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ABSTRACT

Multi-agent learning faces a fundamental tension: leveraging distributed collab-
oration without sacrificing the personalization needed for diverse agents. This
tension intensifies when aiming for full personalization while adapting to unknown
heterogeneity levels—gaining collaborative speedup when agents are similar, with-
out performance degradation when they are different. Embracing the challenge,
we propose personalized collaborative learning (PCL), a novel framework for het-
erogeneous agents to collaboratively learn personalized solutions with seamless
adaptivity. Through carefully designed bias correction and importance correction
mechanisms, our method AffPCL robustly handles both environment and objective
heterogeneity. We prove that AffPCL reduces sample complexity over independent
learning by a factor of max{n−1, δ}, where n is the number of agents and δ ∈ [0, 1]
measures their heterogeneity. This affinity-based acceleration automatically inter-
polates between the linear speedup of federated learning in homogeneous settings
and the baseline of independent learning, without requiring prior knowledge of
the system. Our analysis further reveals that an agent may obtain linear speedup
even by collaborating with arbitrarily dissimilar agents, unveiling new insights into
personalization and collaboration in the high heterogeneity regime.

1 INTRODUCTION

Heterogeneity is a defining yet formidable characteristic of multi-agent systems. When agents differ
significantly, their incentives to collaborate diminish, as leveraging experience from others can
introduce bias and impede their own learning. This challenge intensifies in scenarios where strategic
agents seek highly accurate, tailored solutions. Collaborative multi-agent systems commonly adopt a
federated learning (FL) setup, where agents communicate via a central server to jointly learn a unified
solution. However, in the presence of heterogeneity, such unified solutions often prove suboptimal or
even irrelevant for individual agents. Consequently, effective personalization becomes essential for
collaborative learning among heterogeneous agents.

This need is evident in real-world applications: personalized recommendations drive user engagement
(Good et al., 1999; Anand & Mobasher, 2005; Khribi et al., 2008), autonomous transportation must
accommodate local traffic conditions (Huang et al., 2021; You et al., 2024), diverse patient profiles
require tailored treatments (Chen et al., 2022; Tang et al., 2024), and agentic language models need to
adapt to specific user styles and task contexts (Li et al., 2024; Woźniak et al., 2024; Bose et al., 2025).

These considerations motivate the following multi-agent decision-making setup.

1. Personalized. Agents are intrinsically heterogeneous, each with arbitrarily distinct environments
and objectives, and act strategically to optimize their own goals.

2. Collaborative. Agents communicate through a central server that aggregates information from
agents and broadcasts back the aggregated result.

3. Learning. Agents have no prior knowledge of their systems and interact only with local environ-
ments that generate stochastic observations of system parameters.

Such a complex, stochastic, and heterogeneous multi-agent system demands, but also challenges,
the design of a personalized collaborative learning algorithm that can (1) find fully personalized
solutions for all agents, (2) achieve performance gains through collaboration, (3) and adapt to unknown
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heterogeneity among agents without prior knowledge, automatically harnessing greater collaboration
benefits when agents are similar, and falling back to, while ensuring no worse performance than,
non-collaborative independent learning when agents are markedly different.

This work reveals that the key to achieving these goals lies in identifying and exploiting affinity, i.e.,
similarity among agents. Formally, we capture agent heterogeneity through a score δ ∈ [0, 1], with
δ = 0 indicating homogeneous agents and larger values of δ indicating greater heterogeneity. For any
agent, our method finds its personalized solution with a mean squared error of

O(t−1 ·max{n−1, δ}), (1)

where t is the number of samples collected by each agent and n is the number of agents. This finite-
sample complexity enjoys federated speedup linear in n when agents are similar, while it gracefully
reduces to the baseline rate of independent learning O(t−1) when agents are highly heterogeneous,
but never worse. In intermediate regimes, affinity-based acceleration manifests.

We summarize our main contributions:

1. We formulate a novel multi-agent decision-making paradigm of personalized collaborative learning
(PCL), encompassing applications and problems in supervised learning, reinforcement learning
(Appendix C.6), and statistical decision-making.

2. We develop a simple yet effective method that realizes the vision of PCL, called AffPCL, which
finds fully personalized solutions and adaptively harnesses collaboration benefits when agents are
similar while ensuring no worse performance than independent learning when they are highly
heterogeneous. Our method robustly handles arbitrary objective and environment heterogeneity
through principled personalized bias correction and importance correction mechanisms.

3. We establish finite-sample convergence guarantees for AffPCL, achieving the rate in (1) and thus
demonstrating the desired phenomenon of affinity-based variance reduction. This rate adaptively
interpolates between the linear speedup of FL and the minimax optimal rate of independent
learning. This is the first result that proves efficiency gains for learning fully personalized
solutions through collaboration among arbitrarily heterogeneous agents.

4. We further enhance AffPCL with features including asynchronous importance estimation and agent-
specific update schemes. Our agent-specific analysis reveals that an agent may achieve linear
speedup even when it is dissimilar to all others, a phenomenon unattainable in prior frameworks.

1.1 RELATED WORK

We focus on the most relevant works in heterogeneous collaborative learning that motivate this study.

Personalization falls short in federated learning. Classical FL methods (McMahan et al., 2017)
aim for a unified solution for all agents without personalization guarantees. The unified objective
mitigates heterogeneity; for instance, bias correction in heterogeneous FL (Karimireddy et al., 2021;
Yongxin et al., 2022; Sai et al., 2020; Liang et al., 2022), which prevents local updates from drifting
away from the central update direction, is averaged across all agents and thus enjoys federated
variance reduction (see also Section 2). In contrast, personalization requires adjusting the central
update relative to each agent’s unique local direction, which precludes federated variance reduction.

The growing literature on (partially) personalized FL highlights the importance of personalization. A
common strategy combines global and local models through regularization or mixtures (Li et al., 2020;
Hanzely & Richtárik, 2021; T. Dinh et al., 2020; Li et al., 2021; Deng et al., 2020), but such methods
offer only partial personalization and the trade-offs may be heuristic. Similarly, clustering-based
methods (Sattler et al., 2020; Mansour et al., 2020; Ghosh et al., 2020; Briggs et al., 2020; Chai et al.,
2020; Grimberg et al., 2021) do not offer personalization within each cluster and may be sensitive
to hyperparameter tuning or prior knowledge. In contrast, PCL aims for full personalization and
seamless adaptivity, requiring neither prior knowledge of heterogeneity nor hyperparameter tuning.

Slower rates in independent learning. Other personalized learning approaches combine FL and
independent learning. A sequential strategy uses FL as a warm start followed by independent fine-
tuning (Fallah et al., 2020; Cheng et al., 2021); while effective in some cases, this approach is
generally rate-suboptimal, as the small initialization error through FL diminishes faster than the
variance from independent learning, making its change in finite-time complexity marginal. A parallel
approach simultaneously learns a shared global component and a personalized local component
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(Pillutla et al., 2022; Xiong et al., 2024; Liang et al., 2020); this approach requires certain global-local
structures, and similarly, the independent learning component dominates the overall complexity,
obscuring collaborative speedup. In contrast, PCL imposes no structural assumptions, accommodates
arbitrarily heterogeneous agents, and aims for provably faster rates than independent learning.

Curse of heterogeneity in collaborative learning. Closest to our setup, Chayti et al. (2022);
Even et al. (2022) also study full personalization with arbitrarily heterogeneous systems, but with
fundamentally different approaches from ours in handling heterogeneity to achieve collaborative
variance reduction. First, they selectively collaborate with similar agents, effectively reducing to
clustering-based methods or low heterogeneity regimes, whereas AffPCL enables collaboration among
all agents regardless of similarity. With AffPCL, an agent may attain linear speedup even when it’s not
similar to any other agent (Section 6.3), which is unattainable in their frameworks. Second, achieving
optimal speedup in their setting requires either knowledge of objective heterogeneity (Even et al.,
2022) or access to a bias estimation oracle whose variance reduces linearly in the number of agents
(Chayti et al., 2022), which is a strong assumption as bias estimation for personalization is inherently
agent-specific, and its variance does not reduce with more agents. In contrast, AffPCL requires no prior
knowledge or bias estimation oracle, and enjoys affinity-based variance reduction fully adaptively.

1.2 PROBLEM FORMULATION

We consider a general multi-agent linear system:

Āixi∗ = b̄i, i = 1, . . . , n, (2)

where sym(Āi) = 1
2 (Ā

i + (Āi)T ) ≻ 0. Each agent aims to find the fixed point xi∗ of its system with
access to only stochastic observations A(sit) ∈ Rd×d and bi(sit) ∈ Rd evaluated at its local random
state sit ∈ S independently sampled from its distinct environment distribution µi ∈ ∆(S) at time
step t. The stochastic observations are unbiased such that Āi = EµiA(si) and b̄i = Eµibi(si).

Terminology and notation. Our system modeling draws inspiration from various fields, including
supervised learning, reinforcement learning, and statistical decision-making, where (A, b, µ) are
commonly referred to as (feature, label, covariate distribution), (function approximation, reward,
stationary distribution), and (measurement, response, data distribution), respectively. To appeal to a
broader audience and align with our setup, we refer to A as the feature embedding matrix, b as the
objective vector, and µ as the environment distribution. As is common in practice, we assume that all
agents share the same feature extractor A, but may have different objectives bi and environments µi,
referred to as objective heterogeneity and environment heterogeneity, respectively.

Throughout the paper, superscript i denotes quantities related to agent i and superscript 0 denotes the
averaged quantity across all agents, i.e., f0 = 1

n

∑n
i=1 f

i for any quantity f . The averaged quantity
may be explicitly aggregated by the central server, or it can represent a virtual quantity only used
for analysis. We write [n] := {1, . . . , n}. For any function f i on S , f̄ i denotes the expectation of f i
under the corresponding environment distribution µi, i.e., f̄ i = Eµif i(si). For an unknown quantity
f , its estimate learned at time step t is denoted by f̂t. The default norm is the Euclidean norm for
vectors, operator norm for matrices, and total variation norm for distribution differences. Appendix A
contains a complete list of notation.

Roadmap. This paper adopts a progressive approach to first develop insights in stylized settings
and then incrementally extend to more complex scenarios. We start with a simplified FL setup
(Section 2), then gradually introduce personalization (Section 3), adaptivity (Section 4), environment
heterogeneity (Section 5.1), and finally arrive at the most general setup (2) in Section 5.2. Several
theoretical extensions are discussed in Section 6 and numerical results are presented in Section 7.

2 WARM-UP: HETEROGENEOUS FEDERATED LEARNING

We start by reviewing heterogeneous FL, a variant of (2) where agents with distinct objectives
collaborate to find a unified solution xc∗ satisfying

Ā0xc∗ = b̄0, (3)

where Ā0 = 1
n

∑n
i=1 Eµi [A(s)] and b̄0 = 1

n

∑n
i=1 Eµi [bi(s)]. This warm-up section assumes

homogeneous environment distributions µi ≡ µ for all i ∈ [n], and thus we can drop the superscript

3
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of Ā. Since sym(Ā) is positive definite, in a federated stochastic approximation setting, each agent
adopts the following fixed-point iteration:

xit+1 = xit − αtg
i
t(x

i
t), where git(x

i
t) := A(sit)x

i
t − b(sit),

where αt is the step size and the update direction git is the stochastic residual at time step t.

To focus on the main ideas, this work considers a simplified communication scheme, where agents
communicate with a central server at every time step. In FL, agents send their local updates to
the server, which aggregates them to get the central decision variable xct+1 and broadcasts it back
xit+1 ← xct+1. The resultant central update rule is then given by

xct+1 = xct − αtg
0
t (x

c
t), where g0t (x

c
t) :=

1

n

n∑
i=1

git(x
c
t) =

1

n

n∑
i=1

A(sit)x
c
t −

1

n

n∑
i=1

bi(sit). (4)

We note that in this FL setting, the local decision variables are always synced with the central one, and
thus we have git(x

i
t) = git(x

c
t). Moreover, we can write the central decision variable as the average

of the local ones: xct = 1
n

∑n
i=1 x

i
t = x0t . However, this equivalence becomes obsolete when we

introduce heterogeneous environments and personalization.

Constants. We define the following constants used throughout. λ := mini λmin(sym(Āi)) > 0
ensures strong monotonicity of the fixed-point iteration and controls the convergence rate; an
analogous condition in optimization is λ-strong convexity or λ-PL condition of the objective function
(Nesterov, 2013). GA := maxi sups ∥Ai(s)∥, Gb := maxi sups ∥bi(s)∥, and Gx := maxi ∥xi∗∥
upper bound the system parameters. Let σ := 2max{GAGx, Gb} represent the scale of the system,
which can also be thought of as the variance proxy of the update direction at the solution point,
since ∥git(xi∗)∥ ≤ ∥A(sit)∥∥xi∗∥+ ∥bi(sit)∥ ≤ GAGx +Gb ≤ σ; its analogy in optimization is the
objective function gradient’s Lipschitz constant. We then define κ := σ/λ as the condition number of
the stochastic system. Without loss of generality, we use 1 as the variance proxy of the environment
distributions, in the sense that trVarµ(f(s)) = Eµ∥f(s)∥2 ≤ G2

f , which holds for any zero-mean
operator f with ess sups∼µ ∥f(s)∥ ≤ Gf .

We have the following convergence guarantee for heterogeneous FL.1

Proposition 1. With a constant step size α ≡ ln t/(λt), (4) satisfies

E∥xct − xc∗∥2 = Õ(κ2t−1n−1),

where Õ suppresses the logarithmic dependence on ln t.2

The mean squared error (MSE) of FL vanishes linearly as t goes to infinity, with the rate scaled by the
problem scale σ and controlled by λ. The federated collaboration contributes linear speedup in terms
of the number of agents n. Proposition 1 is tight in κ, t, and n (Woodworth et al., 2020; Karimireddy
et al., 2021; Glasgow et al., 2022), and serves as a baseline for our subsequent results.

3 INTRODUCING PERSONALIZATION: PERSONALIZED BIAS CORRECTION

Due to heterogeneity, the unified solution described in Section 2 is generally suboptimal for individual
agents, and becomes less relevant as the heterogeneity level grows. More realistically, strategic agents
seek personalized solutions:

Āxi∗ = b̄i, i ∈ [n].

To build intuition, this section makes two simplifications to be relaxed in the next two sections:
agents have the same environment distribution, and the central objective b0(sit) =

1
n

∑n
i=1 b

i(sit) is
known to agent i upon observing sit. With access to the central objective, we propose affinity-aware
personalized collaborative learning (AffPCL), a simple yet effective update rule for each agent:

xit+1 = xit − αtg̃
i
t, where g̃it = git(x

i
t) + g0t (x

0
t )− g0→i

t (x0t ), (5)

1All proofs are deferred to Appendices E to G, where we progressively establish the main result Theorem 1
and cover all the propositions in the main text.

2The ln t dependence can be removed by using a linearly diminishing step size and considering a convex
combination of the iterates {xc

τ}tτ=0, as specified in Lemma D.5. This refinement applies to all results in the
main text. For brevity, we defer the related discussion to the appendix and omit this remark in subsequent results.
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where the update direction consists of three components:

git(x
i
t) = A(sit)x

i
t − bi(sit), g0t (x

0
t ) =

1
n

∑n
i=1 g

i
t(x

0
t ), g0→i

t (x0t ) = A(sit)x
0
t − b0(sit).

Recall that x0t = 1
n

∑n
i=1 x

i
t is synced with the central server. Alternatively, inspired by Section 2, we

can replace x0t with an explicitly maintained central decision variable xct and update it using (4) within
the same communication round for computing the central update direction. Both implementations
have the same convergence guarantee in current setting, while the latter proves robust to heterogeneous
environment distributions, as detailed in Section 5.2. See Appendix C.1 for further discussion.

Unlike FL, the convergence of AffPCL depends on how similar the objectives of agents are.
Definition 1 (Objective heterogeneity). The objective heterogeneity level is defined as

δobj := max
i,j∈[n]

sup
s∈S
∥bi(s)− bj(s)∥2/(2Gb) ∈ [0, 1].

Proposition 2. With a constant step size α ≡ ln t/(λt), (5) satisfies

E∥xit − xi∗∥2 = Õ(κ2t−1 ·max{n−1, δ̃obj}), ∀i ∈ [n],

where δ̃obj ≤ min {1, κδobj} is the effective objective heterogeneity level.

The precise definition of the effective heterogeneity level is δ̃obj = min{1, νδobj}, where ν is the
stochastic condition number that is trivially bounded by κ. We defer the definition of ν and the
discussion of how the stochastic conditioning affects the effective collaboration gain to Section 6.2
and C.5. In most cases of interest, ν is close to 1, reducing δ̃obj to the raw heterogeneity level δobj.
Thus, the following discussion of δ̃obj can be understood as applying to δobj as well.

Proposition 2 previews the phenomenon of affinity-based variance reduction. Compared to indepen-
dent learning, Proposition 2 achieves a convergence rate accelerated by a factor of max{n−1, δ̃obj},
capturing speedup from both federated collaboration and agent similarity. When agents have sim-
ilar objectives (δ̃obj ≤ n−1), this factor recovers the linear speedup n−1 from FL (Proposition 1);
with abundant collaborating agents (n ≥ δ̃−1

obj ), objective affinity dominates variance reduction.
Importantly, since δ̃obj ∈ [0, 1], AffPCL’s worst-case complexity is always upper bounded by that
of independent learning, Õ(κ2t−1), ensuring collaboration never degrades performance. As agents
have markedly different objectives (δ̃obj ↑ 1), collaboration benefits vanish and AffPCL falls back
to independent learning, as expected. Proposition 2 showcases that AffPCL seamlessly interpolates
between FL and independent learning, offering full adaptivity without imposing artificial restrictions.

To provide intuitions for affinity-based variance reduction, we discuss three interpretations of AffPCL.

Bias correction. git(xit)− g0→i
t (x0t ) in (5) corrects the bias in the aggregated update direction g0t (x

0
t )

to achieve personalization. Specifically, one can verify that Eµ[g̃
i
t] = Eµ[g

i
t(x

i
t)]. In collaborative

learning, agents want to leverage the aggregated update direction for its lower variance, but also need
to correct its bias towards the central solution rather than the personalized solution. We remark that
this bias correction is fundamentally different from those used in the heterogeneous FL literature
(Karimireddy et al., 2021; Mangold et al., 2024), which correct for local drift away from the central
direction. In other words, our novel bias correction term is personalized for each agent.

Control variates. Although git(x
i
t)−g0→i(x0t ) is personalized and thus cannot benefit from federated

averaging, it enjoys affinity-based variance reduction via control variates (Defazio et al., 2014;
Rubinstein & Kroese, 2016). Specifically, g0→i

t (x0t ) serves as a control variate that positively correlates
with the local update direction git(x

i
t), and thus reduces the variance of the overall update. Then, a low-

variance version (sample average) of the control variate, g0t (x
0
t ), is added to correct the introduced

bias. The variance reduction effect scales with the correlation in the control variate, which in turn
scales with the affinity between the local and central systems. This control variate perspective offers
a clear explanation for affinity-based variance reduction in AffPCL, and motivates our design choice
of the bias correction term g0→i

t (x0t ), which correlates with git(x
i
t) through the underlying sample sit,

unlike other potential candidates (e.g., Ai
tx

0
t − b0t ) that would be nearly independent of sit.

Central-local decomposition. To perceive how this variance reduction scales with affinity, we can
view (5) as performing central and local learning in parallel. The central learning happens at the

5
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server side, seeking a unified point xcen∗ that solves the central system (3), and the local learning
happens at the client side, solving the local residual system Āxi,loc∗ = b̄i − b̄0. Then, xcen∗ + xi,loc∗
gives the personalized solution to (2). Specifically, g0t (x

0
t ) = A0

tx
0
t − b0t drives the central learning

and git(x
i
t) − g0→i

t (x0t ) = Ai
t(x

i
t − x0t ) − (bi − b0)(sit) drives the local learning. Intuitively, the

local residual system is simpler to solve when agent’s objective is close to the central one, leading
to affinity-based variance reduction.Identifying this low-complexity local residual system is key to
AffPCL’s success. If the local learning problem were as complex as the original one (e.g., fine-tuning),
such a central-local decomposition would offer only marginal speedup over independent learning.

4 INTRODUCING ADAPTIVITY: CENTRAL OBJECTIVE ESTIMATION

Knowing the central objective amounts to knowing other agents’ objectives, which may not be
realistic in practice. This section removes this assumption by enabling agents to adaptively learn the
central objective while learning their personalized solutions. A practical challenge is that when the
state space S is large or infinite, b0 becomes high- or infinite-dimensional, and learning it inevitably
dominates the overall complexity. To match the dimension of other system parameters, we consider a
linear parametrization of the objective function: bi(s) = Φ(s)θi∗ for all i ∈ [n], where Φ ∈ Rd×d is a
feature embedding function such that sym(EµΦ(s)) ≻ 0, and θi∗ ∈ Rd is the weight. This structure
covers finite state spaces as a special case; see Appendix C.2 for more discussion.

Interestingly, central objective estimation (COE) is a special case of heterogeneous FL in Section 2:

Φ̄0θc∗ = b̄0, (6)

where Φ̄0 = EµΦ(s) and b̄0 = 1
n

∑n
i=1 Eµb

i(s) = Eµb
0(s). Therefore, agents can federatedly

estimate the central objective using the same algorithm in Section 2:

θct+1 = θct − αtg
0,b
t (θct ), where g0,bt (θct ) :=

1

n

n∑
i=1

Φ(sit)θ
c
t −

1

n

n∑
i=1

bi(sit). (7)

Without loss of generality, we use normalized features ∥Φ(s)∥2 ≤ 1 for all s ∈ S. With linear
parametrization, we redefine the objective bound Gb := max{maxi ∥θi∗∥, ∥θc∗∥} and heterogeneity
level δobj := maxi,j∈[n] ∥θi∗ − θ

j
∗∥2/(2Gb) ∈ [0, 1], which imply the original bound and Definition 1.

Then, COE directly enjoys the same guarantee as in Proposition 1, with λ replaced by λmin(sym(Φ̄0)).

We denote b̂0t := Φ(s)θct as the estimated central objective at time t. Then, agents use b̂0t (s
i
t) in place

of b0(sit) in AffPCL (5), asynchronously with COE in (7). This scheme enjoys the same convergence
guarantee as in Proposition 2 as proven in Appendix G.

5 INTRODUCING ENVIRONMENT HETEROGENEITY: IMPORTANCE CORRECTION

5.1 CENTRAL LEARNING REVISITED

Section 3 discusses the central-local decomposition of AffPCL. With homogeneous environments,
central learning happens implicitly by considering the dynamics of the averaged decision variable
x0t = 1

n

∑n
i=1 x

i
t, which converges to the solution xc∗ = 1

n

∑n
i=1 x

i
∗ to (3). However, this is no longer

true with heterogeneous environment distributions (µi ̸= µj), because

x0∗ = 1
n

∑n
i=1 x

i
∗ = 1

n

∑n
i=1

(
(Āi)−1b̄i

)
̸≡
(
1
n

∑n
i=1 Ā

i
)−1 ( 1

n

∑n
i=1 b̄

i
)
= (Ā0)−1b̄0 = xc∗.

That is, as xit converges to the personalized solution xi∗ for all i ∈ [n], their average will not converge
to xc∗, invalidating the implicit central learning through x0t .

Fortunately, we manage to show that if agents explicitly maintain a unified central decision variable
xct (̸≡ x0t ) and update it federatedly using (4), then xct still converges to xc∗ with the same convergence
rate in Proposition 1, even in the presence of environment heterogeneity. We refer to this explicit
approach as central decision learning (CDL). The same argument applies to COE in Section 4, i.e., (7)
converges to the solution to (6) with the same rate under heterogeneous environment distributions.
We defer the proof to Appendices E and F. Intuitively, this works because a sample from the mixture
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distribution µ0 is equivalent to first sampling an index i uniformly and then sampling s from µi.
Therefore, a federated update direction that equally weights local sample information from all agents
is unbiased towards the central solution.

Beyond algorithmic implications, we remark that in Sections 2 and 4, the averaged decision variable
naturally corresponds to a virtual system with parameters µ0 = 1

n

∑n
i=1 µ

i and b0 = 1
n

∑n
i=1 b

i.
The affinity among agents directly translates to the affinity between each agent and this “central agent”
with index 0. Environment heterogeneity perplexes this concept: who is the “central agent” now, and
does it inherit the affinity among agents? Our central objective characterization in (6) helps answer
the first question by defining bc(s) := Φ(s)θc∗, and then the “central system” (3) corresponds to a
virtual system with environment distribution µ0 and objective bc (̸≡ b0). Pinpointing this relocated
central agent is crucial for deriving agent-specific affinity-based variance reduction in Section 6.3.

The second question is more subtle, as now the central agent, unlike the “averaged agent”, can have a
drastically different objective bc from all actual agents, even when the latter have similar objectives.
For instance, an ill-conditioned system can amplify a small δobj (Definition 1) such that ∥bc − bi∥∞
reaches its maximum possible value 2Gb for some agent i. This divergence, which also applies to
the relationship between the central and personalized decision variables, presents a fundamental
challenge introduced by environment heterogeneity in achieving affinity-based variance reduction.
Fortunately, our analysis reveals that what is crucial is the affinity in feature space, e.g., terms like
∥A(s)(xi∗ − xc∗)∥ and ∥Āi(xi∗ − xc∗)∥, which are well controlled by the raw affinity among actual
agents. Please refer to Lemmas D.1 and D.2 in Appendix F for more discussion.

5.2 PCL WITH IMPORTANCE CORRECTION

We now arrive at the most general setup (2), where agents have heterogeneous environment dis-
tributions and objectives and seek personalized solutions. In addition to the challenges posed by
environmental heterogeneity discussed in Section 5.1, a further obstacle emerges in the design of
AffPCL: the bias correction mechanism in Section 3 alone is no longer sufficient. To overcome this,
we propose integrating a novel importance correction to the central update direction before it gets
sent to each agent, resulting in the following AffPCL update rule:

xit+1 = xit − αtg̃
i
t, where g̃it = git(x

i
t) + gc⇒i

t (xct)− gc→i
t (xct), (8)

where the bias correction term gc→i
t (x) = A(sit)x− b̂ct(sit) now uses the estimated central objective

b̂ct(s
i
t) from COE (7), and gc⇒i

t is the importance-corrected central update direction:

gc⇒i
t (x) :=

1

n

n∑
j=1

ρi(sjt )g
c→j
t (x) :=

1

n

n∑
j=1

µi(sjt )

µ0(sjt )

(
A(sjt )x− b̂ct(s

j
t )
)
.

AffPCL (8) with asynchronous COE (7) and CDL (4) gives the complete algorithm for solving (2). We
provide the pseudocode and discuss implementation details in Appendix C.1.

AffPCL effectively handles environment heterogeneity by (i) correcting bias: E[gc⇒i
t (x)− gc→i

t (x)]=0
(Lemma G.1), and (ii) reducing variance based on agents’ environment affinity (Lemmas G.2 and G.3).
Definition 2 (Environment heterogeneity). The environment heterogeneity level is defined as

δenv := max
i,j∈[n]

∥µi − µj∥TV ∈ [0, 1].

The interpretations discussed in Section 3 still account for a portion of the variance reduction
effect, especially w.r.t. objective affinity. For the newly introduced importance-corrected central
update direction gc⇒i

t , its variance has three key properties: (i) it decomposes into a federated
term, an affinity-dependent term similar to the variance of the bias correction term, and a term that
characterizes the environment heterogeneity: σ2

n χ
2(µi, µ0), where χ2 is the chi-square divergence;

(ii) the chi-square divergence is bounded by the total variation distance, which defines the environment
heterogeneity: χ2(µi, µ0) ≤ max{∥ρi∥∞, 1}δenv; (iii) the density ratio ρi has a natural upper bound:
ρi(s) = µi(s)/( 1n

∑n
j=1 µ

j(s)) ≤ µi(s)/( 1nµ
i(s)) = n. Combining the three observations gives an

upper bound of the additional variance from environment heterogeneity: σ2

n χ
2(µi, µ0) ≤ σ2δenv.

This means that our method automatically adapts to the level of environment heterogeneity, enjoys
affinity-based variance reduction, and never performs worse than independent learning, since δenv ≤ 1.
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These observations motivate the design of server-side importance correction. If this correction
were performed on the client side, the additional variance term in (i) would lack the mitigating n−1

factor, and the density ratio µ0(s)/µi(s) would not be bounded by n as in (iii), which could result in
potentially unbounded variance that degrades performance.

We are now ready to present the main result, which shows that AffPCL achieves affinity-based variance
reduction characterized by both environment and objective affinities, generalizing Section 3.
Theorem 1. With a constant step size α ≡ ln t/(λt), AffPCL (8) with COE (7) and CDL (4) satisfies

E∥xit − xi∗∥2 = Õ(κ2t−1 ·max{n−1, δ̃env, δ̃obj}), ∀i ∈ [n],

where δ̃env≤min{1,κδenv}, δ̃obj≤min{1,κδobj} are effective environment and objective heterogeneity.

6 DISCUSSION

6.1 DENSITY RATIO ESTIMATION

Section 5.2 requires that the density ratios ρi(s) := µi(s)
µ0(s) of environment distributions are known

to the central server. This is a common assumption in supervised learning (Cortes et al., 2010;
Ma et al., 2023), controlled sampling (Rubinstein & Kroese, 2016), and off-policy reinforcement
learning (Precup et al., 2000; Thomas & Brunskill, 2016). It is satisfied, for example, when data
are pre-collected or the covariate shift is induced by known mechanisms. When ρi is unknown,
we can incorporate asynchronous density ratio estimation (DRE) into AffPCL. Similar to COE in
Section 4, DRE with linear parametrization (Sugiyama et al., 2012) is also a special variant of (2)
(see Appendix C.4). However, unlike COE, which enjoys affinity-based variance reduction without
importance correction, DRE seeks personalized solutions, which, according to our previous analysis,
requires a known density ratio for importance correction to achieve affinity-based variance reduction.
This creates a chicken-and-egg problem, settled by the following information-theoretic lower bound.
Theorem 2. Let ρ̂it be any estimator of the true density ratio ρi, given n agents, t independent
samples per agent, and no communication or computation constraint. There exists a system such that

inf ρ̂i
t
Eµ0 |ρ̂it(s)− ρi(s)|2 ≥ min

{
(96t)−1, δ2env

}
.

Theorem 2 rules out the possibility of achieving variance reduction linear in the environment hetero-
geneity level δenv without knowing the density ratio a priori. This hardness result can be circumvented
if additional structure presents, such as sparsity (environment distributions differ only in a few
dimensions) or coupling (environment distributions are dependent). That is, the key difference from
previous problems is that affinity in DRE should be measured by criteria other than total variation
distance. Our analysis of AffPCL assumes access to a DRE oracle capable of exploiting such structure
to achieve affinity-based variance reduction, thereby proving Theorem 1 in full generality and further
showcasing the adaptivity of AffPCL. Appendix C.3 proves Theorem 2, and Appendix C.4 contains an
extended discussion on DRE in our setting.

6.2 NOISE ALIGNMENT

We formally define the effective heterogeneity levels in Proposition 2 and Theorem 1 as δ̃env=
min{1,νδenv} and δ̃obj=min{1, νδobj}, where ν characterizes the system’s “stochastic conditioning”.

Definition 3 (Stochastic condition number). ν := maxi ∥D̄i(Āi)−1∥ where D(s) :=
√
A(s)TA(s).

ν is trivially upper bounded by κ (see Appendix C.5), and we refer to ν−1 ≥ κ−1 as the noise
alignment constant. Note that the polar decomposition gives A(s) = U(s)D(s), where the positive
semidefinite matrix D(s) defined as above stretches the vector it acts on, and the orthogonal matrix
U(s) rotates it. If U(s) maintains a similar orientation for almost all s ∈ S, A(s) is “well-aligned”
and one can see that ν−1 is large. Conversely, if U(s) varies significantly, ν−1 tends to be small. The
impact of affinity on variance reduction is thus modulated by this noise alignment (Lemma D.2).

We remark that while ν bears resemblance to the matrix condition number and is upper bounded
by κ, the condition number κ pertains solely to the deterministic parameters of the system, whereas
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ν captures the conditioning of the system’s stochastic structure. Consequently, a large κ does not
necessarily imply a large ν, and vice versa. Fortunately, in many cases of interest, the noise alignment
constant ν−1 is large. A particularly relevant example is a positive semidefinite A(s), a property
often imposed on feature embedding matrices by design. In this case, ν−1 = 1. See Appendix C.5
for three more examples with large ν−1 and further discussion on noise alignment.

6.3 AGENT-SPECIFIC AFFINITY-BASED VARIANCE REDUCTION

For ease of exposition, previous sections use the worst-agent heterogeneity levels (Definitions 1
and 2) to characterize the worst-agent performance (Theorem 1). Intuitively, agents closer to the
“center” should enjoy greater affinity-based variance reduction. In Appendix G, we analyze AffPCL in
full generality and obtain an agent-specific convergence guarantee:

E∥xit − xi∗∥2 = Õ((κi)2t−1 ·max{n−1, δ̃icen}), ∀i ∈ [n], (9)

where κi = σ/λi, λi = λmin(sym(Āi)), δ̃icen = min{1, νδicen}, and δicen is a more natural measure
of agent i’s closeness to the “center agent”, defined as

δicen := max{∥µi − µ0∥TV, ∥b̄i − b̄0∥/(2Gb)} ∈ [0, 1].

Notably, δicen is affected by both objective and environment heterogeneity, and admits a trivial bound
δicen ≤ min{1, δenv + δobj} (Lemma D.1). (9) confirms that AffPCL inherently offers agent-specific
affinity-based variance reduction, with agents closer to the center benefiting more from collaboration.
An interesting consequence is that in the high heterogeneity regime, an agent that is not close to
any other actual agent (δenv ≈ δobj ≈ 1) may still get a “free ride” by being close to the virtual
central agent (δ̃icen ≪ 1), thereby gaining significant speedup. Taking this a step further, an agent
can collaborate with agents that are arbitrarily heterogeneous to it but still benefit from collaboration
maximally and obtain linear speedup when δ̃icen ≤ n−1. These insights are not captured by works that
focus on linear speedup only in the low heterogeneity regime (Chayti et al., 2022; Even et al., 2022).

7 NUMERICAL SIMULATIONS

Synthetic data. We first compare AffPCL, independent learning, federated averaging (McMahan et al.,
2017, FedAvg), fine-tuning (FedAvg followed by local independent learning), regularized (T Dinh
et al., 2020; Li et al., 2021, pFedMe and Ditto), and clustered (Ghosh et al., 2020) FL methods, in a
synthetic system with 20 agents at different heterogeneity levels δenv = δobj ∈ {0, 0.05, 0.3, 0.8},
with results presented in Figure 1. The average MSE0 = 1

n

∑n
i=1 MSEi is reported. For AffPCL, we

also report the MSE of the agent closest to the center to highlight the agent-specific speedup effect.

Figure 1: AffPCL matches FedAvg in the homogeneous setting and independent learning in the high
heterogeneity regime. Across all scenarios, AffPCL consistently achieves the lowest MSE, while other
methods’ relative performance varies with the heterogeneity level. In the high heterogeneity regime
where all agents are dissimilar, the agent closest to the center still enjoys significant speedup.

Real-world data. We further evaluate AffPCL on the real-world FEMNIST dataset. For clarity, we
use only independent learning and FedAvg as baselines. To introduce objective heterogeneity, we
consider a task where each user determines if a handwritten character is a digit and if it is a curved

9
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letter, with different users potentially having different preferences on these two objectives. We train
10 users across four levels of objective heterogeneity and report the average test MSE in Figure 2.

Figure 2: AffPCL matches FedAvg in the homogeneous setting and consistently achieves the lowest test
MSE across all heterogeneity levels. The relative performance of FedAvg and independent learning
varies with the heterogeneity level.

Reinforcement learning. We extend our method to the fundamental reinforcement learning algorithm
SARSA, a temporal difference method that encompasses TD(0); see Appendix C.6 for details. It
is worth noting that SARSA solves a non-linear policy optimization problem, showcasing the
versatility of AffPCL beyond linear systems. Again, we compare only with independent learning and
FedAvg for clarity. We consider 10 agents with different reward functions and transition kernels,
introducing objective and environment heterogeneity. In this experiment, we also incorporate the
asynchronous DRE module discussed in Section 6.1 to estimate density ratios. Specifically, we have
ρ̂it(s, a) =

µ̂i
t(s)π

i
t(a | s)

1
n

∑n
j=1 µ̂j

t(s)π
j
t (a | s)

, where µ̂i
t(s) is the estimated state distribution of agent i at time t via

naive Monte Carlo, and πi
t(a | s) is the behavior policy of agent i at time t. The average MSE with

respect to the optimal Q-function is reported in Figure 3.

Figure 3: Consistent with other experiments, AffPCL achieves the lowest MSE across all heterogeneity
levels in the reinforcement learning setting. Incorporating asynchronous DRE does not hinder the
performance of AffPCL, suggesting that density estimation is of relatively low complexity compared
to policy optimization.

Please refer to Appendix B for the detailed setup and additional results. These simulations effectively
validate the superiority and practicality of AffPCL and our theory of adaptive affinity-based variance
reduction.

8 CONCLUSION AND FUTURE DIRECTIONS

AffPCL affirms that collaboration among arbitrarily heterogeneous agents can yield fully personalized
solutions with adaptive affinity-based speedup, opening new avenues for harmonizing personalization
and collaboration in multi-agent learning. We advocate for future endeavors in the following topics:
(i) personalized feature embeddings; (ii) trade-offs between collaboration benefit and communication
sophistication such as cost, privacy, and security; (iii) lower bounds on information exchange to
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achieve collaborative speedup; (iv) nonlinear systems, regret minimization, and stochastic optimiza-
tion problems; and (v) other affinity structures such as sparsity, correlation, and low-rankness.
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ORGANIZATION OF APPENDIX

The appendix is organized as follows. Notation and symbols are summarized in Appendix A.
The detailed setup and additional results of numerical simulations are provided in Appendix B.
Appendix C supplements omitted discussions in the main text.

The remaining sections are dedicated to proving Theorem 1 in full generality, incorporating asyn-
chronous density ratio estimation and agent-specific step sizes, and subsuming all other results in the
main text. We first collect several useful lemmas in Appendix D to facilitate later analysis. The three
components of AffPCL are then examined in sequence: central objective estimation (Appendix E),
central decision learning (Appendix F), and personalized local learning (Appendix G).

A NOTATION

We summarize the key notation and symbols used throughout this paper in Tables 1 and 2. We
reiterate that the superscript 0 denotes the averaged quantity across all agents, i.e., f0 = 1

n

∑n
i=1 f

i

for any quantity f . Due to symmetry, f0 usually satisfies the same property as f i for all i ∈ [n].
Therefore, in addition to the notation [n], we also use [n0] to denote {0, 1, . . . , n}. The overline
denotes the mean quantity under the corresponding environment distribution, i.e., f̄ i = Eµif i(si) for
any operation f i. We remark that the aggregation of the mean values is not necessarily equal to the
mean under the aggregated environment distribution:

f̄0 =
1

n

n∑
i=1

Eµif i(si) ̸≡ Eµ0

[
1

n

n∑
i=1

f i(s)

]
.

However, we have two special cases where the equality holds: (i) f i = f j for all i, j ∈ [n]; or
(ii) µi = µj for all i, j ∈ [n]. The superscript c denotes the explicitly maintained central quantity
that aims to bridge the above discrepancy, e.g., the central objective bc and central decision variable
xct . Generally, f c ̸≡ f0 for any quantity f , but the equality may hold in the two special cases above.

For the ease of presentation, we use the following shorthand notation throughout the analysis: ∆zt
represents the optimality gap zt − z∗ at time step t for any decision variable z; for a function f on
S, f it represents its evaluation at the observation sit, and f0t = 1

n

∑n
i=1 f(s

i
t); Ei

t := Esit∼µi and
Et := Esit∼µi,i∈[n]; EFt−1

represents the conditional expectation given the history filtration Ft−1

that contains all the randomness up to time step t− 1.

We use ≻,⪰,⪯,≺ to denote the Loewner order and ≳,≍,≲ to denote the asymptotic order as
t→∞.

Table 1: Notation.

Notation Description

[n],[n0] {1, 2, . . . , n}, {0, 1, . . . , n}
∆zt decision variable optimality gap zt − z∗
f i, f it

i-th agent’s quantity, and its realization at time step t (if a random variable)
or evaluation at observation sit (if a function)

f0 averaged quantity across agents 1
n

∑n
i=1 f

0

f c explicitly maintained central quantity
f̄ i expected quantity under agent i’s environment distribution Eµif i(s)
f̄0 aggregated expected quantity 1

n

∑n
i=1 Eµif i(s)

f̂t estimation of f at time step t
g0→i, gc→i bias correction from aggregated/central update direction to agent i
gc⇒i importance-corrected update direction from central to agent i
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Table 2: Symbols.

Symbol Description Symbol Description
A feature matrix α step size
b objective β Young’s inequality parameter
C constant χ2 chi-square divergence
d system dimension δ heterogeneity level
E Estimation error ∆(S) probability measure space
F Filtration η density ratio weight
g update direction γ reward discount factor
G system parameter bound κ condition number

i, j, k agent index λ minimal eigenvalue
L Lyapunov function µ environment distribution
n number of agents ν stochastic condition number
s, S state, state space ϕ,Φ, ψ,Ψ feature map
t, τ time step ρ density ratio
w weight σ problem scale/ variance proxy
x, z decision variable θ objective weight

B ADDITIONAL NUMERICAL SIMULATIONS

Synthetic setup. We run our simulations in a synthetic multi-agent linear system with n = 20
agents in a d = 5 dimensional space. Agents possess distinct multivariate Gaussian distributions
µi = N (mi, Id) as their environments, and their personalized objectives are given by linear models
bi(s) = Φ(s)θi∗. We construct the stochastic feature embedding matrices A(s) and Φ(s) to have
a multiplicative noise structure (Example 7): A(s) = (Id + ϵA · ssT )Abase and Φ(s) = (Id +
ϵb · ssT )Φbase, where Abase and Φbase are randomly generated positive definite matrices for each
problem instance with condition numbers of O(1). We set σA = 1 and σb = 0.5 to control the level
of stochastic noise alignment. The reference personalized solutions xi∗ are calculated using Monte
Carlo estimation with 5000 samples.

To generate heterogeneous environments, we set mi = δenvCAvi, where vi is a random unit vector
and CA = 4 satisfies that ∥N (0, Id)−N (CA1, Id)∥TV ≥ 0.9. This ensures that the environment
heterogeneity level goes to 1 as δenv approaches 1 (Definition 2). Similarly, heterogeneous objectives
are generated by setting θi∗ = θbase + δobjui, where ui is a random unit vector and θbase ∼ N (0, Id).
This construction ensures that the objective heterogeneity level is of OP (δobj) (Definition 1). For
reference, we fix the first agent’s environment as µ1 = N (0, Id) and θ1∗ = θbase, making it close to
the “center” when the number of agents n is large.

We compare our proposed AffPCL algorithm against the following baselines:

1. Independent learning, where each agent learns its own solution using its local data without
communication.

2. Federated averaging (FedAvg), where all agents collaboratively learn a unified solution by
averaging their update directions.

3. Fine-tuning, where agents first run FedAvg for 30 steps to learn a common model, and then
fine-tune their personalized models independently for another 30 steps;

4. Regularized FL, pFedMe (T Dinh et al., 2020) and Ditto (Li et al., 2021) specifically, where agents
collaboratively learn a global model, and then learn personalized models by solving a regularized
objective that penalizes the distance to the global model. The regularization parameter is set to 15
for both methods.

5. Clustered FL (Ghosh et al., 2020), where agents are iteratively clustered based on the similarity
of their local systems, and then collaboratively learn a model within each cluster. The number of
clusters is set to 10.

The results are reported in Figure 1. All algorithms are run for t = 60 steps with a fixed learning
rate of α = 0.01. All experiments are repeated for 10 runs, and we report the mean squared error
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averaged over all agents MSE0 = 1
n

∑n
i=1 ∥xit − xi∗∥2, along with the 90% confidence region. To

showcase the agent-specific affinity-based variance reduction, we also report the error of the first
agent MSE1 = ∥x1t − x1∗∥2.

Comparison with baselines. We evaluate the performance of all algorithms under different hetero-
geneity levels (δenv, δobj). Figure 1 reports the homogeneous setting (0.0, 0.0), low heterogeneity
(0.05, 0.05), medium heterogeneity (0.2, 0.2), and high heterogeneity (0.5, 0.5). Results of exhaus-
tive sweeps over (δenv, δobj) are presented in Figure 4, where we report the improvement of AffPCL
over independent learning and FedAvg, measured by the average MSE0 over the last 10 time steps. We
remark that when agents’ environment distributions vary greatly (δenv ≥ 0.9), all algorithms experi-
ence high variance and thus the results may not be statistically significant. Figure 4a demonstrates that
AffPCL consistently outperforms independent learning, with the affinity-based speedup increasing as
the heterogeneity level decreases. Figure 4b shows that AffPCL matches FedAvg in the homogeneous
setting, while FedAvg fails to provide any personalization in the presence of heterogeneity.

(a) Over independent learning. (b) Over FedAvg.

Figure 4: Improvement of AffPCL.

Federated vs. affinity-based speedup. Our theory identifies two factors in the variance reduction of
AffPCL: federated speedup n−1 and heterogeneity level δ. We conduct exhaustive sweeps over the
number of agents n ∈ [2, 50] and heterogeneity level δ = δenv = δobj ∈ [0.02, 0.5]. Iso-performance
contours of AffPCL are plotted in Figure 5, where each curve represents the combinations of (n−1, δ)
that yield the same average MSE0 over the last 10 steps. As expected, the contours form Pareto-type
curves, confirming that max{n−1, δ} characterizes the trade-off between collaboration and affinity
in AffPCL.

Figure 5: Iso-performance contours of AffPCL.
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Agent-specific performance. Another highlight of our theory is the agent-specific affinity-based vari-
ance reduction effect, where agents closer to the center benefit more from collaboration (Section 6.3).
We examine this phenomenon in a high heterogeneity setting (δenv, δobj) = (0.7, 0.7) and report
the performance of independent learning and AffPCL for a generic agent and for the agent closest to
the center in Figure 6. Looking at the performance of generic agent, AffPCL performs similarly to
independent learning, as the collaboration benefit gets diminished by the high heterogeneity. However,
the agent closest to the center still gets a “free ride” and achieves significant speedup, compared to
learning on its own, through collaborating with other agents. We remark that in the high heterogeneity
regime, the agent closest to the center may not be close to any other agents, yet the collaboration
benefit remains.

Figure 6: Agent-specific performance.

Real-world setup. For the real-world FEMNIST dataset, we first pre-train a numerical network
using some training data as the feature extractor ϕ shared across all users. The dimensionality of the
extracted feature is d = 84. To introduce varying levels of objective heterogeneity, we consider the
following label for input character image z:

y(z;λ) = λ · 1{character z is a digit}+ (1− λ) · 1{character z is a curved letter}.
Then, the least squares linear regression problem corresponds to the following linear system:

Eµi

[
ϕ(z)ϕ(z)T

]
xi = Eµi

[
ϕ(z)y(z;λi)

]
, i = 1, . . . , n,

where µi is the data distribution of user i. In our implementation of AffPCL for this task, we omit
the importance correction. We test four levels of objective heterogeneity by setting the range of λ
as [0.5 − δobj/2, 0.5 + δobj/2] with δobj ∈ {0, 0.2, 0.6, 1}. 10 users have evenly distributed λi in
the specified range. All three algorithms share the same hyperparameters: learning rate α = 0.002,
batch size is 32, and the number of samples between two communication rounds is 70. The test MSE
averaged over all users is reported in Figure 2. The results are consistent with those in the synthetic
experiments, validating the practicality of AffPCL.

Reinforcement learning setup. We follow the derivation in Appendix C.6 and setup in Zhang et al.
(2024) to implement AffPCL, independent learning, and FedAvg versions of SARSA. We consider
10 agents, 10 states, 5 actions, and a feature dimension of d = 20 for the state-action space. The
other RL hyperparameters are set as follows: reward discount factor γ = 0.1, behavior policy is
softmax with temperature 10, and step size α = 0.1. We perturb a nominal reward function and
transition kernel to generate heterogeneous objectives and environments, with relative perturbation
levels δobj, δenv ∈ {0.0, 0.2, 0.5, 1.0}. The reference optimal Q-function is calculated using offline
value iteration with the true model. For the asynchronous DRE module, we use the following density
ratio estimator:

ρ̂it(s, a) =
µ̂i
t(s)π

i
t(a | s)

1
n

∑n
j=1 µ̂

j
t (s)π

j
t (a | s)

,

where µ̂i
t(s) is estimated using the naive Monte Carlo, i.e., average state visitation frequency up to

time step t for agent i, and πi
t(a | s) is the behavior policy of agent i corresponding to its current Q-

function estimate. The average MSE with respect to the reference optimal Q-functions is reported in
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Figure 3. The results are consistent with other experiments and show that incorporating asynchronous
DRE does not hinder the performance of AffPCL.

C FURTHER DISCUSSIONS

C.1 IMPLEMENTATION DETAILS

We present in Algorithm 1 the pseudocode of AffPCL with asynchronous COE and CDL.

Algorithm 1: Personalized collaborative learning (AffPCL)

initialize: xc0, θc0, xi0 for i ∈ [n].
1 for t = 0, 1, . . . do
2 foreach agent i ∈ [n] in parallel do
3 sample sit ∼ µi

4 evaluate residuals git(x
i
t), g

i
t(x

c
t), g

i,b
t (θct ), g

c→i
t (xct)

5 send (sit, g
i
t(x

c
t), g

i,b
t (θct ), g

c→i
t (xct)) to the server

6 at central server:
7 aggregate central residuals g0,ct (xct), g

0,b
t (θct ), g

c⇒i
t (xct) for i ∈ [n]

8 send central residuals back to agents
9 foreach agent i ∈ [n] in parallel do

10 xct+1 = xct − αtg
0,c
t (xct)

11 θct+1 = θct − αtg
0,b
t (θct )

12 xit+1 = xit − αt(g
i
t(x

i
t) + gc⇒i

t (xct)− gc→i
t (xct))

We provide several remarks on central decision learning (CDL). First, if the central server has memory,
the central decision variable xct and central objective parameter θct can also be maintained and updated
(Lines 10-11) at the server side.

Second, when agents share the same environment distribution, the central decision variable can be
replaced by the average decision variable x0t , since the solution to the central system (3) coincides
with the average of personalized solutions, i.e., xc∗ = x0∗. In this way, CDL happens implicitly
without executing (4), reducing computation complexity. However, this implementation requires an
additional communication round to compute x0t+1 after each local update, increasing communication
complexity.

Third, when agents have different environment distributions, note that the central update direction
gc⇒i
t (xct) in (8) now involves gc→i

t (xct) (which uses the estimated central objective b̂ct(s
i
t)), instead

of git(x
c
t) (which uses personalized objective bi(sit)) as in (4). This modification is necessary for

the importance correction to work. That said, it should be unsurprising that if we also use gc→i
t to

compute the central update direction in central learning, i.e., using g0t (x
c
t) =

1
n

∑n
i=1 g

c→i
t (xct) in

(4), the convergence guarantee still holds. For completeness, we also prove convergence for both
implementations in Appendix F.
Remark 1 (Communication and computation complexity). To provide a clearer picture of scalability
in our stylized setup, we compare the communication and computation complexity of AffPCL with
federated averaging (FedAvg), both with immediate communication after each local update. In
FedAvg, each round involves the communication of all local residuals and one averaged residual,
resulting in a communication complexity of comm(FedAvg) = Θ(2nd) per round, where d is the
system dimension. Updating the local decision variable results in a computation complexity of
comp(FedAvg) = Θ(d) per agent per round. In AffPCL with COE, CDL, and DRE, as detailed in
Algorithm 1, each round has a communication complexity comm(AffPCL) ≤ 4 comm(FedAvg).
Suppose we calculate the central update direction using gc→i

t as discussed above, and suppose the
density ratio is known a priori, then the communication complexity reduces to comm(AffPCL) ≤
2.5 comm(FedAvg) = Θ(5nd). Similarly, the computation complexity per agent per round in AffPCL
(Algorithm 1) is comp(AffPCL) = 6 comp(FedAvg) = Θ(6d), where the extra factor comes from
CDL, COE, importance correction, and composing the personalized update direction.
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The above analysis shows that, although sharing the same asymptotic communication and compu-
tation complexity as FedAvg, AffPCL incurs a larger constant factor (specifically, up to 4 times for
communication and 6 times for computation per iteration) due to the additional components and
personalization. This inherent trade-off calls for future research into developing more sophisticated
communication schemes to reduce the communication and computation overhead of AffPCL, and
deriving lower bounds on the information exchange to achieve collaborative benefits in personalized
learning. Additionally, we remark that numerous techniques from federated and decentralized learn-
ing that reduce the number of communication rounds, such as multiple local updates, compression,
and partial participation, can be readily incorporated into AffPCL. We consider the stylized setting of
immediate communication to focus on the main ideas.

C.2 LINEAR PARAMETRIZATION OF OBJECTIVE AND DENSITY RATIO

We first note that linear parametrization covers finite state spaces as a special case. For DRE, ψ(s) =
es is the one-hot encoding of state s, and then ηi∗ = (ρi(s1), . . . , ρ

i(s|S|))
T simply records the density

ratio for all states. For COE, we transform the original objective as bi(s) ← es ⊗ bi(s) ∈ Rd|S|,
where ⊗ denotes the Kronecker product. Then, Φ(s) = ese

T
s ⊗ Id ∈ Rd|S|×d|S|, and θi∗ similarly

records the objective vector for all states.

Linear parametrization is also widely used in supervised learning (parametric regression) and re-
inforcement learning (linear value function approximation). COE performs parametric estimation
with a linear function class: θi∗ = argminθ∈Rd ∥b̂iθ − bi∥, where b̂iθ(s) = Φ(s)θ, and we omit the
discussion of approximation error when the model is misspecified, i.e., bi(s) /∈ {Φ(s)θ : θ ∈ Rd}.
See Sugiyama et al. (2012) for more details on DRE with linear parametrization.

When applied to reinforcement learning, our linear parametrization subsumes linear Markov reward
processes (Bhandari et al., 2018), where bi(s) = ϕp(s)r

i(s) = ϕp(s)ϕr(s)
T θi∗, with ri as agent i’s

reward function and ϕp, ϕr as feature maps. See Appendix C.6 for more details on this application.

We choose linear parametrization for its simplicity, allowing us to focus on the main ideas. Our
method readily extends to other (non)parametric models, provided the function class has complexity
polynomial in d rather than in |S|.

C.3 PROOF OF THEOREM 2

We restate and establish the lower bound of DRE MSE. Our proof generally follows the standard
Le Cam’s method with two special treatments: (i) we show that DRE is lower bounded by a special
density estimation problem, (ii) we show that collaborating with other agents does not help in
estimating one agent’s own density ratio.
Theorem 2. Let ρ̂it(s) be the estimate of true density ratio ρi, given by any algorithm with n agents
and t independent samples per agent, with no communication or computation constraint. There exists
a problem instance such that

inf ρ̂i
t
Eµ0 |ρ̂it(s)− ρi(s)|2 ≥ min

{
(96t)−1, δ2env

}
.

Proof. In this proof, we omit the agent index i and thus ρ = µ/µ0. We build the hard problem
instance step by step. We first consider a finite state space S = [d] and thus ρ and ρ̂t are vectors in Rd

(this is equivalent to a linear function approximation with feature map ψ(s) = es, the s-th standard
basis vector). Then, the minimax risk w.r.t. the MSE loss is defined as

R∗ = inf
ρ̂t

sup
0≤ρ≤n

sup
{µ,µ0∈∆(S):µ/µ0=ρ}

E(µ×µ0)⊗tEµ0 |ρ̂t(s)− ρ(s)|2,

where ρ̂t, a random vector, is the estimate learned from the sample drawn from (µ× µ0)⊗t. We use
the convention that if any constraint set is empty, the risk is zero. We note that although samples
across time steps are i.i.d., the samples from µ and µ0 at the same time step are correlated as
µ0 = 1

n

∑n
j=1 µ

j . However, this correlation scales as O(n−1) and diminishes as n increases. We
then apply several reductions. By set equivalence,

R∗ = inf
ρ̂t

sup
µ0∈∆(S)

sup
µ=ρµ0,0≤ρ≤n

E(µ×µ0)⊗tEµ0 |ρ̂t(s)− ρ(s)|2.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

We now fix µ0 = d−11 ∈ ∆(S) and define a convex setM := {0 ≤ ρ ≤ n : ρµ0 ∈ ∆(S)}.3 Then,

R∗ ≥ inf
ρ̂t

sup
µ=ρµ0,ρ∈M

E(µ×µ0)⊗tEµ0 |ρ̂t(s)− ρ(s)|2

=d−1 inf
ρ̂t

sup
µ∈M

E(µ×µ0)⊗t∥ρ̂t − ρ∥22.

For a sufficiently small ϵ to be determined, we can choose ρ1, ρ2 ∈ M such that ∥ρ1 − ρ2∥2 ≥ 2ϵ.
Following Le Cam’s method, we construct a test φ̂t = argminm∈[2] ∥ρ̂t − ρm∥2. Then,

R∗ ≥d−1 inf
ρ̂t

1

2

2∑
m=1

ϵ2Pm(φ̂t ̸= m)

≥d−1ϵ2 inf
φ̂t

1

2

2∑
m=1

Pm(φ̂t ̸= m)

≥ ϵ
2

2d
(1− ∥P1 − P2∥TV) , (10)

where Pm = (µm × µ0)⊗t. By Pinsker’s inequality and properties of KL divergence,

2∥P1 − P2∥2TV ≤DKL(P1∥P2)

=tDKL(µ1 × µ0∥µ2 × µ0)

=t(DKL(µ1∥µ2)︸ ︷︷ ︸
H1

+DKL(µ
0
1∥µ0

2 |µ1))︸ ︷︷ ︸
H2

, (11)

where µ0
m is conditional distribution of s0 given s ∼ µm and (s, s0) ∼ µm × µ0. Recall that µ0 is

the aggregated distribution of agents’ distributions.

We proceed to construct ρ1, ρ2 and bound the KL divergence terms. Suppose d is even. Let

µm(s) = d−1 + d−3/2ϵ(−1)s+m, s ∈ [d],m ∈ [2].

Let ϵ ≤
√
d. One can verify that µm ∈ ∆(S) and

∥ρ1 − ρ2∥2 = d∥µ1 − µ2∥2 = d · 2d−3/2ϵ ·
√
d = 2ϵ.

Further, let ϵ ≤
√
d/2. Then, for the first KL divergence term, we bound it using the chi-square

divergence:

H1 ≤ χ2(µ1∥µ2) =

d∑
s=1

(µ1(s)− µ2(s))
2

µ2(s)
≤

d∑
s=1

4d−3ϵ2

d−1/2
= 8d−1ϵ2.

For the second KL divergence term, we first have the decomposition of µ0 = 1
nµm + n−1

n µ′
m, for

m ∈ [2], where µ′
m is the aggregated distribution of all agents except agent i and is independent of

µm. Then, the conditional distribution given s ∼ µm is simply µ0
m = 1

nδs +
n−1
n µ′

m, for m ∈ [2]. If
n ≤ 1, then µ0

1 = µ0
2 and H2 = 0. Thus, we consider n ≥ 2. By the convexity of KL divergence and

Jensen’s inequality,

H2 ≤
1

n
DKL(δs∥δs |µ1) +

n− 1

n
DKL(µ

′
1∥µ′

2 |µ1) =
n− 1

n
DKL(µ

′
1∥µ′

2).

Again, bounding it by chi-square divergence gives

H2 ≤
n− 1

n

d∑
s=1

(µ′
1(s)− µ′

2(s))
2

µ′
2(s)

.

Notice that

µ0 =
1

n
µ1 +

n− 1

n
µ′
1 =

1

n
µ2 +

n− 1

n
µ′
2 =⇒ (µ′

1 − µ′
2)

2 =

(
µ1 − µ2

n− 1

)2

=
4d−3ϵ2

(n− 1)2
.

3Here ρµ0 is the element-wise product as we treat them as functions on S.
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Together with µ′
2(s) = d−1 − 1

n−1d
−3/2ϵ(−1)s ≥ d−1/2, we have

H2 ≤
8d−1ϵ2

n(n− 1)
≤ 4d−1ϵ2.

Plugging H1 and H2 back into (11) and combining (10) gives

R∗ ≥ ϵ2

2d

(
1− ϵ

√
6t

d

)
. (12)

We are left to determine ϵ. There are two cases. The first is that δenv ≤ 1
4
√
6t

, i.e., µ is close to µ0, or
we do not have many samples. In this case, one would constrain the estimator to get a smaller error.
Note that

∥µm − µ0∥TV =
1

2
d · d−3/2ϵ, m ∈ [2].

Thus, pushing µ1 and µ2 to the boundary of the ball
{
µ : ∥µ− µ0∥TV ≤ δenv

}
gives ϵ = 2δenv

√
d.

Plugging this into (12) gives

R∗ ≥ 2δ2env(1− 2δenv
√
6t) ≥ δ2env.

The second case is that δenv > 1
4
√
6t

, where we need to make µ1 and µ2 closer to make their

discrimination harder. In this case, we set ϵ = 1
2

√
d
6t . Then ∥µm − µ0∥TV = 1

4
√
6t
< δenv so µ1 and

µ2 are feasible. Plugging ϵ into (12) gives

R∗ ≥ 1

96t
.

Combining the two cases gives
R∗ ≥ min{δ2env, (96t)−1}.

C.4 DENSITY RATIO ESTIMATION

This subsection first shows that DRE with linear parametrization is a special variant of (2) and then
discusses several environment affinity structures that help circumvent the lower bound in Theorem 2
and enable affinity-based variance reduction in DRE.

A linear parametrization of density ratio (Sugiyama et al., 2012) takes the form ρi(s) = ψ(s)T ηi∗
for all i ∈ [n], where ψ(s) ∈ Rd

+ is a measure basis and ηi∗ ∈ Rd
+ is the true weight. Let

Ψ(s) := ψ(s)ψ(s)T . Then,

Eµ0Ψ(s)ηi∗ =

∫
S
ψ(s)ρi(s)µ0(s)ds =

∫
S
ψ(s)µi(s)ds = Eµiψ(s).

Therefore, a simple stochastic fixed point iteration for (2) described in the paper (see also Example 2)
finds ηi∗ with an MSE of O(t−1), but the affinity-based variance reduction is unattainable because of
Theorem 2.

Alternatively, notice that ρi(s) − 1 directly measures the affinity between µi and µ0 and is the
quantity through which ρi enters the analysis. Thus, we can directly apply linear parametrization to
ρi(s)− 1 = ψ(s)T ηi∗. Then at time step t, ρ̂it = 1 + ψ(sit)

T ηit. The DRE problem becomes

Eµ0Ψ(s)ηi∗ =

∫
S
ψ(s)

(
ρi(s)− 1

)
µ0(s)ds =

∫
S
ψ(s)

(
µi(s)− µ0(s)

)
ds =: Eµi−µ0ψ′(s).

This problem formulation is easier to work with because ηi∗ ≈ 0 when µi ≈ µ0; in such cases,
regularization can be applied if it is known a priori that agents’ environments are similar.

Theoretically, this regularization will not work if our prior knowledge of environment similarity is
measured in total variation distance, i.e., δenv, due to Theorem 2. Nonetheless, several other affinity
structures can help.
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Example 1 (Sparsity). ηi∗ encodes the difference between µi and µ0 (recall that in the tabular case,
ηi∗(s) = ρi(s) − 1 = (µi(s) − µ0(s))/µ0(s); see Appendix C.2). If µi and µ0 differ only in a
few dimensions, i.e., ηi∗ is δenvd-sparse such that ∥ηi∗∥0 ≤ δenvd, then we can use ℓ0-constrained
or ℓ1-regularized least squares to estimate ηi∗, which can be calculated efficiently online and has a
standard MSE of Õ(κ2t−1 · δenvd).
Example 2 (Coupling). Suppose DRE uses coupled samples from µi and µ0, such that P (sit = s0t ) =
1− δenv. Note that P (sit = s0t ) ≤ 1− ∥µi − µ0∥TV and the equality is attained when µi and µ0 are
optimally coupled. Then, a simple fixed-point iteration

ηit+1 = ηit − α
ρ
t g

i,ρ
t (ηit) := ηit − α

ρ
t

(
Ψ(s0t )η

i
t − (ψ(sit)− ψ(s0t ))

)
with a properly chosen step size αρ

t = Õ(t−1) has an MSE of Õ(κ2t−1 · δenv).

Proof. We only need to show that the update is monotone and its variance at the fixed point enjoys
affinity-based variance reduction; then the result follows from standard stochastic approximation
analysis (see e.g., Appendix E). First, we have

Egi,ρt (ηit) = Eµ0Ψ(s)ηit − Eµi−µ0ψ′(s) = Ψ̄0(ηit − ηi∗).
The montonicity follows from 〈

∆ηit, Ψ̄
0∆ηit

〉
≥ λmin(Ψ̄

0)∥∆ηit∥2.

For the variance, without loss of generality, we assume normalized feature ∥ψ(s)∥ ≤ 1. Then,

E∥gi,ρt (ηi∗)∥2 =E∥Ψ(s0t )η
i
∗ − (ψ(sit)− ψ(s0t ))∥2

=E∥ψ(s0t )(ρi(sit)− 1)− (ψ(sit)− ψ(s0t ))∥2

≤2E∥ψ(s0t )(1− ρi(s0t ))∥2 + 2E∥ψ(sit)− ψ(s0t )∥2

≤2χ2(µi, µ0) + 2 · 4P (sit ̸= s0t )

≤2∥ρi∥∞∥µi − µ0∥TV + 8(1− P (sit = s0t ))

=O(δenv).

These examples indicate that DRE requires a stricter affinity measure to achieve affinity-based variance
reduction. To enable maximum generality, we make the following assumption.
Assumption 1 (DRE oracle). We assume access to a DRE oracle that returns an estimate weight ηit or
density ratio ρ̂it such that |ρ̂it(s)− ρi(s)| = O(1) throughout the learning process and

E∥ρ̂it(s)− ρi(s)∥2 = Õ((κρ)2t−1 ·max{n−1, δ̃icen}), (13)

where κρ captures the conditioning of the DRE problem.

Assumption 1 ensures that DRE does not become a bottleneck for achieving affinity-based speedup.
Our analysis incorporates asynchronous DRE through Assumption 1; see Appendix G.

C.5 NOISE ALIGNMENT

We first establish the trivial bound of the stochastic condition number (noise alignment constant)
defined in Definition 3. In this subsection, we omit the agent index i for simplicity and generality.
For a general stochastic matrix A(s), recall its stochastic condition number is

ν := ∥D̄Ā−1∥,

where Ā = EA(s), D̄ = ED(s), and D(s) =
√
A(s)TA(s). For the upper bound, we have

ν ≤ ∥D̄∥∥Ā−1∥.
The “numerator” satisfies

∥D̄∥ = ∥ED(s)∥ ≤ E∥D(s)∥ = Eσmax(D(s)) = Eσmax(A(s)) ≤ GA,
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where we use the polar decomposition A(s) = U(s)D(s), where U(s) is an orthogonal matrix, and
thus A(s) and D(s) share the same singular values. The “denominator” satisfies ∥Ā−1∥ = σ−1

min(Ā),
and we have

σmin(Ā)= min
∥x∥=1

∥Āx∥= min
∥x∥=1

∥Āx∥∥x∥ ≥ min
∥x∥=1

xT Āx= min
∥x∥=1

xT sym(Ā)x=λmin(sym(Ā)).

(14)
Note that λ ≥ λmin(sym(Ā)) and GA ≤ σ. Thus,

ν ≤ σ/λ = κ.

To illustrate the idea that ν−1 measures the alignment of noise in A(s), we describe one example
where ν−1 is small.
Example 3 (Misaligned noise). Suppose S = [0, 2π − ϵ] ⊂ R and A(s) = U(s)I ∈ R2×2, where
U(s) is a rotation matrix with angle s. Then, D(s) = I , D̄ = I , and

Ā =

∫ 2π−ϵ

0

(
cos s − sin s
sin s cos s

)
ds =

(
− sin ϵ cos ϵ− 1
1− cos ϵ − sin ϵ

)
= 2 sin ϵ

2

(
− cos ϵ

2 − sin ϵ
2

sin ϵ
2 − cos ϵ

2

)
,

whose smallest singular value is 2 sin ϵ
2 ≈ ϵ when ϵ > 0 is small. Thus, ν → ∞ and ν−1 → 0 as

ϵ→ 0. This is an example where the orientation of A(s) is uniformly random, and thus the noise is
completely misaligned.

We then give several examples where the noise is well-aligned and the stochastic condition number ν
equals or is close to 1.
Example 4 (Constant orientation). Suppose A(s) = UD(s) for all s ∈ S, where U is a constant
orthogonal matrix and D(s) ⪰ 0. Then, Ā = UD̄ and ν = 1.
Example 5 (Positive semi-definite matrix). Suppose A(s) ⪰ 0 for all s ∈ S. Then, D(s) = A(s)
and ν = 1.
Example 6 (Low rank feature embedding). Suppose the feature embedding matrix A(s) has a low-
rank structure: A(s) = (ϕ(s) − γψ(s))ϕT (s), where ϕ(s), ψ(s) ∈ Rd are two normalized feature
maps such that ∥ϕ(s)∥ = ∥ψ(s)∥ = 1 and ϕ(s) d

= ψ(s) for all s ∈ S. This is the case of temporal
difference learning with linear function approximation (Bhandari et al., 2018), where γ is the reward
discount factor. Then, ν ≤ 1+γ

1−γ .

Proof. We have

D(s)2 =ϕ(s)ϕ(s)T
(
ϕ(s)Tϕ(s)− 2γϕ(s)Tψ(s) + γ2ψ(s)Tψ(s)

)
=ϕ(s)ϕ(s)T (ϕ(s)− γψ(s))T (ϕ(s)− γψ(s)),

which implies

D(s) =
∥ϕ(s)− γψ(s)∥
∥ϕ(s)∥

ϕ(s)ϕ(s)T ⪯ (1 + γ)ϕ(s)ϕ(s)T .

On the other hand,

A(s) ⪰ ϕ(s)ϕ(s)T − γ

2
(ϕ(s)ϕ(s)T + ψ(s)ψ(s)T )

d
= (1− γ)ϕ(s)ϕ(s)T .

Thus,

Ā ⪰ (1− γ)E[ϕ(s)ϕ(s)T ] ⪰ 1− γ
1 + γ

D̄,

which gives

D̄Ā−1 ⪯ 1 + γ

1− γ
I.

Thus, ν ≤ 1+γ
1−γ .

Remark 2. While strict normalization ∥ϕ(s)∥ = ∥ψ(s)∥ = 1 is required to show ν ≤ 1+γ
1−γ ,

Lemma D.2, the only place where ν is directly used, also holds with ∥ϕ(s)∥, ∥ψ(s)∥ ≤ 1. That is,
we define ν for interpretability and ease of calculation, but it can be relaxed in certain cases.
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Example 7 (Multiplicative noise). Suppose the noise is multiplicative: A(s) = (I + U(s))Ā, where
U(s) is zero-mean and ∥U(s)∥ ≤ ϵ for all s ∈ S. Then, ν ≤ 1 + ϵ.

Proof. We have

D(s)2 = ĀT (I + U(s))T (I + U(s))Ā ⪯ (1 + ϵ)2ĀT Ā

=⇒ Ā−TD(s)2Ā−1 ⪯ (1 + ϵ)2I

=⇒ ν = ∥ED(s)Ā−1∥ ≤ 1 + ϵ,

Finally, we refer readers to Lemma D.2, which illustrates how noise alignment affects the translation of
the raw affinity into an effective affinity for variance reduction. Intuitively, when Ā is ill-conditioned,
a small perturbation in the objective can lead to a large perturbation in the solution. Then, if A(s)
does not align well with Ā, the large perturbation in the solution may be further amplified by the large
eigenvalues of A(s), leading to a large variance in the update direction. On the other hand, when A(s)
aligns well with Ā, the perturbation in the solution is only stretched by the small eigenvalues in A(s),
maintaining a similar magnitude to the objective perturbation and preventing noise amplification in
the ill-conditioned subspace.

C.6 APPLICATION TO REINFORCEMENT LEARNING

This subsection gives a concrete application of our method to the policy evaluation problem in
reinforcement learning (RL) resulting in personalized collaborative temporal difference (TD) learning.

Heterogeneous federated RL has garnered traction recently (Zhang et al., 2024; Wang et al., 2024;
Xiong et al., 2024) due to its practicality by accommodating heterogeneity in multi-agent decision-
making. However, existing works either fail to personalize and hence only work well in low
heterogeneity regimes (Wang et al., 2024; Zhang et al., 2024), or deliver slower convergence rates
(Xiong et al., 2024). Our framework encompasses the setting of heterogeneous federated RL and
our method provides the first personalized collaborative reinforcement learning algorithm that
accommodates arbitrary heterogeneous agents while achieving affinity-based variance reduction.

Consider n agents with distinct Markov reward processes (O, P i, Ri, γ), where O is the state
space, P i is the transition kernel induced by agent i’s behavior policy, Ri : O × O → R is the
reward function, and γ ∈ [0, 1) is the discount factor. Following (Bhandari et al., 2018), we write
Ri(o) = E[Ri(oih, o

i
h+1) | oih = o]. Agents want to evaluate their behavior policies by calculating

their infinite horizon value functions V i(s) = E[
∑∞

h=0 γ
hRi(oih) | oi0 = 0], where oih+1 ∼ P i(· | oih).

With a linear function approximation V i(o) ≈ ϕ(o)Txi∗ for some xi∗ ∈ Rd, the expected projected
Bellman equation can be cast into (2) as

Ei[ϕ(s)(ϕ(s)− γϕ(s′))T︸ ︷︷ ︸
A(s,s′)

]xi∗ = Ei[ϕ(s)Ri(s, s′)︸ ︷︷ ︸
bi(s,s′)

], (15)

where Ei = Es∼µi,s′∼P i(· | s). The stochastic residual of (15) is the TD error, and the corre-
sponding fixed point iteration gives the TD(0) algorithm. Specifically within our framework,
each observation tuple is sit = (oiht

, oiht+1),
4 A(sit) = ϕ(oiht

)(ϕ(oiht
)T − γϕ(oiht+1)

T ), bi(sit) =

ϕ(oiht
)Ri(oiht

, oiht+1), and the environment distribution is µi(o, o′) = πi(o)× P i(o′ | o), where πi

is the stationary distribution of the agent i’s transition kernel. Then git(x
i
t) represents the TD error

and AffPCL (8) gives personalized collaborative TD(0).

With a normalized feature map ∥ϕ(o)∥ ≤ 1 and constants Gx ≥ max{maxi∈[n] ∥xi∗∥, ∥xc∗∥},
Gb ≥ maxi∈[n] ∥Ri∥∞, we have GA ≤ 1 + γ ≤ 2 and σ ≤ 2max{(1 + γ)Gx, Gb} ≲ Gx + Gb.
As shown in Bhandari et al. (2018, Lemma 3), λi ≥ (1 − γ)λmin(Eπi [ϕ(s)ϕ(s)T ]). As shown in
Example 6, the stochastic condition number in this example is ν ≤ 1+γ

1−γ ≤ 2(1− γ)−1. Therefore,

4Here we assume an offline RL setting where we have i.i.d. samples from a pre-collected dataset consisting
of observation tuples (oih, o

i
h+1 ∼ P i(· | oih), Ri(oih, o

i
h+1)).
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by Theorem 1, the sample complexity of personalized collaborative TD(0) reads

O

(
(Gx +Gb)

2

(1− γ)3(wi)2t
·max{n−1, δenv, δobj}

)
,

where wi := λmin(Eπi [ϕ(s)ϕ(s)T ]) and δenv, δobj represent kernel and reward heterogeneity levels,
respectively. This complexity matches the best known result for homogeneous federated TD learning
(Wang et al., 2024), while offering new insights in high heterogeneity regimes.

D PRELIMINARY LEMMAS

Lemma D.1 (Affinity). Given the universal scores δenv = maxi,j ∥µi − µj∥TV and δobj :=
maxi,j ∥θis − θjs∥2/(2Gb), along with the agent-specific scores δienv = ∥µi − µ0∥TV and δiobj =
∥θis − θ0s∥/(2Gb), we establish bounds on various parameter differences in terms of these scores.

(a) ∥bi(s)− bj(s)∥ ≤ 2Gbδobj, for any i, j ∈ [n0].

(b) ∥bi(s)− b0(s)∥ ≤ 2Gbδ
i
obj, for any i ∈ [n].

(c) ∥b̄i − b̄j∥ ≤ 2Gb(δenv + δobj), for any i, j ∈ [n0].

(d) ∥b̄i − b̄0∥ ≤ 2Gb min{1, δienv + δobj, δenv + δiobj}, for any i ∈ [n].
We thus define δicen := max

{
δienv, ∥b̄i − b̄0∥/(2Gb)

}
≤ min{1, δienv + δobj, δenv + δiobj}.

(e) ∥Eµj [bi(s)− bc(s)]∥ ≤ 2σδicen, where j ∈ {0, i}, for any i ∈ [n].

(f) (Naive) ∥θi∗ − θc∗∥ ≤ 2λ−1σ(δenv + δobj), for any i ∈ [n].

(g) ∥Āi − Āj∥ ≤ 2GAδenv, for any i, j ∈ [n0].

(h) ∥Āi − Ā0∥ ≤ 2GAδ
i
env, for any i ∈ [n].

(i) ∥Eµj [A(s)(xi∗ − xc∗)]∥ ≤ 2σδicen, where j ∈ {0, i}, for any i ∈ [n].

(j) (Naive) ∥xi∗ − xc∗∥ ≤ 2λ−1σ(δenv + δobj), for any i ∈ [n].

Proof. For Item (a), by the linear parametrization of the objective,

∥bi(s)− bj(s)∥ = ∥Φ(s)(θi∗ − θj∗)∥ ≤ ∥θi∗ − θj∗∥ ≤ 2Gbδobj, (16)

where we use the fact that ∥Φ(s)∥ ≤ 1 and the definition of δobj in Section 4. Item (b) follows from
the same argument with agent-specific score δiobj used.

For any function f such that ∥f(s)∥ ≤ Gf for all s ∈ S, and for all i ∈ [n], by Definition 2,

∥Eµif(s)− Eµjf(s)∥ =
∥∥∥∥∫

S
f(s)(µi(s)− µj(s))ds

∥∥∥∥
≤2Gf∥µi − µj∥TV

≤
{
2Gfδenv, j ∈ [n]

2Gfδ
i
env, j = 0

. (17)

This bound first gives Item (g) and Item (h) by letting f(s) = A(s) and Gf = GA.

Then, combining (16) and (17) with f(s) = bi(s) and Gf = Gb gives Item (c):

∥b̄i − b̄j∥ = ∥Eibi(s)− Eibj(s) + Eibj(s)− Ejbj(s)∥ ≤ 2Gbδobj + 2Gbδenv = 2Gb(δobj + δenv).
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Specifically for the difference between the personalized and central expected objectives, we have

∥b̄i − b̄0∥ =

∥∥∥∥∥∥Eibi(s)− 1

n

n∑
j=1

Ejbj(s)

∥∥∥∥∥∥
=

∥∥∥∥∥∥Eibi(s)− 1

n

n∑
j=1

(
Eibj(s)− Eibj(s) + Ejbj(s)

)∥∥∥∥∥∥
≤∥Ei[bi(s)− b0(s)]∥+ 1

n

n∑
j=1

∥(Ei − Ej)[bj(s)]∥

≤2Gbδ
i
obj + 2Gbδenv.

Similarly, we have

∥b̄i − b̄0∥ =

∥∥∥∥∥∥Eibi(s)− 1

n

n∑
j=1

(
Ejbi(s)− Ejbi(s) + Ejbj(s)

)∥∥∥∥∥∥
≤∥(Ei − E0)[bi(s)]∥+ 1

n

n∑
j=1

∥Ej [bi(s)− bj(s)]∥

≤2Gbδobj + 2Gbδ
i
env.

The above two bounds give Item (d).

We then look at the naive bounds Items (f) and (j) on the difference between optimal solutions. For
any i, j ∈ [n], we have

Āi(xi∗ − xj∗) + (Āi − Āj)xj∗ − (b̄i − b̄j) = 0,

which gives
∥xi∗ − xj∗∥2 ≤ ∥(Āi)−1∥2

(
∥Āi − Āj∥2∥xj∗∥2 + ∥b̄i − b̄j∥2

)
.

Combining the previous bounds on system parameter differences gives

∥xi∗ − xj∗∥2 ≤ σ−1
min(Ā

i)(2GAδenv ·Gx + 2Gb(δobj + δenv)) ≤ σ−1
min(Ā

i) · 2σ(δobj + δenv).

The above bound also holds for the difference between the personalized solution and the central
solution satisfying Ā0xc∗ = b̄0. Specifically, the same argument gives

∥xi∗ − xc∗∥2 ≤ σ−1
min(Ā

0) · 2σ(δobj + δenv).

Let λ := mini∈[n] min{λmin(sym(Āi)), λmin(sym(Φ̄i))}; (14) gives Item (j), and a similar argu-
ment gives Item (f). Notably, the upper bound of the optimal solution difference scales with λ−1,
which can be large when Āi is ill-conditioned. This indicates that the affinity in objectives or
environments do not translate well to the affinity in optimal solutions.

Fortunately, the bound is tamer when the optimal solutions are left-applied by Āi:

∥Āi(xi∗ − xc∗)∥2 =∥Āixi∗ − Ā0xc∗ + (Āi − Ā0)xc∗∥2 = ∥b̄i − b̄0 + (Āi − Ā0)xc∗∥2
≤2Gbδ

i
cen + 2GAδ

i
env ·Gx ≤ 2σδicen.

Left-applying Ā0 gives the same bound, thus giving Item (i). Item (e) can be derived similarly.
Items (e) and (i) are saying that the affinity is well-preserved in the feature space, i.e., the image of
the feature embedding matrix. This is also a key to our analysis: we will never directly bound the
difference between optimal solutions, but always inspect them in the feature space.

Lemma D.2 (Effective affinity). Denote δ̃icen = min
{
1, νδicen

}
. Then,

Eµi∥A(s)(xi∗ − xc∗)∥2 ≤ 2σ2δ̃icen,

Eµi∥Φ(s)(θi∗ − θc∗)∥2 ≤ 2σ2δ̃icen,
∀i ∈ [n].
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Proof. We only prove the first inequality; the second one can be proved similarly. We have

Ei∥A(s)(xi∗ − xc∗)∥2 =(xi∗ − xc∗)TEi[A(s)TA(s)](xi∗ − xc∗)
=(xi∗ − xc∗)TEi[D(s)2](xi∗ − xc∗)
≤∥xi∗ − xc∗∥∥D(s)∥∞∥Ei[D(s)(xi∗ − xc∗)∥
≤2GAGx∥D̄i(xi∗ − xc∗)∥
=2GAGx∥D̄i(Āi)−1Āi(xi∗ − xc∗)∥
≤2GAGxν∥Āi(xi∗ − xc∗)∥
≤2GAGxν · 2σδicen,

where the last inequality follows from Item (i) in Lemma D.1. On the other hand, by the trivial bound,
we have

Ei∥A(s)(xi∗ − xc∗)∥2 ≤ (2GAGx)
2.

Combining the two bounds gives

Ei∥A(s)(xi∗ − xc∗)∥2 ≤ 2σ2 min
{
1, νδicen

}
≤ 2σ2δ̃icen.

Lemma D.3. For any two distributions µ, µ′ over S, we have
χ2(µ, µ′) ≤ max {∥µ/µ′∥∞, 1} ∥µ− µ′∥TV.

Proof. Let S0 := {s ∈ S : µ(s) ≥ µ′(s)}. We have

χ2(µ, µ′) =

∫
S

(
1− µ(s)

µ′(s)

)2

µ′(s) ds

=

(∫
S0

+

∫
Sc
0

)(
1− µ(s)

µ′(s)

)2

µ′(s) ds

≤
∫
S0

(
µ(s)

µ′(s)
− 1︸ ︷︷ ︸

≥0

)
(µ(s)− µ′(s)︸ ︷︷ ︸

≥0

) ds+

∫
Sc
0

(
1− µ(s)

µ′(s)︸ ︷︷ ︸
≥0,≤1

)
(µ′(s)− µ(s)︸ ︷︷ ︸

≥0

) ds

≤(max {∥µ/µ′∥∞, 1} − 1)∥µ− µ′∥TV + ∥µ− µ′∥TV

=max {∥µ/µ′∥∞, 1} ∥µ− µ′∥TV.

Lemma D.4 (Uni-timescale Lyapunov analysis for asynchronous learning). Consider asynchronous
learning of multiple decision variables zkt , k ∈ [K], which satisfies the following one-step contraction:

E∥∆zkt ∥2 ≤ (1− 3
2α

k
t λ

k)E∥∆zkt ∥2 + (αk
t )

2Ck + αk
t

k−1∑
k′=1

Ck,k′
E∥∆zk

′

t ∥2, k = 1, . . . ,K.

That is, the convergence of zkt also depends on the other decision variables zk
′

t , k′ < k. αk
t is the

step size for zkt ; we set them using a unified effective step size αt:

αk
t λ

k = αt < 1, k = 1, . . . ,K.

Let

wK = 1, wk = 2

K∑
k′=k+1

wk′
Ck′,k(λk

′
)−1, k = 1, . . . ,K − 1.

Consider the following overall Lyapunov function:

Lt =

K∑
k=1

wkE∥∆zkt ∥2.

Then, we have

Lt+1 ≤ (1− αt)Lt + α2
t

K∑
k=1

wkCk(λk)−2.
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Proof. By definition, we have

Lt+1 =

K∑
k=1

wkE∥∆zkt+1∥2

≤
K∑

k=1

wk

(
(1− 3

2α
k
t λ

k)E∥∆zkt ∥2 + (αk
t )

2Ck + αk
t

k−1∑
k′=1

Ck,k′
E∥∆zk

′

t ∥2
)

=

K∑
k=1

((
wk(1− 3

2α
k
t λ

k) +

K∑
k′=k+1

wk′
αk′

t C
k′,k

)
E∥∆zkt ∥2 + wk(αk

t )
2Ck

)
(18)

=

K∑
k=1

((
wk(1− 3

2αt) +
1
2w

kαt1{k<K}
)
E∥∆zkt ∥2 + wk(αk

t )
2Ck

)
(19)

≤
K∑

k=1

(
(1− αt)w

kE∥∆zkt ∥2 + wk(αk
t )

2Ck
)

=(1− αt)Lt + α2
t

K∑
k=1

wkCk(λk)−2,

where (18) follows from rearranging the summation and grouping the coefficients of E∥∆zkt ∥2, and
(19) follows from the definition of wk and αk

t .

Lemma D.5 (Constant and diminishing step size). Suppose we have the following one-step contrac-
tion:

Lt+1 ≤ (1− αt)Lt + α2
tC.

Then, with a constant step size α = ln t/t, we have

Lt = O

(
C ln t

t

)
.

With a linearly diminishing step size ατ = 4/((τ + t0 + 1)), τ = 0, . . . , t, the following convex
combination

L̃t =

t∑
τ=0

τ + t0∑t
τ=0(τ + t0)

Lτ

satisfies

L̃t = O

(
C

t

)
.

Proof. With a constant step size α = ln t/t, telescoping the one-step contraction gives

Lt ≤(1− α)tL0 + α−1 · α2C ≤ e−αtL0 + αC =
L0 + C ln t

t
= O

(
C ln t

t

)
.

With a linearly diminishing step size ατ = 4/((τ + t0 + 1)), τ = 0, . . . , t, the one-step contraction
first gives

1

2
Lτ ≤

(
1

ατ
− 1

2

)
Lτ −

1

ατ
Lτ+1 + ατC =

t0 + τ − 1

4
Lτ −

t0 + τ + 1

4
Lτ+1 +

4C

t0 + τ + 1
.
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Thus, the convex combination satisfies

L̃t =
2

(t+ 1)(t+ 2t0)

t∑
τ=0

(τ + t0)

(
t0 + τ − 1

4
Lτ −

t0 + τ + 1

4
Lτ+1 +

4C

t0 + τ + 1

)

=
1

2(t+ 1)(t+ 2t0)

t∑
τ=0

((t0 + τ − 1)(t0 + τ)Lτ − (t0 + τ)(t0 + τ + 1)Lτ+1)

+
8C

(t+ 1)(t+ 2t0)

t∑
τ=0

t0 + τ

t0 + τ + 1

=
1

2(t+ 1)(t+ 2t0)
((t0 − 1)t0L0 − (t0 + t)(t0 + t+ 1)Lt+1)

+
8C

(t+ 1)(t+ 2t0)

t∑
τ=0

t0 + τ

t0 + τ + 1

≤ t
2
0L0

2t2
+

8Ct

t2

=O

(
C

t

)
.

The convex combination removes the logarithmic dependence, and the t0 dependency diminishes
quadratically.

E ANALYSIS OF CENTRAL OBJECTIVE ESTIMATION

This section directly considers central objective estimation (COE) with environment heterogeneity in
Section 5, which covers Section 4 as a special case. We restate the learning problem in (6):

Φ̄0θc∗ = b̄0,

where Φ̄0 = Eµ0 [Φ(s)], µ0 = 1
n

∑n
i=1 µ

i, and b̄0 = 1
n

∑n
i=1 Eµibi. Recall that ∥Φ(s)∥2 ≤ 1 for all

s ∈ S. The COE algorithm is

θct+1 = θct − αb
tg

0,b
t (θct ), (20)

where

g0,bt (θct ) =
1

n

n∑
i=1

gi,bt (θct ), gi,bt (θct ) = Φ(sit)θ
c
t − bit.

The additional superscript b distinguishes the objective estimation parameters from other learning
modules. We denote ∆θct = θct − θc∗.

The one-step mean squared error (MSE) dynamics of (20) can be decomposed as

E∥∆θct+1∥2 = E∥∆θct∥2 − 2αb
tE⟨g

0,b
t (θct ),∆θ

c
t ⟩+ (αb

t)
2E∥g0,bt (θct )∥2. (21)

We first analyze the cross term, then the variance term, and finally combine them to give the one-step
progress. The analysis of other learning modules follows a similar pattern.

Lemma E.1 (COE descent). Let λb := λmin(sym(Φ̄0)). The cross term in (21) satisfies

E⟨∆θct , g
0,b
t (θct )⟩ ≥ λbE∥∆θct∥2.
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Proof. We use the following shorthand notation: Et := Esjt∼µj ,j∈[n], E
i
t := Esit∼µi , and EFt−1

:=

E[· | Ft−1], where Ft−1 is the history filtration up to time step t− 1. The cross term satisfies

E⟨∆θct , g
0,b
t (θct )⟩ =EFt−1

[〈
Et[g

0,b
t (θct )],∆θ

c
t

〉]
=EFt−1

[〈
1

n

n∑
i=1

Ei
t[Φ(s)θ

c
t − bi(s)],∆θct

〉]

=EFt−1

[〈
Eµ0 [Φ(s)]θct −

1

n

n∑
i=1

Eµi [bi(s)],∆θct

〉]
=EFt−1

[〈
Φ̄0θct − b̄0,∆θct

〉]
.

Note that the solution θc∗ satisfies Φ̄0θc∗ − b̄0 = 0. Thus,

E⟨∆θct , g
0,b
t (θct )⟩ =EFt−1

[〈
(Φ̄0θct − b̄0)− (Φ̄0θc∗ − b̄0),∆θct

〉]
=EFt−1

[〈
Φ̄0∆θct ,∆θ

c
t

〉]
≥λmin(sym(Φ̄0))E∥∆θct∥2.

Lemma E.2 (COE variance). The variance term in (21) satisfies

E∥g0,bt (θct )∥2 ≤ 2E∥∆θct∥2 + 2σ2n−1.

Proof. The variance term can be first decomposed as

E∥g0,bt (θct )∥2 = E∥ 1n
∑n

i=1 Φ
i
t(θ

c
t − θc∗) + g0,bt (θc∗)∥2 ≤ 2E∥∆θct∥2 + 2E∥g0,bt (θc∗)∥2,

where we use the fact that ∥Φi
t∥ ≤ 1. The second term can be further decomposed as

E∥g0,bt (θc∗)∥2 =
1

n2

n∑
i=1

Et∥gi,bt (θc∗)∥2︸ ︷︷ ︸
H1

+
1

n2

∑
i ̸=j

⟨Ei
tg

i,b
t (θc∗),E

j
tg

j,b
t (θc∗)⟩︸ ︷︷ ︸

H2

.

H1 enjoys linear variance reduction:

H1 =
1

n2

n∑
i=1

Et∥Φi
tθ

c
∗ − bit∥2 ≤

1

n2
· n(2Gb)

2 ≤ σ2

n
.

The cross term H2 involves all pairs of independent local update directions. However, since each
local update direction in H2 is evaluated at the central solution, its expectation is not zero. One
solution is to notice that gi,bt is Lipschitz continuous in its argument. Thus, we have ∥Ei

tg
i,b
t (θc∗)∥ =

∥Ei
t[g

i,b
t (θc∗) − gi,bt (θi∗)]∥ = O(∥θi∗ − θc∗∥) = O(δenv + δobj). However, this will introduce an

affinity-dependent term in the variance. We adopt a more “federated” approach:

H2 =
1

n2

n∑
i=1

〈
Ei
tg

i,b
t (θc∗),

n∑
j=1,j ̸=i

Ej
tg

j,b
t (θc∗)

〉

=
1

n2

n∑
i=1

〈
Ei
tg

i,b
t (θc∗),

n∑
j=1

Ej
tg

j,b
t (θc∗)− Ei

tg
i,b
t (θc∗)

〉

=
1

n2

〈
n∑

i=1

Ei
tg

i,b
t (θc∗),

n∑
j=1

Ej
tg

j,b
t (θc∗)

〉
− 1

n2

n∑
i=1

∥Ei
tg

i,b
t (θc∗)∥2

= ∥Φ̄0θc∗ − b̄0∥2︸ ︷︷ ︸
=0

− 1

n2

n∑
i=1

∥Ei
tg

i,b
t (θc∗)∥2︸ ︷︷ ︸

=O(n−1),≥0

≤0.
We see that by analyzing the cross terms collectively, we obtain a much tighter bound that does not
depend on the affinity. Plugging the bounds of H1 and H2 back gives the desired result.
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Combining Lemmas E.1 and E.2 with (21) gives the one-step progress of COE.

Corollary E.1 (COE one-step progress). Let αb
t ≤ λb/4. Then, for any time step t, (20) satisfies

E∥∆θct+1∥22 ≤ (1− 3
2α

b
tλ

b)E∥∆θct∥2 + 2(αb
t)

2σ2n−1.

Combining Corollary E.1 and Lemmas D.4 and D.5 gives the convergence guarantee of COE.

Corollary E.2 (COE convergence). With a constant step size αb = ln t/(tλb), for any time step
t > 0, (20) satisfies

E∥θct − θc∗∥2 = O

(
σ2 ln t

(λb)2nt

)
.

With a linearly diminishing step size αb
τ = 4/((τ + t0 + 1)λb), τ = 0, . . . , t, where t0 > 0 ensures

that αb
0 ≤ λb/4, (20) satisfies

E∥θ̃ct − θc∗∥2 ≤ ˜E∥∆θct∥2 = O

(
σ2

(λb)2nt

)
,

where f̃t represents the convex combination specified in Lemma D.5, and we use Jensen’s inequality.

F ANALYSIS OF CENTRAL DECISION LEARNING

This section directly considers central decision learning (CDL) with environment heterogeneity and
asynchronous COE (20). CDL without COE is covered as a special case with zero estimation error.
We restate the learning problem (3) in Section 5:

Ā0xc∗ = b̄0,

where Ā0 = 1
n

∑n
i=1 EµiA(s) = Ā0 and b̄0 = 1

n

∑n
i=1 Eµibi(s) = Eµ0bc(s). We consider two

variants of CDL:
xct+1 = xct − αc

tg
0,c
t (xct), (22)

where

g0,ct (xct) =
1

n

n∑
i=1

git(x
c
t), gi,ct (xct) = Ai

tx
c
t − bit; (22-1)

or g0,ct (xct ; θ
c
t ) =

1

n

n∑
i=1

gc→i
t (xct ; θ

c
t ), gc→i

t (xct ; θ
c
t ) = Ai

tx
c
t − b̂ct(sit). (22-2)

The first variant (22-1) corresponds to the CDL algorithm (4) in the main text, where g0,ct is different
from the central update direction used in the personalized local learning module. In the second variant
(22-2), b̂ct(s) = Φ(s)θct is the estimated central objective function at time step t, and we highlight
this dependence by including θct in the arguments. As remarked in Appendix C.1, g0,ct in the second
variant (22-2) is consistent with the central update direction in the personalized local learning, and
thus saves some server-side computation and communication. We will show that both variants enjoy
the same convergence rate. The additional superscript c distinguishes the central learning parameters
from other learning modules. We denote ∆xct = xct − xc∗.

The one-step MSE dynamics of (22) can be decomposed as

E∥∆xct+1∥2 = E∥∆xct∥2 − 2αc
tE⟨g

0,c
t (xct),∆x

c
t⟩+ (αc

t)
2E∥g0,ct (xct)∥2. (23)

We first analyze the first variant (22-1), which is similar to the analysis of COE in Appendix E as it
does not involve the asynchronous COE error.

Lemma F.1 (CDL descent). Let λc := λmin(sym(Ā0)). With (22-1), the cross term in (23) satisfies

E⟨∆xct , g
0,c
t (xct)⟩ ≥ λcE∥∆xct∥2.
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Proof. Similar to the proof of Lemma E.1, the cross term satisfies

E⟨∆xct , g
0,c
t (xct)⟩ =EFt−1

[〈
1

n

n∑
i=1

Ei
t[A(s)x

c
t − bi(s)],∆xct

〉]
=EFt−1

[〈
Ā0xct − b̄0,∆xct

〉]
=EFt−1

[〈
(Ā0xct − b̄0)− (Ā0xc∗ − b̄0),∆xct

〉]
≥λmin(sym(Ā0))E∥∆xct∥2.

Lemma F.2 (CDL variance). With (22-1), the variance term in (23) satisfies

E∥g0,ct (xct)∥2 ≤ 2G2
AE∥∆xct∥2 + 2σ2n−1.

Proof. Similar to the proof of Lemma E.2, the variance term can be first decomposed as

E∥g0,ct (xct)∥2 = E∥ 1n
∑n

i=1A
i
t(x

c
t − xc∗) + g0,ct (xc∗)∥2 ≤ 2G2

AE∥∆xct∥2 + 2E∥g0,ct (xc∗)∥2,

where the second term can be further decomposed as

E∥g0,ct (xc∗)∥2 =
1

n2

n∑
i=1

Et∥git(xc∗)∥2 +
1

n2

∑
i ̸=j

⟨Ei
tg

i
t(x

c
∗),E

j
tg

j
t (x

c
∗)⟩

≤ 1

n
(GAGx +Gb)

2 +

∥∥∥∥∥ 1n
n∑

i=1

Ei
tg

i
t(x

c
∗)

∥∥∥∥∥
2

≤σ2n−1 + 0.

Combining Lemmas F.1 and F.2 with (23) gives the one-step progress of the first variant of CDL.
Corollary F.1 (CDL one-step progress). Let αc

t ≤ λc/(4G2
A). Then, for any time step t, (22-1)

satisfies

E∥∆xct+1∥22 ≤(1− 3
2α

c
tλ

c)E∥∆xct∥22 + 2(αc
t)

2σ2n−1.

Next, we analyze the second variant (22-2), which involves the asynchronous COE error.
Lemma F.3 (CDL +COE descent). With (22-2), the cross term in (23) satisfies

E⟨∆xct , g
0,c
t (xct ; θ

c
t )⟩ ≥ 7

8λ
cE∥∆xct∥2 − 2(λc)−1E∥∆θct∥2.

Proof. The cross term can be further decomposed as

E
〈
∆xct , g

0,c
t (xct ; θ

c
t )
〉

=EFt−1

〈
Etg

0,c
t (xct ; θ

c
t ),∆x

c
t

〉
=EFt−1

〈
Et

[
1

n

n∑
i=1

(gc→i(xct , θ
c
∗)− Φi

t(θ
c
t − θc∗))

]
,∆xct

〉
=EFt−1

〈
Eµ0 [A(s)]xct − Eµ0 [bc(s)],∆xct

〉
− EFt−1

〈
Eµ0 [Φ(s)]∆θct ,∆x

c
t

〉
=E

〈
Ā0xct − b̄0,∆xct

〉
− E

〈
Φ̄0∆θct ,∆x

c
t

〉
. (24)

The first term in (24) follows a descent direction; by the definition of xc∗,

E
〈
Ā0xct − b̄0,∆xct

〉
=E

〈
(Ā0xct − b̄0)− (Ā0xc∗ − b̄0),∆xct

〉
=E

〈
Ā0∆xct ,∆x

c
t

〉
≥λmin(sym(Ā0))E∥∆xct∥22. (25)

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

The second term in (24) involves the estimation error from COE; by the Cauchy-Schwarz inequality
and Young’s inequality,

|E⟨Φ̄0∆θct ,∆x
c
t⟩| ≤ E[∥∆θct∥∥∆xct∥] ≤

βc
2
E∥∆xct∥2 +

1

2βc
E∥∆θct∥2, (26)

where βc > 0 is a constant to be determined. Plugging (25) and (26) into (24) gives

E
〈
∆xct , g

0,c
t (xct)

〉
≥
(
λc − βc

2

)
E∥∆xct∥2 −

1

2βc
E∥∆θct∥2.

Setting βc = λc/4 gives the desired result.

Lemma F.4 (CDL +COE variance). With (22-2), the variance term in (23) satisfies

E∥g0,ct (xct ; θ
c
t )∥2 ≤ 2G2

AE∥∆xct∥2 + 4E∥∆θct∥2 + 4σ2n−1.

Proof. Similar to the proof of Lemma E.2, the variance term can be first decomposed as

E∥g0,ct (xct ; θ
c
t )∥2 = E∥g0,ct (xc∗, θ

c
∗) +A0

t (x
c
t − xc∗)− Φ0

t (θ
c
∗ − θc∗)∥2,

where we write A0
t = 1

n

∑n
i=1A

i
t and Φ0

t = 1
n

∑n
i=1 Φ

i
t. Therefore,

E∥g0,ct (xct ; θ
c
t )∥2 ≤ 2G2

AE∥∆xct∥2 + 4E∥∆θct∥2 + 4E∥g0,ct (xc∗, θ
c
∗)∥2.

Similarly, for the variance term at the stationary point, we have

E∥g0,ct (xc∗, θ
c
∗)∥2 =

1

n2

n∑
i=1

Et∥gc→i
t (xc∗, θ

c
∗)∥2 +

1

n2

∑
i̸=j

⟨Ei
tg

c→i
t (xc∗, θ

c
∗),E

j
tg

c→j
t (xc∗, θ

c
∗)⟩

≤σ2n−1 + ∥Ā0xc∗ − Φ̄0θc∗∥2

=σ2n−1.

Plugging this back gives the desired result.

Combining Lemmas F.3 and F.4 with (23) gives the one-step progress of the second variant of CDL.
Corollary F.2 (CDL +COE one-step progress). Let αc

t ≤ λc/(8G2
A). Then, for any time step t, (22-2)

satisfies

E∥∆xct+1∥22 ≤(1− 3
2α

c
tλ

c)E∥∆xct∥22 + 8αc
t(λ

c)−1E∥∆θct∥22 + 4(αc
t)

2σ2n−1,

where we use the fact that λc/GA ≤ 1, which implies αc
t ≤ (λc/GA)

2/(8λc) ≤ (λc)−1, and thus
αc
t(λ

c)−1 + (αc
t)

2 ≤ 2αc
t(λ

c)−1.

Combining Corollaries E.1 and F.2 and Lemmas D.4 and D.5 gives the convergence guarantee of
CDL with asynchronous COE.
Corollary F.3 (CDL convergence). With a constant step size αcλc = αbλb = ln t/t, for any time step
t > 0, (22) satisfies

E∥xct − xc∗∥2 =


O

(
σ2 ln t

(λc)2nt

)
for (22-1);

O

(
σ2 ln t

(λbλc)2nt

)
for (22-2) with (20).

With a linearly diminishing step size αc
τλ

c = αb
τλ

b = 4/(τ + t0 + 1), τ = 0, . . . , t, where t0 > 0
ensures that αb

0 ≤ λc/(8G2
A) and αb

0 ≤ λb/4, (22) satisfies

E∥x̃ct − xc∗∥2 =


O

(
σ2

(λc)2nt

)
for (22-1);

O

(
σ2

(λbλc)2nt

)
for (22-2) with (20),

where x̃t represents the convex combination specified in Lemma D.5.
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Proof. Corollaries E.1 and F.2 fit into Lemma D.4 with z1t = θct and z2t = xct , along with αt =
αb
tλ

b = αc
tλ

c and

C1 = 2σ2n−1, C2 = 4σ2n−1, C2,1 = 8(λc)−1.

Thus,

E∥∆xct+1∥2 + 16(λc)−2E∥∆θct+1∥2

≤(1− αt)
(
E∥∆xct∥2 + 16(λc)−2E∥∆θct∥2

)
+ α2

t

(
2σ2

(λc)2n
+

64σ2

(λcλb)2n

)
≤(1− αt)

(
E∥∆xct∥2 + 16(λc)−2E∥∆θct∥2

)
+ α2

t

66σ2

(λbλc)2n
,

where the last inequality uses the fact that λb ≤ ∥Φ̄0∥ ≤ 1. Plugging the above Lyapunov function
into Lemma D.5 gives the desired results.

G ANALYSIS OF PERSONALIZED COLLABORATIVE LEARNING

This section analyzes the local component of personalized collaborative learning (AffPCL), with
environment heterogeneity, asynchronous COE, and asynchronous DRE that satisfies Assumption 1.
The learning problem is the most general form in (2):

Āixi∗ = b̄i, ∀i ∈ [n],

where Āi = EµiA(s) and b̄i = Eµibi(s). We restate the local update rule for agent i:

xit+1 = xit − αtg̃
i
t = xit − αt(g

i
t(x

i
t) + gc⇒i

t (xct ; θ
c
t , η

i
t)− gc→i

t (xct ; θ
c
t )), (27)

where

gc→i
t (x) = A(sit)x− b̂ct(sit).

and

gc⇒i
t (x) =

1

n

n∑
j=1

ρ̂it(s
j
t )g

c→j
t (x).

Recall that b̂ct and ρ̂it are estimated objective and density ratio functions at time step t; and with linear
parametrization, they satisfy

b̂ct(s) = Φ(s)θct , ρ̂it(s) = ψ(s)T ηit.

Thus, we highlight the dependence on estimation weights by including θct and ηit in the arguments of
update directions. We denote ∆xit = xit − xi∗.

We first show that the local update rule follows an unbiased direction towards the local solution plus
estimation errors.

Lemma G.1 (Correction). The expected local update direction satisfies

E[g̃it] = E[git(xit)] + E[E(∆ηit,∆xct ,∆θct )],

where

∥E[E(∆ηit,∆xct ,∆θct )]∥ = O(σ∥∆ηit∥+GA∥∆xct∥+ ∥∆θct∥).
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Proof. We first inspect the importance-corrected term:

E[gc⇒i
t (xct ; θ

c
t , η

i
t)]

=E

 1

n

n∑
j=1

ρ̂it(s
j
t )(A(s

j
t )x

c
t − b̂ct(s

j
t ))


=EFt−1

 1

n

n∑
j=1

Eµj

[
ρ̂it(s)(A(s)x

c
t − b̂ct(s))

]
=EFt−1

[
Eµ0

[
ρ̂it(s)(A(s)x

c
t − b̂ct(s))

]]
=EFt−1

[
Eµ0

[
(ρi(s) + ψ(s)T∆ηit)(A(s)x

c
t − b̂ct(s))

]]
=EFt−1Eµ0

[
ρi(s)(A(s)xct − b̂ct(s))

]
+EFt−1

Eµ0

[
ψ(s)T∆ηit(A(s)x

c
t − Φ(s)θct )︸ ︷︷ ︸

E

]
. (28)

We notice the bias correction term exactly removes the bias in the first term above:

EFt−1

[
Eµ0

[
ρi(s)(A(s)xct − b̂ct(s))

]]
=EFt−1

[∫
S

µi(s)

µ0(s)
(A(s)xct − b̂ct(s))µ0(s)ds

]
=EFt−1

[∫
S
(A(s)xct − b̂ct(s))µi(s)ds

]
=EFt−1

[
Eµi [A(s)xct − b̂ct(s)]

]
=E

[
A(sit)x

c
t − b̂ct(sit)

]
=E[gc→i

t (xct)].

The additional E encompasses all the estimation error:
∥E(∆ηit,∆xct ,∆θct ; s)∥ =

∥∥ψ(s)T∆ηit(A(s)∆xct − Φ(s)∆θct +A(s)xc∗ − bc(s))
∥∥

≤|ρ̂it(s)− ρi(s)|(∥A(s)∆xct∥+ ∥Φ(s)∆θct∥+ ∥A(s)xc∗ − bc(s)∥)
≤|ρ̂it(s)− ρi(s)|(GA∥∆xct∥+ ∥∆θct∥+ σ)

≲σ∥∆ηit∥+GA∥∆xct∥+ ∥∆θct∥,
where the last inequality uses Assumption 1 that |ρ̂it(s)− ρi(s)| = O(1). Therefore, we have

E[g̃it] = E[git(xit)] + E[gc⇒i
t (xct)]− E[gc→i

t (xct)] = E[git(xit)] + E[E(∆ηit,∆xct ,∆θct ; s)].

Corollary G.1 (AffPCL descent). Let λi := λmin(sym(Āi)). The expected local update direction
satisfies

E
〈
g̃it,∆x

i
t

〉
≥ 7

8λ
iE∥∆xit∥2 − 2(λi)−1E∥E∥2.

Proof. By Lemma G.1 and Young’s inequality,
E
〈
g̃it,∆x

i
t

〉
=EFt−1

〈
Eµi [git(x

i
t)] + E ,∆xit

〉
=EFt−1

〈
Eµi [A(s)xit − bi(s)],∆xit

〉
+ E

〈
E ,∆xit

〉
=EFt−1

〈
Āixit − b̄i,∆xit

〉
+ E

〈
E ,∆xit

〉
=EFt−1

〈
(Āixit − b̄i)− (Āixi∗ − b̄i),∆xit

〉
+ E

〈
E ,∆xit

〉
=E

〈
Āi∆xit,∆x

i
t

〉
+ E

〈
E ,∆xit

〉
≥λiE∥∆xit∥2 −

1

2
· λ

i

4
E∥∆xit∥2 −

1

2
· 4
λi

E∥E∥2

= 7
8λmin(Ā

i)E∥∆xit∥2 − 2(λi)−1E∥E∥2.
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For the variance, we inspect the importance-corrected aggregated update direction and biased-
corrected local update direction separately.
Lemma G.2 (Federated variance reduction). The variance of the importance-corrected aggregated
update direction satisfies

E∥gc⇒i
t (xct ; θ

c
t , η

i
t)∥2 ≤ 24G2

AE∥∆xct∥2 + 40E∥∆θct∥2 + 64σ2(n−1 + 2δicen) + 2E∥E∥2.

Proof. Similar to (28), we decompose the importance-corrected aggregated update direction as the
direction that uses the true density ratio plus an estimation error term:

E∥gc⇒i
t (xct ; θ

c
t , η

i
t)∥2 ≤ 2E

∥∥∥gc⇒i
t (xct ; θ

c
t , η

i
∗)
∥∥∥2 + 2E∥E∥2.

We can then focus on the direction with true density ratio, which again can be decomposed into local
variances and covariances:

E∥gc⇒i
t (xct ; θ

c
t , η

i
∗)∥2 =E

∥∥∥∥∥ 1n
n∑

i=1

ρi(sit)g
c→j
t (xct)

∥∥∥∥∥
2

=
1

n2

n∑
j=1

E∥ρi(sjt )g
c→j
t (xct)∥2︸ ︷︷ ︸

H1

+
1

n2

∑
j ̸=k

E⟨ρi(sjt )g
c→j
t (xct), ρ

i(skt )g
c→k
t (xct)⟩︸ ︷︷ ︸

H2

.

Different from federated variance reduction using data sampled from i.i.d. distributions, H1 also
depends on how close the agents’ heterogeneous environment distributions are. Suppose Ft−1-a.s.
that ∥gc→j

t (xct)∥ ≤ H3 for all j ∈ [n]. Conditioned on Ft−1, we then have

H1 ≤
H2

3

n2

n∑
j=1

Eµj |ρi(s)|2

≤2H2
3

n2

n+

n∑
j=1

Eµj |1− ρi(s)|2


≤2H2
3

n

(
1 + Eµ0

∣∣∣∣1− µi(s)

µ0(s)

∣∣∣∣2
)

≤2H2
3

n

(
1 + χ2(µi, µ0)

)
,

where χ2 is the chi-squared divergence. By Lemma D.3, we know that

χ(µi, µ0) ≤ max
{
∥ρi∥∞, 1

}
· ∥µi − µ0∥TV ≤ max

{
∥ρi∥∞, 1

}
δienv.

We notice that the essential supremum of the density ratio has a natural upper bound:

∥ρi∥∞ = sup
s∈S

µi(s)

µ0(s)
= sup

s∈S

µi(s)
1
n

∑n
j=1 µ

j(s)
≤ sup

s∈S

µi(s)
1
nµ

i(s)
= n,

where we use the convention that 0/0 = 0. Combining the above two bounds together gives

H1 ≤ 2H2
3 (n

−1 + δienv).

We now bound H3. Conditioned on Ft−1, we have

∥gc→j
t (xct)∥ = ∥A

j
t (∆x

c
t + xc∗)− Φj

t (∆θ
c
t + θc∗)∥ ≤ σ +GA∥∆xct∥+ ∥∆θct∥.

Thus, we set H3 = σ +GAE∥∆c
t∥+ E∥∆θct∥. Plugging this back gives

H1 ≤2(2G2
AE∥∆xct∥2 + 4E∥∆θct∥2 + 4σ2)(n−1 + δienv) (29)

≤8G2
AE∥∆xct∥2 + 16E∥∆θct∥2 + 8σ2(n−1 + δienv),

where we use the fact that n−1, δienv ≤ 1.
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The covariances H2 also needs special treatment for heterogeneous environments. Unlike the
homogeneous case where the local update directions are perpendicular in the sense that their
covariances are zero, here the importance correction alters the geometry and requires a more careful
anatomy of the covariance terms. Conditioned on Ft−1, we have

H2 =
1

n2

n∑
j=1

〈
Eµj [ρi(s)gc→j(xct ; s)],

∑
k ̸=j

Eµk [ρi(s)gc→k(xct ; s)]

〉

=
1

n2

n∑
j=1

〈
Eµj [ρi(s)gc→j(xct ; s)],

n∑
k=1

Eµk [ρi(s)gc→k(xct ; s)]− Eµj [ρi(s)gc→j(xct ; s)]

〉

=
1

n2

n∑
j=1

〈
Eµj [ρi(s)gc→j(xct ; s)],

n∑
k=1

Eµk [ρi(s)gc→k(xct ; s)]

〉

− 1

n2

n∑
j=1

∥∥Eµj [ρi(s)gc→j(xct ; s)]
∥∥2

︸ ︷︷ ︸
≤0

≤ 1

n2

〈
n∑

j=1

Eµj [ρi(s)gc→j(xct ; s)],

n∑
k=1

Eµk [ρi(s)gc→k(xct ; s)]

〉

=
1

n2

∥∥∥∥∥∥
n∑

j=1

Eµj [ρi(s)gc→j(xct ; s)]

∥∥∥∥∥∥
2

=
1

n2

∥∥∥∥∥∥
n∑

j=1

Eµj [ρi(s)(A(s)xct − b̂ct(s))]

∥∥∥∥∥∥
2

=
∥∥∥Eµ0 [ρi(s)(A(s)xct − b̂ct(s))]

∥∥∥2
=
∥∥∥Eµi [A(s)xct − b̂ct(s)]

∥∥∥2
=
∥∥E[gc→i(xct)]

∥∥2 .
Note that the only inequality above omits a term of O(n−1), and thus the bound is tight when n
is large. Recall that gc→i(xct) corresponds to the bias in the aggregated update direction. Thus, we
show that the covariance reduces nicely to the bias term, further showcasing the power of importance
correction. The bias term (conditioned on Ft−1) can be further decomposed as∥∥E[gc→i(xct)]

∥∥2 =
∥∥Āi(∆xct + xc∗ − xi∗ + xi∗)− Φ̄i(∆θct + θc∗ − θi∗ + θi∗)

∥∥2
=
∥∥Āi(∆xct + xc∗ − xi∗)− Φ̄i(∆θct + θc∗ − θi∗)

∥∥2
≤4
(
G2

A∥∆xct∥2 + ∥Āi(xc∗ − xi∗)∥2 + ∥∆θct∥2 + ∥Φ̄i(θc∗ − θi∗)∥2
)
.

Plugging in the bounds in Items (e) and (i) in Lemma D.1 gives∥∥E[gc→i(xct)]
∥∥2 ≤ 4G2

A∥∆xct∥2 + 4∥∆θct∥2 + 32σ2(δicen)
2.

Removing the conditioning on Ft−1 gives

H2 ≤ 4G2
AE∥∆xct∥2 + 4E∥∆θct∥2 + 32σ2(δicen)

2. (30)

Plugging (29) and (30) back gives the desired result:

E∥gc⇒i
t (xct)∥2 ≤ 24G2

AE∥∆xct∥2 + 40E∥∆θct∥2 + 64σ2(n−1 + 2δicen) + 2E∥E∥2,

where we use the fact that δienv ≤ δicen ≤ 1.

We then inspect the variance of the bias-corrected local update direction.
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Lemma G.3 (Affinity-based variance reduction). The variance of the bias-corrected local update
direction satisfies

E∥git(xit)− gc→i
t (xct ; θ

c
t )∥2 ≤ 4G2

AE∥∆xit∥2 + 8G2
AE∥∆xct∥2 + 8E∥∆θct∥2 + 16σ2δ̃icen,

where δ̃icen = min{1, νδicen}.

Proof. Similarly, the variance term can be decomposed as the variance at the optimal solution plus
the estimation error:

E∥git(xit)− gc→i
t (xct ; θ

c
t )∥2 =E∥Ai

t(x
i
t − xct)− (bi(sit)− b̂ct(sit))∥2

=E
∥∥Ai

t(∆x
i
t + xi∗ − xc∗ −∆xct)− Φi

t(θ
i
∗ − θc∗ −∆θct )

∥∥2
≤4G2

AE∥∆xit∥2 + 8G2
AE∥∆xct∥2 + 8E∥∆θct∥2 (estimation)

+ 4E∥Ai
t(x

i
∗ − xc∗)∥2 + 4E∥Φi

t(θ
i
∗ − θc∗)∥2. (affinity)

For the affinity terms, by Lemma D.2,

max
{
E∥Ai

t(x
i
∗ − xc∗)∥2,E∥Φi

t(θ
i
∗ − θc∗)∥2

}
≤ 2σ2δ̃icen.

Combining the above bounds gives the desired result.

We are now ready to prove the one-step progress of the local update in AffPCL.
Corollary G.2 (AffPCL one-step progress). Suppose αi

t ≤ λi/(40G2
A). Then, for any time step t and

agent i, (27) satisfies

E∥∆xit+1∥2 ≤(1− 3
2α

i
tλ

i)E∥∆xit∥2 + 64(αi
t)

2G2
AE∥∆xct∥2 + 96(αi

t)
2E∥∆θct∥2

+ 4αi
t(λ

i)−1E∥E∥2 + 144(αi
t)

2σ2(n−1 + 2δ̃icen)

≤(1− 3
2α

i
tλ

i)E∥∆xit∥2

+ (64(αi
t)

2G2
A + 16αi

t(λ
i)−1G2

ρG
2
A)E∥∆xct∥2

+ (96(αi
t)

2 + 16αi
t(λ

i)−1G2
ρ)E∥∆θct∥2

+ 4αi
t(λ

i)−1σ2E∥∆ηit∥2

+ 144(αi
t)

2σ2(n−1 + 2δ̃icen).

Proof. Combining Lemmas G.2 and G.3 gives

E∥g̃it∥2 ≤2(E∥g
c⇒i
t (xct ; θ

c
t , η

i
t)∥2 + E∥git(xit)− gc→i

t (xct ; θ
c
t )∥2)

≤8G2
AE∥∆xit∥2 + 64G2

AE∥∆xct∥2 + 96E∥∆θct∥2 + 144σ2(n−1 + 2δ̃icen) + 4E∥E∥2.
Combining the above bound with Corollary G.1 gives
E∥∆xit+1∥2 =E∥∆xit∥2 − 2αtE

〈
g̃it,∆x

i
t

〉
+ α2

tE∥g̃it∥2

≤E∥∆xit∥2 − 7
4α

i
tλ

iE∥∆xit∥2 + 2αi
t(λ

i)−1E∥E∥2 + 4(αi
t)

2E∥E∥2

+ 8(αi
t)

2(G2
AE∥∆xit∥2+ 8G2

AE∥∆xct∥2+ 12E∥∆θct∥2+ 18σ2(n−1 + 2δ̃icen))

≤(1− 7
4α

i
tλ

i + 8(αi
t)

2G2
A)E∥∆xit∥2 + 64(αi

t)
2G2

AE∥∆xct∥2 + 96(αi
t)

2E∥∆θct∥2

+ 2αi
t((λ

i)−1 + 2αi
t)E∥E∥2 + 144(αi

t)
2σ2(n−1 + 2δ̃icen).

Setting αi
t ≤ λi/(32G2

A), which implies 2αi
t ≤ (λi)−1, gives

E∥∆xit+1∥2 ≤(1− 3
2α

i
tλ

i)E∥∆xit∥2 + 64(αi
t)

2G2
AE∥∆xct∥2 + 96(αi

t)
2E∥∆θct∥2

+ 4αi
t(λ

i)−1E∥E∥2 + 144(αi
t)

2σ2(n−1 + 2δ̃icen).

Finally, we expand E∥E∥2. By Assumption 1,

E∥E(∆ηit,∆xct ,∆θct )∥2 =E

∥∥∥∥∥ 1n
n∑

i=1

ψi
t∆η

i
t(A

i
t∆x

c
t − Φi

t∆
c
t +Ai

tx
c
∗ − Φi

tθ
c
∗)

∥∥∥∥∥
2

≤2σ2E∥∆ηit∥2 + 4(G2
AE∥∆xct∥2 + E∥∆θct∥2).

Plugging it back gives the desired result.
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G.1 PROOF OF THEOREM 1

Invoking Lemmas D.4 and D.5 with Corollaries E.1, F.2 and G.2 gives us the main result. We restate
a more general version of Theorem 1.

Theorem 1. We synchronize the step sizes across all learning modules by setting αt = αi
tλ

i =
αb
tλ

b = αc
tλ

c. Then, with a constant step size ατ ≡ ln t/(λt), τ = 0, . . . , t, AffPCL with various
learning modules satisfies

E∥xit − xi∗∥2 = O

(
σ2 ln t

(λi)2t
· δ
)
,

where

δ =



max{n−1, δ̃icen} for (27) + (22-1) + (20);

δ̃icen +max
{
1, λi

λbλc

}2

· n−1 for (27) + (22-2) + (20);
σ2

(λρ)2 · δ̃
i
cen + σ2

(min{λb,λc,λρ})2 · n
−1 for (27) + (22-1) + (20) + (13);

σ2

(λρ)2 · δ̃
i
cen +max

{
σ

min{λb,λc,λρ} ,
λi

λbλc

}2

· n−1 for (27) + (22-2) + (20) + (13).

where δ̃cen = min{1, νδcen}.

Specifically, we highlight that AffPCL with access to the true density ratio (i.e., without (13)) achieves

E∥xit − xi∗∥2 = Õ((κi)2t−1 ·max{n−1, δ̃icen}),

where κ = σ/λi is the agent-specific condition number, which further recovers Theorem 1 in the
main text by noting that δienv ≤ δenv, δicen ≤ δenv + δobj, and κi ≤ κ.

On the other hand, AffPCL with DRE has a worst-case complexity bounded by

E∥xit − xi∗∥2 = O
(
(κiκρ)2t−1 ·max{νρn−1, δ̃icen}

)
,

where κρ := σ/λρ and νρ = max{ λρ
min{λb,λc} ,

λiλρ

σλbλc }2, which now depends on the conditioning of
DRE.

Proof. We only prove the first and last cases, as the other two cases follow similarly. For the last case,
similar to the proof of Corollary F.3, Corollaries E.1, F.2 and G.2 fit into Lemma D.4 with z1t = θct ,
z2t = xct , z3t = ηit, and z4t = xit, along with

C1 ≍ C2 = O(σ2n−1), C3 ≍ C4 = O(σ2(n−1 + δ̃icen))

C2,1 ≍ O((λc)−1), C3,1 = C3,2 = 0, C4,1 ≍ C4,2 ≍ C4,3 = O((λi)−1σ2).

Then, the corresponding weights in Lemma D.4 are

w4 =1,

w3 =2C4,3(λi)−1 = O(σ2(λi)−2),

w2 =2C4,2(λi)−1 + 0 = O(σ2(λi)−2),

w1 =2C4,1(λi)−1 + 2C2,1(λc)−1 = O(σ2(λi)−2 + (λc)−2).

Thus, the overall MSE with a constant step size ln t/t is

E∥xit − xi∗∥2 =O

(
σ2 ln t

t

((
1

(λi)2
+

σ2

(λiλρ)2

)
· (n−1 + δ̃icen)

+

(
σ2

(λiλc)2
+

σ2

(λiλb)2
+

1

(λbλc)2

)
· n−1

))
=O

(
σ2 ln t

(λi)2t

(
σ2

(λρ)2
· δ̃icen +

(
σ2

(min{λρ, λb, λc})2
+

(λi)2

(λbλc)2

)
· n−1

))
.
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For the first case without DRE, E = 0. Thus, Corollaries E.1, F.1 and G.2 fit into Lemma D.4 with
z1t = θct , z2t = xct , and z3t = xit, along with

C1 ≍ C2 = O(σ2n−1), C3 = O(σ2(n−1 + δ̃icen))

C2,1 = 0, C3,1 ≍ C3,2 = O(α0(λ
i)−1σ2).

Then, the corresponding weights in Lemma D.4 are

w3 =1,

w2 =2C3,2(λi)−1 = O(α0σ
2(λi)−2),

w1 =2C3,1(λi)−1 + 0 = O(α0σ
2(λi)−2).

Thus, the overall MSE with a constant step size ln t/t is

E∥xit − xi∗∥2 =O

(
σ2 ln t

(λi)2t

(
(n−1 + δ̃icen) +

α0σ
2

(min{λb, λc})2
· n−1

))
=O

(
σ2 ln t

(λi)2t
·max{n−1, δ̃icen}

)
.

Similarly, by using a linearly diminishing step size and a convex combination of the iterates, we can
remove the logarithmic factor in the numerator.
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