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ABSTRACT

Text-Attributed Graphs (TAGs) enhance graph structures with natural language descriptions,
enabling detailed representation of data and their relationships across a broad spectrum of
real-world scenarios. Despite the potential for deeper insights, existing TAG representation
learning primarily omit the semantic relationship among node texts, and mostly relies
on supervised methods, necessitating extensive labeled data and limiting applicability
across diverse contexts. This paper introduces a new self-supervised learning framework,
Text-And-Graph Multi-View Alignment (TAGA), which overcomes these constraints by in-
tegrating TAGs’ structural and semantic dimensions. TAGA constructs two complementary
views: Text-of-Graph view, which organizes node texts into structured documents based on
graph topology, and the Graph-of-Text view, which converts textual nodes and connections
into graph data. By aligning representations from both views, TAGA captures joint textual
and structural information. In addition, a novel structure-preserving random walk algorithm
is proposed for efficient training on large-sized TAGs. Our framework demonstrates strong
performance in zero-shot and few-shot scenarios across eight real-world datasets.

1 INTRODUCTION

Text-Attributed Graphs (TAGs) are text documents that are connected in graph structures, allowing for deeper
analysis and interpretation of complex relationships (Zhang et al., 2024; Jin et al., 2023c;a). TAGs are
prevalently used in numerous real-world applications, such as social networks (Paranyushkin, 2019), citation
networks (Liu et al., 2013), and recommendation systems (Wu et al., 2022). TAGs encompass textual content
in both nodes and edges that elucidate the meaning of individual documents and who they are semantically
correlated with. For instance, a scientific article network is a type of TAG that stores the texts of research
papers and details about how they cite, criticize, and summarize each other within paragraphs. As shown
in Figure 1(a), extracting knowledge like “the first law proposed in Paper A is a special case of Paper B’s
Theorem 1 when under macro scale and low velocity” from this scientific article network requires jointly
considering semantics, topology, and their entanglement in the TAG.

Representation learning on TAGs is a promising, yet open research area that starts to attract fast-increasing
attention (Ye et al., 2023; Wang et al., 2024; Chen et al., 2024; Hu et al., 2023; Fatemi et al., 2023; Tang et al.,
2023; Li et al., 2023). Existing TAG representation learning methods typically treat each text document as an
independent node embedding and then rely entirely on message passing mechanisms to model the interaction
between different texts. These approaches ignore the semantic-level textual connections between different
nodes. Additionally, existing works are typically only applicable for supervised learning, which require
extensively labeled data that is often unavailable in real-world scenarios. Moreover, the reliance on supervised
tasks means that models are usually optimized for specific tasks and domains reflected in the training dataset,
which significantly constrains their applicability to new domains or broader tasks. This limitation undermines
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the unique advantage of TAGs to leverage their universal linguistic attributes effectively. Although there are
some graph pre-training models (Hou et al., 2022; Veličković et al., 2018; You et al., 2020; Li et al., 2023)
operate in an unsupervised manner, they often focus on either graph topology or node features independently,
neglecting the crucial interplay between textual semantics and structural information inherent in TAGs.

Therefore, there is a pressing need for a method that comprehensively addresses the unique nature of TAGs,
seamlessly integrating both their structural and semantic dimensions within a unified unsupervised framework.
This presents a significant research challenge with several substantial hurdles to overcome. Primarily, devel-
oping a representation that can simultaneously leverage textual semantic content, graph structure, and
their complex interplay presents significant challenges. Incorporating the collective semantic-level textual
connections between individual documents plays a key role in obtaining high quality representations from
TAGs. In addition, the scarcity of labeled training data further exacerbates this issue, making traditional
supervised approaches impractical and necessitating innovative unsupervised strategies. Furthermore, the
computational demands of such representation learning are substantial. Integrating large pre-trained
language models (PLMs) for processing textual corpora in TAGs imposes a significant computational burden.
How to achieve high expressive representations while keeping computational requirements low, ensuring
scalability and practicality for real-world applications poses a significant challenge.

In order to address the aforementioned challenges, this paper proposes a new self-supervised learning
framework named Text-And-Graph Multi-View Alignment (TAGA). TAGA jointly preserves rich seman-
tic information, topology information, and their interplay by aligning representations of TAGs from two
complementary views: the Text-of-Graph view and the Graph-of-Text view. As illustrated in Figure 1,

Ø Galileo develops the theory of projectile 
trajectories, which discusses …
Ø [1] Newton’s theory consists of …

Ø [1.1] First law of motion is …
Ø [1.1.1] Follows by first law, 

here we further …
Ø [1.2] Second law of motion 

describes …
Ø [2] Newton's laws in Sec. 1 are only 

valid only for low velocity and macro 
scale. Conversely, Einstein’s relativity 
generalize the laws to the cases …
Ø [2.1] Revolution of relativity starts.. 

Ø [2.1.1] The second law 
discussed in Sec.1.2 is invalid 
when approaching the speed 
of light. Special relativity ... 

Ø [2.1.2] General relativity is …

Only valid for
 low velocity 
and macro scale

Equivalent

Graph to Text

Text to Graph

invalid when 
approaching the 
speed of light

(a) Graph-of-Text view by networked corpus (b) Text-of-Graph view by structured text document

Galileo develops the theory of 
projectile trajectories, which …

Newton’s theory 
consists of …

First law of 
motion is …

Second law of 
motion is …

Einstein’s relativity 
generalize the laws 
to the cases …

Revolution of 
relativity starts..

Follows by first law, 
here we further …

General 
relativity 
is …

Special 
relativity 
describes …

Paper A Paper B

Figure 1: Illustration of the two distinct views of TAGs: (left) Graph-of-Text
and (right) Text-of-Graph. Graph-of-Text view constructs a graph-structured
data over the individual text corpora, while Text-of-Graph view organizes the
text node and their connection description in a hierarchical layout document.
These two views can be mutually transformed to each other.

these two views offer differ-
ent representing formats of a
TAG yet contain equivalent in-
formation. Specifically, the
Text-of-Graph view organizes
node texts into a structured
textual document according to
the TAG’s topology. We also
propose a novel Graph2Text
encoding module to automati-
cally transfer a TAG to a struc-
tured textual document, which
is readily to be processed by
language models. Conversely,
the Graph-of-Text view repre-
sents textual nodes and topol-
ogy in graph-structured data,
which is then processed by a
graph representation learning
module (e.g. graph neural network). By aligning the representations learned from these two views, we
encourage the learned representation to capture both textual and structural information, resulting in a unified,
comprehensive representation of the TAG. Finally, to accelerate the training process, we propose a novel
structure-preserving random walk algorithm.

2 RELATED WORKS

2.1 TEXT-ATTRIBUTED GRAPHS REPRESENTATION LEARNING

Existing methods typically focus on supervised learning. GraphFormers (Yang et al., 2021) introduce
GNN-nested Transformers to simultaneously capture graph topology and textual semantics, enhancing
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interactions between textual content and graph structure. Learning on Large-scale Text-attributed Graphs via
Variational Inference (Zhao et al., 2022) presents a variational inference framework that efficiently learns node
representations on large-scale TAGs. Patton (Jin et al., 2023b) pretrains language models on text-rich networks
to capture semantic relationships. Recent developments have also seen efforts (Wen & Fang, 2023; Tang et al.,
2023; Li et al., 2023) in aligning graph representations with textual representations. For instance, G2P2 (Wen
& Fang, 2023) employs contrastive learning to align GNN representations with text encoder outputs by
averaging individual node text embeddings across various neighborhood hops during its pre-training phase.
However, these methods often simplify the treatment of textual encoder embeddings for neighborhoods by
averaging the embeddings of individual nodes. Similarly, GRENADE (Li et al., 2023) implements a dual-level
alignment strategy. This approach overlooks the underlying interactions within neighborhoods, leading to a
loss of information that could be crucial for the contrastive objectives of alignment models.

2.2 UNSUPERVISED GRAPH PRE-TRAIN METHODS

Existing unsupervised graph pre-training methods can be categorized into several categories based on their
objectives and architectures. Graph autoencoder methods, graph autoencoder methods (Kipf & Welling,
2016; Hou et al., 2022) convert node and edge features into low-dimensional embeddings, which are then
used to reconstruct the original graph data. Contrastive learning approaches, like DGI (Veličković et al.,
2018), GraphCL (You et al., 2020), GRACE (Zhu et al., 2020), and S3-CL (Ding et al., 2023b), generate
perturbed graph pairs by altering structural features, such as adding or removing nodes and edges or masking
features, aiming to align the embeddings of these modified graphs closer in the embedding space. However,
these methods often produce domain-specific embeddings with limited generalization ability across different
domains, reducing their effectiveness in data-scarce or label-limited scenarios.

2.3 GRAPH2TEXT ENCODING METHODS

Recently, research include approaches (Ye et al., 2023; Wang et al., 2024; Chen et al., 2024; Hu et al., 2023;
Huang et al., 2023; Fatemi et al., 2023) that first transform the TAG into text sequence and then directly
utilize LLMs as the predictor given the transformed text and corresponding question as input prompt. Some
methods (Tang et al., 2023; Wen & Fang, 2023) omit crucial connectivity information between nodes, while
others (Fatemi et al., 2023; Huang et al., 2023) explicitly list all connections in a manner that is unnatural and
difficult for language models to process.

3 PRELIMINARIES

A TAG can be represented as G = (V, E , C), where V = {v1, v2, ..., vN} is a set of N nodes and E ⊆ V × V
is the set of M edges. eij ∈ E is an edge connecting nodes vi and vj ∈ V . C = {C1, C2, . . . , CN} is the set
of node textual features where each Ci is the textual corpus associated with node vi ∈ V .

The main goal of this paper is to learn the representation f(G) of a TAG G = (V, E , C), which is an open
research problem with several subsantial and unique challenges to be resolved. First, how the representation
can jointly preserve the rich semantic information, graph information, and their interplay in TAG. Moreover,
the unavailability of the training labels further troubles the representation learning. Second, the efficiency
and scalability present a big challenge in representation learning of TAG because of the synergization of
computational overhead of LLMs and the large corpus to be considered in the subgraph of TAG.

4 METHODOLOGY

To effectively address the substantial challenges of unsupervised representation learning on TAGs, we
propose a novel self-supervised learning framework called Text-And-Graph Multi-View Alignment (TAGA).
Specifically, to jointly preserve both rich semantic information, topology information, and their interplay, we
propose to learn and align the representations of TAG in two complementary views, namely text view and
graph view. In particular, the text view is a Text-of-Graph, where the TAG’s node texts are organized according
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Preorder
Traversal

(a) (b)

Alignment

0-Order

1-Order

2-Order

3-Order

Ø Galileo develops the theory of projectile 
trajectories, which discusses …
Ø [1] Newton's three laws of motion …

Ø [1.1] First law of motion describes …
Ø [1.1.1] An example of first law is …

Ø [1.2] As stated in 1.1.1, an object's 
motion remains constant without 
external force. Additionally, second law 
describes how force affects …

Ø [2] Einstein found that Newton's laws in 
Section 1 are valid only for under conditions 
of macro scales and low relative velocities. 
For micro scales and high speed, …
Ø [2.1] The development of relativity  

occurred in two stages …
Ø [2.1.1] Special Relativity …
Ø [2.1.2] General Relativity …

Root

1 2

1.1 1.2 2.1

1.1.1 2.1.1 2.1.1

Recoverable

(c)

Alignment

Alignment

Alignment

Alignment

Alignment

Recoverable

Structured Text Document

Text-and-Graph Multi-View Generation

Alignment via Hierarchical Self-Supervised Learning

Figure 2: Illustration of the proposed self-supervised learning framework. (a) Generation of different orders of
Graph-of-Text views; (b) The Graph2Text module that transforms a Graph-of-Text view into a Graph-of-Text
view; (c) The alignment module via hierarchical self-supervised learning.

to the TAG’s topology into a collective textual hierarchical document, which inherently has the power to
encompass logic and relational information among different node texts. The graph view is a Graph-of-Text,
where the TAG’s nodes and topology are turned into a graph structured data. These two views contain
equivalent information but in different formats, allowing them to mutually supervise each other. Then the
text view can be transformed by PLMs, which are adept at preserving textual information, while the graph
view can be transformed by GNN, which are designed to guarantee preserving graph information. Therefore,
by aligning the representations learned from these two views, we encourage the graph view’s representation
to also capture textual information and the text view’s representation to also capture graph information.
The above new idea is shown in Figure 2, where Figure 2(a) illustrates construction of Graph-of-Text view
while Figure 2(b) illustrates Text-of-Graph view, as detailed in Section 4.1. In Section 4.2, we propose the
Graph2Text module that can information loselessly transform the Graph-of-Text view to Text-of-Graph view.
Their respectively transformed embeddings are aligned by our proposed TAG-hierarchical self-supervised
learning framework, which is elaborated in Section 4.3. Finally, a novel acceleration algorithm of our learning
process to reduce computational complexity to near linear is detailed in Section 4.4.

4.1 TEXT-AND-GRAPH MULTI-VIEW CONSTRUCTION

Existing methods for learning representations on TAGs typically simply use GNNs to aggregate individual
node embeddings generated from node texts. These methods lack the ability to consider the textual semantic
relationship between different node texts in a joint document, and usually require supervised labels for training.
Moreover, the resulting embeddings often lack generalization capabilities beyond the specific domain and
task of their training data. To address these, our proposed framework TAGA first leverages two views of a
TAG: Text-of-Graph (TofG) and Graph-of-Text (GofT). Each view can be defined at different neighborhood
orders, allowing for a multi-order hierarchical representation. Specifically, a k-order TofG view represents a
node’s k-hop neighborhood as a single textual corpus that encompasses all nodes and their connections within
that neighborhood. This corpus is then processed by a PLM to extract semantic embeddings that capture
the combined content and structure within that k-hop neighborhood. In contrast, the corresponding k-order
GofT view is constructed as a graph structure, where nodes represent lower order TofGs within the k-hop
neighborhood. A GNN model is then applied to aggregate information from these connected lower order
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TofGs, capturing the overall neighborhood context. This ensures that both TofG and GofT views at the same
order encode equivalent information about the neighborhood.

To illustrate, consider a node with a 3-hop neighborhood, as shown in Figure 2(a). Its 3-order TofG is
constructed by transforming the entire 3-hop neighborhood as a single text corpus. Three distinct 3-order
GofT views can then be created using TofGs of orders 0, 1, and 2 as nodes in the graph structure. To maintain
information consistency, the number of GNN aggregation layers decreases with increasing TofG order: 3
layers for 0-order TofGs, 2 for 1-order TofGs, and 1 for 2-order TofGs. This ensures that each 3-order GofT
view captures the same 3-hop neighborhood information as the 3-order TofG view, facilitating information
equivalent views to enable further self-supervised learning alignment.

4.2 REPRESENT TEXT NEIGHBORHOOD INFORMATION VIA HIERARCHICAL DOCUMENT LAYOUT

The key to our proposed self-supervised learning framework is ensuring that the two distinct graph views
(TofG and GofT) contain equivalent information. This necessitates constructing a TofG view through the
Graph2Text module that preserves all connectivity information present in the original TAG. Existing
methods (Fatemi et al., 2023; Huang et al., 2023; Wen & Fang, 2023; Tang et al., 2023) often struggle to
effectively represent the structural information of graphs in a way that is both comprehensive and natural to
language model understanding. These methods typically designs text templates to explicitly describe local
graph structure by stating nodes and how they are connected in plain text. For example, “The first node is
. . . . The second node is . . . . First node connects to third node. Second node connects . . . ”. However, these
methods usually fails to fully leverage the pretrained capabilities of language models because they do not
present the structure in a natural language-speaking manner. This discrepancy between the transformed graph
text and the original pre-training corpus leads to a distributional shift, hindering the PLM’s ability to generate
high-quality embeddings that accurately reflect both the semantic and structural aspects of the TAG.

To address this issue, we introduce a novel Graph2Text approach that transforms a graph neighborhood into
a hierarchical text document. This hierarchical structure mirrors the original graph’s topology, ensuring that
the document’s latent structure is equivalent to the graph itself. Crucially, the resulting document resembles a
natural document, aligning with the distribution of majority text data used to pre-train PLMs. This alignment
mitigates the distributional shift issue, allowing PLMs to generate embeddings that accurately reflect both the
semantic and structural aspects of the graph.

Specifically, the structure of a node and its k-hop neighborhood can be represented as an ego graph, with
the node itself as the root. This ego graph can be decomposed into a hierarchical tree backbone and a set of
cross-edges, as illustrated in Figure 2(b). The reading order is established for the TofG document through
a pre-order traversal of this tree structure (first visit the root, then the left subtree, then the right subtree),
capturing the hierarchical relationships between nodes. To fully represent the neighborhood’s structure, we
then incorporate cross-edges into the document. These cross-edges indicate connections from later sections of
the document back to earlier ones, effectively mirroring the original graph’s topology within the text format.

As shown in Algorithm 1, the k-hop neighborhood of a target node v in graph G is represented as an ego-
graph G(v, k). A breadth-first search (BFS) tree T̂ (v, k), rooted at v, provides a hierarchical structure for the
document, while cross-edges (edges outside the BFS tree) are identified. A pre-order traversal of T̂ (v, k)
establishes the document’s hierarchical layout, assigning each node a section number. Cross-edges are then
integrated by adding references at source nodes to the sections containing their respective destination nodes,
if the destination node appears earlier in the traversal. This approach ensures that the document faithfully
reflects the graph’s structure.

4.3 MULTI-VIEW ALIGNMENT VIA TAG HIERARCHICAL SELF-SUPERVISED LEARNING

Upon construction of both views at different orders, a hierarchical self-supervised learning module is proposed
to align the embeddings from both views. Given a TAG G with at most K-hop neighborhood size, for each
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node vi ∈ V , its k-hop neighborhood can be denoted as Nk(vi) and its corresponding k-order TofG view
embedding can be represented as:

hk(vi) = PLM(TofG(vi; k)) ,

TofG(vi; k) = Graph2Text (vi ∪N (vi, k)) ,
(1)

where PLM is a pre-trained language model (e.g. BERT (Devlin et al., 2018) or LlaMA (Touvron et al.,
2023)). Graph2Text is an encoding template function that can transform individual nodes and edges text
into a textual corpus. Meanwhile, its corresponding k-order GofT views embeddings can be denoted as GNN
aggregated representations of lower order TofGs:

bl
k(vi) = f (k−l) ({hl(vb)|vb ∈ vi ∪N (vi, k − l)}) , (2)

where l covers from 0 to k − 1 and f (k−l) denotes the GNN model with k − l layers.
By aggregating k − l layers of information over the connected l-order TofGs, the obtained k-order GofT
embeddings cover equivalent information with the k-order TofG view embedding. Therefore, given all the
embeddings from level 1 to K, the supervision objective function can be written as:

Lpositive = −
1

K|B|
∑
vi∈B

∑
k∈[1,K]

∑
l∈[0,k−1]

ρ
(
bl
k(vi),hk(vi)

)
, (3)

where B represents the minibatch and ρ denotes a similarity function, such as cosine similarity. Additionally,
we include the negative samples that chosen from other nodes within the minibatch:

Lnegative =
1

K|B|
∑

vi,vj∈B,v1 ̸=v2

∑
k∈[1,K]

∑
l∈[0,k−1]

ρ
(
bl
k(vi),hk(vj)

)
, (4)

Thus, the overall objective function can be denoted as:

L = Lpositive + Lnegative (5)

Time Complexity Analysis. Consider a TAG with a maximum K-hop neighborhood size, where each node
has an average degree d and text attribute length L. Assume the feature dimensionality is F . In the case of
transformer-based PLMs, the time complexity for processing the TofG view of a node would be O((dL)2K2),
due to the quadratic complexity of self-attention mechanisms with respect to input sequence length. In
contrast, our method employs a GNN to aggregate information from lower-order TofGs, each of length dL.
Assuming a GNN with constant complexity per layer, the time complexity for aggregating information from
all K levels of the GofT view would be O(L2dK). Our method achieves significantly higher efficiency than
directly using PLMs for TofG views, with details available in the Appendix C.

4.4 ACCELERATING TRAINING ON LARGE TAGS WITH STRUCTURE-PRESERVING RANDOM WALK

While TAGA significantly improves efficiency during inference by transferring knowledge from the PLM to a
GNN model, the pre-training stage still encounters computational bottlenecks due to the quadratic complexity
of transformers with respect to context length when generating TofG view embeddings. Existing graph
sampling methods (e.g., node or edge dropping) can partially alleviate this issue, but at the cost of sacrificing
valuable structure information, which is crucial for capturing the intricate relationships within TAGs.

To address this issue while preserving the structure of corpus, we propose a novel approach inspired by
human reading patterns. Our method segments the hierarchical corpus into multiple related sub-corpora,
mirroring how humans naturally engage with complex documents: starting with a general overview (top
of the hierarchy) and delving into specific sections (sub-corpora). By navigating the corpus multiple times,
focusing on different sub-corpora each time, the combined insights gained can effectively approximate the
understanding achieved from processing the entire corpus.
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Algorithm 1 Hierarchical Document Layout (HDL) for
Graph2Text
Input: Graph G, target node v, hop count k
Output: Hierarchical text document D

1: Ĝ(v, k)← Construct ego-graph of v up to k hops in G

2: T̂ (v, k)← BFS tree of Ĝ(v, k) rooted at v
3: Êcross(v, k)← Cross-edges in Ĝ(v, k)
4: D ← Assign document sections to nodes following

pre-order traversal
5: for each cross-edge e = (u,w) do
6: if w precedes u then
7: Add reference at u to section containing w in

D
8: end if
9: end for

10: return D

Algorithm 2 Structure-Preserving Random
Walk Traversal
Input: Root node v, cross-edge probability p,
maximum length L
Output: Traversal path P

1: P ← [v]
2: while |P | < L and v has children do
3: if random() ¡ p and v has cross-edges

then
4: v ← Random neighbor by cross-

edge
5: else
6: v ← Random child of v
7: end if
8: P ← P + [v]
9: end while

10: return P

To facilitate this behavior, we introduce a random walk-based neighborhood traversal algorithm. It simulates a
reader starting at the root node and progressing towards leaf nodes in the BFS tree, transitioning from general
to specific information. Additionally, at each step, there is a probability p of jumping to another node via
cross-edges, imitating the non-linear navigation often observed in human reading (e.g., jumping to related
topics or backtracking). By averaging multiple random walk traversals, the generated paths can approximate
the complete corpus. As detailed in Algorithm 2, each traversal begins at the root node v and iteratively
samples child nodes to form a path down the hierarchy. At each step, a jump to another node via cross-edges
is possible with probability p. This traversal continues until reaching a predefined length or a leaf node.

5 EXPERIMENTS

In this section, the experimental settings are introduced first in Section 5.1, then the zero-shot and few-shot
node classification performances are presented in Section 5.2, and link prediction performance is presented
in Appendix B.3. We further present the effectiveness under transfer learning settings in Section 5.3. We
measure model efficiency in Section 5.5. The effectiveness of framework components through ablation studies
is in Section 5.4. The parameter sensitivity experiments are present in Appendix B.2 due to space limit.

5.1 EXPERIMENTAL SETTINGS

Datasets. We evaluate on eight real-world text-attributed graph datasets across different domains. Specifically,
three citation networks Cora (Yang et al., 2016), Pubmed (Yang et al., 2016) and Arxiv (Hu et al., 2020),
two book networks Children (Shchur et al., 2018) and History (Shchur et al., 2018), and three E-commerce
networks Computers (Shchur et al., 2018), Photo (Shchur et al., 2018), and Sports (Yan et al., 2023) are
chosen as our evaluation datasets. Datasets statistics can be found in Table 1.

Comparison Methods. We choose the textual embedding of the text corpus as the baseline, which is denoted
as “PLM” in our experimental results tables. Additionally, we compare our proposed framework with six
state-of-the-art graph pre-train methods. Specifically, GraphMAE (Kipf & Welling, 2016) — utilizes masked
autoencoder technique to predict of graph structure and node features. GraphCL (You et al., 2020) and
GRACE (Zhu et al., 2020) applies various graph augmentations to generate contrastive pairs. GraphFormers
(Yang et al., 2021) and Patton (Jin et al., 2023b) insert GNN layer into transformers architecture. G2P2 (Wen
& Fang, 2023) aligns GNN embeddings and text encoder embeddings through contrastive learning.

Implementation Details. We choose two different pre-trained language models (OpenAI’s
text-embedding-3-small (OpenAI, 2023) and UAE-Large-V1 (Li & Li, 2023)) to generate text
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k-Shot Model Arxiv Children Computers Cora History Photo Pubmed Sports
# Nodes 169,343 76,875 87,229 2,708 41,551 48,362 19,717 173,055
# Edges 1,166,243 1,554,578 721,107 10,556 358,574 500,939 44,338 1,773,594

Avg # Words 220.7 199.3 90.7 148.2 218.7 144.5 50.1 9.8

0

PLM 0.500 ± 0.001 0.094 ± 0.003 0.427 ± 0.001 0.624 ± 0.005 0.169 ± 0.001 0.387 ± 0.009 0.475 ± 0.008 0.316 ± 0.002
GraphMAE 0.104 ± 0.001 0.021 ± 0.001 0.049 ± 0.001 0.194 ± 0.006 0.019 ± 0.001 0.152 ± 0.001 0.438 ± 0.001 0.112 ± 0.001
GraphCL 0.089 ± 0.001 0.037 ± 0.001 0.173 ± 0.001 0.176 ± 0.003 0.191 ± 0.001 0.174 ± 0.001 0.368 ± 0.001 0.140 ± 0.001
GRACE 0.045 ± 0.001 0.034 ± 0.001 0.169 ± 0.001 0.146 ± 0.004 0.079 ± 0.001 0.025 ± 0.001 0.335 ± 0.001 0.057 ± 0.001

GraphFormers 0.465 ± 0.003 0.076 ± 0.001 0.147 ± 0.001 0.641 ± 0.004 0.185 ± 0.005 0.192 ± 0.003 0.441 ± 0.005 0.368 ± 0.002
PATTON 0.496 ± 0.005 0.027 ± 0.001 0.106 ± 0.003 0.579 ± 0.003 0.096 ± 0.003 0.118 ± 0.002 0.329 ± 0.005 0.421 ± 0.005

G2P2 0.453 ± 0.002 0.201 ± 0.001 0.453 ± 0.001 0.644 ± 0.004 0.322 ± 0.003 0.452 ± 0.001 0.576 ± 0.006 0.436 ± 0.001
TAGA 0.537 ± 0.003 0.224 ± 0.001 0.498 ± 0.004 0.682 ± 0.005 0.351 ± 0.009 0.419 ± 0.001 0.616 ± 0.009 0.448 ± 0.003

TAGA-rw 0.530 ± 0.001 0.221 ± 0.001 0.494 ± 0.001 0.680 ± 0.002 0.301 ± 0.003 0.394 ± 0.001 0.599 ± 0.002 0.434 ± 0.002

1

PLM 0.280 ± 0.044 0.122 ± 0.042 0.238 ± 0.039 0.412 ± 0.080 0.284 ± 0.078 0.230 ± 0.051 0.503 ± 0.067 0.282 ± 0.068
GraphMAE 0.255 ± 0.041 0.128 ± 0.028 0.300 ± 0.052 0.474 ± 0.058 0.231 ± 0.052 0.304 ± 0.066 0.492 ± 0.076 0.270 ± 0.042
GraphCL 0.123 ± 0.031 0.157 ± 0.066 0.256 ± 0.039 0.402 ± 0.059 0.371 ± 0.124 0.325 ± 0.079 0.414 ± 0.040 0.347 ± 0.079
GRACE 0.263 ± 0.034 0.138 ± 0.035 0.336 ± 0.051 0.435 ± 0.071 0.266 ± 0.085 0.295 ± 0.053 0.514 ± 0.095 0.282 ± 0.045

GraphFormers 0.233 ± 0.042 0.131 ± 0.038 0.247 ± 0.052 0.463 ± 0.069 0.231 ± 0.055 0.284 ± 0.043 0.471 ± 0.054 0.284 ± 0.057
PATTON 0.217 ± 0.059 0.127 ± 0.042 0.305 ± 0.048 0.487 ± 0.057 0.286 ± 0.078 0.318 ± 0.053 0.523 ± 0.051 0.243 ± 0.068

G2P2 0.308 ± 0.052 0.145 ± 0.029 0.359 ± 0.044 0.477 ± 0.082 0.361 ± 0.092 0.372 ± 0.066 0.522 ± 0.085 0.356 ± 0.042
TAGA 0.323 ± 0.040 0.180 ± 0.073 0.380 ± 0.062 0.509 ± 0.089 0.413 ± 0.114 0.417 ± 0.077 0.563 ± 0.062 0.440 ± 0.070

TAGA-rw 0.307 ± 0.050 0.171 ± 0.013 0.365 ± 0.042 0.561 ± 0.063 0.383 ± 0.078 0.380 ± 0.037 0.548 ± 0.073 0.498 ± 0.084

5

PLM 0.500 ± 0.019 0.210 ± 0.025 0.377 ± 0.027 0.641 ± 0.031 0.557 ± 0.040 0.420 ± 0.037 0.632 ± 0.040 0.478 ± 0.056
GraphMAE 0.425 ± 0.028 0.212 ± 0.029 0.434 ± 0.036 0.704 ± 0.038 0.459 ± 0.038 0.489 ± 0.038 0.625 ± 0.049 0.452 ± 0.037
GraphCL 0.231 ± 0.015 0.201 ± 0.040 0.397 ± 0.040 0.641 ± 0.044 0.531 ± 0.047 0.462 ± 0.041 0.584 ± 0.037 0.477 ± 0.048
GRACE 0.445 ± 0.028 0.227 ± 0.031 0.472 ± 0.040 0.685 ± 0.027 0.481 ± 0.061 0.515 ± 0.042 0.628 ± 0.047 0.482 ± 0.040

GraphFormers 0.461 ± 0.022 0.230 ± 0.031 0.374 ± 0.031 0.731 ± 0.029 0.458 ± 0.045 0.498 ± 0.032 0.619 ± 0.039 0.568 ± 0.053
PATTON 0.471 ± 0.039 0.227 ± 0.040 0.405 ± 0.032 0.699 ± 0.025 0.466 ± 0.038 0.518 ± 0.030 0.605 ± 0.042 0.532 ± 0.048

G2P2 0.466 ± 0.025 0.240 ± 0.034 0.510 ± 0.039 0.703 ± 0.032 0.617 ± 0.053 0.583 ± 0.051 0.640 ± 0.051 0.565 ± 0.055
TAGA 0.483 ± 0.022 0.263 ± 0.031 0.543 ± 0.038 0.752 ± 0.028 0.636 ± 0.046 0.602 ± 0.041 0.649 ± 0.044 0.664 ± 0.061

TAGA-rw 0.471 ± 0.031 0.276 ± 0.053 0.508 ± 0.019 0.764 ± 0.027 0.621 ± 0.076 0.594 ± 0.025 0.684 ± 0.027 0.675 ± 0.070

10

PLM 0.526 ± 0.013 0.240 ± 0.018 0.463 ± 0.029 0.690 ± 0.017 0.639 ± 0.038 0.491 ± 0.028 0.679 ± 0.023 0.535 ± 0.038
GraphMAE 0.461 ± 0.017 0.234 ± 0.014 0.511 ± 0.028 0.761 ± 0.023 0.535 ± 0.042 0.543 ± 0.035 0.659 ± 0.028 0.508 ± 0.028
GraphCL 0.301 ± 0.018 0.233 ± 0.029 0.488 ± 0.031 0.702 ± 0.025 0.566 ± 0.043 0.523 ± 0.044 0.632 ± 0.025 0.531 ± 0.035
GRACE 0.488 ± 0.018 0.251 ± 0.015 0.552 ± 0.028 0.754 ± 0.018 0.567 ± 0.054 0.567 ± 0.031 0.670 ± 0.025 0.529 ± 0.033

GraphFormers 0.482 ± 0.019 0.248 ± 0.030 0.447 ± 0.028 0.778 ± 0.022 0.498 ± 0.035 0.538 ± 0.026 0.633 ± 0.034 0.601 ± 0.040
PATTON 0.501 ± 0.028 0.247 ± 0.024 0.451 ± 0.026 0.738 ± 0.020 0.533 ± 0.029 0.539 ± 0.028 0.643 ± 0.028 0.564 ± 0.041

G2P2 0.527 ± 0.014 0.269 ± 0.018 0.598 ± 0.031 0.753 ± 0.020 0.649 ± 0.046 0.632 ± 0.037 0.691 ± 0.029 0.618 ± 0.037
TAGA 0.521 ± 0.017 0.288 ± 0.025 0.622 ± 0.025 0.788 ± 0.021 0.679 ± 0.041 0.651 ± 0.048 0.714 ± 0.024 0.705 ± 0.045

TAGA-rw 0.518 ± 0.010 0.288 ± 0.040 0.595 ± 0.024 0.806 ± 0.011 0.652 ± 0.046 0.626 ± 0.020 0.679 ± 0.013 0.662 ± 0.056

Table 1: Performance in zero-shot and few-shot node classification for each dataset and setting. The
best-performing model is highlighted in bold, and the second-best performing model is underlined.

embeddings for robust results. Commonly used GNN models (GCN (Kipf & Welling, 2017), GIN (Hamilton
et al., 2017), GraphSAGE (Xu et al., 2018)) are chosen as the backbone model as the backbone model for both
our method and all comparison methods. For a fair comparison, all models are required to adhere to the same
GNN architecture, including the number of convolution layers and hidden dimensions. More details about
hyperparameters can be found in Appendix B.1. Further technical details can be found in Appendix C. Our
code can be found at anonymous link https://anonymous.4open.science/r/TAGA-32B7/.

5.2 EFFECTIVENESS RESULTS

In this section, we assess the effectiveness of our proposed unsupervised representation learning framework
compared to other methods under conditions of label scarcity. Our representation learning models are initially
pre-trained on each TAG dataset without any supervised labels. After the pre-training phase, we evaluate the
quality of the obtained node embeddings under zero-shot conditions by measuring the similarity between
these embeddings and the corresponding text label embeddings. To further gauge performance in scenarios
with limited labeled data, we conduct evaluations using 1, 3, 5, 10, 20, 50, and 100-shot settings. Due to
space limitation, the results with text encoder UAE-Large-V1 under zero-shot and 1, 5, 10-shot settings is
reported in Table 1. Our acceleration method with random walk is denoted as “TAGA-rw”. The results with
text-embedding-3-small and other few-shot settings can be found in Appendix B.4. We also present
zero-shot link prediction performance in Appendix B.3.

Zero-shot performance. Table 1 presents node classification accuracy under zero-shot conditions, where
our method consistently outperforms all comparison methods in seven out of eight datasets. On average, our
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method surpasses other graph pre-training methods by 47.84% and exceeds the second-best model by 6.78%.
These findings demonstrate the enhanced ability of our pre-trained model to effectively learn representations
that enable zero-shot predictions. Furthermore, compared to direct textual embeddings from the PLM, our
method improves zero-shot performance by an average of 20.76%. This demonstrates our method’s capacity in
integrating structural and textual information from neighborhoods over directly using the PLM. Interestingly,
our method exhibits a stronger performance advantage when dealing with data rich in textual information.
Specifically, for the two citation networks (Arxiv and Cora), which possess significantly longer text attributes
compared to other datasets, our method surpasses the second-best performing graph pretrained model by an
average of 10.33%. This proves our method can effectively leverage the rich textual information.

Few-shot performance. For few-shot experiments, our method consistently outperforms all comparison
methods, achieving a 15.55% average improvement and surpassing the second-best model by 6.28% on
average. Notably, our method exhibits a more pronounced advantage in scenarios with limited labeled data
(¡=5 shots), where it outperforms all other methods by an average of 19.79% and exceeds the second-best
model by 7.91% on average. This underscores the effectiveness of our method, particularly in settings where
few-shot learning is essential due to data labels constraints.

Remarks. It is worth noting that for some datasets, the zero-shot performance of our method can match
or even exceed few-shot predictive results, particularly when the number of training samples for few-shot
learning is limited. For example, on five datasets (Arxiv, Children, Computers, Cora, and Pubmed), the
zero-shot performance surpasses 1-shot performance by an average of 23.54%. Remarkably, the zero-shot
performance can even be comparable to that of 5-shot. This demonstrates the strong potential of our method
in scenarios where labeled data is scarce or unreachable.

5.3 TRANSFER ABILITY ANALYSIS

In real-world applications, not only labels are difficult to obtain, but the data itself is also scarce. This
Source Cora Arxiv Cora Pubmed Children History Computers Photo

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
Target Arxiv Cora Pubmed Cora History Children Photo Computers

0-shot

GRACE 0.021 0.173 0.360 0.302 0.073 0.065 0.099 0.070
GraphMAE 0.012 0.153 0.434 0.239 0.009 0.030 0.082 0.004
GraphCL 0.015 0.232 0.368 0.178 0.045 0.024 0.094 0.135

G2P2 0.241 0.647 0.421 0.533 0.204 0.100 0.297 0.340
TAGA 0.406 0.679 0.484 0.559 0.184 0.200 0.452 0.372

TAGA-rw 0.398 0.624 0.408 0.526 0.176 0.203 0.455 0.348

5-shot

GRACE 0.426 0.721 0.591 0.657 0.609 0.219 0.483 0.382
GraphMAE 0.426 0.645 0.578 0.515 0.527 0.160 0.367 0.294
GraphCL 0.107 0.678 0.436 0.416 0.598 0.178 0.395 0.345

G2P2 0.395 0.749 0.633 0.708 0.623 0.239 0.509 0.429
TAGA 0.475 0.754 0.655 0.734 0.651 0.257 0.528 0.448

TAGA-rw 0.443 0.764 0.644 0.674 0.617 0.250 0.482 0.436

Table 2: Transfer learning results. The best-performing model is
highlighted in bold.

necessitates the generalization of a pre-
trained model to a data domain distinct
from the pre-training data. Here we eval-
uate the zero-shot and few-shot perfor-
mance under transfer learning settings.
Specifically, the model is unsupervis-
edly pre-trained on the source data do-
main and then transferred to the target
data domain. No further fine-tuning is
performed for zero-shot prediction, and
is fine-tuned using the limited training
samples for few-shot prediction.

In Table 2, we present the performance of zero-shot and five-shot predictions across eight pairs of source and
target datasets. The results demonstrate a clear advantage for our method in the zero-shot setting, where it
consistently outperforms all other methods across all dataset pairs. Notably, our method achieves an average
improvement of 26.5% over the second-best performing method. In the five-shot setting, our method continues
outperforming the second-best performing method by 4.53% on average. Particularly when transferring from
Cora to Arxiv and Pubmed, and Children to History, our method achieves significant performance gain by
6.30% on average, demonstrating its ability to effectively leverage limited labeled data in the target domain.

5.4 ABLATION STUDY

To investigate the effectiveness of our proposed model compared to simpler heuristics, we conducted a
series of ablation analyses. We began by considering textual embeddings obtained directly by applying the
PLM to the Text of Graph views’ corpus at different orders. This allowed us to assess the impact of our
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Method arxiv children computers cora history photo pubmed sports

0-shot

Full 0.537 0.224 0.498 0.682 0.351 0.419 0.616 0.448
TofG-0 0.500 0.099 0.423 0.575 0.318 0.392 0.471 0.318
TofG-1 0.521 0.102 0.544 0.601 0.349 0.336 0.512 0.444
TofG-2 0.519 0.098 0.556 0.606 0.348 0.327 0.532 0.448

Glo-GofT 0.533 0.205 0.482 0.657 0.329 0.407 0.522 0.417

5-shot

Full 0.483 0.263 0.543 0.752 0.636 0.602 0.649 0.664
TofG-0 0.500 0.210 0.377 0.641 0.557 0.420 0.632 0.478
TofG-1 0.496 0.234 0.549 0.709 0.598 0.582 0.631 0.615
TofG-2 0.490 0.234 0.558 0.706 0.589 0.590 0.631 0.654

Glo-GofT 0.479 0.257 0.512 0.726 0.623 0.592 0.635 0.629

Figure 3: Ablation studies results of zero- and five-shot settings.
Here “Full” denotes our full model.

training procedure compared to a sim-
pler approach that relies solely on Text-of-
Graph view representations. In addition, we
compare our full model with a variant, Glo-
GofT, which only aligns the GNN embed-
dings that aggregate individual node’s text
embeddings but removes all higher-order
Graph-of-Text embeddings. The results of
these ablation studies are presented in Ta-
ble 3, which reveals that removing compo-
nents of our full model generally leads to a decrease in performance. In the zero-shot setting, the full model
outperforms the variant models by 2.79% to 8.49% on average, and ranges from 1.74% to 9.71% in the
five-shot setting. These results underscore the contribution of each component to TAGA’s overall effectiveness.
In Appendix B.5, we have shown additional ablation studies that evaluate how will aligning on different
orders of hierarchies will influence the representation due to space limitation.

5.5 EFFICIENCY ANALYSIS

To validate the efficiency and scalability of our proposed full method and random walk algorithm
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Figure 4: (top) Comparison of the full method and
the random walk algorithm in terms of the number
of words, and (middle) training time, and (bottom)
inference time comparison between PLM and TAGA
in terms of the number of hops.

during both training and inference phases, we conduct
experiments on the Cora dataset. We vary the number
of hops from 0 to 5 and record the number of words
in the input corpus, training time, and inference time.
The results are presented in Figure 4. As depicted in
top figure, the exponential growth in input size for the
full method compared to the near-linear growth of the
random walk method demonstrates the our’s superior
scalability in managing larger graph neighborhoods.
The middle figure further demonstrates the efficiency
advantage of the random walk algorithm, as its train-
ing time increases linearly with the number of hops,
whereas the full method experiences a much steeper
increase, becoming infeasible beyond 3 hops due to
out-of-memory (OOM) errors. Finally, the bottom fig-
ure highlights the speedup achieved by our proposed
method during inference compared to directly using
a PLM. The inference time for our method remains
linear growth trend across different hops, while the
PLM-based approach suffers from rapidly increasing
inference time with the hops number.

6 CONCLUSIONS

In this paper, we introduce TAGA, a novel self-supervised learning framework designed to address the
challenges of unsupervised representation learning on TAGs. TAGA integrates both textual and structural
information within TAGs by aligning representations from two complementary views: Text-of-Graph and
Graph-of-Text. To enhance the preservation of structural information in the Text-of-Graph view, we propose
a natural hierarchical document layout that mirrors the graph’s topology. Additionally, we introduce a
structure-preserving random walk algorithm to accelerate the training process on large TAGs. Extensive
experiments on eight real-world datasets demonstrate TAGA’s superior performance in zero-shot and few-shot
learning scenarios, showcasing its strong generalization capabilities across diverse domains.
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A ADDITIONAL RELATED WORKS

A.1 EFFICIENT AND SCALABLE METHODS FOR LARGE-SIZE GRAPH NEIGHBORHOODS

Efficiency and scalability are crucial for deep graph learning, particularly when dealing with large graphs or
high-order interactions. Traditional graph sampling techniques, such as node sampling (Chen et al., 2018),
edge sampling (Hamilton et al., 2017), or subgraph sampling (Zeng et al., 2019), aim to reduce neighborhood
size. However, these methods may not be suitable for TAGs, as they can result in the loss of important
hierarchical interactive connection during the random sampling process. Meanwhile, in the NLP domain,
some efforts (Peng et al., 2023; Han et al., 2023; Chen et al., 2023a; Jiang et al., 2023; Ding et al., 2023a) have
been made to address the long context issue of PLMs. These approaches typically involve compressing input
tokens into latent vectors (Jiang et al., 2023) or modifying the attention mask (Chen et al., 2023b; Han et al.,
2023; Ding et al., 2023a) to reduce significant interactions. However, these methods often fail to preserve the
original structure of the input corpus and might alter the hierarchical layout.

B ADDITIONAL EXPERIMENTAL RESULTS AND SETTINGS

In this section, we present additional experimental settings and results due to the space limitation of the main
paper.

B.1 ADDITIONAL IMPLEMENTATION SETTINGS

All experiments are conducted on a 64-bit machine with four 16GB NVIDIA GPUs. Each experiment involves
running the models 20 times with different random seeds to minimize variance due to specific data splits.
Accuracy is adopted as the evaluation metric for node classification tasks. Specifically, for smaller datasets
such as Cora and PubMed, we employ 3 convolution layers, while for larger datasets, we utilize 2 layers.
Latent dimension is aligned with the PLM embedding dimension. During the pre-train stage, the model is
trained with 40,000 steps on each dataset with minibatch size 8. The learning rate is initialized as 1e−3 and
with decay rate 0.999 each 10 steps. For zero-shot predictions, we utilize the entire dataset as the test set. In
the case of k-shot predictions, we randomly select k samples from each class to form the training set, dividing
the remaining data into validation and test sets at a ratio of 1:9. All models undergo finetune for 100 epochs,
and testing is based on the best validation results.

B.2 SENSITIVITY ANALYSIS

In this section, we investigate the sensitivity of the key hyperparameters and their impact on TAGA’s
performance. Specifically, we first evaluate how different GNN backbones (GCN, GIN, and GraphSAGE)
affect performance. Then we evaluate how jumping ratio (p) and maximum walk length (L) would affect
random walk’s performance. The results are presented in Figure 5. The sensitivity analysis conducted on
TAGA’s performance demonstrates that the method is robust across a range of hyperparameters. Specifically,
the variance in performance across different GNN backbones is 0.84%, indicating a stable behavior regardless
of the backbone employed. Similarly, adjustments in the jumping ratio (p) and maximum walk length (L)
exhibit 0.33% and 0.76% variance on average, which underscores that our method is not sensitive to the
hyperparameters chosen.

B.3 ADDITIONAL LINK PREDICTION EXPERIMENTS

In order to verify the generalizability of our method, the transfer learning setting is adopted. The representation
learning method is pre-trained on source dataset, and then directly perform link prediction task on target
dataset without any finetune process. The ratio of positive and negative edges is 1:1 and we use cosine
similarity to measure the scores. From the Table 3 we can observe that our proposed method outperforms all
the comparison methods in 15 out of 16 tasks on ROC-AUC metric, which further verified the effectiveness
and generalizability of our proposed representation learning method.
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Figure 5: Comparison of five-shot performance between (top) different GNN encoder choices, and (middle)
varying jumping ratio, and (bottom) maximum walk length of random walks.

Source Target GRACE G2P2 TAGA
Pubmed Cora 0.6007 ± 0.0019 0.9964 ± 0.0001 0.9971 ± 0.0005

Pubmed 0.8240 ± 0.0008 0.9564 ± 0.0003 0.9683 ± 0.0002
Sports 0.6094 ± 0.0002 0.9864 ± 0.0000 0.9844 ± 0.0000
Arxiv 0.5318 ± 0.0002 0.9847 ± 0.0000 0.9865 ± 0.0001

Arxiv Cora 0.9170 ± 0.0008 0.9928 ± 0.0002 0.9947 ± 0.0003
Pubmed 0.8047 ± 0.0006 0.9563 ± 0.0003 0.9662 ± 0.0004
Sports 0.7636 ± 0.0001 0.9907 ± 0.0000 0.9940 ± 0.0000
Arxiv 0.9386 ± 0.0001 0.9857 ± 0.0000 0.9886 ± 0.0000

Cora Cora 0.9646 ± 0.0005 0.9886 ± 0.0004 0.9959 ± 0.0002
Pubmed 0.9363 ± 0.0006 0.9508 ± 0.0005 0.9634 ± 0.0002
Sports 0.9727 ± 0.0000 0.9816 ± 0.0000 0.9913 ± 0.0000
Arxiv 0.9735 ± 0.0001 0.9620 ± 0.0001 0.9901 ± 0.0000

Sports Cora 0.7847 ± 0.0010 0.9911 ± 0.0002 0.9955 ± 0.0002
Pubmed 0.8718 ± 0.0005 0.9611 ± 0.0003 0.9667 ± 0.0005
Sports 0.9353 ± 0.0000 0.9906 ± 0.0000 0.9942 ± 0.0000
Arxiv 0.8990 ± 0.0001 0.9780 ± 0.0000 0.9842 ± 0.0000

Table 3: The ROC-AUC experimental results of zero-shot link prediction tasks by transferring from the source
dataset to target dataset.

B.4 ADDITIONAL NODE CLASSIFICATION ANALYSIS

We present additional zero-shot and few-shot performance under two different text encoders UAE-Large-V1
and Text-embedding-3-small. The zero-shot results are present in Table 5. The few-shot re-
sults with text encoder UAE-Large-V1 is present in Table 6, and few-shot results with text en-
coderText-embedding-3-small is present in Table 7. From the table, we can observe that our method
TAGA consistently achieve the best performance on two different choices of text encoder models. This
demonstrates the effectiveness and robustness of our proposed method.
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k-Shot Model Arxiv Children Computers Cora History Photo Pubmed Sports
# Nodes 169,343 76,875 87,229 2,708 41,551 48,362 19,717 173,055
# Edges 1,166,243 1,554,578 721,107 10,556 358,574 500,939 44,338 1,773,594

Avg # Words 220.7 199.3 90.7 148.2 218.7 144.5 50.1 9.8

0

PLM 0.500 ± 0.001 0.094 ± 0.003 0.427 ± 0.001 0.624 ± 0.005 0.169 ± 0.001 0.387 ± 0.009 0.475 ± 0.008 0.316 ± 0.002
GraphMAE 0.104 ± 0.001 0.021 ± 0.001 0.049 ± 0.001 0.194 ± 0.006 0.019 ± 0.001 0.152 ± 0.001 0.438 ± 0.001 0.112 ± 0.001
GraphCL 0.089 ± 0.001 0.037 ± 0.001 0.173 ± 0.001 0.176 ± 0.003 0.191 ± 0.001 0.174 ± 0.001 0.368 ± 0.001 0.140 ± 0.001
GRACE 0.045 ± 0.001 0.034 ± 0.001 0.169 ± 0.001 0.146 ± 0.004 0.079 ± 0.001 0.025 ± 0.001 0.335 ± 0.001 0.057 ± 0.001

G2P2 0.453 ± 0.002 0.201 ± 0.001 0.453 ± 0.001 0.644 ± 0.004 0.322 ± 0.003 0.452 ± 0.001 0.576 ± 0.006 0.436 ± 0.001
TAGA 0.537 ± 0.003 0.224 ± 0.001 0.498 ± 0.004 0.682 ± 0.005 0.351 ± 0.009 0.419 ± 0.001 0.616 ± 0.009 0.448 ± 0.003

TAGA-rw 0.530 ± 0.001 0.221 ± 0.001 0.494 ± 0.001 0.680 ± 0.002 0.301 ± 0.003 0.394 ± 0.001 0.599 ± 0.002 0.434 ± 0.002

1

PLM 0.280 ± 0.044 0.122 ± 0.042 0.238 ± 0.039 0.412 ± 0.080 0.284 ± 0.078 0.230 ± 0.051 0.503 ± 0.067 0.282 ± 0.068
GraphMAE 0.255 ± 0.041 0.128 ± 0.028 0.300 ± 0.052 0.474 ± 0.058 0.231 ± 0.052 0.304 ± 0.066 0.492 ± 0.076 0.270 ± 0.042
GraphCL 0.123 ± 0.031 0.157 ± 0.066 0.256 ± 0.039 0.402 ± 0.059 0.371 ± 0.124 0.325 ± 0.079 0.414 ± 0.040 0.347 ± 0.079
GRACE 0.263 ± 0.034 0.138 ± 0.035 0.336 ± 0.051 0.435 ± 0.071 0.266 ± 0.085 0.295 ± 0.053 0.514 ± 0.095 0.282 ± 0.045

G2P2 0.308 ± 0.052 0.145 ± 0.029 0.359 ± 0.044 0.477 ± 0.082 0.361 ± 0.092 0.372 ± 0.066 0.522 ± 0.085 0.356 ± 0.042
TAGA 0.323 ± 0.040 0.180 ± 0.073 0.380 ± 0.062 0.509 ± 0.089 0.413 ± 0.114 0.417 ± 0.077 0.563 ± 0.062 0.440 ± 0.070

TAGA-rw 0.307 ± 0.050 0.171 ± 0.013 0.365 ± 0.042 0.561 ± 0.063 0.383 ± 0.078 0.380 ± 0.037 0.548 ± 0.073 0.498 ± 0.084

3

PLM 0.436 ± 0.036 0.194 ± 0.029 0.318 ± 0.038 0.588 ± 0.036 0.448 ± 0.071 0.352 ± 0.044 0.611 ± 0.051 0.392 ± 0.041
GraphMAE 0.379 ± 0.039 0.182 ± 0.025 0.389 ± 0.035 0.634 ± 0.044 0.362 ± 0.050 0.432 ± 0.051 0.597 ± 0.061 0.363 ± 0.050
GraphCL 0.192 ± 0.029 0.186 ± 0.039 0.343 ± 0.046 0.563 ± 0.044 0.484 ± 0.071 0.382 ± 0.052 0.476 ± 0.038 0.373 ± 0.071
GRACE 0.398 ± 0.031 0.200 ± 0.038 0.442 ± 0.045 0.622 ± 0.043 0.404 ± 0.057 0.447 ± 0.053 0.620 ± 0.055 0.398 ± 0.045

G2P2 0.430 ± 0.027 0.207 ± 0.038 0.469 ± 0.042 0.623 ± 0.033 0.508 ± 0.073 0.528 ± 0.049 0.641 ± 0.064 0.464 ± 0.050
TAGA 0.445 ± 0.035 0.241 ± 0.062 0.497 ± 0.035 0.695 ± 0.050 0.551 ± 0.094 0.551 ± 0.045 0.659 ± 0.058 0.586 ± 0.057

TAGA-rw 0.442 ± 0.040 0.222 ± 0.060 0.467 ± 0.025 0.705 ± 0.021 0.558 ± 0.072 0.513 ± 0.070 0.632 ± 0.043 0.569 ± 0.105

5

PLM 0.500 ± 0.019 0.210 ± 0.025 0.377 ± 0.027 0.641 ± 0.031 0.557 ± 0.040 0.420 ± 0.037 0.632 ± 0.040 0.478 ± 0.056
GraphMAE 0.425 ± 0.028 0.212 ± 0.029 0.434 ± 0.036 0.704 ± 0.038 0.459 ± 0.038 0.489 ± 0.038 0.625 ± 0.049 0.452 ± 0.037
GraphCL 0.231 ± 0.015 0.201 ± 0.040 0.397 ± 0.040 0.641 ± 0.044 0.531 ± 0.047 0.462 ± 0.041 0.584 ± 0.037 0.477 ± 0.048
GRACE 0.445 ± 0.028 0.227 ± 0.031 0.472 ± 0.040 0.685 ± 0.027 0.481 ± 0.061 0.515 ± 0.042 0.628 ± 0.047 0.482 ± 0.040

G2P2 0.466 ± 0.025 0.240 ± 0.034 0.510 ± 0.039 0.703 ± 0.032 0.617 ± 0.053 0.583 ± 0.051 0.640 ± 0.051 0.565 ± 0.055
TAGA 0.483 ± 0.022 0.263 ± 0.031 0.543 ± 0.038 0.752 ± 0.028 0.636 ± 0.046 0.602 ± 0.041 0.649 ± 0.044 0.664 ± 0.061

TAGA-rw 0.471 ± 0.031 0.276 ± 0.053 0.508 ± 0.019 0.764 ± 0.027 0.621 ± 0.076 0.594 ± 0.025 0.684 ± 0.027 0.675 ± 0.070

10

PLM 0.526 ± 0.013 0.240 ± 0.018 0.463 ± 0.029 0.690 ± 0.017 0.639 ± 0.038 0.491 ± 0.028 0.679 ± 0.023 0.535 ± 0.038
GraphMAE 0.461 ± 0.017 0.234 ± 0.014 0.511 ± 0.028 0.761 ± 0.023 0.535 ± 0.042 0.543 ± 0.035 0.659 ± 0.028 0.508 ± 0.028
GraphCL 0.301 ± 0.018 0.233 ± 0.029 0.488 ± 0.031 0.702 ± 0.025 0.566 ± 0.043 0.523 ± 0.044 0.632 ± 0.025 0.531 ± 0.035
GRACE 0.488 ± 0.018 0.251 ± 0.015 0.552 ± 0.028 0.754 ± 0.018 0.567 ± 0.054 0.567 ± 0.031 0.670 ± 0.025 0.529 ± 0.033

G2P2 0.527 ± 0.014 0.269 ± 0.018 0.598 ± 0.031 0.753 ± 0.020 0.649 ± 0.046 0.632 ± 0.037 0.691 ± 0.029 0.618 ± 0.037
TAGA 0.521 ± 0.017 0.288 ± 0.025 0.622 ± 0.025 0.788 ± 0.021 0.679 ± 0.041 0.651 ± 0.048 0.714 ± 0.024 0.705 ± 0.045

TAGA-rw 0.518 ± 0.010 0.288 ± 0.040 0.595 ± 0.024 0.806 ± 0.011 0.652 ± 0.046 0.626 ± 0.020 0.679 ± 0.013 0.662 ± 0.056

100

PLM 0.592 ± 0.005 0.337 ± 0.013 0.610 ± 0.008 0.753 ± 0.014 0.753 ± 0.008 0.634 ± 0.015 0.771 ± 0.005 0.690 ± 0.013
GraphMAE 0.573 ± 0.005 0.319 ± 0.008 0.650 ± 0.008 0.835 ± 0.007 0.684 ± 0.011 0.655 ± 0.012 0.744 ± 0.010 0.677 ± 0.009
GraphCL 0.435 ± 0.005 0.313 ± 0.024 0.629 ± 0.006 0.804 ± 0.014 0.675 ± 0.026 0.653 ± 0.012 0.737 ± 0.007 0.703 ± 0.016
GRACE 0.579 ± 0.007 0.339 ± 0.009 0.681 ± 0.006 0.838 ± 0.008 0.725 ± 0.014 0.678 ± 0.010 0.753 ± 0.010 0.712 ± 0.014

G2P2 0.578 ± 0.007 0.360 ± 0.009 0.711 ± 0.007 0.838 ± 0.010 0.748 ± 0.009 0.710 ± 0.008 0.758 ± 0.009 0.725 ± 0.010
TAGA 0.631 ± 0.008 0.375 ± 0.021 0.731 ± 0.006 0.849 ± 0.008 0.754 ± 0.022 0.738 ± 0.015 0.787 ± 0.007 0.802 ± 0.014

TAGA-rw 0.595 ± 0.010 0.385 ± 0.016 0.704 ± 0.010 0.853 ± 0.005 0.749 ± 0.023 0.716 ± 0.010 0.776 ± 0.011 0.767 ± 0.021

Table 4: Full table of performance in zero-shot and few-shot node classification for each dataset and setting.
The best-performing model is highlighted in bold, and the second-best performing model is underlined.

B.5 ADDITIONAL ABLATION STUDIES

Here we have included an ablation analysis to verify the effectiveness of neighborhood size. The results in
Table 8 demonstrate that our method achieves stable performance when using a neighborhood size of 2 or
more orders.

C ADDITIONAL TECHNICAL DETAILS

Efficiency Comparison with Directly Using PLM Embeddings. It is worth noting that the textual embed-
dings of TofG views h(vi) can directly represent the entire TAG. However, it may cause significant scalability
and efficiency issue during the inference phase. Existing PLMs typically adopts transformer architecture and it
has a quadratic complexity with the input number of text tokens, this is especially important to TAGs since the
number of input size grows exponentially with the number of neighborhood hops. By aligning the knowledge
from PLM with GNN model through our framework, we can simultaneously maintain generalization ability
of TAG embeddings and high efficiency and scalability to large-sized graphs.
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Text Encoder Model

UAE-Large-V1 PLM 0.500 ± 0.001 0.094 ± 0.003 0.427 ± 0.001 0.624 ± 0.005 0.169 ± 0.001 0.387 ± 0.009 0.475 ± 0.008 0.316 ± 0.002
GraphMAE 0.104 ± 0.001 0.021 ± 0.001 0.049 ± 0.001 0.194 ± 0.006 0.019 ± 0.001 0.152 ± 0.001 0.438 ± 0.001 0.112 ± 0.001
GraphCL 0.089 ± 0.001 0.037 ± 0.001 0.173 ± 0.001 0.176 ± 0.003 0.191 ± 0.001 0.174 ± 0.001 0.368 ± 0.001 0.140 ± 0.001
GRACE 0.045 ± 0.001 0.034 ± 0.001 0.169 ± 0.001 0.146 ± 0.004 0.079 ± 0.001 0.025 ± 0.001 0.335 ± 0.001 0.057 ± 0.001
G2P2 0.453 ± 0.002 0.201 ± 0.001 0.453 ± 0.001 0.644 ± 0.004 0.322 ± 0.003 0.452 ± 0.001 0.576 ± 0.006 0.436 ± 0.001
TAGA 0.537 ± 0.003 0.224 ± 0.001 0.498 ± 0.004 0.682 ± 0.005 0.351 ± 0.009 0.419 ± 0.001 0.616 ± 0.009 0.448 ± 0.003

Text-embedding-3-small PLM 0.351 ± 0.001 0.098 ± 0.002 0.434 ± 0.005 0.561 ± 0.006 0.125 ± 0.001 0.321 ± 0.001 0.306 ± 0.001 0.424 ± 0.002
GraphMAE 0.101 ± 0.001 0.025 ± 0.001 0.108 ± 0.001 0.162 ± 0.003 0.158 ± 0.001 0.033 ± 0.001 0.205 ± 0.001 0.364 ± 0.001
GraphCL 0.127 ± 0.001 0.045 ± 0.001 0.282 ± 0.001 0.197 ± 0.004 0.106 ± 0.001 0.163 ± 0.001 0.383 ± 0.001 0.240 ± 0.003
GRACE 0.023 ± 0.001 0.022 ± 0.001 0.117 ± 0.001 0.085 ± 0.004 0.039 ± 0.001 0.037 ± 0.001 0.319 ± 0.001 0.088 ± 0.001
G2P2 0.332 ± 0.001 0.092 ± 0.001 0.449 ± 0.001 0.637 ± 0.006 0.168 ± 0.001 0.298 ± 0.001 0.569 ± 0.001 0.511 ± 0.003
TAGA 0.369 ± 0.001 0.084 ± 0.001 0.615 ± 0.001 0.668 ± 0.005 0.264 ± 0.001 0.423 ± 0.001 0.639 ± 0.001 0.548 ± 0.003

Table 5: Zero-shot node classification performance.

k-Shot Model Arxiv Children Computers Cora History Photo Pubmed Sports

1

PLM 0.280 ± 0.044 0.122 ± 0.042 0.238 ± 0.039 0.412 ± 0.080 0.284 ± 0.078 0.230 ± 0.051 0.503 ± 0.067 0.282 ± 0.068
GraphMAE 0.255 ± 0.041 0.128 ± 0.028 0.300 ± 0.052 0.474 ± 0.058 0.231 ± 0.052 0.304 ± 0.066 0.492 ± 0.076 0.270 ± 0.042

GRACE 0.263 ± 0.034 0.138 ± 0.035 0.336 ± 0.051 0.435 ± 0.071 0.266 ± 0.085 0.295 ± 0.053 0.514 ± 0.095 0.282 ± 0.045
G2P2 0.308 ± 0.052 0.145 ± 0.029 0.359 ± 0.044 0.477 ± 0.082 0.361 ± 0.092 0.372 ± 0.066 0.522 ± 0.085 0.356 ± 0.042
TAGA 0.323 ± 0.040 0.180 ± 0.073 0.380 ± 0.062 0.509 ± 0.089 0.413 ± 0.114 0.417 ± 0.077 0.563 ± 0.062 0.440 ± 0.070

3

PLM 0.436 ± 0.036 0.194 ± 0.029 0.318 ± 0.038 0.588 ± 0.036 0.448 ± 0.071 0.352 ± 0.044 0.611 ± 0.051 0.392 ± 0.041
GraphMAE 0.379 ± 0.039 0.182 ± 0.025 0.389 ± 0.035 0.634 ± 0.044 0.362 ± 0.050 0.432 ± 0.051 0.597 ± 0.061 0.363 ± 0.050

GRACE 0.398 ± 0.031 0.200 ± 0.038 0.442 ± 0.045 0.622 ± 0.043 0.404 ± 0.057 0.447 ± 0.053 0.620 ± 0.055 0.398 ± 0.045
G2P2 0.430 ± 0.027 0.207 ± 0.038 0.469 ± 0.042 0.623 ± 0.033 0.508 ± 0.073 0.528 ± 0.049 0.641 ± 0.064 0.464 ± 0.050
TAGA 0.445 ± 0.035 0.241 ± 0.062 0.497 ± 0.035 0.695 ± 0.050 0.551 ± 0.094 0.551 ± 0.045 0.659 ± 0.058 0.586 ± 0.057

5

PLM 0.500 ± 0.019 0.210 ± 0.025 0.377 ± 0.027 0.641 ± 0.031 0.557 ± 0.040 0.420 ± 0.037 0.632 ± 0.040 0.478 ± 0.056
GraphMAE 0.425 ± 0.028 0.212 ± 0.029 0.434 ± 0.036 0.704 ± 0.038 0.459 ± 0.038 0.489 ± 0.038 0.625 ± 0.049 0.452 ± 0.037

GRACE 0.445 ± 0.028 0.227 ± 0.031 0.472 ± 0.040 0.685 ± 0.027 0.481 ± 0.061 0.515 ± 0.042 0.628 ± 0.047 0.482 ± 0.040
G2P2 0.466 ± 0.025 0.240 ± 0.034 0.510 ± 0.039 0.703 ± 0.032 0.617 ± 0.053 0.583 ± 0.051 0.640 ± 0.051 0.565 ± 0.055
TAGA 0.483 ± 0.022 0.263 ± 0.031 0.543 ± 0.038 0.752 ± 0.028 0.636 ± 0.046 0.602 ± 0.041 0.649 ± 0.044 0.664 ± 0.061

10

PLM 0.526 ± 0.013 0.240 ± 0.018 0.463 ± 0.029 0.690 ± 0.017 0.639 ± 0.038 0.491 ± 0.028 0.679 ± 0.023 0.535 ± 0.038
GraphMAE 0.461 ± 0.017 0.234 ± 0.014 0.511 ± 0.028 0.761 ± 0.023 0.535 ± 0.042 0.543 ± 0.035 0.659 ± 0.028 0.508 ± 0.028

GRACE 0.488 ± 0.018 0.251 ± 0.015 0.552 ± 0.028 0.754 ± 0.018 0.567 ± 0.054 0.567 ± 0.031 0.670 ± 0.025 0.529 ± 0.033
G2P2 0.527 ± 0.014 0.269 ± 0.018 0.598 ± 0.031 0.753 ± 0.020 0.649 ± 0.046 0.632 ± 0.037 0.691 ± 0.029 0.618 ± 0.037
TAGA 0.521 ± 0.017 0.288 ± 0.025 0.622 ± 0.025 0.788 ± 0.021 0.679 ± 0.041 0.651 ± 0.048 0.714 ± 0.024 0.705 ± 0.045

20

PLM 0.526 ± 0.013 0.240 ± 0.018 0.463 ± 0.029 0.690 ± 0.017 0.639 ± 0.038 0.491 ± 0.028 0.679 ± 0.023 0.535 ± 0.038
GraphMAE 0.501 ± 0.009 0.264 ± 0.013 0.558 ± 0.015 0.801 ± 0.014 0.597 ± 0.033 0.596 ± 0.016 0.689 ± 0.021 0.572 ± 0.025

GRACE 0.521 ± 0.011 0.277 ± 0.013 0.605 ± 0.017 0.791 ± 0.017 0.640± 0.037 0.615 ± 0.02 0.704 ± 0.029 0.607 ± 0.027
G2P2 0.556 ± 0.010 0.301 ± 0.015 0.649 ± 0.015 0.813 ± 0.012 0.716 ± 0.025 0.672 ± 0.015 0.726 ± 0.025 0.690 ± 0.025
TAGA 0.561 ± 0.010 0.319 ± 0.023 0.673 ± 0.014 0.814 ± 0.012 0.721 ± 0.035 0.694 ± 0.021 0.745 ± 0.022 0.759 ± 0.026

50

PLM 0.526 ± 0.013 0.240 ± 0.018 0.463 ± 0.029 0.690 ± 0.017 0.639 ± 0.038 0.491 ± 0.028 0.679 ± 0.023 0.535 ± 0.038
GraphMAE 0.541 ± 0.007 0.300± 0.010 0.612 ± 0.015 0.815 ± 0.008 0.657 ± 0.012 0.631 ± 0.010 0.729 ± 0.011 0.631 ± 0.018

GRACE 0.553 ± 0.007 0.314 ± 0.012 0.649 ± 0.012 0.818 ± 0.012 0.706 ± 0.017 0.661 ± 0.019 0.732 ± 0.014 0.678 ± 0.022
G2P2 0.578 ± 0.009 0.340 ± 0.011 0.692 ± 0.012 0.827 ± 0.013 0.738 ± 0.009 0.700 ± 0.014 0.758 ± 0.009 0.725 ± 0.014
TAGA 0.586 ± 0.010 0.348 ± 0.015 0.712 ± 0.012 0.836 ± 0.010 0.743 ± 0.022 0.715 ± 0.016 0.771 ± 0.011 0.784 ± 0.016

100

PLM 0.592 ± 0.005 0.337 ± 0.013 0.610 ± 0.008 0.753 ± 0.014 0.753 ± 0.008 0.634 ± 0.015 0.771 ± 0.005 0.690 ± 0.013
GraphMAE 0.573 ± 0.005 0.319 ± 0.008 0.650 ± 0.008 0.835 ± 0.007 0.684 ± 0.011 0.655 ± 0.012 0.744 ± 0.010 0.677 ± 0.009

GRACE 0.579 ± 0.007 0.339 ± 0.009 0.681 ± 0.006 0.838 ± 0.008 0.725 ± 0.014 0.678 ± 0.010 0.753 ± 0.010 0.712 ± 0.014
G2P2 0.578 ± 0.007 0.360 ± 0.009 0.711 ± 0.007 0.838 ± 0.010 0.748 ± 0.009 0.710 ± 0.008 0.758 ± 0.009 0.725 ± 0.010
TAGA 0.631 ± 0.008 0.375 ± 0.021 0.731 ± 0.006 0.849 ± 0.008 0.754 ± 0.022 0.738 ± 0.015 0.787 ± 0.007 0.802 ± 0.014

Table 6: Performance of all few-shot node classification for each dataset. The text encoder choice is
UAE-Large-V1.

Enabling Zero-Shot and Few-Shot Predictions. Our pretrained strategy ensures that the embeddings
obtained from the GNN models at each layer remain aligned within the textual embedding space. This
alignment enables direct zero-shot predictions using the self-supervised trained embeddings without requiring
any additional fine-tuning.

Specifically, suppose there are L prediction labels {l1, l2, . . . , lL}. Their textual embeddings are obtained
through the pretrained language model (PLM) as follows:

h(l)(li) = PLM(li) for i ∈ {1, . . . , L} (6)
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k-Shot Model Arxiv Children Computers Cora History Photo Pubmed Sports

1

PLM 0.199 ± 0.044 0.106 ± 0.025 0.347 ± 0.084 0.486 ± 0.095 0.285 ± 0.108 0.339 ± 0.055 0.491 ± 0.066 0.443 ± 0.098
GraphMAE 0.167 ± 0.041 0.112 ± 0.052 0.257 ± 0.037 0.447 ± 0.095 0.268 ± 0.063 0.263 ± 0.080 0.456 ± 0.069 0.331 ± 0.090

GRACE 0.224 ± 0.038 0.136 ± 0.034 0.329 ± 0.046 0.403 ± 0.067 0.304 ± 0.096 0.312 ± 0.049 0.513 ± 0.086 0.287 ± 0.039
G2P2 0.308 ± 0.052 0.145 ± 0.029 0.359 ± 0.044 0.477 ± 0.082 0.361 ± 0.092 0.372 ± 0.066 0.522 ± 0.085 0.356 ± 0.042
TAGA 0.306 ± 0.057 0.173 ± 0.072 0.430 ± 0.067 0.523 ± 0.101 0.395 ± 0.101 0.431 ± 0.083 0.581 ± 0.073 0.510 ± 0.099

3

PLM 0.322 ± 0.046 0.148 ± 0.024 0.495 ± 0.061 0.66 ± 0.037 0.422 ± 0.075 0.438 ± 0.044 0.608 ± 0.033 0.577 ± 0.082
GraphMAE 0.276 ± 0.033 0.169 ± 0.051 0.339 ± 0.038 0.657 ± 0.038 0.425 ± 0.097 0.347 ± 0.048 0.553 ± 0.060 0.398 ± 0.064

GRACE 0.360 ± 0.030 0.191 ± 0.037 0.455 ± 0.045 0.580 ± 0.041 0.448 ± 0.067 0.461 ± 0.045 0.623 ± 0.064 0.426 ± 0.045
G2P2 0.430 ± 0.027 0.207 ± 0.038 0.469 ± 0.042 0.623 ± 0.033 0.508 ± 0.073 0.528 ± 0.049 0.641 ± 0.064 0.464 ± 0.050
TAGA 0.442 ± 0.023 0.248 ± 0.052 0.548 ± 0.058 0.702 ± 0.032 0.523 ± 0.08 0.575 ± 0.047 0.683 ± 0.056 0.67 ± 0.062

5

PLM 0.365 ± 0.037 0.174 ± 0.039 0.55 ± 0.036 0.705 ± 0.02 0.522 ± 0.094 0.502 ± 0.039 0.601 ± 0.032 0.67 ± 0.05
GraphMAE 0.308 ± 0.030 0.196 ± 0.059 0.384 ± 0.026 0.711 ± 0.030 0.511 ± 0.058 0.412 ± 0.032 0.563 ± 0.068 0.484 ± 0.038

GRACE 0.399 ± 0.026 0.223 ± 0.028 0.501 ± 0.043 0.635 ± 0.028 0.513 ± 0.051 0.527 ± 0.040 0.640 ± 0.052 0.521 ± 0.049
G2P2 0.466 ± 0.025 0.240 ± 0.034 0.510 ± 0.039 0.703 ± 0.032 0.617 ± 0.053 0.583 ± 0.051 0.640 ± 0.051 0.565 ± 0.055
TAGA 0.468 ± 0.023 0.299 ± 0.034 0.584 ± 0.04 0.74 ± 0.031 0.618 ± 0.067 0.6 ± 0.041 0.676 ± 0.048 0.735 ± 0.063

10

PLM 0.398 ± 0.024 0.189 ± 0.026 0.627 ± 0.025 0.741 ± 0.018 0.586 ± 0.056 0.541 ± 0.022 0.667 ± 0.025 0.708 ± 0.039
GraphMAE 0.375 ± 0.017 0.208 ± 0.011 0.469 ± 0.029 0.763 ± 0.027 0.564 ± 0.047 0.491 ± 0.034 0.613 ± 0.034 0.539 ± 0.028

GRACE 0.449 ± 0.018 0.249 ± 0.019 0.577 ± 0.027 0.714 ± 0.023 0.601 ± 0.047 0.578 ± 0.030 0.682 ± 0.025 0.569 ± 0.039
G2P2 0.527 ± 0.014 0.269 ± 0.018 0.598 ± 0.031 0.753 ± 0.020 0.649 ± 0.046 0.632 ± 0.037 0.691 ± 0.029 0.618 ± 0.037
TAGA 0.509 ± 0.020 0.315 ± 0.028 0.661 ± 0.028 0.781 ± 0.018 0.67 ± 0.049 0.646 ± 0.033 0.724 ± 0.022 0.756 ± 0.032

20

PLM 0.434 ± 0.016 0.223 ± 0.032 0.659 ± 0.014 0.767 ± 0.015 0.641 ± 0.04 0.581 ± 0.015 0.712 ± 0.021 0.761 ± 0.026
GraphMAE 0.429 ± 0.011 0.236 ± 0.020 0.535 ± 0.023 0.799 ± 0.014 0.625 ± 0.024 0.559 ± 0.017 0.655 ± 0.030 0.602 ± 0.028

GRACE 0.486 ± 0.014 0.282 ± 0.015 0.613 ± 0.019 0.770 ± 0.017 0.654 ± 0.027 0.629 ± 0.016 0.697 ± 0.022 0.657 ± 0.025
G2P2 0.556 ± 0.010 0.301 ± 0.015 0.649 ± 0.015 0.813 ± 0.012 0.716 ± 0.025 0.672 ± 0.015 0.726 ± 0.025 0.690 ± 0.025
TAGA 0.547 ± 0.010 0.332 ± 0.023 0.691 ± 0.017 0.805 ± 0.011 0.708 ± 0.039 0.682 ± 0.015 0.745 ± 0.027 0.808 ± 0.022

50

PLM 0.480 ± 0.007 0.252 ± 0.022 0.695 ± 0.010 0.785 ± 0.009 0.702 ± 0.02 0.609 ± 0.013 0.749 ± 0.011 0.784 ± 0.014
GraphMAE 0.477 ± 0.010 0.278 ± 0.012 0.603 ± 0.012 0.819 ± 0.011 0.675 ± 0.019 0.630 ± 0.015 0.692 ± 0.016 0.673 ± 0.021

GRACE 0.520 ± 0.006 0.324 ± 0.012 0.664 ± 0.013 0.806 ± 0.014 0.694 ± 0.022 0.668 ± 0.020 0.727 ± 0.015 0.712 ± 0.020
G2P2 0.578 ± 0.009 0.340 ± 0.011 0.692 ± 0.012 0.827 ± 0.013 0.738 ± 0.009 0.700 ± 0.014 0.758 ± 0.009 0.725 ± 0.014
TAGA 0.576 ± 0.009 0.368 ± 0.014 0.734 ± 0.007 0.826 ± 0.009 0.738 ± 0.021 0.717 ± 0.016 0.773 ± 0.009 0.828 ± 0.014

100

PLM 0.508 ± 0.005 0.272 ± 0.010 0.722 ± 0.007 0.800 ± 0.014 0.73 ± 0.015 0.629 ± 0.009 0.772 ± 0.008 0.802 ± 0.006
GraphMAE 0.499 ± 0.008 0.298 ± 0.014 0.634 ± 0.008 0.844 ± 0.010 0.704 ± 0.015 0.652 ± 0.017 0.721 ± 0.007 0.709 ± 0.011

GRACE 0.546 ± 0.007 0.344 ± 0.008 0.693 ± 0.006 0.823 ± 0.013 0.714 ± 0.011 0.688 ± 0.011 0.745 ± 0.006 0.753 ± 0.010
G2P2 0.578 ± 0.007 0.360 ± 0.009 0.711 ± 0.007 0.838 ± 0.010 0.748 ± 0.009 0.710 ± 0.008 0.758 ± 0.009 0.725 ± 0.010
TAGA 0.602 ± 0.007 0.400 ± 0.017 0.747 ± 0.009 0.838 ± 0.009 0.755 ± 0.017 0.738 ± 0.010 0.786 ± 0.006 0.846 ± 0.013

Table 7: Performance of all few-shot node classification for each dataset. The text encoder choice is
Text-embedding-3-small.

Method arxiv children computers cora history photo pubmed sports
3-order 0.532 0.223 0.493 0.678 0.351 0.415 0.622 0.387
2-order 0.537 0.224 0.498 0.682 0.344 0.419 0.616 0.408
1-order 0.500 0.197 0.463 0.635 0.318 0.392 0.566 0.448

Glo-GofT 0.533 0.205 0.482 0.657 0.329 0.407 0.522 0.417

Table 8: Additional ablation studies results of zero-shot settings. Here we show the results with different
orders of alignment at 1, 2 and 3 order. We also show the results of a variant, Glo-GofT, which only aligns the
GNN embeddings that aggregate individual node’s text embeddings but removes all higher-order Graph-of-
Text embeddings.

The probability that node vi belongs to class lj is computed in an unsupervised manner by measuring the
cosine similarity (or another appropriate similarity measure) between the learned GNN embeddings h(g)(vi)
and the label textual embeddings h(l)(lj):

p(vi → lj) =
eρ(h

(g)(vi),h
(l)(lj))∑L

k=1 e
ρ(h(g)(vi),h(l)(lk))

(7)
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The final predicted class of node vi is determined as follows:

l(vi) = argmaxj p(vi → lj) (8)

where l(vi) is the predicted class label for node vi, determined by selecting the class l that maximizes the
similarity measure ρ between the GNN embedding of the node h(g)(vi) and each of the label embeddings
h(l)(lj).

Additionally, to further refine the learned embeddings, we introduce a learnable transformation function for
few-shot learning adaptation:

h
(g)
adapted(vi) = g(h(g)(vi),Dsupport) (9)

where g represents a transformation function with learnable parameters (e.g., a multi-layer perceptron), and
Dsupport denotes a set of support examples for few-shot learning. This adapted embedding h

(g)
adapted is then

utilized to compute the updated predictive probabilities:

p(vi → lj) =
eρ(h

(g)
adapted(vi),h

(l)(lj))∑L
k=1 e

ρ(h
(g)
adapted(vi),h

(l)(lk))
(10)

D LIMITATIONS

This work aims to pioneer unsupervised representation learning in the text-attributed graph research domain.
Our approach demonstrates significant performance improvements over existing state-of-the-art methods
in zero-shot and few-shot prediction tasks. However, we acknowledge certain limitations. While our work
pushes the boundaries of graph foundation models, the model’s transfer capabilities may be limited when
training and inference domains are vastly different (e.g., from social networks to chemical networks). We
consider the development of a universal graph foundation model, capable of generalizing across diverse
domains, to be an important direction for future research.
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