Hut−1 +BD×Hxt

yt = H(CH×Dut − Vth)
O(H2 + 2DH)

PRF + Linear
ut = aD ⊙ ut−1 + bD ⊙ xt

st = H(ℜ{ut} − Vth)
yt = Linear(st)

O(5D+fr ·D2)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

5 EXPERIMENTS

To evaluate the efficiency and effectiveness of the parallel method, as well as the performance
improvement on long sequence tasks, we first demonstrate that parallel significantly accelerates
training while maintaining equivalence with sequential computation. Next, we explore the PRF
neuron’s ability to handle long-range dependencies, showing that kernel oscillations improve both
performance and gradient stability. Finally, the SD-TCM module achieves performance comparable
to S4 while reducing energy consumption by over 98.57% on Long Range Arena tasks. Detailed
experimental setups and training hyperparameters are provided in Appendix J.

5.1 THE PARALLEL PROCESS

2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

Timesteps

10 2

10 1

100

101

102

103

R
un

tim
e

(s
)

0.014

0.055
0.023

0.023

0.039

0.02

0.084

0.031

0.144

0.039

0.289

0.06

0.579

0.106

1.147

0.189

2.38

0.349

4.569

0.712

9.256

1.328

18.313

2.671

36.303

5.307

102.402

10.954

370.145

22.428

Training Runtime (s) / Iteration

LIF Sequential
LIF Parallel

Forw. Backw. Other Total
Categories / Batch

0

200

400

600

800

1000

1200

Ti
m

e
(m

s)

388.24

219.49
1.77x

568.65

4.29

132.55x 244.36

113.86
2.15x

1201.25

337.65

3.56x

Seq. vs Par. Training Runtime

LIF Sequential
LIF Parallel

Figure 3: (left) Comparison of training runtime for LIF and Paral-
lelized LIF models. (right) Comparison of sequential and parallel
training runtime across different categories per batch.

First, we compare the train-
ing runtime across different
timesteps in Figure 3 (left)
using three repeated experi-
ments. Beyond 4 timesteps,
parallel training consistently
outperforms sequential train-
ing. For example, at 1,024
timesteps, sequential train-
ing takes 4.6 seconds per it-
eration, while parallel train-
ing takes only 0.7 seconds,
achieving a speedup of 6.57×.
This acceleration becomes more significant as the number of timesteps increases, with a speedup
of 9.35× at 16,384 timesteps and 16.50× at 32,768 timesteps. The equivalence between sequential
and parallel computation is maintained during inference and training, with only a minor accuracy
difference during training (details in Appendix K), which we tentatively attribute to numerical error.

The speedup is primarily due to parallel training avoiding the recursive unfolding of the computational
graph. The forward and backward passes are accelerated by 1.77× and 132.55×, respectively, as
shown in Figure 3 (right). The significant speedup in the backward pass occurs because sequential
training requires unfolding the graph at each timestep, which is time-consuming, whereas parallel
training computes the graph only once. Further details of the timing for both training and inference
can be found in Appendix L.

5.2 THE LONG RANGE LEARNING ABILITY

0 5 10 15 20 25 30
Train Hours / 200 Ep.

60
65
70
75
80
85
90
95

100

To
p-

1
A

cc
. (

%
)

Parallel Training

Trainable

Reset as
Imaginary

Remove ResetPar. Remove Reset

PLIF Par.

PRF

LIFLIF Par.

LIF w/o ResetLIF Par. w/o Reset

sMNIST (784 Sequence)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
 (Decay Retention Ratio)

40

50

60

70

A
cc

ur
ac

y
(%

)

Long-term Dependency
Vanishing with Fast (Small) Decay

Ambiguity

Fig.5(a)

Fig.5(b)

Fig.5(c)

Fig.5(d)
Decay w/o and w resonate on psMNIST

With Resonate = /2
w/o Resonate
LIF w Reset
LIF w/o Reset
Expectation

Figure 4: (left) Ablation Study on sMNIST datasets (Par. means par-
allel training). (right) Accuracy across different decay on psMNIST.

Although parallelized LIF can
speed up training, it still strug-
gles with performance on
simple long-sequence tasks,
such as sequential MNIST, as
shown in Figure 4 (left). How-
ever, after introducing oscil-
lations in the kernel, the PRF
neuron successfully solves the
sequential-MNIST problem,
achieving both training effi-
ciency and effectiveness.

To better understand how oscillating membrane potential improves performance, we compare the
performance of various β values, with and without oscillations, on the more challenging permuted-
sMNIST dataset. The results after training for 50 epochs are summarized in Figure 4 (right). (We fit
∆ = 1 and set θ = π

2 while varying the β hyperparameter without training.) Without the oscillating
term, as β increases, accuracy initially improves as expected but then decreases beyond a certain
point. In contrast, the introduction of oscillations helps counteract this decline and further enhances
performance, indicating that oscillations can improve performance for long sequences.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

37.5

38.0

38.5
39.0

39.5
40.0
40.5
41.0
41.5
42.0
42.5
43.0
43.5
44.0
44.5
45.0
45.5
46.0
46.5
47.0
47.5
48.0
48.5
49.0

49.5

49
.5

50.0

50
.0

50
.5

50
.5

51
.0

51
.0

51
.5

51
.5

52
.0

52
.0

52
.5

52
.5

53
.0

53.0

53
.5

53
.5

54
.0

54.0

54
.5

54.5

54.5

55.0

55
.0

55.0

55.5 55.555.5

55
.5

55.5

56.0
56.0

56.0 56
.0

56.0

56.0

56.5
56.5

56.5

56.5

56.5

57.0 57.0

57.0

57.
0

57.5 57.5

57.5

57
.5

58.0 58.0

58.0

58.0

58.5 58.5

58.5

58.5

58
.5

59.0 59.0

59.0

59
.0

59.5 59.5

59.5

59.5

60.0

60.0

60.0

60.5

60.5

60
.5

61.0

61.0

61
.0

61.5

61.5

61
.5

62.0

62.0

62
.0

62.5

62.5

62
.5

63.0

63
.0

63.5

63
.5

64
.0

64
.0

64.565
.0

65
.566.0

66.5
67.067.568.068.569.069.570.070.571.071.572.072.573.073.574.074.575.075.576

.0
76

.5
77

.077.077

.5
78

.0
78

.5
79

.0
79

.5

(a) Fast Decay
Gradients Vanishing

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

7.6

9.1

9.1

9.
1

9.1

10.6

10.6

10.6

12.1

13.6

15.1

16.6 18.1

19.6 21.1

22.6

24.125
.6

25.6

27
.1

27.1

27.1

28
.6

28.6

30
.1

30
.1

31.6

31.6

31
.6

31.6

33.1

33.1

33.1

33.1

33
.1

34.6

34.6

34.6

34
.6

36.1
36.1

36
.1

36.1
36.1

36.1

37.6

37.6

37.6
37.6

37.6

37.6

39.1

39.1
39.1

39.1

39.1

39.1

40.6

40.6

40.6

40.6

40.6

40.6

42.1

42.1

42
.1 42.1

43.6

43.6

43
.6

43.6

45.1
45.1

45
.1

45.1

46.6

46.6

46
.6

46.6

48.1 48.1

48
.1

48.1

49.6

49.6

49
.6

49.6

(b) Moderate Decay
Gradients Appearing

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

49
.651.1

52.6

54.1

55.6

57.1

58.6

60.1

61.663.1
64.6

66.1

67.6

67.6

69.1

70.672.1

72.1

73.6

73.6

75
.1

75.1

75.1

76.6

76.6

76.6

76.6

78.1

78.1

78.1

78.1

78.1

79.6

79.6

79.6

79.6

79
.6

81
.1

81.1

81.1

81.1

82.6

82.6

82.6

82.6

84.1
84.1

84.1

84.1

85.6
85.6

85.6

87.1

87.1

87.1

88
.6

88
.6

88.690
.1

90
.1

90.1

91.6

91.6

93.1

94.6

96
.1

97.6

97.6

99.1

99.1

(c) Slow Decay
Gradients Ambiguity

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.
6

3.1

4.6

6.1

7.6

9.1

10.6

12.1

13
.6

15.1

16.6
18.1

19
.6

21.1

22.6

24.1

25.6

27
.128.6

28.6

30.1

30.1

31.6

31.6

31.6

33.1

33
.1

34.6

34.6

36.1
36.1

37.6

37
.6

37
.6

39
.1

39
.1

39.140.6

40
.6 40.6

42
.1

42
.1

42
.1

42.1

43.6

43.6

43
.6

43.6

45.1

45
.1

45
.1

45.1

46.6

46
.6

46
.6 46.6

48.1 48
.1

48
.1

48.1

49.6

49
.6

49
.6

49.6

(d) Resonate
Smooth Gradients

Figure 5: Comparison of loss landscapes: (a) Fast decay causes gradient vanishing. (b) Moderate
decay improves but keeps optimal local. (c) Further slow decay makes gradient ambiguity, hindering
optimization. (d) The resonance creates a smooth gradient field, aiding efficient convergence.

We further examine the loss landscape contours (Li et al., 2018) for each case in Figure 5, corre-
sponding to Figure 4 (right). Gradients are perpendicular to the contour lines, with sparse or dense
contours indicating smaller or larger gradients, respectively. Extremely sparse or dense contours
suggest vanishing or exploding gradients. In Figure 5 (a), fast decay with a small β shows gradient
vanishing, with extremely sparse contours. Increasing β with moderate decay can alleviate gradient
vanishing, but the model still encounters a local optima region (Figure 5 (b)). Further increasing β
with slow decay is expected to fully address the vanishing problem but introduces gradient ambiguity
with overlapping contours (Figure 5 (c)). In contrast, the introduced oscillation from resonate results
in smoother gradients (Figure 5 (d)), enabling more effective feature extraction.

As shown in Table 2, the PRF neuron uses only 68.9k parameters (768 for neurons and 67.2k for
synapses) to achieve state-of-the-art (SOTA) results while maintaining training efficiency. Previous
models required recurrent connections in the linear layers to solve the (p)s-MNIST task. To align the
training parameters, we modified the architecture to a feedforward linear layer with a 1-(128)3-10
structure. Using parallel computation, we completed the entire training process in only 1.60 hours
with a batch size of 256 for 200 epochs.

Table 2: The neuron for (permute)-sequential MNIST and sequential CIFAR task. The pixel-level
image classification captures the hierarchical structure to verify the long-range capture ability. The
symbol ∗ denotes including the feedback linear connection, while the symbol of ↑ and ↓ indicate
that larger and smaller values are better, respectively. The BHRF result is referenced from (Higuchi
et al., 2024), results of PSN family and PMSN are from (Chen et al., 2024), while other results are
from (Zhang et al., 2024).

Task
(Length) Spiking Neuron Seq.

Infer.
Par.

Train.
No. Params.

↓
Top-1 Test Acc.

(%) ↑

sMNIST / psMNIST
(784)

LIF ! % 155.1* 89.28 / 80.26
PLIF (Fang et al., 2021)2021’ ICCV ! % 155.1 k* 91.79 / –
GLIF (Yao et al., 2022)2022’ NeurIPS ! % 157.5 k* 96.64 / 90.47
TC-LIF (Zhang et al., 2024)2024’ AAAI ! % 155.1 k* 99.20 / 95.36
ALIF (Yin et al., 2021)2021’ Nat. MI ! % 156.3 k* 98.70 / 94.30
BHRF (Higuchi et al., 2024)2024’ ICML ! % 68.9 k 99.10 / 95.2
PRF (Ours) ! ! 68.9 k 99.18 / 96.87

PSN (Fang et al., 2024)2024’ NeurIPS ! ! 2.5 M 97.90 / 97.76
Masked PSN (Fang et al., 2024)2024’ NeurIPS ! ! 153.7 k 97.76 / 97.53
Sliding PSN (Fang et al., 2024)2024’ NeurIPS ! ! 52.4 k 97.20 / 82.84
PMSN (Chen et al., 2024)2024’ ArXiv ! ! 156.4 k 99.53 / 97.78
PRF (Ours) ! ! 167.0 k 99.39 / 97.90

seqCIFAR
(1024)

LIF ! ! 0.18 M 45.07
PSN (Fang et al., 2024)2024’ NeurIPS ! ! 6.47 M 55.24
Masked PSN (Fang et al., 2024)2024’ NeurIPS ! ! 0.38 M 57.83
Sliding PSN (Fang et al., 2024)2024’ NeurIPS ! ! 0.18 M 70.23
PMSN (Chen et al., 2024)2024’ ArXiv ! ! 0.21 M 82.14
PRF (Ours) ! ! 0.29 M 82.37
PRF (Ours) ! ! 1.10 M 85.33

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

5.3 LONG RANGE ARENA TASKS

To demonstrate the long-range dependency analysis capability of our SD-TCM module, we evaluate
it using the Long Range Arena (LRA) benchmark (Tay et al., 2020). This benchmark covers a wide
range of classification tasks, including both textual and image domains. For the ListOps, Text, and
Retrieval tasks, we use the causal architecture, while S4 employs a bidirectional architecture for all
tasks. For the Image and Pathfinder tasks, we use a bidirectional architecture.

Table 3: Comparison of Accuracy, Parameters and Energy.

Metric Model ListOps Text Retrieval Image Pathfinder Avg.

En.(mJ) S4
Ours

5.104
0.075

3.718
0.298

24.439
0.211

19.222
0.187

6.256
0.067

11.748
0.168

Acc.(%) S4
Ours

59.60
59.20

86.82
86.33

90.90
89.88

88.65
84.77

94.20
91.76

84.03
82.39

Par. S4
Ours

815 k
272 k

843 k
830 k

3.6 M
1.1 M

3.6 M
4.1 M

1.3 M
1.3 M

-
-

Table 4: Text (4096) ablation on α ef-
fective with casual architecture.

Text (4096) Acc. (%) Diff. (%)

without α 85.75 −
+ α on SN & T N 85.69 − 0.06
+ α on T N 86.11 + 0.36
+ α on SN 86.33 + 0.58

The SD-TCM module achieves performance comparable to S4 while reducing energy consumption
by over 98.57% on average, as shown in Table 3. Specifically, the accuracy on ListOps is 59.60%,
compared to S4’s 59.20%. The key advantage is the significant reduction in energy consumption,
as shown in Table 3, with ListOps dropping from 5.104 mJ to 0.075 mJ. This energy reduction
mainly benefits from the extreme sparsity of spikes, with detailed firing rate statistics provided in
Appendix M. Additionally, the model is sensitive to the imaginary part of θ, causing fluctuations
with different initialization (see Appendix N for details). Table 4 shows an ablation study on the α
parameter in the Text (4096) task. Applying α to both the spatial (SN) and PRF (T N) components
slightly lowers accuracy from 85.75% to 85.69%, but applying it only to SN improves accuracy to
86.33%, demonstrating its benefit for spatial dependencies. Finally, as shown in Table 5, our module
achieves performance comparable to the S4 baseline across tasks while preserving spike-driven
feature, avoiding nonlinear activation functions and FP MAC operations.

Table 5: Test Accuracy Comparison on LRA Tasks (%) (↑). ’NL Act. Free’ and ’FP MAC Free’
denote models that do not use nonlinear activation functions or floating-point multiply-accumulate
operations in the block, respectively. The underline and bold formatting indicate the SoTA result for
Spikinglized SSMs and Improving Neuron methods, respectively.

Model NL Act. FP MAC ListOps Text Retrieval Image Pathfinder Avg.(Input length) -Free -Free (2,048) (4,096) (4,000) (1,024) (1,024)

Random (Lower Bound) - - 10.00 50.00 50.00 10.00 50.00 34.00
Transformer (Vaswani et al., 2017) % % 36.37 64.27 57.46 42.44 71.40 54.39
S4 (Bidirectional) (Gu et al., 2022a) % % 59.60 86.82 90.90 88.65 94.20 84.03

Binary S4D (Stan & Rhodes, 2023) 2024’ Sci. Rep. % % 54.80 82.50 85.03 82.00 82.60 77.39
↪→ + GSU & GeLU % % 59.60 86.50 90.22 85.00 91.30 82.52
Stoch. SpikingS4 (Bal & Sengupta, 2024) 2024’ arXiv % % 55.70 77.62 88.48 80.10 83.41 77.06
SpikingSSMs (Shen et al., 2024) 2024’ arXiv % % 60.23 80.41 88.77 88.21 93.51 82.23

Spiking LMU (Liu et al., 2024) 2024’ ICLR ! % 37.30 65.80 79.76 55.65 72.68 62.23
ELM Neuron (Spieler et al., 2024) 2024’ ICLR % % 44.55 75.40 84.93 49.62 71.15 69.25
Spike-Driven TCM ! ! 59.20 86.33 89.88 84.77 91.76 82.39

6 CONCLUSION

This study aims to solve the SNNs problem of parallelization and performance on long sequences.
We propose the decoupled reset method, enabling spiking neurons could parallel training. This
method can be applied to any type of neuron to speed up. Additionally, we introduce the PRF neuron,
incorporating the reset as an imaginary part to formulate oscillations in the membrane potential,
which solves the long-range dependency problem. The SD-TCM model, combined with PRF neurons,
achieves performance comparable to S4 on the LRA task while reducing energy consumption by two
orders of magnitude. However, due to the sensitivity of training to neuron initialization, the PathX
problem remains unsolved. This issue could be solved in the future by using better hyperparameters
and initialization strategies.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Malyaban Bal and Abhronil Sengupta. Rethinking spiking neural networks as state space models.
arXiv preprint arXiv:2406.02923, 2024.

Maximilian Baronig, Romain Ferrand, Silvester Sabathiel, and Robert Legenstein. Advancing
spatio-temporal processing in spiking neural networks through adaptation. arXiv preprint
arXiv:2408.07517, 2024.

Guillaume Bellec, Franz Scherr, Anand Subramoney, Elias Hajek, Darjan Salaj, Robert Legenstein,
and Wolfgang Maass. A solution to the learning dilemma for recurrent networks of spiking neurons.
Nature communications, 11(1):3625, 2020.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Xinyi Chen, Jibin Wu, Chenxiang Ma, Yinsong Yan, Yujie Wu, and Kay Chen Tan. Pmsn: A
parallel multi-compartment spiking neuron for multi-scale temporal processing. arXiv preprint
arXiv:2408.14917, 2024.

Yann N Dauphin, Angela Fan, Michael Auli, and David Grangier. Language modeling with gated
convolutional networks. In International conference on machine learning, pp. 933–941. PMLR,
2017.

Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha
Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. Loihi: A neuromorphic
manycore processor with on-chip learning. Ieee Micro, 38(1):82–99, 2018.

Wei Fang, Zhaofei Yu, Yanqi Chen, Timothée Masquelier, Tiejun Huang, and Yonghong Tian.
Incorporating learnable membrane time constant to enhance learning of spiking neural networks.
In Proceedings of the IEEE/CVF international conference on computer vision, pp. 2661–2671,
2021.

Wei Fang, Zhaofei Yu, Zhaokun Zhou, Ding Chen, Yanqi Chen, Zhengyu Ma, Timothée Masquelier,
and Yonghong Tian. Parallel spiking neurons with high efficiency and ability to learn long-term
dependencies. Advances in Neural Information Processing Systems, 36, 2024.

Leo Feng, Frederick Tung, Hossein Hajimirsadeghi, Mohamed Osama Ahmed, Yoshua Bengio, and
Greg Mori. Attention as an rnn. arXiv preprint arXiv:2405.13956, 2024.

Karan Goel, Albert Gu, Chris Donahue, and Christopher Ré. It’s raw! audio generation with
state-space models. In International Conference on Machine Learning, pp. 7616–7633. PMLR,
2022a.

Karan Goel, Albert Gu, Chris Donahue, and Christopher Ré. It’s raw! audio generation with
state-space models. International Conference on Machine Learning (ICML), 2022b.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory
with optimal polynomial projections. Advances in neural information processing systems, 33:
1474–1487, 2020.

Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré.
Combining recurrent, convolutional, and continuous-time models with linear state-space layers.
Advances in Neural Information Processing Systems, 34, 2021.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. In The International Conference on Learning Representations (ICLR), 2022a.

Albert Gu, Ankit Gupta, Karan Goel, and Christopher Ré. On the parameterization and initialization
of diagonal state space models. Advances in Neural Information Processing Systems, 35, 2022b.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Albert Gu, Isys Johnson, Aman Timalsina, Atri Rudra, and Christopher Ré. How to train your
hippo: State space models with generalized basis projections. In The International Conference on
Learning Representations (ICLR), 2023.

Saya Higuchi, Sebastian Kairat, Sander M Bohte Otte, et al. Balanced resonate-and-fire neurons.
arXiv preprint arXiv:2402.14603, 2024.

Yangfan Hu, Huajin Tang, and Gang Pan. Spiking deep residual networks. IEEE Transactions on
Neural Networks and Learning Systems, 34(8):5200–5205, 2021.

Yifan Hu, Lei Deng, Yujie Wu, Man Yao, and Guoqi Li. Advancing spiking neural networks toward
deep residual learning. IEEE Transactions on Neural Networks and Learning Systems, 2024.

Eugene M Izhikevich. Resonate-and-fire neurons. Neural networks, 14(6-7):883–894, 2001.

Anil Kag and Venkatesh Saligrama. Training recurrent neural networks via forward propagation
through time. In International Conference on Machine Learning, pp. 5189–5200. PMLR, 2021.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Master’s thesis, University
of Toronto, 2009.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss landscape
of neural nets. Advances in neural information processing systems, 31, 2018.

Drew Linsley, Junkyung Kim, Vijay Veerabadran, Charles Windolf, and Thomas Serre. Learning long-
range spatial dependencies with horizontal gated recurrent units. Advances in Neural Information
Processing Systems, 31, 2018.

Zeyu Liu, Gourav Datta, Anni Li, and Peter Anthony Beerel. LMUFormer: Low complexity yet pow-
erful spiking model with legendre memory units. In The Twelfth International Conference on Learn-
ing Representations, 2024. URL https://openreview.net/forum?id=oEF7qExD9F.

Andrew Maas, Raymond Daly, Peter Pham, Dan Huang, Andrew Ng, and Christopher Potts. Learning
word vectors for sentiment analysis. In Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies, pp. 142–150, 2011.

Qingyan Meng, Mingqing Xiao, Shen Yan, Yisen Wang, Zhouchen Lin, and Zhi-Quan Luo. Towards
memory-and time-efficient backpropagation for training spiking neural networks. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 6166–6176, 2023.

Nikita Nangia and Samuel Bowman. ListOps: A diagnostic dataset for latent tree learning. NAACL
HLT 2018, pp. 92, 2018.

Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pascanu,
and Soham De. Resurrecting recurrent neural networks for long sequences. In International
Conference on Machine Learning, pp. 26670–26698. PMLR, 2023.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Dragomir Radev, Pradeep Muthukrishnan, and Vahed Qazvinian. The ACL anthology network corpus.
ACL-IJCNLP 2009, pp. 54, 2009.

Arjun Rao, Philipp Plank, Andreas Wild, and Wolfgang Maass. A long short-term memory for ai
applications in spike-based neuromorphic hardware. Nature Machine Intelligence, 4(5):467–479,
2022.

Shuaijie Shen, Chao Wang, Renzhuo Huang, Yan Zhong, Qinghai Guo, Zhichao Lu, Jianguo Zhang,
and Luziwei Leng. Spikingssms: Learning long sequences with sparse and parallel spiking state
space models. arXiv preprint arXiv:2408.14909, 2024.

12

https://openreview.net/forum?id=oEF7qExD9F

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Jimmy T.H. Smith, Andrew Warrington, and Scott Linderman. Simplified state space layers for
sequence modeling. In The Eleventh International Conference on Learning Representations, 2023.
URL https://openreview.net/forum?id=Ai8Hw3AXqks.

Aaron Spieler, Nasim Rahaman, Georg Martius, Bernhard Schölkopf, and Anna Levina. The
expressive leaky memory neuron: an efficient and expressive phenomenological neuron model can
solve long-horizon tasks. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=vE1e1mLJ0U.

Matei Ioan Stan and Oliver Rhodes. Learning long sequences in spiking neural networks. arXiv
preprint arXiv:2401.00955, 2023.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark for efficient
transformers. arXiv preprint arXiv:2011.04006, 2020.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long Range Arena: A benchmark for efficient
transformers. In International Conference on Learning Representations, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for
training high-performance spiking neural networks. Frontiers in neuroscience, 12:331, 2018.

Mingqing Xiao, Qingyan Meng, Zongpeng Zhang, Di He, and Zhouchen Lin. Online training
through time for spiking neural networks. Advances in neural information processing systems, 35:
20717–20730, 2022.

Man Yao, Jiakui Hu, Zhaokun Zhou, Li Yuan, Yonghong Tian, Bo Xu, and Guoqi Li. Spike-driven
transformer. Advances in Neural Information Processing Systems, 36, 2024.

Xingting Yao, Fanrong Li, Zitao Mo, and Jian Cheng. Glif: A unified gated leaky integrate-and-fire
neuron for spiking neural networks. Advances in Neural Information Processing Systems, 35:
32160–32171, 2022.

Sidi Yaya Arnaud Yarga and Sean UN Wood. Accelerating spiking neural networks with parallelizable
leaky integrate-and-fire neurons. Authorea Preprints, 2024.

Bojian Yin, Federico Corradi, and Sander M Bohté. Accurate and efficient time-domain classification
with adaptive spiking recurrent neural networks. Nature Machine Intelligence, 3(10):905–913,
2021.

Bojian Yin, Federico Corradi, and Sander M Bohté. Accurate online training of dynamical spiking
neural networks through forward propagation through time. Nature Machine Intelligence, 5(5):
518–527, 2023.

Shimin Zhang, Qu Yang, Chenxiang Ma, Jibin Wu, Haizhou Li, and Kay Chen Tan. Tc-lif: A
two-compartment spiking neuron model for long-term sequential modelling. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 38, pp. 16838–16847, 2024.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023.

13

https://openreview.net/forum?id=Ai8Hw3AXqks
https://openreview.net/forum?id=vE1e1mLJ0U

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A NOTATION IN THE PAPER

Throughout this paper and in this Appendix, we use the following notations. Matrices are represented
by bold italic capital letters, such as W , while sequences are represented by bold non-italic capital
letters, such as XT = {x1, x2, ..., xT }. For a function f(x) : Rd1 → Rd2 , we use ∇xf instead of
∂f
∂x to denote the first-order derivative of f with respect to x. The symbols ⊙ and ⟨·, ·⟩ represent the
element-wise product and the inner product, respectively.

B THE ALGORITHM OF PSEUDO-CODE

Algorithms 1 and 2 describe the parallel computation of the LIF model, while Algorithm 3 outlines
the computation process for the PRF model.

Algorithm 1: Parallel Computation of LIF
1: Input: x : (T,B,N)
2: Output: y : (T,B,N) ∈ {0, 1}
3: K : (T)← (β0, β1, . . . , β(T−1))
4: ▷ Expand to (T, 1, 1)
5: U : (T,B,N)←

iFFT (FFT(x)× FFT(K))
6: ▷ Fast Fourier Transf.
7: D : (T,B,N)← fD(U)
8: ▷ Scanning decoupled reset
9: y : (T,B,N)← H(U −D)

10: ▷ Equivalent Seq. Outputs
11: return y

Algorithm 2: fD(U) decoupled reset
1: Input: U : (T), Vth : float, β : float,

T : int
2: Output: D : (T)
3: V : (T)← (0, 0, . . . , 0) ▷ Initial Empty
4: Abias, dcurrent ← 0, Vth

5: for t← 0 to T do:
6: d[t]← dcurrent
7: if U [t] ≥ dcurrent :
8: Abias ← Abias + 1
9: Abias ← β ×Abias

10: dcurrent ← Vth ×Abias + Vth

11: return D

Algorithm 3: Parallel Computation of PRF Model
1: Input: x : (T,B,N), θ : (N), ∆ : (N), τ : float, Vth : float
2: Output: y : (T,B,N) ∈ {0, 1}
3: A : (N)← exp(∆⊙ (−1/τ + 1j × θ))
4: K : (T,N)← (∆×A(0),∆×A(1), . . . ,∆×A(T−1)) ▷ Expand as (T, 1, N) Dimension
5: U : (T,B,N)← iFFT (FFT(x)× FFT(K)) ▷ (Inverse) Fast Fourier Transf.
6: y : (T,B,N)← H(U.real − Vth)
7: return y

C THE DISCRETIZATION OF PRF NEURONS

Firs, we recall the PRF model:

dũ(t)

dt
= γ̃ũ(t) + c(t), (23)

where complex membrane potential ũ(t) = u(t) + ir(t) and a complex decay constant γ̃ = γ + iθ
with i =

√
−1.

Note that here c(t) is treated as a fixed external current input, which is constant from the point of
view of this ODE in ui(t). Let ck denote the average value in each discrete time interval. Assumes
the value of a sample of u is held constant for a duration of one sample interval δ.

ctk =
1

∆tk

∫ tk

tk−1

c(t)dt (24)

Since we only observe the real part of the membrane potential, the input is a real number. Thus, we
can consider the real part γ = − 1

τ to describe the model. The model can then be expressed as:

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

du(t)

dt
= −1

τ
u(t) +

R

τ
c(t)

e
t
τ
du(t)

dt
= −1

τ
e

t
τ u(t) + e

t
τ
R

τ
c(t)

e
t
τ
du(t)

dt
+

1

τ
e

t
τ u(t) = e

t
τ
R

τ
c(t)

d

dt

(
e

t
τ u(t)

)
= e

t
τ
R

τ
c(t)∫ tk

tk−1

d

dt

(
e

t
τ u(t)

)
=

∫ tk

tk−1

e
t
τ
R

τ
c(t)dt

e
tk
τ u(tk)− e

tk−1
τ u(tk−1) =

(
e

tk
τ − e

tk−1
τ

)
Rctk

u(tk) = e−
∆tk
τ u(tk−1) +

(
1− e−

∆tk
τ

)
Rctk

u(tk) ≈ e−
∆tk
τ u(tk−1) + ∆tk

R

τ
ctk .

(25)

Rearranging, assuming R = τ without input decay, we replace ∆tk with ∆, as done in S4 (Gu et al.,
2022a). We obtain the discrete form:

ut = e∆γut−1 +∆ct. (26)

Finally, replacing the original part γ̃ = −γ + iθ gives the PRF neuron with sequential computation:

ũt = exp

(
∆

(
−1

τ
+ iθ

))
ũt−1 +∆ct, (27)

st = H(ℜ{ũt} − Vth). (28)

D THE FREQUENCY RESPONSE FOR PRF NEURON

This section mainly discusses the frequency response of the dynamic reset LIF neuron. Recall the
membrane potential dynamic equation:

ũt = exp

(
∆

(
−1

τ
+ iθ

))
ũt−1 +∆ct, (29)

st = H(ℜ{ũt} − Vth). (30)

This dynamic process can be regarded as a damped harmonic oscillator. The real part of the membrane
potential, ℜ{ut}, represents the displacement. When the displacement exceeds a certain value, this
model will issue a signal. Here, ∆ represents the timestep size, and ct is the input for each timestep,
driven by an external force.

First, define γ̃ ≜
(
− 1

τ + iθ
)
. The model can then be expressed as:

ũt = exp (∆γ̃) ũt−1 +∆ct, (31)
ũt − ũt−1

∆
=

exp (∆γ̃)− 1

∆
ũt−1 + ct, (32)

To explore the numerical effects in the experiment, we obtain the approximate ODE by using x to
represent u:

dx

d∆
−

(
exp (∆γ̃)− 1

∆

)
x = ct, (33)

using a first-order Taylor expansion approximation, we obtain:

dx

d∆
− γ̃x = ct, (34)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

We assume the driven input is an oscillation, ct = c0 exp(iω∆), with a constant base amplitude
c0 and a variable angular frequency ω. The position of the membrane potential x will oscillate in
resonance as:

x = xω exp(iω∆), (35)
where xω is the amplitude as a function of the external excitation frequency. We then have:

ẋ = iωxω exp(iω∆). (36)

Substituting Equation 36 into Equation 34 gives:

iωxω exp(iω∆)− γ̃xω exp(iω∆) = c0 exp(iω∆) (37)
iωxω − γ̃xω = c0 (38)
(iω − γ̃)xω = c0 (39)

Rearranging the equation yields:
xω

c0
=

1

iω − γ̃
(40)

=
1

1
τ + i(ω − θ)

. (41)

Thus, we have:

ℜ
{
xω

c0

}
=

1/τ

(1τ)
2 + (ω − θ)2

(42)

ℑ
{
xω

c0

}
=

−ω + θ

(1τ)
2 + (ω − θ)2

(43)

The magnitude can be obtained by taking the modulus, which varies with ω and θ:∣∣∣∣xω

c0

∣∣∣∣ =
√
ℜ
{
xω

c0

}2

+ ℑ
{
xω

c0

}2

(44)

=
1√

(1τ)
2 + (ω − θ)2

(45)

Assuming ω > 0, the value of ω corresponding to the maximum of the magnitude can be found:

d

∣∣∣∣xω

c0

∣∣∣∣ /dω = 0 (46)

−1

2

(
(
1

τ
)2 + (ω − θ)2

)− 3
2

× 2(ω − θ) = 0 (47)

ω = θ (48)

Therefore, the resonant frequency ω at the point of maximum magnitude coincides with θ, and
max

(∣∣∣xω

c0

∣∣∣) = τ .

E DEPLOYMENT ANALYSIS OF PRF NEURON

This model can also be easily deployed on neuromorphic chips. After training, the coefficients can
merge together.

Recalling the PRF Neuron as described in Equation 19, we explicitly expand the real and imaginary
parts as follows:

ũt = exp

(
∆

(
−1

τ
+ iθ

))
ũt−1 +∆ct

=

(
exp

(
−∆

τ

)
cos (∆θ) + i exp

(
−∆

τ

)
sin (∆θ)

)
ũt−1 +∆ct

(49)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

𝒖𝑡1

𝜏
𝒄𝑡

𝒔𝑡× (1 −
1

𝜏
)

× 𝑽th

+

+

+

+

−

−

−

−

𝒖𝑡

𝒓𝑡

Δ𝒄𝑡 𝒔𝑡

× 𝝋re

+

+

+

+

+

+

+

+

−

−

−

−

× 𝝋im

× 𝝋re

× 𝝋im

Figure 6: The comparison of LIF Neuron (left) and PRF Neuron (right) for inference deployment.

We use the symbols ℜũt ∈ R and ℑũt ∈ R to denote the real and imaginary parts of the membrane
potential ũt ∈ C, respectively:(

ℜ{ũt}
ℑ{ũt}

)
=

(
φre −φim

φim φre

)(
ℜ{ũt−1}
ℑ{ũt−1}

)
+

(
∆ct
0

)
, (50)

where the coefficients φre, φim ∈ R are the merged parameters:

φre = exp

(
−∆

τ

)
cos (∆θ),

φim = exp

(
−∆

τ

)
sin (∆θ).

(51)

Finally, the spike is output based on the real part ℜũt. For simplicity, we use ut and rt to denote ℜũt

and ℑũt, respectively. Thus, the explicit iteration of the PRF can be written as:

ut = φreut−1 − φimrt−1 +∆ct, (52)
rt = φimut−1 + φrert−1, (53)
st = H (ut − Vth) . (54)

Intuitively, compared to the LIF model, the PRF introduces two additional multiplication operations
and one extra addition operation for inference, along with an extra hidden state that needs to be saved,
as shown in Figure 6. Furthermore, this neuron model, with its double hidden state, can also be easily
deployed on neuromorphic chips, similar to how the AHP model (Rao et al., 2022) was deployed on
the Loihi chip (Davies et al., 2018).

F PROOF

F.1 PROOF OF THEOREM.1

Proof. Firstly, consider the Adaptive LIF (ALIF) model (Bellec et al., 2020), where the thresh-
old adapts according to recent firing activity. The dynamic threshold is given by Equation 55 to
Equation 57:

At = Vth + βat (55)
zt = H(ut −At) (56)

at+1 = ρat + zt (57)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Here, the decay factor ρ is given by e−δt/τa , where τa is the adaptation time constant, as described in
ALIF (Bellec et al., 2020).

Intuitively, when τa ≫ δt, we have ρ→ 1, simplifying Equation 57 to at+1 = at + zt. The variable
zt can be further deduced as follows:

zt = H(ut −At) =

{
0, if ut < At

1, if ut ≥ At
(58)

Substituting Equation 58 into Equation 57, we obtain:

at+1 =

{
at, if ut < At

at + 1, if ut ≥ At
(59)

Therefore, Equation 55 can be further expanded using Equation 59:

At = Vth + at (60)

at =

{
βat−1, if ut < At

β(at−1 + 1), if ut ≥ At
(61)

Finally, we can see that Equation 60 - Equation 61 are equivalent to Equation 10 - Equation 11.

F.2 PROOF OF THEOREM.2

Proof. Firstly, we recall the dynamic iteration of the PRF model:

ũt = exp

(
∆

(
−1

τ
+ iθ

))
ũt−1 +∆ct, (62)

st = H (ℜ{ũt} − Vth) (63)

Next, let ∆ = 1 and θ = 0, allowing the model to be rewritten as:

ut = exp

(
−1

τ

)
ut−1 + ct, (64)

st = H (ut − Vth) (65)

At this point, ut ∈ R, meaning it only contains a real part, with the decay affecting only the real
component. Setting θ = 0 can be interpreted as removing the reset process. Furthermore, the
exponential term exp

(
− 1

τ

)
can be approximated using the first-order Taylor expansion:

exp

(
−1

τ

)
≈ 1− 1

τ
(66)

Finally, the dynamic equation can be rewritten as:

ut =

(
1− 1

τ

)
ut−1 + ct, (67)

st = H (ut − Vth) (68)

Equation 67 and Equation 68 are equivalent to the standard LIF model without the reset process, as
given in Equation 2.

F.3 PROOF OF THEOREM.3

Proof. Firstly, we recall the dynamic iteration of the PRF model:

ũt = exp

(
∆

(
−1

τ
+ iθ

))
ũt−1 +∆ct, (69)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

assuming ct ∼ N (0, σ2) is normally distributed with zero mean and variance σ2 at time-invariant,
and ∆, τ , and θ are constants. Define the complex constant A:

A = exp

(
∆

(
−1

τ
+ iθ

))
= exp

(
−∆

τ

)
exp (i∆θ) . (70)

Note that the magnitude of A is:

|A| = e−∆/τ < 1, (71)

since τ > ∆ > 0. In further, where the membrane potential ut = ℜ{ũt} is the real part of ũt.

Next, we expand ũt recursively:

ũt = Aũt−1 +∆ct (72)
= A(Aũt−2 +∆ct−1) + ∆ct (73)

= A2ũt−2 +A∆ct−1 +∆ct (74)
... (75)

= Atũ0 +∆

t∑
k=1

At−kck. (76)

Now, we calculate the expectation and variation of ut. since ct are independent and identically
distributed with E[ct] = 0 and Var(ct) = σ2, we can compute the expected value of ũt:

E[ũt] = E

[
Atũ0 +∆

t∑
k=1

At−kck

]
(77)

= Atũ0 +∆

t∑
k=1

At−kE[ck] (78)

= Atũ0. (79)

As |A| < 1, it follows that:

lim
t→∞

E[ut] = ℜ{ lim
t→∞

E[ũt]} → 0 (80)

Next, compute the variance of ũt :

Var(ũt) = E
[
|ũt|2

]
− |E[ũt]|2 (81)

= E

∣∣∣∣∣Atũ0 +∆

t∑
k=1

At−kck

∣∣∣∣∣
2
− |Atũ0|2 (82)

= 2Atũ0∆

t∑
k=1

At−kE [ck] + ∆2E

∣∣∣∣∣
t∑

k=1

At−kE[ck]

∣∣∣∣∣
2
 (83)

= ∆2E

∣∣∣∣∣
t∑

k=1

At−kck

∣∣∣∣∣
2
 . (84)

Since ck are independent and have zero mean, we have:

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

E

∣∣∣∣∣
t∑

k=1

At−kck

∣∣∣∣∣
2
 =

t∑
k=1

t∑
l=1

At−kAt−lE [ckcl] (85)

=

t∑
k=1

|A|2(t−k)E
[
|ck|2

]
, since E [ckcl] = 0 for k ̸= l (86)

= σ2
t∑

k=1

|A|2(t−k). (87)

Therefore, the variance of ut is:

Var(ut) = ∆2σ2
t∑

k=1

|A|2(t−k) = ∆2σ2
t−1∑
m=0

|A|2m. (88)

Since |A| = e−∆/τ as deduced in Equation 71, we have:

|A|2m = e−2∆m/τ . (89)

Thus,

Var(ut) = ∆2σ2
t−1∑
m=0

e−2∆m/τ . (90)

This is a finite geometric series with first term equals to 1 and common ratio r = e−2∆/τ :
t−1∑
m=0

e−2∆m/τ =
1− rt

1− r
. (91)

Therefore,

Var(ut) = ∆2σ2 1− e−2∆t/τ

1− e−2∆/τ
. (92)

As t→∞, e−2∆t/τ → 0, so the variance approaches:

lim
t→∞

Var(ut) =
1

1− e−2∆/τ
≈ ∆2σ2

2∆/τ
=

τ∆

2
σ2, (93)

this is a finite constant, in summary we could get the distribution after t→∞:

ut ∼ N
(
0,

τ∆

2
σ2

)
, (94)

which implies that ut is bounded in probability. This indicates that ut does not diverge but instead
stabilizes to a specific distribution related to the input distribution and hyperparameters. It ensures
that despite the randomness introduced by the inputs ct, the neuron’s response remains predictable in
distribution.

G PARALLEL PERSPECTIVE ON SOLVING LONG-RANGE LEARNING PROBLEM

From the subsection of Problem Formulation 2, we gain the insight that the gradient is proportional
to the inner product of the kernel and previous layer spikes.

∇W lL ∝ ∂L
∂ul

T

T∑
t=1

∂ul
T

∂ul
t

∂ul
t

∂W l
∝

T∑
t=1

β(t)sl−1
t =

〈
KT ,S

l−1
T :1

〉
︸ ︷︷ ︸

Parallel Perspective

(95)

To verify this insight, we define three extreme situations (Fast Decay, Slow Decay and Slow Decay
with Resonate) to explore this from the parallel kernel perspective, as shown in Figure 7.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

𝐊𝑇

𝐒𝑇:1
𝑙−1

𝜕ℒ

𝜕𝑾𝑙 ∝

Problem: Long Range

Dependency Vanishing

Problem: Can not Distinguish

Between Case 1 & Case 2

𝑎
𝑏

𝑎 + 𝑏 = 𝑎 + 𝟎

𝑎1
𝑏1

𝑎2 𝑏2

𝑎1 + 𝑏1 ≈ 𝑎2 + 𝑏2 𝑎1 + 𝑏1 ≫ 𝑎2 + 𝑏2

𝑎1
𝑏1

𝑎2

𝑏2

Capturing Useful Resonate

Information on Long Range

(a) (b) (c)

Slow Decay Resonate

𝑇 𝑇 𝑇

𝑇 𝑇 𝑇1 1 1

Figure 7: The parallel kernel perspective for learning long-range abilities.

Fast Decay Fast decay may cause the problem of long-range dependency vanishing, as shown
in Figure 7(a). The kernel KT decays rapidly as the time step T increases. In this case, early
spikes (represented by a) dominate the gradient calculation, while contributions from later spikes
(represented by b) are almost negligible. As a result, the gradient ∂L/∂W l is mostly proportional to
a, leading to the vanishing of long-range dependencies. The network struggles to learn and retain
information from distant time steps, causing the gradients to vanish and impairing the learning of
long-term dependencies.

Slow Decay Slow Decay may relive the vanishing problem, but may cause gradients ambiguity as
shown in Figure.7(b). This situation shows the kernel decays more slowly over time, which balances
the contributions from both early and late spikes (denoted as a1, b1 and a2, b2). However, this slow
decay introduces a new problem—ambiguity. When the contributions from different parts of the
sequence are similar (e.g., a1 + b1 ≈ a2 + b2), the network finds it difficult to distinguish between
these cases. This ambiguity can confuse the learning process, as the network may not correctly
interpret or differentiate between distinct temporal patterns.

Slow Decay with Resonate Resonate could may relive the ambiguity problem to capture the
resonate information under the long range, as shown in Figure.7(c). the kernel KT oscillates or
resonates, effectively capturing contributions from both early and late spikes. This resonance allows
the network to amplify and preserve significant information across the entire sequence, represented by
a1 and b1. Such behavior is advantageous for learning long-range dependencies, as it helps maintain
the gradient information over time. The network can now better distinguish between different
temporal patterns, leading to improved learning and retention of long-term information, which is
crucial for tasks involving long sequences.

H THE ARCHITECTURE FOR LONG RANGE ARENA TASK

This Section introduces the Spike-Driven Temporal and Channel Mixing (SD-TCM) Module, as
shown in Figure 8. This design philosophy mainly stems from the token and channel mixing in
the transformer and S4 for solving more difficult sequence tasks. Firstly, we introduce the spatial
neuron by considering the other side of LIF neurons. Secondly, we present the mixer module, which
combines the PRF neuron and spatial neuron. Furthermore, we compare the computation complexity
and theoretical energy consumption (Detail in Appendix.I).

The design philosophy of this module stems from combining token mixing with channel mixing, a
common practice in transformer and S4 modules. The transformer uses a self-attention block for
token mixing and a 2-layer MLP for channel mixing (Vaswani et al., 2017). The S4 employs SSMs
for token mixing and GLU for channel mixing (Gu et al., 2022a). Firstly, we propose the Spatial
neuron utilized for channel mixing. We consider the limitation of the time constant τ close to the

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

PRF Neuron

Spatial Neuron

+

+

Embedding Input

Output

E
n

co
d

er
 B

lo
ck

 ×
 𝑳

SD-TSM

Add & Norm

Spike-Driven Temporal & Spatial Mixer

𝒖𝑡

𝒄𝑡

𝒄𝑡

𝒔𝑡

𝒔𝑡

𝒖𝑡 = exp(Δ𝛽)𝒖𝑡−1 + Δ𝒄𝑡

𝒔𝑡 = 𝑯(ℜ{𝒖𝑡} − 𝑉th)

𝛽 = −
1

𝜏
+ 𝑖𝜃

𝒖𝑡 = 𝛽𝒖𝑡−1 + 𝒄𝑡

𝒔𝑡 = 𝑯(𝒖𝑡 − 𝑉th)

lim
𝜏→Δ+

𝛽 = 1 −
Δ

𝜏
= 0

Δ = diag(Δ1, Δ2, . . , ΔN)

𝜃 = diag(𝜃1, 𝜃2, . . , 𝜃N)

Spikes {0, 1}

Element-Wise Addition+

Membrane Potential

Decoding

PRF Neuron

Spatial Neuron

Linear

Linear

Figure 8: Diagram of the Spike-Driven Temporal and Channel Mixer (SD-TCM) Module.

time scale, focusing on the instantaneous information for each timestep:

lim
τ→1+

ut =

(
1− 1

τ

)
ut−1 + ct ≈ ct, (96)

then the output of Spatial Neuron replaced as st = H(ct − Vth). This type of neuron can also be
observed in motor neurons in biology with extreme huge decay. According to Theorem 2, we gain
the insight that the LIF neuron is a subset of the PRF Neuron. The Spatial Neuron is also a subset of
the LIF Neuron, aiming to focus on instantaneous spatial information without temporal information.
Consequently, we derived a special case of the LIF neuron, which we term the Spatial Neuron. In
further, we use the trainable amplitude for Spatial LIF Neuron with the output {0, α}. Where the
amplitude constant α ∈ R+ is trainable parameters with always initialize as 1. After training, the
amplitude constant α could merge to the following Linear layer during the inference. That means
(αst)×W ≡ st × (αW).

Secondly, we design the SD-TCM module consists of three main components: the Spatial Neuron
SN (·), PRF Neuron T N (·), fully-connected layer Linear(·). To keep the spike-driven feature, we
use the membrane shortcut residual connect (Hu et al., 2024) like spike-driven transformer (Yao et al.,
2024). Given a input sequence I ∈ RT×N×Din , the embedding the sequence of N flattened spike
patches with D dimensional channel,

U1
T = Embedding(I), I ∈ RT×N×Din , UT ∈ RT×N×D, (97)

where T denote timestep while aligning with the sequence length. Then the SD-TCM is written as:

Sl
T = T N (Ul

T), Sl
T ∈ BT×N×D, l = 1, 2, . . . , L (98)

RPE = Ul
T + Linear(Sl

T), RPE ∈ RT×N×D, l = 1, 2, . . . , L (99)

S′l
T = SN (RPE), S′l

T ∈ BT×N×D, l = 1, 2, . . . , L (100)

Ul+1
T = RPE + Linear(S′l

T), Ul+1
T ∈ RT×N×D, l = 1, 2, . . . , L (101)

Where B ≜ {0, 1} is the binary value set. After the Lth layer, the following output as the input of
classifier or other head for corresponding task. This block keep the spike-driven with two properties:
event-driven and binary spike-based communication. The former means that no computation is
triggered when the input is zero. The binary restriction in the latter indicates that there are only
additions.

The original S4 layer is unidirectional or causal, which is an unnecessary constraint for the classifica-
tion tasks appearing in LRA. (Goel et al., 2022a) propose a bidirectional version of S4 that simply
concatenates two S4 convolution kernels back-to-back (Gu et al., 2022b). As same the bidirectional
model implemented in S4 block. We implement the bidirectional model by replacing the Equation 99
as the following equation:

Sl
T = Concat

(
T N (Ul

T),Rev
(
T N (Rev(Ul

T))
))

, Sl
T ∈ BT×N×2D, (102)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

where Concat and Rev means the concatenate and reverse operation along the channel and timestep
dimension in respectively. We simply pass the input sequence through an PRF Neuron, and also
reverse it and pass it through an independent second PRF Neuron. These spiking outputs are
concatenated and passed through a position wise linear layer. Keep the same with S4 and Shashimi
(Goel et al., 2022a), the following Linear layer (W ∈ R2D×D) will change the input feature
dimension as the double in the bidirectional model.

I THE THEORETICAL ANALYSIS OF POWER CONSUMPTION

The two tables provide a detailed comparison of inference complexity and energy consumption across
various models. Table 6 compares the computational complexity involved in the inference phase for
different models. Table 7 evaluates the energy consumption of these models during the token mixing
and channel mixing stages.

Table 6: The comparison for inference complexity. The abstract formulations xt, ut, and yt represent
the input, hidden state, and output, respectively. The symbols R and C denote real and complex
number sets. Where the symbols H and ℜ denote the Heaviside function and the real part of the
complex number. The fr means the firing rate ∈ (0, 1).

Token Mixing Dynamic Equation Variables Parameters Infer. Complexity

SSMs ut = Aut−1 +Bxt

yt = Cut

xt ∈ RD

ut ∈ RH

yt ∈ RD

A ∈ RH×H

B ∈ RD×H

C ∈ RH×D
O(H2 + 2DH)

Spikinglized
SSMs

ut = Aut−1 +Bxt

yt = H(Cut − Vth)

xt ∈ RD

ut ∈ RH

yt ∈ {0, 1}D

A ∈ RH×H

B ∈ RD×H

C ∈ RH×D
O(H2 + 2DH)

PRF + Linear
ut = A⊙ ut−1 +B ⊙ xt

st = H(ℜ{ut} − Vth)
yt = Linear(st)

xt ∈ RD

ut ∈ CD

st ∈ {0, 1}D
yt ∈ RD

A ∈ CD

B ∈ RD

W ∈ RD×D
O(5D+fr ·D2)

Table 7: Energy evaluation. R denote the spike firing rates (the proportion of non-zero elements in
the neuron output). (σ: Sigmoid activation function,H: Heaviside function and ℜ: real part of the
complex number, and Ter means the ternary output {−1, 0, 1} with a dynamic threshold).

Token Mixing Channel Mixing
Comput. Complexity Energy Comput. Complexity Energy

S4-LegS ut = Aut−1 +Bxt

yt = Cut +Dxt

O(H2 +DH)
O(HD +D2)

EMAC · (H2 +DH)
EMAC · (HD +D2)

nt = Linear1(yt)
mt = Linear2(yt)
ot = nt ⊙ σ(mt)

O(D2)
O(D2)
O(3D)

EMAC ·D2

EMAC ·D2

EMAC · 2D + EM ·D

Binary S4D ut = Aut−1 +Bxt

yt = H(Cut +Dxt)
O(H2 +DH)
O(HD +D2)

EMAC · (H2 +DH)
EMAC · (HD +D2)

nt = Linear1(yt)
mt = Linear2(yt)
ot = nt ⊙ σ(mt)

O(R ·D2)
O(R ·D2)
O(3D)

EAC ·R ·D2

EAC ·R ·D2

EMAC · 2D + EM ·D

GSU ut = Aut−1 +Bxt

yt = Cut +Dxt

O(H2 +DH)
O(HD +D2)

EMAC · (H2 +DH)
EMAC · (HD +D2)

nt = Ter(W1)yt + b1
mt = W2Ter(yt) + b2
ot = GeLU(nt ⊙mt)

O(R ·D2)
O(R ·D2)
O(3D)

EAC ·R ·D2

EAC ·R ·D2

EMAC · 2D + EM ·D

Ours
ut = A⊙ ut−1 +B ⊙ xt

yt = H(ℜ{ut} − Vth)
nt = Linear1(yt) + ut

O(5D)
-

O(R ·D2 +D)

EM · 5D + EAC · 3D
-

EAC · (R ·D2 +D)

st = H(nt − Vth)
ot = Linear2(st) + nt

-
O(R ·D2 +D)

-
EAC · (R ·D2 +D)

J DESCRIPTION OF DATASETS AND HYPERPARAMETERS

All our experiments were conducted on an NVIDIA GeForce RTX 4090 GPU with 24 GB of memory.
The specific experimental setup and hyperparameters are detailed in subsection J.1, and the description
of the experimental dataset is provided in subsection J.2.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

J.1 TASK SPECIFIC HYPERPARAMETERS

Here we specify any task-specific details, hyperparameter or architectural differences from the
defaults outlined above.

J.1.1 SEQUENTIAL MNIST & PERMUTED SEQUENTIAL MNIST

For Figure.4, we used a neural network architecture with layers of size 1-64-256-256-10 (87k training
parameters) with 256 batch size for training 200 epochs. All experiments were conducted using the
same random seeds.

J.1.2 LONG RANGE ARENA

The total hyperparameters configure is shown in Table 8.

Table 8: Hyperparameters for LRA Task

Task Depth Channels Norm Pre-norm Dropout LR Neuron LR B Epochs WD (∆min, ∆max)
ListOps 8 128 BN False 0 0.005 0.001 50 40 0.05 (0.001, 0.1)
Text 6 256 BN True 0 0.005 0.001 16 32 0.05 (0.001, 0.1)
Retrieval 6 256 BN True 0 0.005 0.001 32 20 0.05 (0.001, 0.1)
Image 6 512 BN False 0.1 0.005 0.001 50 200 0.05 (0.001, 0.1)
Pathfinder 6 256 BN True 0.05 0.005 0.001 64 200 0.03 (0.001, 0.1)

J.2 DATASET DETAILS

We provide more context and details for (p)s-MNIST and each tasks of the LRA (Tay et al., 2021).
Note that we follow the same data pre-processing steps as (Gu et al., 2022a), which we also include
here for completeness. The following describe mainly refer from (Smith et al., 2023).

• Sequential MNIST: (sMNIST) 10-way digit classification from a 28× 28 grayscale image
of a handwritten digit, where the input image is flattened into a 784-length scalar sequence.

• Permuted Sequential MNIST: (psMNIST) 10-way digit classification from a 28 × 28
grayscale image of a handwritten digit, where the input image is flattened into a 784-length
scalar sequence. This sequence is then permuted using a fixed order.

• ListOps: A lengthened version of the dataset presented by (Nangia & Bowman, 2018).
Given a nested set of mathematical operations (such as min and max) and integer operands
in the range zero to nine, expressed in prefix notation with brackets, compute the integer
result of the mathematical expression (e.g. [max 2 6 [min 9 7] 0]→ 7). Characters are
encoded as one-hot vectors, with 17 unique values possible (opening brackets and operators
are grouped into a single token). The sequences are of unequal length, and hence the end
of shorter sequences is padded with a fixed indicator value, padded to a maximum length
of 2, 000. A reserved end-of-sequence token is appended. There are 10 different classes,
representing the integer result of the expression. There are 96, 000 training sequences, 2, 000
validation sequences, and 2, 000 test sequences. No normalization is applied.

• Text: Based off of the iMDB sentiment dataset presented by (Maas et al., 2011). Given
a movie review, where characters are encoded as a sequence of integer tokens, classify
whether the movie review is positive or negative. Characters are encoded as one-hot vectors,
with 129 unique values possible. Sequences are of unequal length, and are padded to
a maximum length of 4, 096. There are two different classes, representing positive and
negative sentiment. There are 25, 000 training examples and 25, 000 test examples. No
validation set is provided. No normalization is applied.

• Retrieval: Based off of the ACL Anthology network corpus presented by (Radev et al.,
2009). Given two textual citations, where characters are encoded as a sequence of integer
tokens, classify whether the two citations are equivalent. The citations must be compressed
separately, before being passed into a final classifier layer. This is to evaluate how effectively
the network can represent the text. The decoder head then uses the encoded representation
to complete the task. Characters are encoded into a one-hot vector with 97 unique values.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Two paired sequences may be of unequal length, with a maximum sequence length of
4, 000. There are two different classes, representing whether the citations are equivalent or
not. There are 147, 086 training pairs, 18, 090 validation pairs, and 17, 437 test pairs. No
normalization is applied.

• Image: Uses the CIFAR-10 dataset presented by (Krizhevsky, 2009). Given a 32 × 32
grayscale CIFAR-10 image as a one-dimensional raster scan, classify the image into one of
ten classes. Sequences are of equal length (1, 024). There are ten different classes. There
are 45, 000 training examples, 5, 000 validation examples, and 10, 000 test examples. RGB
pixel values are converted to a grayscale intensities, which are then normalized to have zero
mean and unit variance (across the entire dataset).

• Pathfinder: Based off of the Pathfinder challenge introduced by (Linsley et al., 2018). A
32× 32 grayscale image image shows a start and an end point as a small circle. There are
a number of dashed lines on the image. The task is to classify whether there is a dashed
line (or path) joining the start and end point. There are two different classes, indicating
whether there is a valid path or not. Sequences are all of the same length (1, 024). There are
160, 000 training examples, 20, 000 validation examples, and 20, 000 test examples. The
data is normalized to be in the range [−1, 1].

K THE EQUIVALENCE OF SEQUENTIAL AND PARALLEL

First, the parallel computation is equivalent to sequential computation during both inference and
training phases. This equivalence is clearly illustrated in Figures 9 and 10. For inference equivalence,
Figure 9 shows that when applying random input to an LIF neuron using both sequential and parallel
computation, the spiking output remains consistent across both methods.

0 20 40 60 80 100
0

1

In
pu

t
R

an
do

m LIF Sequential Computation

0 20 40 60 80 100
0

1
LIF Parallel Computation

0 20 40 60 80 100
0

1

2

3

M
em

br
an

e
Po

te
nt

ia
l

Membrane Potential Threshold

0 20 40 60 80 100
0

1

2

3

Accumulated Membrane Potential Scan Parallel Threshold

0 20 40 60 80 100

Timestep
0

1

O
ut

pu
t

Sp
ik

in
g

0 20 40 60 80 100

Timestep
0

1

Figure 9: Verification of inference equivalence for parallel and sequential computation. With
random input, the spiking output from parallel computation is equivalent to that of sequential
computation.

A
cc

u
ra

cy

Testing Datasets Training Datasets

Epoch (#) Wall- Clock Time (Hours)LIF Parallel Training
LIF Sequential Training

Testing Datasets Training Datasets

14.15 hr1.65 hr

0.4355

0.4378

0.4429

0.4413

Final Value Marked

Speed Up

8.58 ×

Figure 10: Verification of training equivalence between sequential and parallel training. During
inference, all metrics are computed using sequential computation. The red curve represents results
from parallel training, while the blue curve corresponds to sequential training for both training and
inference. This comparison confirms the equivalence of parallel and sequential training.

For training equivalence, Figure 10 shows the training and testing curves for a CIFAR classification
task with 1024-length inputs using a 5-layer MLP, where each linear layer is followed by a neuron. In-
ference is performed with sequential computation, while training is conducted using either sequential
(blue curve) or parallel (red curve) methods. After 64 training epochs, the training and testing curves
align closely, indicating that the gradient computations from both sequential and parallel training are
nearly identical. The parallel method achieves an 8.58× speedup with a sequence length of 1, 024.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

L THE PARALLEL IMPLEMENTATION CASE STATICS DETAILS

The figure presents a comparative analysis of sequential and parallel training processes using the
torch.profiler tool for a sample case. The trace recording and periods timeline as shown in Figure.11.
The corresponding details data statistics in the Table.9 and 10. We designed a simple case using a
fully connected layer (FC: 1× 10) and an extremely simple architecture to identify the bottlenecks in
sequential and parallel training. We use sequential-MNIST (784 length) with 64 batch size as the
input.

①

①

②

② ③.par

③.seq

S
eq

u
en

ti
a

l
T

ra
in

in
g

 /
 B

a
tc

h
P

a
ra

ll
e
l

T
ra

in
in

g
 /

 B
a

tc
h

①

Arch.: 1 - FC(1×10) - LIF(10)

Trace Recording:

Batch: 64

Trace Periods:

Data Loader

② Fully Connect Forwards

(1 × 10)

Input Sequences: 784

(seq-MNIST Length)

③.seq

④.seq

First Time Neuron Charge Fire Reset

& Jit Scripts Compile

④.seq Neuron Charge/Fire/Reset (× 783 Times)

⑤

⑤ Output & Computing Loss

⑥

⑥ Auto-grad & Construct Backwards Graphs

⑦.seq

⑦.seq Errors Backpropagation Through Time

⑧

⑧

Optimizer Step & Updating Parameters

⑤④.par

⑧

⑦.par⑥ ③.par Scan Kernel & FFT Convolution

④.par Scan Threshold (= Reset Process) & Fire

⑦.par Errors Backpropagation

100 ms ~ 365 ms

Timeline

Timeline

F
o

rw
a

rd
s

B
a

ck
w

a
rd

s

Figure 11: The torch.profiler (Paszke et al., 2019) tool was used to visualize runtime during forward
and backward propagation. The input length for the sample is 784 sequences with a batch size of 64.

Table 9: Sequential Training Statistics

Functions Duration (µs) Num. of Calls
Forward

Charge 146,725 784
Reset 150,120 784
Fire 91,398 784

Backprop (Autograd)
GraphBackward 250,161 1564
AtanBackward 186,086 784
SelectBackward 91,438 784
SubBackward 20,124 787

StackBackward 19,436 1
MmBackward 1,404 1

Other
Other 244,358 -

All 1,201,250 -

Table 10: Parallel Training Statistics

Functions Duration (µs) Num. of Calls
Forward

Scan Kernel 45,634 1
FFT Conv Op. 14,627 1

Scan Dynamic Thr. 158,774 1
Fire 459 1

Backprop (Autograd)
FftR2CBackward 1,099 1

AtanBackward 762 1
MulBackward 582 1

FftC2RBackward 235 1
MmBackward 1,615 1

Other
Other 113,863 -

All 337,650 -

In the sequential training timeline, each phase of forward and backward propagation happens one
after the other, resulting in a total training time of approximately 1200ms. These phases include data
loading, fully connected forward passes, neuron charge/fire/reset operations, output computation,
autograd construction, and error backpropagation. This sequential computation introduces significant
delays, particularly during the repetitive neuron charging and resetting in the backward phases, which
dominate the computation time.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

In contrast, the parallel training timeline reduces the overall training time to around 337 ms by exe-
cuting multiple forward and backward propagation phases simultaneously. This approach leverages
parallel processing to handle operations such as neuron charging and threshold scanning concur-
rently, thereby reducing redundant delays. The comparison highlights significant efficiency gains in
processes like autograd, constructing backward graphs, and error backpropagation.

M THE STATISTICS OF FIRE RATE

The spiking fire rate is derived from the top-1 test accuracy model (Average in Table 11). We extract
the fire rate for each layer (12 to 16). On average, the Spatial Neuron (SN) exhibits a higher fire rate
than the PRF (T N). The checkpoints and statistical code can be found in the open-source repository.

Table 11: The average fire rates for each tasks.

Tasks ListOps Text Retrieval Image Pathfinder
Avg. Fire Rate (%) 3.53 4.32 1.48 3.47 3.29

Table 12: The fire rate (%) across different layers on ListOps task.

Layer 1 2 3 4 5 6 7 8

T N 0.0 5.17 2.50 2.83 0.80 1.17 3.02 2.22

SN 9.60 5.29 4.51 2.63 5.58 3.57 9.57 5.07

Table 13: The fire rate (%) across different layers on Text task.

Layer 1 2 3 4 5 6

T N 2.11 4.30 2.79 1.66 1.02 1.48

SN 9.20 9.90 10.11 7.18 5.55 5.25

Table 14: The fire rate (%) across different layers on Retrieval task.

Layer 1 2 3 4 5 6

T N 0.66 0.42 0.42 0.49 0.48 0.87

SN 4.79 4.24 1.54 2.46 2.50 1.91

Table 15: The fire rate (%) across different layers on Image task.

Layer 1 2 3 4 5 6

T N 0.22 7.10 5.25 3.67 3.90 4.24

SN 0.44 9.90 5.71 4.35 2.77 1.07

Table 16: The fire rate (%) across different layers on Pathfinder task.

Layer 1 2 3 4 5 6

T N 3.37 3.96 5.07 4.53 4.53 4.78

SN 3.66 2.98 3.74 3.63 3.33 2.53

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

N THE ABLATION EXPERIMENTS

We examine the sensitivity of the ∆ and θ hyper-parameters during initialization. Using a neural
network architecture with layers sized 1-64-256-256-10 and a batch size of 256, we fixed τ = 2 and
set ∆ and θ as non-trainable scale values. Figure 12 illustrates this sensitivity for the sMNIST (left)
and psMNIST (right) datasets. The gray frames highlight a shift in sensitive regions from sMNIST
to psMNIST, indicating that different data distributions require careful initialization of ∆ and θ.
Furthermore, we investigate the impact of varying initialization of θ values on the performance of the
LRA tasks, as shown in Tables 17 - 21. The suitable initialization of θ is crucial.

16pi 8pi 4pi 2pi pi pi/2 pi/4 pi/8
theta

1

0.5

0.1

0.05

0.01

0.005

0.001

D
el

ta

sMNIST Initilalization Sensitivity

20

30

40

50

60

70

80

90

A
cc

ur
ac

y
(%

)

16pi 8pi 4pi 2pi pi pi/2 pi/4 pi/8
theta

1

0.5

0.1

0.05

0.01

0.005

0.001

D
el

ta

psMNIST Initilalization Sensitivity

10

20

30

40

50

60

70

80

A
cc

ur
ac

y
(%

)

Figure 12: The comparison of sMNIST (left) and psMNIST (right) under the different initialization
of θ and ∆ hyper-parameters after 50 epoches training (The θ and ∆ is scale value without training).

Table 17: ListOps (2048) accuracy for different θ ranges initialization.

θ [0, π/4] [0, π/5] [0, π/6] [0, π/7] [0, π/8]

Acc. (%) 56.85 55.60 59.20 58.05 54.55

Table 18: Text (4096) accuracy for different θ range initialization.

θ [0, π] [0, π/2] [0, π/4] [0, π/8] [0, π/16]

Acc. (%) 81.27 83.28 84.94 86.33 85.32

Table 19: Retrieval (4000) accuracy for different θ range initialization.

θ [0, π/4] [0, π/5] [0, π/6] [0, π/7] [0, π/8]

Acc. (%) 89.64 89.52 89.75 89.88 89.72

Table 20: Image (1024) accuracy for different θ range initialization.

θ [0, 2π/0.15] [0, 2π/0.2] [0, 2π/0.25] [0, 2π/0.3] [0, 2π/0.35]

Acc. (%) 84.36 84.43 84.77 84.54 84.38

Table 21: Pathfinder (1024) accuracy for different θ range initialization.

θ [0, 2π] [0, 2π/0.8] [0, 2π/0.6] [0, 2π/0.4] [0, 2π/0.2]

Acc. (%) 91.14 91.19 91.76 89.87 90.97

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

O THE COMPARISON OF THE DIFFERENT NEURON MODELS

This section provides a comprehensive comparison of various neuron models across three key aspects:
feature differences, dynamic and energy efficiency, and parallel reset mechanisms. It highlights
differences in computational capabilities, efficiency, and implementation methods, offering a clear
overview of their strengths and limitations. Finally, we give the insight of the connection between the
SSMs and PRF.

O.1 THE OVERVIEW COMPARISON OF FEATURES

Firstly, we overview the comparison of various neuron models based on their key features, such
as support for parallel training, input cache-free operation, oscillation behavior, and element-wise
multiplication. Table.22 highlights how these models differ in their operational and computational
capabilities.

Table 22: The Comparison of Different Features.

Neuron Models Parallel Training Input Cache Free Oscillation with Vmem Element-Wise Mul.
LIF No Yes No Yes

Masked PSN (Fang et al., 2024) Yes No No -

PSN (Fang et al., 2024) Yes No No -

Masked PSN (Fang et al., 2024) Yes Partial (When k = 1 Yes) No -

Sliding PSN (Fang et al., 2024) Yes Partial (When k = 1 Yes) No -

PMSN (Chen et al., 2024) Partial Yes Partial Partial

adLIF (Baronig et al., 2024) No Yes Yes Yes
Parallelizable LIF (Yarga & Wood, 2024) Yes Yes No Yes

PRF (Ours) Yes Yes Yes Yes

O.2 THE COMPARISON OF DYNAMIC AND ENERGY COST

This subsection analyzes the dynamics and theoretical energy costs of different neuron models.
Table.23 provides a detailed breakdown of the mathematical formulations for each model’s dynamics,
alongside their respective theoretical energy costs.

Table 23: Comparison of model dynamics and their theoretical energy costs. The symbols ∗ means
the analysis mainly refer from PMSN (Chen et al., 2024).

Neuron Models Dynamics Theoretical Energy Cost

LIF∗ V [t] = (1− 1
τ)V [t− 1] + I[t]− θS[t− 1] hmtFrinEAC +mtEMAC

PSN∗ (Fang et al., 2024) V [t] =
∑t

i=0 Wt,iI[i] hmtFrinEAC +mt2EMAC

Masked PSN∗ (Fang et al., 2024) V [t] =
∑t

i=t−k+1 Wt,iI[i] hmtFrinEAC + kmtEMAC

Sliding PSN∗ (Fang et al., 2024) V [t] =
∑t

i=t−k+1 WiI[i] hmtFrinEAC + kmtEMAC

PMSN∗ (Chen et al., 2024)
Vh[t] = τ̃Vh[t− 1] + ΦcI[t]
Ih[t] = ΦbVh(t) + γnI(t)
vs[t] = vs[t− 1] + Ih[t]− θS[t− 1]

hmtFrinEAC + 8(n− 1)mtEMAC

adLIF (Baronig et al., 2024) û[t] = αu[t− 1] + (1− α)(−w[t− 1] + I[t])
w[t] = βw[t− 1] + (1− β) (aû[t− 1] · (1− S[t− 1]) + bS[t])

hmtFrinEAC + 6mtEMAC

PRF (ours) ũ[t] = exp
(
∆ · (− 1

τ + i · θ)
)
ũ[t− 1] + ∆I[t] hmtFrinEAC + 5mtEMul + 3mtEAC

h - input dimension, m - neuron numbers, t - simulation time, k - order of PSN families,
Frin - average spike frequency of each presynaptic layer, n - compartment number of our PMSN,

O.3 THE COMPARISON OF PARALLEL RESET METHOD

This subsection examines the parallel methods for resetting mechanisms proposed in different works
as shown in Table.24. This offer insights into their time complexity and equivalence.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Table 24: The Comparison of Parallel Methods for Resetting Mechanism.

Methods Integrate-Leaky Process Scan Reset Process Total Complexity Equivalent with Sequential
PMSN (Chen et al., 2024) O(L · logL) Prefix sum with O(2 · logL) O((L+ 2) · logL) Partial (Only when positive input)

Parallelizable LIF (Yarga & Wood, 2024) O(L · logL) Without Reset O(L · logL) Yes
Decoupled Reset (Ours) O(L · logL) Dynamic Scan with O(L) O(L · (logL+ 1)) Yes

O.4 THE CONNECTION BETWEEN SSMS AND PRF.

Both PRF and Structured SSMs (State-Space Models) are subsets of SSMs, sharing the same general
abstract formulation:

ut = Āut−1 + B̄ct, yt = f(ut).

The similarity is that both frameworks involve: A: State Transition, B: Input Transformation and
f(ut): Output Function. While the main differences is the dynamic process and transition dimension.
The detail is as shown in Table.25.

Table 25: Comparison Between PRF and Structured SSMs.

Component Structured SSMs PRF

Ā exp(∆A) ∈ Rh×h exp(∆ · (− 1
τ + iθ)) ∈ Cd

B̄ A−1
(
eA∆ − I

)
B ∈ Rh×d ∆ ∈ Rd

f(ut) C · ut H(ℜ(ut)− Vth)
C ∈ Rd×h, f : Rh → Rd f : Rd → Rd

P SIMPLIFIED CODE FOR IMPLEMENTATION

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Listing 1. Simplified PyTorch-like Implementation of SD-TCM Module.

class SD_TCM(nn.Module):
def __init__(self, d_model, dropout=0.0, **kernel_args):

super().__init__()
self.h = d_model
whether trainable amplitude, ref Sec 4.4 and Table 4.
self.train_amp = kernel_args.get('train_amp', False)
whether bidirectional architecture, ref Eq.102
self.bidirectional = kernel_args.get('bidirectional', False)

self.neuron1 = PRF(channels=self.h)
self.dropout1 = dropout_fn(dropout)

if self.bidirectional:
self.reverse_neuron1 = PRF(channels=self.h)
self.pro_linear1 = nn.Linear(2 * self.h, self.h)

else:
self.pro_linear1 = nn.Linear(self.h, self.h)

self.neuron2 = surrogate.ATan()
self.dropout2 = dropout_fn(dropout)
self.pro_linear2 = nn.Linear(self.h, self.h)

if self.train_amp:
nn.Parameter(torch.log(torch.ones(1))) # only one parameter
alpha = torch.log(torch.ones(1))
self.register("alpha", alpha, 0.001)

def forward(self, u):
""" Input and output shape (T, B, D) """
s = self.neuron1(u) # (T B D)
if self.bidirectional:

rev_s = self.reverse_neuron1(u.flip(dims=[0])).flip(dims=[0])
s = torch.concat([s, rev_s], dim=-1)

y = self.pro_linear1(self.dropout1(s))
x = y + u

s = self.neuron2(x - 0.5)
if self.train_amp:

s = s * torch.exp(self.alpha)) # {0, 1} * trainable alpha
y = self.pro_linear2(self.dropout2(s)) + x
return y

def register(self, name, tensor, lr=None):
"""Register a tensor with a
configurable learning rate and 0 weight decay"""
if lr == 0.0:

self.register_buffer(name, tensor)
else:

self.register_parameter(name, nn.Parameter(tensor))

optim = {"weight_decay": 0.0}
if lr is not None: optim["lr"] = lr
setattr(getattr(self, name), "_optim", optim)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Listing 2. Simplified PyTorch-like Implementation of PRF Neuron.

class PRF(nn.Module):
def __init__(self, channels, tau, v_threshold, surrogate_function,

fr_scale: float=1., dt_min: float=0.1, dt_max: float=0.001):
super().__init__()
self.channels = channels # int with D
self.tau = tau # float defaut=2.0
self.fire_fn = surrogate_function
self.threshold = v_threshold # float defaut=1.0

u1, u2 = torch.rand(channels), torch.rand(channels)
max_phase = 2 * torch.pi

fr_scale for controling range of unifrom
log_theta = torch.log(max_phase * u2 / fr_scale)
log_dt = u1 * (math.log(dt_max) - math.log(dt_min))

+ math.log(dt_min)

often setting no weight decay and idenpendent learning rate
self.log_dt = nn.Parameters(log_dt) # (D)
self.log_theta = nn.Parameters(log_theta) # (D)

def sequential_step(x, v, tau, dt, theta):
"""
x : (B, D) Input with B batch, D dimension
v : (B, D) Previous hidden State
tau : float self.tau
dt : (D) torch.exp(self.log_dt)
theta : (D) torch.exp(self.log_theta)
"""
v = torch.exp(dt * (-1 / tau + 1j * theta)) * v + dt * x
spike = heaviside(v.real - self.v_threshold)
return spike, v

def parallel_step(self, x):
"""
x : (T, B, D) Input with T Sequence, B Batch, D Dimension
s_seq: (T, B, D) Output
"""
dt, theta = torch.exp(self.log_dt), torch.exp(self.log_theta)
beta = torch.exp(dt * (- 1/self.tau + 1j * theta))
kernel = self.scan_kernel(beta, dt, T) # (T, D)
u_seq = self.charge(kernel, x) # (T, B, D)
s_seq = self.surrogate_function(u_seq.real - self.v_threshold)
return s_seq

def charge(self, kernel, input_seq):
T, D = kernel.shape
kernel_expand = kernel.squeeze().view(T, 1, D).contiguous()
output_fft = torch.fft.ifft(

torch.fft.fft(kernel_expand, n=2 * T, dim=0)
* torch.fft.fft(input_seq, n=2 * T, dim=0), n=2* T, dim=0)

u_seq = output_fft[:T]
return u_seq.real

def scan_kernel(beta, dt, T):
K = beta.unsqueeze(-1) ** torch.arange(T) # (D, T)
B = dt.unsqueeze(-1) # (D, 1)
return (K * B).T

32

	Introduction
	Related Work
	Problem Formulation
	The Leaky Integrate-and-Fire (LIF) Neuron
	Problem 1: Coupled Reset Prevents Parallelism along Timesteps
	Problem 2: Commonly Used LIF Struggle with Long-Range Dependencies

	Method
	decoupled reset for Parallel Computation
	Resonate for Long-Range Learning Ability
	Theory Analysis
	Architecture

	Experiments
	The Parallel Process
	The Long Range Learning Ability
	Long Range Arena Tasks

	Conclusion
	Notation in the Paper
	The Algorithm of Pseudo-Code
	The Discretization of PRF Neurons
	The Frequency Response for PRF neuron
	Deployment analysis of PRF Neuron
	Proof
	Proof of Theorem.1
	Proof of Theorem.2
	Proof of Theorem.3

	Parallel Perspective on Solving Long-Range Learning Problem
	The Architecture for Long Range Arena Task
	The Theoretical Analysis of Power consumption
	Description of Datasets and Hyperparameters
	Task Specific Hyperparameters
	Sequential MNIST & Permuted Sequential MNIST
	Long Range Arena

	Dataset Details

	The Equivalence of Sequential and Parallel
	The Parallel Implementation Case Statics Details
	The Statistics of Fire Rate
	The Ablation Experiments
	The Comparison of the Different Neuron Models
	The Overview Comparison of Features
	The Comparison of Dynamic and Energy Cost
	The comparison of parallel reset method
	The Connection Between SSMs and PRF.

	Simplified Code for Implementation

