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Abstract

General-purpose AI (GPAI) evaluations have been proposed as a promising way of
identifying and mitigating systemic risks posed by AI development and deployment.
While GPAI evaluations play an increasingly central role in institutional decision-
and policy-making – including by way of the European Union (EU) AI Act’s
mandate to conduct evaluations on GPAI models presenting systemic risk – no
standards exist to date to promote their quality or legitimacy. To strengthen GPAI
evaluations in the EU, which currently constitutes the first and only jurisdiction
that mandates GPAI evaluations, we outline four desiderata for GPAI evaluations:
internal validity, external validity, reproducibility, and portability. To uphold these
desiderata in a dynamic environment of continuously evolving risks, we propose a
dedicated EU GPAI Evaluation Standards Taskforce, to be housed within the bodies
established by the EU AI Act. We outline the responsibilities of the Taskforce,
specify the GPAI provider commitments that would facilitate Taskforce success,
discuss the potential impact of the Taskforce on global AI governance, and address
potential sources of failure that policymakers should heed.

1 Introduction

General-purpose AI (GPAI) evaluations have emerged as a valuable tool for measuring and
addressing systemic risks posed by AI development and deployment. While GPAI evaluations
play an increasingly central role in institutional decision- and policy-making – including by way
of the European Union (EU) AI Act’s mandate to conduct evaluations on GPAI models presenting
systemic risk [22]– no standards exist to date to promote their quality or legitimacy. This paper
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puts forth desiderata for GPAI evaluations and proposes a dedicated EU GPAI Evaluation Standards
Taskforce to promote these desiderata adaptably in a dynamic environment of continuously evolving
risks. This paper focuses specifically on an EU Taskforce, given the EU is, at the time of writing, the
only jurisdiction with the power to mandate and regulate GPAI evaluation practices. A Taskforce in
the EU, therefore, warrants timely consideration and enables direct policy influence. Actions in the
EU now could plausibly pave the pathway for coordinated international standards in the future.

This paper is relevant to parties involved in or affected by decision-making processes surround-
ing GPAI evaluations, particularly in the EU. Primary audiences include the EU AI Office and
the Codes of Practice working group chairs and participants. The paper’s implications, however,
reach beyond the EU, and towards international standards more broadly. Additional audiences
may therefore include AI Safety Institutes (AISIs), civil society groups focused on AI governance,
GPAI evaluation organisations, GPAI providers, independent researchers, and international standards
organisations.

The paper proceeds as follows. Section 2 outlines the role of GPAI evaluations in risk assessment,
risk mitigation, and AI governance, globally and in the EU. Section 3 calls for GPAI evaluations that
follow four desiderata: internal validity, external validity, reproducibility, and portability. Section 4
highlights that the mere existence of standards to uphold these desiderata is in itself insufficient and
potentially even harmful; instead, standards may best exist within an adaptive framework that can
evolve with changes in technology, environment, and risk. Section 5 proposes the establishment of an
EU GPAI Evaluations Standards Taskforce ("the Taskforce") to fulfill the needs highlighted in Section
3 and Section 4; and discusses the potential global impact of GPAI evaluations standard-setting in the
EU. Section 6 concludes.

2 GPAI Risks and Evaluations

The development and deployment of general purpose AI (GPAI) models5 present significant
opportunity and considerable risks. Experts [32] and international leaders [1] alike have warned of
systemic risks of AI systems [22, Recital 110], including:

• the misuse [6] of GPAI models, leading to increased scale and severity of cyber attacks, disinfor-
mation, and the development and use of chemical, biological, radiological, and nuclear (CBRN)
weapons [10];

• the malfunctioning or misalignment [10] of GPAI models, resulting in loss of control, model
autonomy [53], and deception; and

• broader societal risks related to democratic processes; public and economic security; the dis-
semination of illegal, false, or discriminatory content; environmental well-being, and inequality
[79].

As such, experts have called for the global prioritisation of AI risk mitigation. As the scale and
prevalence of AI systems multiply, this task becomes ever more critical.

GPAI evaluations play a key role in assessing and mitigating systemic risks [65]. Current GPAI
evaluations [75], or the empirical assessment of the "components, capabilities, behaviour, and impact
of an AI system," [77] include approaches like benchmarking [7], red-teaming [25, 55], and human
uplift studies [49]. The results of such evaluations act as a proxy for GPAI model capability (how a
GPAI model could behave in real-world deployment) and alignment (how GPAI model would behave
in real-world deployment) [65].

Accordingly, GPAI evaluations are key in emerging AI governance processes. Evaluations form
the foundation of major GPAI providers’ scaling policies and safety frameworks6, including those

5Synonymously referred to as foundation models. For the purposes of this paper, we use the term "GPAI
models," consistent with the vocabulary of the EU AI Act.

6Anthropic’s Responsible Scaling Policy, for example, outlines three AI Safety Levels (ASL), whereby
model performance on evaluations determines the ASL of a model and the subsequent measures and safeguards
to be implemented. DeepMind’s Frontier Safety Framework establishes varying Critical Capability Levels,
determined by model performance on model evaluations, at which a range of mitigations shall be triggered.
OpenAI’s Preparedness Framework defines model safety scores, as indicated by performance on evaluations,
that correspond with key deployment and security decisions.
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of Anthropic [3], DeepMind [18], and OpenAI [53]. Moreover, in Spring 2024, sixteen industry
signatories, including GPAI providers like Amazon, Google, and Meta, committed to "consider[ing]
results from internal and external evaluations. . . set[ting] out thresholds at which severe risks..would
be intolerable" and "assess[ing] whether these thresholds have been breached," [23] the latter process
in which GPAI evaluations would likely be essential.

From the government side, UK AI Safety Institute (AISI) identifies as one of its three core
functions "develop[ing] and conduct[ing] evaluations on advanced AI systems," [34] and the
US AISI aims to "champion the development of empirically grounded tests, benchmarks, and
evaluations of AI models, systems, and agents" [35].

Uniquely, the European Union’s (EU) AI Act mandates that providers must conduct evaluations
on GPAI models presenting systemic risk [22, Article 55], making the EU, at the time of writing,
the only jurisdiction with the power to mandate and regulate GPAI evaluation practices. While
the AI Office has not yet determined the procedures for GPAI model evaluations [20], evaluation
results could plausibly trigger regulatory actions, including, by the powers granted to the AI Office,
requests for providers to implement safety measures and mitigations [22, Article 93.1a-b], submit
additional information [22, Article 91], remove a model from the market ([22, Article 93.1c]; or, in
extreme cases, the imposition of fines [22, Article 101]. As GPAI evaluations hold greater weight
in decision- and policy-making – both within and across institutions – establishing and updating
standards becomes increasingly important. This task is especially timely in the EU, the world’s
first-mover in government-mandated GPAI evaluations.

3 Desiderata for Governance-Enhancing GPAI Evaluations

Given their nascent and rapidly evolving state, GPAI evaluations are not currently beholden to
standards or best practices [34, 4, 62]. To bolster AI governance and mitigate extreme risk within
the EU and beyond, standards for GPAI evaluations may seek to uphold a core set of desiderata.
This section proposes four such desiderata: internal validity, external validity, reproducibility, and
portability. The proposed desiderata draw from evaluations literature and evaluation standards of other
sectors7, with a consideration of the unique characteristics of the GPAI evaluation ecosystem in the
EU and beyond. The proposed desiderata, with closed-source GPAI models in mind, inherently foster
transparency and can be even more readily achieved with open-source models. These desiderata
should not be considered as exhaustive nor definitive, but rather as a starting point for ongoing
discussion and refinement. This section defines these desiderata, outlines their policy relevance,
surveys the status quo, and provides example standards that might uphold them.

3.1 Internal Validity

Internal validity refers to the extent to which the observed evaluation results represent the truth
in the evaluation setting and are not due to methodological shortcomings [40, 43, 54]. Internal
validity is crucial for providing consistent and unbiased insights into the probability and severity of
threats presented by GPAI models.

In their current state, evaluations often lack internal validity due to confounding variables,
measurement error, and a lack of robust statistical testing. Benchmark question phrasing [39, 47]
and evaluation structure [63, 73], for example, have been shown to lead to substantially different
results, suggesting that such results may be more reflective of methodological artifacts than of the
true capabilities of GPAI models. Even holding the same phrasing and structure constant, results of a
given evaluation may vary: Lukosiute [41], for example, shows that GPQA with chain-of-thought
(CoT) prompting yields noisy results across ten runs. These findings underscore the need for well-
considered sample sizes and well-powered statistical testing: in the absence of statistical power,
meaningful capabilities may go undetected and, conversely, apparently significant capabilities may
be exaggerated [14].

7For example, the European Union’s Registration, Evaluation, Authorisation and Restriction of Chemicals
(REACH) outlines regulations for chemical evaluations; and the International Standards Organisation (ISO) and
International Electrotechnical Commission (IEC) specify voluntary evaluations standards for medical devices
(ISO 13485), cyber and IT products (ISO/IEC 15408), construction materials (ISO 9001), and environmental
management systems (ISO 14000).
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Standards and practices that may promote internal validity are outlined in Appendix A.

3.2 External Validity

External validity refers to the extent to which evaluation results can be used as a proxy for
model behavior in contexts outside of the evaluation environment. Within external validity lies
construct validity, or “how well designed. . . the experimental setting is in relation to the research
claim” [57]. External validity is key in bolstering confidence in the use of GPAI evaluations to trigger
policy or regulatory decisions, especially in the context of a multi-stakeholder ecosystem [76].

An extensive body of research documents the ways in which GPAI evaluation results fail to hold
under a range of real-world conditions: methods like scaffolding, fine-tuning, and prompting
(e.g. single-turn, multi-turn, chain-of-thought) can meaningfully alter GPAI evaluation results
[39, 74, 12, 3], yet no protocols guide the use and documentation of these methods. Furthermore,
GPAI evaluation results often fail to serve as strong proxies for real-world risks. For example, while
Meta evaluated Llama 3’s safety by testing its propensity to comply with requests to output harmful
content [44], its evaluations did not account for the removal of safeguards, which can be cheaply
bypassed through fine-tuning [38]. As such, Meta’s evaluation result cannot act as a strong proxy for
the real-world risks posed by Llama 3.

Standards and practices that may promote external validity are outlined in Appendix A.

3.3 Reproducibility

Reproducibility refers to the ability to obtain consistent evaluation results using the same
input data, computational methods, code, and evaluation conditions [51]. Reproducibility is
key in bolstering confidence in the use of GPAI evaluations to trigger policy or regulatory decisions,
especially in the context of a multi-stakeholder ecosystem [75]. Little attention has been given to
date to the reproducibility of GPAI evaluations, though a need exists [26]. While reproducibility may
not be applicable to all types of evaluations, its use should be strongly considered and its absence
should be carefully justified.

Standards and practices that may promote reproducibility are outlined in Appendix A.

3.4 Portability

Portability refers to the ability of a range of stakeholders to consistently and seamlessly im-
plement and assess GPAI evaluations across distinct institutions and hardware environments
through, for example, accessible evaluation software. Portability facilitates both collaboration
and external scrutiny, the latter of which can avail more reliable information by verifying GPAI
provider claims and revealing new insights [2, 42]. Portability may furthermore enhance resource
efficiency for governments and third parties, foster knowledge spillovers among stakeholders, and
reduce pressure for industry concentration from regulation costs [67].

The EU AI Act [22]) and the Frontier AI Safety Commitments [23] highlight the advent
of multi-stakeholder evaluation and, by extension, the need for portability. The EU AI Act
outlines at least three distinct parties that may run GPAI evaluations: GPAI providers [22, Article
55.1a], the EU AI Office [22, Article 92.1], and qualified independent experts on behalf of the AI
Office [22, Article 92.2]. Separately, signatories of the Frontier AI Safety Commitments commit to
"consider[ing] results from internal and external evaluations as appropriate, such as by independent
third-party evaluators, their home government, and other bodies their governments deem appropriate"
[23]. Few common frameworks to date facilitate portability of evaluations. METR’s Task Standard
[45] standardizes task-based evaluations to facilitate efficiency, METR’s Vivaria [46] provides a
platform for running evaluations and conducting elicitation research, and the UK AI Safety Institute’s
Inspect [70] allows users to assess and score GPAI model capabilities in a range of areas, While
these platforms offer a starting point for portability, substantial scope remains to promote more
comprehensive and well-defined standards across evaluation types and contexts [61].

Standards and practices that may promote portability are outlined in Appendix A.
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4 The Need for Adaptive Standards

Establishing standards for GPAI evaluations can promote desiderata like internal validity,
external validity, reproducibility, and portability [77]. However, if overly rigid and static, standards
may threaten the innovation and progress of GPAI evaluations. Given that GPAI evaluations are
a nascent and rapidly evolving field in which best practices are subject to rapid technological and
environmental advancements, the existence of standards in itself is insufficient and potentially even
harmful if not paired with adaptivity [29].

Adaptivity refers to the ability of evaluation standards to anticipate and adjust nimbly to
changes in technology, environment, and risk. GPAI evaluations are perpetually subject to change
as landscapes shift, human interaction with models evolve, models gain new capabilities with
potentially abrupt performance jumps, and new harm vectors emerge [24]. Furthermore, evaluations
like benchmarks may become less reliable over time due to increasing likelihood of leakage into
the training dataset [77]. Hence, in order to most effectively contribute to risk mitigation, GPAI
evaluations methodology and measurement must continuously evolve.

5 GPAI Evaluations Standard Taskforce

To address the need for adaptive standards, we propose a GPAI Evaluations Standards Task-
force ("the Taskforce"), to be housed within institutions established by the EU AI Act. The
Taskforce is a vetted body of independent researchers to maintain and update GPAI evaluation stan-
dards. Given the potential regulatory leverage of GPAI evaluations in the EU and the evolving nature
of GPAI evaluations, a dedicated Taskforce can promote evaluation standards that foster desiderata
like internal validity, external validity, reproducibility, and portability in an evolving manner in the
EU and potentially beyond. This proposal follows a broader call for Audit Standards Boards [42] and
proactive risk management in dynamic fields [60].

5.1 Institutional Setting

The provisions of the EU AI Act provide the scope for the Taskforce to exist [77]. Within the
provisions of the EU AI Act, the Taskforce could sit within two potential institutional settings: The
Scientific Panel of Experts (IS1) or The Advisory Forum (IS2). Appendix B provides details on
these settings. Precedents for such a Taskforce within the EU exist and include that established by
Commitment 27 of the 2022 Strengthened Code of Practice on Disinformation.[19]

5.2 Structure and Duties

The Taskforce could be composed of technical experts from academia, civil society, third-
party model audit providers, regulators, and experts from government serving in a personal
capacity, with Taskforce members furthermore fulfilling the criteria outlined in [22, Article 68.2], if
falling within IS1, or [22, Article 67.2], if falling within IS2. The latter additionally allows for the
involvement of GPAI industry experts. The Taskforce could facilitate regular pathways for input by a
range of non-Taskforce members, including GPAI industry experts.8

Key Taskforce duties, drawing from the framework of the EU AI Act and building towards the
desiderata highlighted in Section 3 are outlined in Appendix C.

5.3 GPAI Provider Commitments

The success of the Taskforce hinges upon the direct exchange with GPAI provider experts to
support access and provide relevant information [77, 2]. The Frontier AI Safety Commitments[23]
lay the groundwork for this collaboration and the EU AI Act Code of Practice[20], to be finalized by
May 2025, could formally codify GPAI provider commitments to the Taskforce. To concretely support
the development and ongoing success of the Taskforce, GPAI providers can commit to working with
the relevant organizations (e.g. the European Commission, the EU AI Office, Civil Society, Data

8If falling within IS1, by way of [22, Article 68.2], Taskforce members must be independent from industry.
Involving industry insights via non-Taskforce input is valuable.
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Protection Authorities) to establish and sustain the Taskforce. In particular, this requires commitments
to the provision of documentation; and of model and data access. Provider commitments are proposed
in Appendix D.

5.4 Potential for Global Impact

The EU could plausibly pave the pathway for coordinated international standards of GPAI
evaluations via a de jure Brussels effect (the adoption of EU standards by foreign governments) and a
de facto Brussels effect (the unilateral regulation of GPAI provider practices) [66, 9]. Appendix E
outlines these channels for global impact.

5.5 Potential Causes of Failure and Additional Approaches

While in the best-case scenario, the Taskforce could improve AI risk assessment and mitigation
both in the EU and beyond, it could also face challenges. Appendix F outlines these challenges
and offers related recommendations.

6 Conclusion

While GPAI evaluations have been proposed as a central tool in assessing and mitigating
systemic risks posed by GPAI development and deployment, no established standards exist
to date to promote their quality and legitimacy. This paper proposes an EU GPAI Evaluations
Standards Taskforce to develop and adapt standards for desiderata of GPAI evaluations, including
internal validity, external validity, reproducibility, and portability. Amidst the rapidly evolving
state of GPAI evaluations and constant shifts in environments, technology, and risks, a Taskforce
could promote relevant and governance-enhancing standards for effective risk assessment and
mitigation in the EU and beyond. The success of the Taskforce and its responsibilities, as
outlined in Appendix C, rely on collaboration with GPAI providers, as outlined in Appendix
D. The impact of the Taskforce, for better or for worse, should not be underestimated: by
way of de facto and de jure Brussels effects, the Taskforce could influence GPAI evaluations
standards and GPAI safety at an international scale. As such, any design and management of the
Taskforce should heed the potential pitfalls and recommendations highlighted in Appendix F.

This proposal for an EU GPAI Evaluation Standards Taskforce rests on four key as-
sumptions: 1) well-formulated GPAI evaluations standards can support effective risk assessment,
risk mitigation, and AI governance, 2) developing standards within institutions and environ-
ments capable of mandating and implementing standards increases the legitimacy and impact
of those standards, 3) when establishing standards, the interactions fostered by a dedicated,
multi-stakeholder Taskforce can ultimately increase the quality of standards, relative to many
distinct, uncoordinated bi-lateral and multilateral interactions, and 4) the benefits to AI governance
and public safety of establishing a GPAI Evaluations Standards Taskforce outweigh the costs.

This paper draws primarily on literature, current AI policy, and the authors’ exper-
tise. It faces the limitations endemic to the nascent field of GPAI evaluations and AI policy more
broadly: sparse evidence, rapid advancements, and, accordingly, a lack of conclusive research from
which to draw. Future research may employ qualitative methods like interviews to draw insights and
recommendations from the multi-stakeholder GPAI evaluations community; as well as quantitative
methods like surveys, impact evaluations, and forecasting to more rigorously estimate the impacts of
an EU GPAI Evaluations Standards Taskforce on the state of risk assessment, risk mitigation, and AI
governance in the EU and beyond.

6



Impact Statement

While GPAI evaluations are crucial for assessing and mitigating systemic risks, no standards currently
exist to ensure their quality and legitimacy. This paper proposes an EU GPAI Evaluations Standards
Taskforce to develop and adapt standards for robust, reproducible, and interoperable evaluations. The
Taskforce, to be housed within institutions established by the EU AI Act, could enhance AI governance
by providing adaptive frameworks for evaluations, on which policy-making processes increasingly
rely. However, the success of the Taskforce may be stifled by the rapid pace of AI progress, potential
bureaucratic obstacles, and the potential inadvertent stifling of safety-related innovation due to rigid
standards. Despite these hurdles, establishing such a Taskforce could contribute to the responsible
development and deployment of GPAI systems, both within and beyond the EU, and ultimately
facilitate more effective governance in this critical domain.

Appendix A: Standards and Practices Promoting Desiderata

Internal validity

Standards and practices that may promote internal validity include:

• Specifications for hypothesis testing, sample sizes [40], random seeds, statistical significance, and
statistical power [8];

• Specification and disclosure of environmental parameters used in evaluations [40];
• Controlling for confounding variables and mitigating spurious correlation (i.e. by randomising

question order, ensuring balanced treatment and control groups in experimental settings, etc.); and
• Evidence of the absence of train-test contamination [37] and assurance that testing methodologies

and test data are not used for GPAI system development.

External validity

Standards and practices that may promote results external validity include:

• The clear definition of risks to be measured;9

• Input of domain expertise in the design of evaluations, ensuring that the evaluation is a well-
considered proxy for the broader real-world task or risk [40, 68];

• The use of strong elicitation in GPAI evaluations, including fine-tuning, scaffolding, white-box
adversarial attacks [15], and prompt engineering; and

• Documentation of factors informative of the evaluation’s external validity across contexts [27],
including:

– The environmental conditions in which the evaluation is run and the ways in which it converges
with and diverges from the real-world context [40]; and

– In the case of red-teaming and adversarial testing, details on the sourcing and vetting of
domain experts to partake in the evaluation and the level and duration of access to GPAI
models provided to these experts for the purpose of the evaluation.

Reproducibility

Standards and practices that may promote reproducibility include:

• Definition of environments and evaluations for which reproducibility can enhance risk assessment,
risk mitigation, and AI governance;

• For the above-indicated environments and evaluations:
– secure release of evaluation data, including input data, random seed, and output data for steps

that are nondeterministic and cannot be reproduced [51]
– secure release of evaluation code [28]; and

9See, for example, https://airisk.mit.edu/.
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– documentation of evaluation methodology, evaluation environment, computation al environ-
ment (i.e. hardware architecture, operating systemic, and library dependencies), elicitation
methods, statistical testing, and analysis [52, 51].

Portability

Standards and practices that may promote portability include:

• The development and use of software that:

– makes evaluations virtually "plug and play," reducing the engineering effort needed to imple-
ment another actor’s evaluations;

– is model- and agent-architecture-agnostic;10

– facilitates swapping out and combining particular post-training enhancements between differ-
ent evaluators; and

– to address privacy constraints, where relevant, facilitates evaluation implementation in a
privacy-preserving manner (e.g. without leaking additional information about a model or an
evaluation to the other party) [5].

Appendix B: Institutional Setting

Institutional settings for the Taskforce include The Scientific Panel of Independent Experts (IS1) and
The Advisory Forum (IS2):

IS1: The Scientific Panel of Independent Experts

The Scientific Panel of Independent Experts ("the Panel"), established by [22, Article
68 of the EU AI Act], is tasked with a range of responsibilities, including the "development
of tools and methodologies for evaluating capabilities of general-purpose AI models and
systems." Appendix B outlines the responsibilities of the Panel, notes Taskforce-relevant
tasks, and highlights Panel duties that would be symbiotic with the proposed Taskforce work.

IS2: The Advisory Forum

The Advisory Forum ("the Forum"), established by [22, Article 67 of the EU AI Act], is
tasked with providing technical expertise and advising the European Artificial Intelligence
Board and the Commission. The Forum "may establish standing or temporary sub-groups
as appropriate for the purpose of examining specific questions related to the objectives
of this Regulation." By mandate, the Forum includes permanent advisory members from
the European Committee for Standardization (CEN), which holds an technical cooperation
agreement with the International Standards Organization (ISO) via the Vienna Agreement.
This framework paves the path for potential dialogue between GPAI evaluations standards at
the Taskforce-, EU-, and international-level.

Relative to alternative placements11, IS1 and IS2 offer conditions particularly conducive to developing
and implementing GPAI evaluation standards, including timely access to existing institutional infras-
tructure; the ability to convene expert pools that represent diverse, multi-stakeholder perspectives;
regulatory ties to GPAI provider and models; the legal basis for implementation of GPAI evaluations
and standards; and strong institutional ties to international-standard-setting organisations.

10e.g. evaluations that do not depend on a particular model or agent architecture, and can therefore be re-used
with different models and agent architectures.

11Alternatives include, for example, the establishment of GPAI evaluations standards by third-party evaluators
directly, GPAI providers directly, CEN/CENELEC, and the International Standards Organization (ISO).
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Appendix C: Taskforce Integration in the Panel

Article 68.3[22], below, outlines the tasks of the Scientific Panel of Independent Experts. T demarcates
tasks that could be partially or fully delegated to the Taskforce, given the tasks’ direct relevance to
GPAI evaluations standards. TP demarcates tasks that hold complementarities with GPAI evaluations
but are not exhaustively fulfilled by the duties outlined in Section 5. Thus, the Taskforce could
maintain a close dialogue with the Panel on these tasks, particularly on Task a.i., given its role in
robustness and construct validity in GPAI evaluations. P demarcates tasks outside of the Taskforce’s
mandate.

(a) supporting the implementation and enforcement of this Regulation as regards general-purpose
AI models and systems, in particular by:

(i) alerting the AI Office of possible systemic risks at Union level of GPAI models, in
accordance with [22, Article 90] (TP);

(ii) contributing to the development of tools and methodologies for evaluating capabilities of
GPAI models and systems, including through benchmarks (T);

(iii) providing advice on the classification of GPAI models with systemic risk (P);

(iv) providing advice on the classification of various GPAI models and systems (P);

(v) contributing to the development of tools and templates (TP);

(b) supporting the work of market surveillance authorities, at their request (P);

(c) supporting cross-border market surveillance activities as referred to in [22, Article 74.11],
without prejudice to the powers of market surveillance authorities (P);

(d) supporting the AI Office in carrying out its duties in the context of the Union safeguard
procedure pursuant to [22, Article 81] (P).

Appendix C: Taskforce Duties

Harmonisation of Risk Taxonomies and GPAI Model Evaluation Methodologies

• Closely collaborating with the Scientific Panel of Independent Experts to promote a regularly
updated comprehensive taxonomy and enumeration of GPAI systemic risks ("the Risk Taxonomy"),
to be initially established by the Codes of Practice [22, Recital 116];

• Outlining and updating concrete examples of and standards for qualitative and quantitative experi-
ments that would demonstrate the presence of the risk;

• Ensuring the continuous updating of and harmonisation between the Risk Taxonomy and GPAI
evaluations standards; and

• Ensuring that updates to the taxonomy outline precise descriptions of risks, taking into consid-
eration advancements in technology and the evolution of external environments, and drawing
from resources including but not limited to provider safety cases reports, scaling risk management
policies, capability forecast reports, and incident reporting documentation.

Standard-setting for GPAI Evaluations

• Regularly12 publishing updated standards for GPAI model evaluations to guide evaluations im-
plemented by providers [22, Article 55.1.a] and by the AI Office and third-party evaluators [22,
Article 92] towards internal validity, external validity, reproducibility, and portability; and

• Defining environments and evaluations for which standards are not safety-enhancing.

Quality-control of Evaluations

• Setting standards for the third-party evaluator conduct, following the proposal in [58] for an audit
oversight board modelled after the Public Company Accounting Oversight Board (PCAOB);

12Such as every twelve months or by qualified alert.
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• Vetting, approving, and periodically13 reviewing the fitness of third-party evaluators; and

• Auditing the methodologies and results of GPAI evaluations implemented by providers, the AI
Office, and third-party evaluators both pre- and post-deployment.

Finally, while not a primary duty, the Taskforce should facilitate the harmonisation of GPAI model
evaluation standards across GPAI providers and international bodies, including but not limited
to standards organisations and AI Safety Institutes, where possible, provided such efforts do not
compromise the independence of the Taskforce or the quality of its standards.

Appendix D: Provider Commitments

Documentation

A comprehensive understanding of evaluations results relies on intimate knowledge of the evaluations
process [26]14. Access to detailed documentation is crucial to account for nuances and potential
pitfalls, interpret evaluations, and develop standards accordingly.

GPAI providers commit to draw-up and keep up-to-date sufficient documentation on their evaluation
results and any additional information needed to rigorously audit these results. Sufficient documenta-
tion is understood to include, upon the determination of the AI office and proportional to the risk
being assessed, the required methods and the security precautions taken by the Taskforce:

• Description of models and methods as outlined in [22, Annex XI.1], including but not limited to
training data, training compute used, and number of perameters;15

• Documentation outlined in Annex XI.2.2.1 [22], including specifically:

– Scores on individual benchmarks and other developers’ evaluations;
– Description of evaluations and benchmarks;
– Model responses on benchmarks; and
– Descriptions and examples of the data included in the benchmarks.

• Documentation outlined in Annex XI.2.2 [22], including specifically:

– Description of capability elicitation procedures used in the benchmarks;
– Calendar-time and employee-hours spent conducting the evaluation; and
– The procedure used to fine-tune the model.

• Documentation outlined in Annex XI.2.3 [22], including specifically:

– The scaffolding and tools available to the model during inference; and
– Details about the model’s system architecture.

GPAI providers additionally commit to providing updated documentation to the Taskforce, including
but not limited to safety cases, scaling risk management policies, capability forecast reports, and
incident reporting documentation, as outlined in Article 55.1.c and Recital 115. GPAI providers
additionally commit to providing updated documentation to the Taskforce, including but not limited
to safety cases, scaling risk management policies, capability forecast reports, and incident reporting
documentation, as outlined in Article 55.1.c and Recital 115 [22].

13Such as every twelve months or by qualified alert
14Consider, for example, specialised evaluations like Bias Benchmark for QA (BBQ), which measure social

biases and require nuanced interpretation. Human evaluations, while valuable for assessing real-world per-
formance, are subject to variability based on evaluator characteristics and the inherent subjectivity of human
judgment. Model-generated evaluations, while efficient, may inherit biases or inaccuracies from the models that
created them.

15This information often includes valuable trade secrets, and providing it to outsiders risks leaking it to
outsiders. On the other hand, knowing these details can be crucial for verifying safety cases and evaluation
results. The risk associated with sharing this information should be weighed against the improved oversight that
it enables.
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Model and data access

Comprehensively implementing, drawing insights from, and setting standards for GPAI evaluations
require sufficient model access. Sufficient access is understood to include, upon the determination
of the Taskforce and proportional to the risk being assessed, the required methods and the security
precautions taken by the Taskforce:

• The ability to use the GPAI system in the way that it will be made available to customers (e.g.
prompting it for text or image responses);

• White box model access [15];
• Access to versions of the GPAI system that lack technical safety mitigations, as these can prevent

evaluators from exploring the full range of an AI system’s capabilities [71]
• Through an application programmer interface (API), the ability to fine-tune a GPAI system [69, 64,

13];
• Access to other models in the model family [13];
• Access to individual components of the GPAI system, including the core model (via API) and other

software components, such as moderation filters, system prompts, and available plug-ins allowing
additional capabilities like web browsing and code execution [13]; and

• The data used to train the GPAI model, and/or meta-data, descriptions, and examples of the training
data.

Some forms of enhanced access may increase the risk that GPAI providers’ intellectual property and
trade secrets are leaked. To fulfil Article 78 of the EU AI Act [22], providers commit to working
with the EU AI Office to provide sufficient access while minimising information security concerns.
Techniques for achieving this objective may include:

• Structured API access, providing "de facto white-box" capabilities to third parties without
giving direct access to model parameters [64];

• Physical solutions involving secure research environments on a GPAI provider’s campus,
allowing unrestricted white-box access while minimising risks of leaks;

• Legal mechanisms that draw on practices from other industries with audits can be used to
enforce confidentiality and hold third parties accountable.

Appendix E: Brussels Effects

De jure, GPAI evaluations standards in the EU could inform norms and standards in-
ternationally by way of collaboration with AI Safety Institutes and/or via the CEN-ISO
pipeline, as discussed in IS2 (Section 5). Evaluations may play a key policy role beyond
the EU, including in the UK and US [34, 23]. As the potential first-mover in GPAI eval-
uations standards – and the only current jurisdiction able to mandate and regulate GPAI
evaluation practices – the EU could plausibly pave the pathway for coordinated international
standards. As AI Safety Institutes expand and synergise, the alignment of evaluation standards
and the exchange of results could facilitate efficiency, returns to scale, and specialization [72].

De facto, GPAI evaluations standards could shape GPAI provider practices interna-
tionally. A priori, anticipation and awareness of standards for GPAI evaluations mandated by the
EU could preemptively shift GPAI provider behavior. Post-hoc, standards could impact evaluation
results and trigger regulatory decisions. Both cases may, in turn, prompt changes in GPAI model
development and deployment in the EU and potentially beyond. Previous estimates projected the
EU’s AI market share to be between 15% [33] - 22% [21]; depending on regulatory frameworks, this
market share could provide strong incentives for GPAI providers to develop and deploy GPAI models
that are provably safe, as measured by GPAI evaluations and accompanying standards.

Appendix F: Potential Causes of Failure and Additional Approaches

Beyond standard issues of funding, regulatory capture [17, 59, 78], and misaligned incentives [30],
potential causes of failure for the Taskforce include:

11



• Stifled acquisition of talent: the Taskforce may face challenges in recruiting sufficiently talented
experts. This could be exacerbated by an inability to match industry salaries or quality of life (even
with adequate funding), restrictions on hiring industry-affiliated researchers, or other hiring process
restrictions resulting in long hiring timelines or an inability to flexibly shape positions. Ensuring
sufficient salary, nimble workstyle, and hiring flexibility could address these challenges [62].

• Heavy bureaucratic processes: while we emphasize adaptivity as a priority, in practice the
Taskforce could struggle to keep pace with rapidly advancing AI capabilities. Bureaucratic
processes, transparency and conflict of interest requirements and the need for consensus could slow
down the general pace of work, restrict the ability of the Taskforce to gather information from
experts and industry [36]. Granting the Taskforce the authority and political capital to establish its
own processes from first principles instead of inherit processes from established industry players or
government could address this.

In addition to the Taskforce merely failing to achieve its mission, two particularly prominent ways in
which its efforts could backfire include:

• Increased friction for evaluators: standards will almost certainly create some extra processes
for evaluators within GPAI providers as well as third parties. If this friction is too great, it could
disincentivize new evaluators from entering the field at a time when talent is a critical bottleneck,
and it could reduce the ability of evaluators to experiment with new methodologies and advance
this critical risk management science[11].

• False sense of security: the existence of standards could create a false sense that AI risks are
being adequately managed, potentially reducing vigilance or investment in other areas of risk
management that might be more promising[50][56]. This is especially true insofar as it will be
difficult to assess the effectiveness of these standards.

In light of the potential failures or downsides of the Taskforce, it is prudent to also consider other
approaches to AI risk management, both as complements to and substitutes for the Taskforce,
including but not limited to:

• Outcome-based regulation: focus on regulating the outcomes and impacts of AI systems rather
than specific evaluation methodologies[16].

• Mandatory information sharing: require AI companies to share more detailed information about
their systems and internal evaluation processes, fostering transparency, independent of specific
standards[26].

• Focus on infrastructure: invest in shared testing infrastructure that can be used by multiple
stakeholders to evaluate AI systems.

• Bottom-up standards development: encourage the development of standards through a distributed,
community-driven process[48] involving a wide range of stakeholders, such as regularly posing
open challenges or competitions to identify novel risks or evaluation methods, supplementing the
work of a permanent Taskforce.

• AI bounty programs: establish programs that reward individuals or organisations for identifying
potential risks or vulnerabilities in AI systems[31].
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