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Abstract

Graph classification is a widely studied problem for applications such as molecule/protein function
prediction and drug discovery. Powerful graph neural networks (GNNs) have demonstrated state-
of-the-art performance for the classification of complex graphs, but training such models can require
significant amounts of high-quality labeled graphs that are expensive to collect. When individual
institutes do not possess sufficient graph data, federated learning (FL) becomes a handy solution
for them to collaboratively obtain powerful graph models without directly sharing their own graph
data. However, existing FL frameworks for graph data do not consider the realistic setting of
personalized FL with heterogeneous data, where each client aims to leverage the data of certain
other clients to boost its own model performance. In this work, inspired by graph structure learning,
we propose to learn a dynamic client network that tracks the graph data similarity across clients to
guide model sharing along FL. Specifically, we rely on the marginal parameters of local GNNs to
dynamically learn the client network, and refer to a set of fundamental graph properties to guide
its learning. Extensive experiments on three real-world graph datasets demonstrate the consistent
effectiveness of our two major proposed modules, which also mutually verify the effectiveness of
each other.

1 Introduction

Federated Learning (FL) has gained widespread popularity as a machine learning paradigm that enables
distributed model training without sharing local data samples [McMahan et al| (2017); [Li et al. (2020).
A significant challenge that limits the performance of FL is data heterogeneity across clients. As diverse
local data collected by different clients in various scenarios often adhere to non-identical distributions [Zhao
et al.| (2018); [Zhu et al.| (2021), simply aggregating knowledge from clients with heterogeneous data can
disrupt the model training and impair the model’s performance on local tasks, rather than enhancing them.
Recently, more studies have applied FL to various graph learning scenarios, such as node classification with
distributed subgraphs|Zhang et al.| (2021); Chen et al.| (2020)); [Yang et al.| (2024) and distributed knowledge
graph completion [Chen et al.| (2021b)); |Zhang et al. (2022). However, these techniques do not adequately
address cross-client graph data heterogeneity which can widely occur in real-world scenarios.

To gain a deeper insight into the relation between data heterogeneity and FL efficacy, we conduct synthetic
experiments on the molecules dataset NCI1 by simulating different levels of heterogeneity. In these exper-
iments, all clients are partitioned into two groups, where clients within the same group share a consistent
label distribution. For the homogeneous setting where two groups have the same distribution (see Figure
, the advantage of FedAvg McMahan et al.| (2017)) significantly expands as we distribute the data to
more clients and increase the data scarcity. However, for the moderately heterogeneous setting where the
difference between two groups is acceptable (see Figure , Fed Avg surpasses Self-training only when local
data are extremely scarce. For the highly heterogeneous setting where cross-group divergence continues to
grow (see Figure , FedAvg significantly undermines self-training instead of enhancing it. Our model
performs well across all settings by properly handling different degrees of heterogeneity.

To properly address data heterogeneity among clients, personalized FL |Li et al. (2021)); [Deng et al.| (2020])
has been proposed to learn client-specific models. Existing methods typically comprise two main components
Chen et al|(2022a)): knowledge sharing and model personalization. The first component aims to construct
global models through local model aggregation, while the second one focuses on optimizing local models
under the guidance of global models. Current methods primarily emphasize model personalization while
overlooking the importance of effective knowledge-sharing. Such implementation may fail to recognize diverse
dependencies among different clients. In a complex setting where the data distributions of clients vary from
each other, uniform aggregation across all clients may result in a low-quality global model, causing the
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Figure 1: Experimental analysis on the influence of data heterogeneity over FL on a real-world graph
dataset (NCI1 Morris et al.| (2020)). Clients within the same group share consistent label distributions while the
heterogeneity between groups grows as the setting changes from homogeneous to highly heterogeneous.

degradation of local model performance. To design a more effective knowledge-sharing mechanism, it is
beneficial to reveal the latent relationships between clients. As a powerful tool for modeling the complex
relationships among different entities, graphs have been used in many scenarios. Under the guidance of a
relationship network with links between similar client pairs, we can strategically perform knowledge sharing.
This approach allows clients to selectively benefit from knowledge consistent with their own, while mitigating
the influence of incongruous information from disparate clients, thus enhancing the overall performance of
FL.

However, the lack of supervision makes quantifying the relationship among clients challenging. For graph
classification, relationships among clients are even more difficult to capture due to the complexity of graph
data, which involves multi-sourced heterogeneity from node features, topological structures and the depen-
dency between them. In this work, we propose a novel Graph Personalized Federated Learning framework
(a.k.a. GPFL) by integrating an unsupervised client network learning model and a GNN-based model ag-
gregator into FL for graph classification. Specifically, in each communication round, we extract marginal
parameters from local models to capture evolving client features and refer to a combination of fundamental
graph properties and functional embedding to dynamically initialize the client network. A network recon-
structor is then utilized to refine the client network based on the client features and the initial network.
Finally, we conduct GNN-based model aggregation using the reconstructed client network. Following are
the contributions of this paper.

o We design client features using marginal parameters, ensuring the capturing of evolving client char-
acteristics along FL.

e We guide client network learning with a dynamic combination of fundamental graph properties
and functional embedding. Additionally, a rule-based feature selector is tailored to identify pivotal
properties across diverse domains.

o We develop a graph reconstructor that refines the client network leveraging the initial network and
client features. Furthermore, our GNN-based model aggregator for FL enhances knowledge sharing,
capitalizing on the underlying network relationships for improved graph classification.

2 Related Work

Federated Learning with Graph Driven by the growing research interest in Federated Learning (FL)
and the advancements of Graph Neural Network (GNN) techniques, increasing work signifying the intersec-
tion of these two pivotal domains is emerging, which can be divided into two categories: graph federated
learning (GFL) and federated graph learning(FGL). The former category aims to leverage the latent graph
relationship among clients (Chen et al.| (2017} 2022a)) to address the heterogeneity among clients through
graph-guided knowledge sharing. In this field, the critical problem is to establish proper graph structure
among clients. While |Lalitha et al.| (2019) follows preliminary graph structures, |Caldarola et al.| (2021))
establishes clusters for similar clients. FGL, on the other hand, concerns the local task over graph datasets.
Current FGL studies can be further categorized into inter-graph and intra-graph FGL. Works in the former
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category focus on graph-level local tasks such as graph classification Xie et al| (2021); [Tao et al.| (2022); [He
et al.| (2021)), knowledge graph completion |Chen et al.| (2022b)), recommendation based on decentralized user-
item graphs|Wu et al.| (2021). However, in the latter setting, clients own subgraphs of the entire global graph
and there exists structural links between local graphs. So the key is to recover lost positional information
through different ways, i.e., missing neighbor generation |Zhang et al.| (2021), link-type aware collaboration
Xie et al.|(2023]), community discovery [Baek et al.| (2023).

Though existing works have studied GFL and FGL, the intersection field where local clients own heteroge-
neous graph datasets, remains rarely explored. The various types of heterogeneity lying in different graph
topologies and features are the main problems for constructing a reasonable graph structure among clients.
Chen et al.|(2021a) designs a self-supervised FL framework to capture the heterogeneity among clients but
only considers basic graph structure instead of high-order graph topology. |Xie et al.| (2021) analyzes the non-
IID graph property over cross-domain graph datasets including cluster coefficient and shortest path length
etc, but only performs knowledge sharing in cluster manner. None of them consider the unique challenge
of heterogeneous graph data and addresses the challenge under the guidance of properly constructed client
network.

Graph Structure Learning Graph Neural Network (GNN) is a powerful tool for exploiting graph-
structured data. However, its efficacy heavily depends on the quality of graph structure, which can be
impaired by misleading links. To mitigate these limitations, Graph Structure Learning (GSL) has been
proposed to optimize graph structure and representations simultaneously. For instance, GLCN |Jiang et al.
(2019) constructs graph structure based on node feature similarity. GAE Kipf & Welling| (2016) initially
embeds raw graphs into latent spaces, refining the graph structure based on embeddings.

Recently, there have been many works focusing on further enhancing the quality of graph structures through
incorporating external constraints i.e. knowledge distillation [Wu et al. (2022), graph family preliminaries
Balcan & Sharmal (2021); [Pu et al. (2021), supervised information corresponding to certain downstream
tasks [Fatemi et al.| (2021); [Wang et al, (2021). Furthermore, for unstructured data, including images [Han
et al.| (2022)), molecules [Yu & Gaol (2022), GSL can also uncover the latent graph relationship. In this way,
GSL facilitates the application of GNN to learn superior representations by considering the interrelationships
among data samples rather than treating them separately. However, existing GFL works rely on inflexible
metric-based or direct optimization methods to extract the latent client network, overlooking the potential
of GSL in learning informative client relationships.

3 Methodology

3.1 Problem Formulation

Inspired by the insights gained from the synthetic experiment and existing graph-based FL works [Chen
et al.| (2022al), we propose a novel Graph Personalized Federated Learning (GPFL) framework, which is a
pioneering client-network-based personalized FL framework tailored for graph applications.

Figure [2 shows an overview of GPFL. It consists of four main parts: 1. the design of client features X¢
based on marginal parameters derived from local parameters to capture the evolving characteristics of each
client, 2. the graph property guidance for initializing property-based client network Ag 3. the client network
update component for refining the property-based client network Ay by performing a weighted average with
a similarity network Ap considering the functional embedding of each local model over a set of random
graphs to generate a dynamic initial network A; for communication round ¢, and 4. the knowledge sharing
component where the learned client network A is reconstructed from designed client features X¢ and initial
client network A; and then the weighted aggregation of local models is conducted under its guidance.

Assume there are k clients {Cy, Ca, ..., Cr } with corresponding local graph datasets {G1, Ga, ..., Gr }. Each local
dataset G; contains a set of graph {Gi1, Gi2, ...}, where G;; = (Vij;, Eij, Xij,vij) € G; is a graph with a node
set V;;, an edge set F;;, a node feature set X;; and the graph label y;;. For each client C;, its local task is
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Figure 2: Overview of GPFL. Knowledge sharing is performed under the guidance of the client network,
which is reconstructed from marginal parameters. The initialization of this network is guided by fundamental
graph properties and functional embeddings to ensure consistent federated collaboration.

to train an individual graph classification model GN Nioo; parameterized by 6;:

0; = argmin

1
Gl ZZ(GNNlocal[Gij;eLyij), (1)
J

where [ is the loss function for the local task.

During FL, at communication round ¢, each client follows Equation (1| to compute 9f which is close to the
real solution for the local task. The local updates Af! = 0! — 6! are then uploaded to the server for weighted
aggregation:

o'l — 0"+ WAL, (2)
where ©f = [0/71T and AO* = [AfT are the parameter and update matrix for all clients. W = [w;;] is

the knowledge-sharing weight matrix between clients in communication round ¢. Our goal is to optimize the
personalized FL loss £ under iteratively gradient sharing:

{(gfl}ifévﬁ({gi§9i}vw) = I?[l(gi;ei)], (3)

The knowledge-sharing matrix W is gained by combining normalized client graph A and the identity matrix
I together: and summing it with identity matrix I,

W =~I + (1 —y)Normalize(A), 4)

where 7 is the hyperparameter used to maintain a balance between accepting external knowledge and fitting
local data. The discrete client network A is constructed on the server with a simple but effective structure
learning model graph auto-encoder (GAE) [Kipf & Welling| (2016) denoted by GN Nyeryer. To establish A,
we first compute Z¢, the latent embedding of clients, using GN Ngerver based on client features and the input
client network:

ZC = GNNserveT(XC7 At)a (5)
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where X¢ is the features needed for client network learning and A; is the input network starts from the
initial client network Ay and updated through ¢t communication rounds. Then discrete client network A is
derived by filtering the inner product of Z¢,

A =1(softmax(ZeZE) > h) (6)

Here the softmax and threshold h are employed to cut out weak connections, which can assist in improving
the efficiency of knowledge sharing. Theoretical analysis regarding aggregation efficiency in Section [3-4]

The GN Ngeryer is trained in an unsupervised manner, leveraging the regularization term used in[Ying et al.
(2019):

Lserver = E[H(aw)] —A- iEj[lOg(l — aij)], (7)
where a;; = sigmoid(Zc:iZg j) stands for the probability that client ¢ and client j should be connected and
H is the entropy function. The first expectation penalizes for uncertain edge i.e. a;; around 0.5. While
the second one stresses the sparsity of the client network. By properly synthesizing client features and the
initial client network, the GNN Ng¢rer can excavate appropriate collaboration plans for all the clients. To
train the GNN, we leverage the regularization term used in |Ying et al.| (2019)), which can help simplify the
graph structure while maintaining the key information. Z¢ is the latent embedding of clients inferred from
client features X¢ and input graph A; with GNN. By properly synthesizing client feature and structure
information, Z¢ can be used to excavate the collaboration relationship among all the clients.

In the following sections, we will specify how to obtain client features X¢, the initial client network Ag, and
the updated input client network A;.

3.2 Client Network Learning

To learn an informative client network, we propose to design client features X¢ revealing the essence of local
tasks and guide the learning process by constructing a property-based client network Agy. In communication
round ¢, we first combine the property guidance with functional embedding by mixing last round initial client
network A;_1 with the similarity network Ag based on local model embeddings over random graphs to get
initial client network A; and then feed X¢ and A; into a two-layer graph auto-encoder GN Ngepper t0 get the
final network A for knowledge sharing.

Client feature design. The local model parameter is a common choice for client features|Chen & Zhang
(2022)) for its abundant information about the client. However, simply using model parameters may not be
effective in FL scenarios with heavy data heterogeneity due to the similar natures of all graph classification
tasks You et al.| (2020)). To study the impact of taking vanilla local parameters as client features under highly
heterogeneous settings, we design an experiment following the same setting in Figure where clients are
divided into two groups and across-group clients exhibit significantly heterogeneous distributions compared
to intra-group clients. As Figure [3] shows, even in heavily heterogeneous scenarios, the local parameters are
still too similar to be considered as client features due to the inherent similarities of their local tasks. As
a result, constructing client relationships with vanilla local parameters is not promising in heterogeneous
settings.

To address this problem, |Xie et al.| (2021]) uses local gradients instead to construct client clusters (a particular
kind of graph relationship). However, when it shows better results in a heterogeneous setting, the gradient
keeps fluctuating and can not give stable results. To circumvent the aforementioned issues related to vanilla
parameters and gradients, we employ the difference between local parameters and the uniform aggregated
global model, termed marginal parameters, for instructing the construction of the dynamic client network,

k
— — 1
Xc¢, = Flatten(0; — ) where 6= %(; 0;). (8)

Here, X¢, refers to the feature of client ¢. This approach diverges from typical normalization as it maintains
the scale of each parameter that is closely related to the importance of parameters. As shown in Figure [3]
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Figure 3: Similarity of local parameters and marginal parameters under high heterogeneity.

the heatmap of marginal parameters, compared with raw parameters, shows a clear pattern indicating the
group relationship among clients, i.e., the similarity of clients within groups is high while across groups is
low. The marginal parameters, as client features, are not only more expressive than vanilla parameters but
also more stable than gradients since their convergence is ensured by the convergence of local models, which
makes it beneficial for learning a high-quality client network.

Client network update. As local models keep evolving across the communication rounds, always starting
with the property-based network Ag may not be adequate, regardless of how sophisticated the initialization
strategy is or even with the most powerful graph encoders, since Ag cannot track the dynamics of evolving
local models along FL. To resolve this issue, we designed a client network updating mechanism to ensure
that the client network is up-to-date for feeding into the graph learner. Since we have already taken the
local parameters as input features, we consider the functional embedding here since it provides additional
perspective on the local model. To achieve this, we first generate random graphs using Erdés—Rényi methods
(Paul (1959); |Gilbert| (1959)) as a global dataset R. We then obtain the functional embedding of each client
by aggregating the embedding of each graph in R and compute the cosine similarity between each pair of
functional embedding to form an embedding similarity network Ag. In every communication round ¢ (¢ > 0),
we update the initial client network A; with the following equation:

Ap=pB* A1+ (1 - B)* Ag, (9)
where  is the hyperparameter used for maintaining a balance between preserving the existing relationship
between clients constructed in the last communication round and adjusting to a new relationship given by
the embedding similarity network. By incrementally incorporating functional embedding into the initial
property guidance, we ensure the dynamic capture of the inter-client relationships.

3.3 Graph Property Guidance

While our client feature design and client network updating mechanism can effectively excavate the inter-
connections among clients and dynamically construct expressive client relationship networks even based on
a random initial network (uniformly sample each entry from [0, 1]), relying solely on these two components
may be suboptimal for overlooking the prior topology knowledge for clients. Therefore, to incorporate the
guidance of fundamental graph properties into the learning process, we proposed a property-guided initializa-
tion that can leverage the inherent topological characteristics of clients, thus laying a more solid foundation
for client relationship capture.

We first search for a set P of fundamental graph properties, including network entropy (2023)),
density, average degree, degree variance, scale-free exponent, and average closeness centrality. These graph

properties are computationally straightforward yet strong in expressing essential information about the
corresponding graph samples. Specifically, network entropy, defined through random walk (1999);
[Burda et al| (2009); [Spitzer| (2013), is a potent way to measure the information quantity of the graph,
as a special type of entropy rate and an important property for distributions. The network entropy can
be efficiently derived in the case that the graph is connected (ubiquitous in real-world scenarios) with the
formula,

1
Pentropy = |f| Z d; IOg d;. (10)
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The four features, density, average degree, degree variance, and scale-free exponent, theoretically proved
closely related to network entropy in Xu et al.| (2023)), are important features regarding the degree distribution
which is a key component of graph topology. Apart from them, We also use the average closeness centrality,
i.e., average shortest distance among vertices, for a high-order measurement of graph topology.

Then we construct the initial client network with the identified property set P. Each property is viewed
as a function P : G — v, that embeds graph samples with a single scalar. Therefore, by incorporating
all properties, the intrinsic topological characteristics of each graph G can be demonstrated with a feature
vector pg = (P(G))P € P, which can be further aggregated to form the client-level property feature pe, for
client C;. Finally, the initial client network based on property set P is constructed with cosine similarity,
Ap = {Cos(pcmpcj’)}‘

However, as a single property can hold different significance for graphs from different domains due to their
varying nature, indiscriminately using all properties in all cases may obscure the key information. Thus,
we further introduce a rule-based feature selector to select core properties P* specific to the current domain
from all candidates P by iteratively removing insignificant properties. Firstly, we construct the initial client
network Ap (Py = P) with all properties following the process stated above. After that, we persistently
manipulate one of the properties to minimize the gap between Ap, and functional embedding network Apg,
enabling us to select pertinent properties tailored to the current scenario, which is described as follows:

P’ = argmin(||Ap,\{py — AE2) (11)

Py =Py \ {P'). (12)

The selection process ends when further removal cannot reduce the distance, or a minimal set of properties
is reached. Then we construct a property-based client network A with the selected property set P* = Py,
ensuring a solid starting point for subsequent client network updates and GNN-based reconstructions.

3.4 Aggregation Efficiency Analysis

To further improve the efficiency of aggregation (formalized in Eq), as shown in Eq, we consider
discretizing our client network with threshold h instead of directly using the dense network. Theoretical
analysis regarding the efficiency of aggregation for both dense and discrete client networks is as follows.

Assume that for each client i(i = 1,2,..., k), its local model 6; contains F' parameters and its degree is d;
(the number of j such that i # j and client ¢ and client j are linked within the client network). The time
cost of addition and multiplication in Eq are T, and T,, respectively.

For aggregation with a dense client network, the case where all d; = k—1(i = 1,2, ..., k), we would naturally
have a dense weight matrix W. Consequently, to update local parameters, each client ¢ has to first compute
weighted gradients w;;Af% from all clients j(j = 1,2,...,k), sum them up, which takes kF multiplication

and (k — 1)F addition, and then combine the aggregated gradients Z?:l wijAQ? with local parameters 6!,
which needs another F' addition. So in this case, the aggregation of each client would cost £F multiplication
and addition. Since we have k clients, the overall time cost is:

Tdense - kQF(Ta + Tm) (13)

Then considering a discrete client network A. Note that the mixup in Eq would not introduce any
additional link between clients since adding an identity matrix only strengthens the self-loop of each client.
So the weight matrix W resulting from our discrete client network A can be viewed as a sparse matrix, where
each client 7 only aggregates gradients from its neighbors in the client network and itself. In analogy to the
dense case, we would have the aggregation cost of each client is (d; + 1) F addition and multiplication, where
the extra F' addition and multiplication are used to aggregate the gradient of itself. So we have:
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k
Tdiscrete = Z(dz + 1)F(Ta + Tm)
=1

= (2M + k) F(Ty + Tn), (14)

where M = %Zle d; is the number of edges between different clients in A. And the dense network is
a special case where M = %k(k —1). So we have Tyense/Tsparse = k?/(2M + k). Empirically, we have
k?/(2M + k) ~ 1.7 through our experiments. It suggests that discretization can improve the aggregation
efficiency by 70%.

3.5 Discuss on GPFL

As we focus on constructing the client network in a self-supervision manner, only with structural prior
formalized by regularization terms, the local data are not sufficiently exploited. Meanwhile, privacy and
efficiency problems are not extensively explored in this work. Detailed discussions on the limitations of this
work concerning these three problems are listed below.

Semi-Surpervised Learning manner for refining client network One limitation of our model is that
we need a hyperparameter a to balance between adopting external gradients from other clients or believing
in the knowledge contained in local gradients. Fortunately, [Zhang et al.| (2023 provides a feasible way to
learn client-specific «; in a supervised manner, where we can construct a local model parametrized by « in

the following formula:
k

95"!‘1 = Hzt + (1 — a,)AGf + o - (Z wijA0§), (15)

j=1

where 0] and A@? have the same definition in Section 3.1. Then we can train these local models parametrized
by «; over local datasets and iteratively optimize «; with gradient descent over local loss functions to reach
an ideal result. Although simply adding this component will cause a performance drop rather than an
improvement, let alone significant time costs for this second-round local training towards the convergence of
«; within a single communication round, it’s still a promising way to further refine the client network in a
semi-supervised learning manner which can be explored in future work.

Data Privacy In our setting of FL over graphs, the global graph reconstruction task does not require any
type of inter-client or client-server data transmission. For the functional embedding step, instead of building
a global dataset by sampling representative local graphs, we employ random graphs, which shield our GPFL
from the data leakage problem. However, we do not consider how to deal with malicious attacks in this
work. In the future, we can introduce advanced privacy protection techniques to ensure the safety.

Efficiency In this work, we focus less on the efficient implementation of our framework, and the current
training process takes longer time than some baseline methods we compare e.g. FedAvg, GCFL to ensure
the convergence of the client network, although as shown in Figure [] the time cost of constructing the
client network is almost independent of the scale of local datasets and will become less significant as the
scale continues to grow. In the future, we could further improve the efficiency of GPFL by adopting the
early-stop strategy in the learning process and only performing adaptive learning over clients with uncertain
relationships in each communication round.

4 Experiments

4.1 Experimental Settings

Datasets. We utilize the three most widely used graph classification benchmark datasets from two do-
mains Morris et al.| (2020) including two molecules datasets (NCI1, Yeast) and a bioinformatics dataset
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(PROTEINS). Among them, NCI1 and PROTEINS are relatively small, containing about four and one
thousand graphs separately, while Yeast is a large dataset containing nearly 80,000 graphs. However, con-
sidering the severe label distribution skew existing in the raw Yeast dataset, we conduct downsampling to
create a uniform subset containing 20,000 graphs. This approach is taken because designing effective split
methods to control heterogeneity becomes challenging when the raw dataset is already lopsided. The data

details are as follows (Table 1)).

Table 1: The statistics of datasets.
Dataset Statistics

fgraphs avg. fnodes avg. fedges f classes

NCI1 4110 29.87 32.30 2
Yeast 79601 21.54 22.84 2
PROTEINS 1113 39.06 72.82 2
Yeast (sampled) 19136 22.77 24.22 2

Research questions. To comprehensively evaluate the effectiveness and contribution of our proposed
framework, we formulate four research questions as follows that will guide our empirical investigations:

« RQ1: How does GPFL compare to other widely adopted FL frameworks in graph classification
tasks?

e RQ2: How do the proposed client network learning framework and network initialization mecha-
nisms individually contribute to the overall performance?

e« RQ3: What does the inferred client network reveal, and how do the networks learned with different
combinations of components differ from each other?

e« RQ4: How do the proposed client network learning framework and graph initialization mechanisms
individually contribute to the overall time cost?

We design label heterogeneity settings following a practical data split mechanism |Wang et al.| (2020); Lee
et al.| (2021); Luo et al.| (2021)), which is controlled by the Dirichlet distribution Dir(a). The setting becomes
more heterogeneous as the value of o decreases. We consider o = 0.5, 1,5 to represent strong heterogeneity,
moderate heterogeneity, and weak heterogeneity in real-world scenarios, respectively. These settings are
combined with varying levels of data scarcity, represented by client numbers k = 15, 20, and 25, yielding a
total of nine distinct combinations.

Compared methods. We employ self-train as the initial baseline to assess whether FL can enhance
client performance. In this baseline, each client starts from the same initial model downloaded from the
server and conducts independent local training without collaboration. For FL baselines, we employ basic FL
algorithms Fed Avg [McMahan et al.| (2017), FedProx |Li et al.| (2020) and five widely adopted personalized
FL algorithms. Among those personalized methods, SCAFFOLD |Karimireddy et al.| (2020) is based on
gradient adjustments, GCFL [Xie et al| (2021) is based on clustering, FedStar |Tan et al.| (2023) adopts a
decoupled sharing strategy, and Fed AMP [Huang et al.| (2021)) and pFedGraph |Ye et al.| (2023]) also follow
a graph-based aggregation manner. For the graph classification model, we employ GIN (Graph Isomorphism
Network) [Xu et al. (2019), a simple yet powerful GNN for graph-level tasks. We fix the architecture and
hyper-parameters of the local model for all baselines in all experiment settings to control the experiment.

Evaluation metrics. We measure the performance of different FL algorithms using the average accuracy
of all local models evaluated on the local test datasets and report the accuracy achieved in the last commu-
nication rounds as a reference for all methods. All experiments are run with a five-fold cross-validation for
three repetitions under fixed random seed 0.
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Table 2: Average accuracy on NCI1, Yeast, and PROTEINS datasets under multiple clients and different
values of a.. « is the parameter of the Dirichlet distribution. The heterogeneity among clients increases when the «
decreases.

Dataset(fclients) NCI1(25) NCI1(20) NCT1(15)
skew rate a =05 a=1 a=5 a =05 a=1 a=5 a =05 a=1 a=>5
self-train 0.7766(0.012) 0.7124(0.011) 0.6591(0.010) 0.7925(0.008) 0.7259(0.015) 0.6901(0.018) 0.8121(0.014) 0.7261(0.014) 0.7093(0.012)
FedAvg 0.5756(0.029) 0.6163(0.014) 0.6474(0.025) 0.6486(0.011) 0.6583(0.018) 0.6832(0.011) 0.6339(0.019) 0.6646(0.013) 0.6909(0.019)
FedProx 0.5754(0.022) 0.6162(0.017) 0.6459(0.020) 0.6432(0.016) 0.6607(0.020) 0.6873(0.011) 0.6379(0.018) 0.6622(0.009) 0.6935(0.021)
Scaffold 0.7012(0.022) 0.6287(0.025) 0.6079(0.013) 0.7632(0.013) 0.6972(0.020) 0.6683(0.020) 0.7843(0.007) 0.6929(0.017) 0.6822(0.021)
GCFL 0.7385(0.020) 0.7278(0.019) 0.6822(0.025) 0.7948(0.008) 0.7308(0.017) 0.7142(0.013) 0.8137(0.013) 0.7043(0.014) 0.7133(0.017)
FedStar 0.7771(0.007) 0.7057(0.011) 0.6627(0.011) 0.7798(0.013) 0.7207(0.011) 0.6850(0.011) 0.7936(0.008) 0.7144(0.014) 0.7085(0.016)
pFedGraph 0.7668(0.011) 0.6991(0.009) 0.6693(0.011) 0.7931(0.005) 0.7118(0.011) 0.6873(0.012) 0.7997(0.006) 0.7090(0.004) 0.6948(0.012)
Fed AMP 0.7647(0.015)  0.7013(0.013)  0.6555(0.015)  0.7892(0.009)  0.7189(0.013)  0.6738(0.011)  0.8118(0.010)  0.7141(0.010)  0.6971(0.014)
GPFL 0.7888(0.012) 0.7378(0.010) 0.6941(0.009) 0.8109(0.010) 0.7489(0.014) 0.7185(0.010) 0.8241(0.012) 0.7509(0.012) 0.7274(0.013)
Dataset (fclients) Yeast(25) Yeast(20) Yeast(15)
skew rate a=05 a=1 a=5 a =05 a=1 a=5 a =05 a=1 a=5
self-train 0.7862(0.004) 0.7171(0.007) 0.6816(0.007) 0.8010(0.005) 0.7130(0.005) 0.6780(0.006) 0.8158(0.006) 0.7127(0.007) 0.6899(0.007)
FedAvg 0.6245(0.009) 0.6557(0.004) 0.6585(0.006) 0.6349(0.005) 0.6527(0.008) 0.6608(0.007) 0.6316(0.006) 0.6570(0.004) 0.6615(0.008)
FedProx 0.6206(0.008)  0.6545(0.005)  0.6586(0.006)  0.6326(0.006)  0.6525(0.009)  0.6604(0.008)  0.6284(0.007)  0.6575(0.004)  0.6614(0.007)
Scaffold 0.7803(0.006) 0.7154(0.006) 0.6744(0.009) 0.7909(0.004) 0.7046(0.006) 0.6735(0.007) 0.8078(0.006) 0.7065(0.005) 0.6796(0.007)
GCFL 0.7767(0.010) 0.7264(0.004) 0 6869(0 006) 0.7985(0.005) 0.7133(0.006) 0.6835(0.008) 0.8157(0.006) 0.7178(0.007) 0.6937(0.008)
FedStar 0.7722(0.004) 0.7020(0.006) 6532(0.006) 0.7810(0.006) 0.6887(0.005) 0.6551(0.008) 0.8064(0.006) 0.6915(0.005) 0.6725(0.006)
pFedGraph 0.7806(0.004)  0.7213(0.003) 0 6845(0.007)  0.7933(0.003)  0.7072(0.006)  0.6782(0.006)  0.8114(0.006)  0.7130(0.004) 0,6879(0,006)
Fed AMP 0.7837(0.005) 0.7184(0.006) 0.6761(0.008) 0.7941(0.004) 0.7023(0.006) 0.6710(0.006) 0.8126(0.007) 0.7115(0.005) 0.6844(0.004)
GPFL 0.7911(0.004) 0.7272(0.005) 0.6914(0.006) 0.8020(0.003) 0.7210(0.005) 0.6887(0.007) 0.8203(0.004) 0.7262(0.006) 0.6968(0.008)
Dataset (fclients) PROTEINS(25) PROTEINS(20) PROTEINS(15)
skew rate a =05 a=1 a=5 a=05 a=1 a=5 a=05 a=1 a=5
self-train 0.7576(0.012) 0.7383(0.037) 0.6883(0.026) 0.7609(0.023) 0.7198(0.025) 0.7052(0.031) 0.7927(0.016) 0.7303(0.023) 0.7337(0.012)
FedAvg 0.7123(0.025) 0.7062(0.047) 0.7037(0.008) 0.7100(0.033) 0.7332(0.036) 0.7172(0.019) 0.7185(0.031) 0.7197(0.027) 0.7068(0.017)
FedProx 0.7192(0.025)  0.7069(0.040)  0.7045(0.011)  0.7043(0.033)  0.7310(0.039)  0.7194(0.024)  0.7192(0.031)  0.7247(0.030)  0.7054(0.019)
Scaffold 0.7320(0.014) 0.7128(0.036) 0.7116(0.012) 0.7343(0.022) 0.7391(0.029) 0.7269(0.020) 0.7390(0.022) 0.7219(0.020) 0.7101(0.018)
GCFL 0.7450(0.035)  0.7229(0.026)  0.6996(0.022)  0.6973(0.035)  0.7382(0.020)  0.7137(0.022)  0.7895(0.013)  0.7330(0.028)  0.7353(0.019)
FedStar 0.7081(0.022)  0.6984(0.028)  0.6591(0.031)  0.7468(0.020)  0.6835(0.026)  0.6767(0.036)  0.7481(0.013)  0.7139(0.022)  0.6972(0.023)
pFedGraph 0.7294(0.023) 0.6979(0.034) 0.6940(0.026) 0.7089(0.019) 0.6885(0.025) 0.6946(0.028) 0.7567(0.017) 0.6946(0.030) 0.7116(0.033)
FedAMP 0.7467(0.017) 0.7342(0.019) 0.6829(0.030) 0.7523(0.028) 0.7145(0.043) 0.6904(0.020) 0.7626(0.016) 0.7251(0.026) 0.7211(0.023)
GPFL 0.7787(0.015)  0.7460(0.028) 0.7155(0.029) 0.7686(0.030) 0.7401(0.036)  0.7201(0.031)  0.8059(0.008) 0.7600(0.020) 0.7500(0.024)

Parameter settings. We utilize three-layer GINs with a hidden size of 64 as local models. Local train-
ing uses a batch size of 128, the Adam [Kingma & Bal (2014) optimizer with the learning rate of le™3
and the weight decay of 5e~%. All FL methods are trained for 200 communication rounds with 1 lo-
cal epoch in each communication round. For GPFL, we generate 20 random graphs with 30 nodes to
compute functional embedding. The graph learner is trained for 100 epochs during each communication
round. And the hyperparameters v in Eq [, 8 in Eq [J] and A in Eq [7] are set to 0.95, 0.95, 1 across
all settings, respectively. All codes and data can be found in https://anonymous.4open.science/r/
Graph-Personalized-Federated-Learning-C30D.

4.2 Overall Performance (RQ1)

As can be observed from Table [2] our proposed framework can significantly improve the performance of
local graph classification tasks. As the degree of heterogeneity intensifies (decreasing «), the effectiveness of
FedAvg drops accordingly. Specifically, in relatively homogeneous settings (large o) with a lack of data (large
k), FedAvg achieves comparable performance with or even holds an advantage over self-training. Conversely,
in heterogeneous settings (small «) with relatively sufficient local data (small k), self-train demonstrates
superior performance compared to FedAvg. GPFL outperforms both approaches across these settings by
considering heterogeneity and providing local clients with network-based knowledge sharing, which enables
similar clients to share common knowledge while preventing them from being influenced by heterogeneous
users. For all datasets with all combinations of o and k, our GPFL framework achieves 1.57% — 8.03%
performance gain over self-train and FedAvg on average. While personalized FL baselines SCAFFOLD,
GCFL, and FedStar demonstrate decent performance, they cannot compete with our approach due to their
inflexible knowledge-sharing mechanisms. Furthermore, even though FedAmp and pFedGraph also employ
graph-based knowledge sharing, their expressiveness is limited as they rely on vanilla parameters and their
deviation from the initial parameters, which may not efficiently capture the characteristics of each client.
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Figure 4: Ablation Study of GPFL. Figure 5: Client Network Visualization on NCI1
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Figure 6: Run time analysis on property-based initialization and network learning.

In contrast, our approach surpasses them by explicitly modeling the client relationship as a network and
applying marginal parameters and the client network to guide more precise knowledge sharing among related
clients.

4.3 Ablation Studies (RQ2)

We conduct ablation studies to evaluate the effectiveness of each component in our model, following the
same experiment setting used in Section 4.2 (see Figure El for complete results), as depicted in Figure El

Random Initialization v.s. Property-based initialization To evaluate the impact of graph property
guidance incorporated in the initialization process, we use our GPFL framework without learning and updat-
ing; instead, we assume that the relationship between clients is fixed, either as a random (uniformly sample
each weight from [0,1], denoted as “random” in Figure@ or a property-based (denoted as “property” in Fig-
ureE[) relationship. That is, at all rounds, all clients follow the same network given in the initialization step
for knowledge sharing. A random relationship network fails in all cases. The property-based initialization,
capable of capturing client relationships through fundamental properties, outperforms random initialization
even without adaptively graph learning; however, it is slightly inferior to GPFL.

Fixed initialization v.s. Adaptive learning We also examine the impact of our adaptive learning
strategy including iterative network update and learning with client features. To achieve this, we evaluate
the performance of adopting the learning strategy under random and property-based initialization, denoted as
“random+learn” and “property+learn” separately. It can be observed that our learning strategy is effective
even with random initialization as it excavates latent relationships with marginal parameters and functional
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embedding. Nevertheless, learning with property-based initialization still outperforms as the model starts
from a meaningful client network.

Complete results are demonstrated in Figure [7}

4.4 Client Network Visualizations (RQ3)

Figure [5]illustrates the comparison of the average client network generated using the four different methods
listed in Section 4.3. Compared to the random client network, there are certain connections between the
property-based client network and the learned client network, demonstrated by relative intensities. For
example, in the property-based network, clients 6, 7, and 8 show strong connections with each other, a pattern
that is also observed in the learned network. Given that the network learned from random initialization is
derived without any property preliminaries, relying solely on local parameters and functional embedding,
this observed similarity suggests that fundamental properties of graph samples can, to some extent, reflect
the inherent characteristics of clients. Moreover, regardless of whether the initialization is random-based
or property-based, we consistently obtain similar learned networks. This finding further demonstrates the
robustness of GPFL.

4.5 Runtime Analysis (RQ4)

To measure the time efficiency of GPFL and the time cost of each component within it, we further conduct a
runtime analysis on the three datasets with all settings. As shown in Figure [f] our property-based initializa-
tion incurs only a 5% increase in runtime compared to random initialization, as we only consider fundamental
properties of graph samples that can be computed efficiently, while this slight sacrifice in runtime signifi-
cantly enhances performance. And in real-world scenarios, the efficiency of property-based initialization can
be further improved by precomputing and storing the property values of each graph. Furthermore, as GPFL
only considers certain client properties, the time cost of learning only grows linearly with the number of
clients and is almost independent of local dataset size. As demonstrated in Figure [6 while GPFL might
entail heavier time costs for small-scale datasets like PROTEINS compared with vanilla self-train, its com-
munication cost becomes acceptable when applied to larger datasets like Yeast which are more common in
real scenarios.
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Figure 7: Full results of ablation studies.
5 Conclusion

This work focuses on FL on graph classification with local distribution heterogeneity. Specifically, we study
the problem of uniform knowledge sharing in the setting where each local client owns graphs sampled from
non-IID distributions. To address this problem, we propose a client-network-based personalized federated
graph learning framework (GPFL) that performs GNN-based knowledge sharing based on a dynamic client
network. The client network is first dynamically initialized under the guidance of fundamental properties and
functional embedding and then further refined through reconstruction leveraging marginal parameters during
training to ensure its effectiveness. The extensive experimental results and in-depth analysis demonstrate
the effectiveness of GPFL. Moreover, we discuss the limitations of GPFL, including the lack of supervision
information to further enhance the client network and the absence of optimization in terms of privacy and
efficiency, which can be explored in future work.
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