
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

A GENETIC ALGORITHM FOR NAVIGATING
SYNTHESIZABLE MOLECULAR SPACES

Anonymous authors
Paper under double-blind review

ABSTRACT

Inspired by the effectiveness of genetic algorithms and the importance of synthe-
sizability in molecular design, we present SynGA, a simple genetic algorithm that
operates directly over synthesis routes. Our method features custom crossover and
mutation operators that explicitly constrain it to synthesizable molecular space. By
modifying the fitness function, we demonstrate the effectiveness of SynGA on a
variety of design tasks, including synthesizable analog search and sample-efficient
property optimization, for both 2D and 3D objectives. Furthermore, by coupling
SynGA with a machine learning-based filter that focuses the building block set,
we boost SynGA to state-of-the-art performance. For property optimization, this
manifests as a model-based variant SynGBO, which employs SynGA and block
filtering in the inner loop of Bayesian optimization. Since SynGA is lightweight
and enforces synthesizability by construction, our hope is that SynGA can not only
serve as a strong standalone baseline but also as a versatile module that can be
incorporated into larger synthesis-aware workflows in the future.

1 INTRODUCTION

The design of novel molecules is a costly and time-intensive endeavor, so significant effort has
gone into developing computational tools to de-risk and accelerate the process. Molecular design
involves a constrained optimization problem that is made challenging by the discrete combinatorial
nature of molecular space and the need for sample-efficiency. The rapid development of machine
learning (ML) has led to exciting advances for in silico design, with methods such as variational
autoencoders (Gómez-Bombarelli et al., 2018), reinforcement learning (Olivecrona et al., 2017),
GFlowNets (Bengio et al., 2021), and large language models (M. Bran et al., 2024) being proposed,
to name a few. Yet among them, genetic algorithms (GAs) (Holland, 1992), a classical approach,
have remained competitive for their simplicity, sample-efficiency, and exploratory power (Tripp &
Hernández-Lobato, 2023; Gao et al., 2022a). This is in contrast to standard ML methods which tend
to be data-hungry and struggle to extrapolate from their training sets. GAs have been used to design
organic emitters (Nigam et al., 2024), polymers (Kim et al., 2021), catalysts (Seumer & Jensen, 2024),
and drugs (Terfloth & Gasteiger, 2001). However, unlike ML models, classical GAs cannot learn
insights from data and are reliant on expert-designed genetic operators. Thus, there is increasing
interest in enhancing GAs with ML (or vice versa) (Kneiding & Balcells, 2024). This is primarily
done by (1) using the GA as a subroutine within some broader ML workflow, or (2) augmenting a
part of the GA (e.g., crossover) with ML (Section 2). Such work reaffirms the strength of GAs in
chemistry and shows that GAs and ML can in fact be coupled synergistically.

Search power, however, matters only if domain constraints are obeyed. Many molecular generative
models are synthesis-agnostic, which can lead to them proposing unstable or unsynthesizable designs
(Gao & Coley, 2020). This presents a major barrier for adopting these models in real-world applica-
tions, regardless of their performance on benchmarks. While using retrosynthesis models post-hoc
can alleviate this issue, they may also incur prohibitive runtime, taking minutes per evaluation (Sai-
giridharan et al., 2024). Instead, another promising strategy is to incorporate synthesis considerations
directly into the model itself (Stanley & Segler, 2023). One class of synthesis-aware models are those
that operate directly on synthesis routes, often defined in terms of a fixed catalog of purchasable
building blocks and expert-defined reaction templates. These template-based models are appealing
because they are explicitly constrained and the molecules produced by them come automatically with
plausible synthesis routes.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

*
*

Grow Shrink Rerun Change

Crossover Mutation

Population

Selection

Synthesis Trees ReactionsBuilding Blocks

Figure 1: A graphical overview of SynGA, which operates over synthesis trees built from building
blocks (squares) and reaction templates (circles). Example blocks and a reaction are drawn above
using SmilesDrawer (Probst & Reymond, 2018).

Given the power of GAs and the importance of synthesis constraints, a natural step is then to consider
synthesis-constrained GAs. Prior work (Gao et al., 2022b; 2024; Sun et al., 2025b) has done so by
augmenting an unconstrained GA with an ML model trained to project arbitrary molecules back onto
synthesis space. While these methods are successful in synthesis planning and molecular design, they
come with the upfront cost of training the ML model and the recurring cost of making inference calls
to it. Moreover, they are reliant on the quality and generalization of the projection module, which can
be difficult to train since it has to compress a combinatorially-large synthesis space. In this work,
we take an alternate approach and directly embed synthesis constraints within the GA itself through
custom genetic operators. More precisely, our contributions are:

1. A GA, SynGA, that evolves synthesis routes directly (Figure 1) and is thereby explicitly synthesis-
constrained. SynGA is simple and ML-free, which make it a nice baseline and subroutine for
future algorithms, similar to unconstrained GAs.

2. An elegant way to enhance SynGA through ML-guided building block filtering, wherein a
lightweight model is trained to dynamically restrict the block set depending on the optimization
task. For property optimization, this leads to SynGBO, a Bayesian optimization algorithm that
uses SynGA and block filtering in its the inner loop.

3. Extensive benchmarks of SynGA on various optimization tasks, where we show that SynGA or
its augmented versions achieve state-of-the-art performance. These include synthesizable analog
search and sample-efficient property optimization, for 2D and 3D objectives.

2 BACKGROUND

Synthesis-aware molecular design. Synthesizability can be incentivized through heuristics (Ertl &
Schuffenhauer, 2009), reward design (Guo & Schwaller, 2025), or fragmentation schemes (Polishchuk,
2020; Lewell et al., 1998; Degen et al., 2008), but it can also be enforced by engineering the generative
process itself. In this last case, a key design choice lies in how reactions are formalized. Template-
based methods (Gao et al., 2022b; Button et al., 2019) use a library of expert-defined reaction
rules, whereas template-free methods (Wang et al., 2022; Bradshaw et al., 2019; 2020) use an
ML model to predict products. While both approaches have limitations and neither guarantee
synthesizability, an advantage of templates is they induce well-defined search spaces that do not rely
on a black-box predictor. Recent template-based synthesis-aware algorithms include evolutionary
algorithms (Vinkers et al., 2003; Button et al., 2019; Wang et al., 2025), tree search (Swanson
et al., 2024), projection models (Gao et al., 2022b; Luo et al., 2024; Gao et al., 2024; Sun et al.,
2025b), GFlowNets (Seo et al., 2025; Koziarski et al., 2024; Cretu et al., 2025), flow matching (Shen
et al., 2025), reinforcement learning (Gao et al., 2024; Gottipati et al., 2020; Horwood & Noutahi,
2020), and large language models (Sun et al., 2025a; Wang et al., 2025). By constraining generation,

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

these methods yield molecules with routes that can be plausibly executed using standard laboratory
protocols. For a more comprehensive review, we refer readers to Stanley & Segler (2023).

Genetic algorithms. GAs can be defined on a variety of molecular representations such as SMILES
(Yoshikawa et al., 2018), SELFIES (Nigam et al., 2022; 2020; Krenn et al., 2020; Lo et al., 2023),
molecular graphs (Jensen, 2019; Tripp & Hernández-Lobato, 2023; Fu et al., 2022; Yoshikawa et al.,
2018), and synthesis routes (Gao et al., 2022b; 2024; Sun et al., 2025b). Although GAs sometimes
surpass ML baselines (Tripp & Hernández-Lobato, 2023; Gao et al., 2022a), the strongest results now
emerge when they are paired with ML. Such hybridization can manifest in multiple roles: guiding a
neural apprentice policy (Ahn et al., 2020); boosting exploitation or exploration in GFlowNets (Kim
et al., 2024), Augmented Memory (Guo & Schwaller, 2024), and retrieval-augmented generation
(Lee et al., 2024); and optimizing acquisition functions in Bayesian optimization (Tripp et al., 2021;
Tripp & Hernández-Lobato, 2024). When combined with synthesizable projection models, GAs can
also navigate synthesizable space efficiently (Gao et al., 2022b; 2024; Sun et al., 2025b). Other works
incorporate ML inside the GA itself, through ML-guided genetic operators (Kim et al., 2025; Fu
et al., 2022) or adding learned selection pressures (Nigam et al., 2020; 2022), highlighting the rich
design space for future hybrid methods.

3 APPROACH

We are interested in the space of the synthesizable molecules that can be obtained from a given set of
building blocks and reactions. Formally, ifM is the universe of molecules, let B ⊆ M be a finite
subset of purchasable building blocks. In addition, let R be a finite set of reaction rules, each one
being a function R : {S ∈ 2M | |S| = arity(R)} → 2M that maps a (multi)set of arity(R) ≤ 2
reactants to a set of possible products, assuming each reaction is unary or binary. In practice,R is
implemented by expert-defined SMARTS strings (templates), which we make invariant to input order
by applying them to every permutation of the reactants and taking the union of the products as the
final output. A reaction may return no products (i.e., ∅), if the input reactants are incompatible. It
may also return multiple products, for example, by design or due to ambiguous regioselectivity.

New synthesizable molecules can be formed by iteratively applying reactions to the building blocks.
A synthesis route producing a molecule M can be represented as an unordered binary tree, where
each node v is labeled with a molecule Mv and a reaction Rv such that Mroot = M and:

1. If v is a leaf node, then Mv ∈ B.
2. If v is an internal node, then Mv ∈ Rv({Mw | w is a child of v}) and, implicitly, v has exactly

arity(Rv) children and they correspond to compatible reactants of Rv . Assigning an Mv here is
necessary for disambiguation, since Rv can yield multiple products.

Conversely, any tree satisfying (1) and (2) can be interpreted as a valid synthesis route yielding a
synthesizable molecule. Hence, there is a surjection T ↠MS from the set of synthesis trees T to
the space of synthesizable moleculesMS ⊆M, and we can cast search problems overMS as ones
over T , which admits more compact and structured representations for ML. Here, we show that it
is both possible and effective to directly search over T using SynGA, a simple genetic algorithm
defined on synthesis trees.

3.1 GENETIC ALGORITHMS

Inspired by natural selection, genetic algorithms (GAs) (Holland, 1992) are a class of optimization
algorithm that have been shown to be powerful at navigating chemical space. Generally, GAs work by
iteratively updating a population of individuals through genetic operators that bias it towards higher
fitness (by which we mean the value under the objective function). Commonly, GAs define three
types of genetic operators: (1) crossover, which hybridizes two individuals to form a new one, (2)
mutation, which locally perturbs the result of crossover, and (3) selection. At each step or generation,
pairs of parents are sampled from the population and crossover and mutation are applied to produce
offspring. Subsets of the offspring and current population are carried into the next generation as the
new population. The selection operator defines the parent sampling and population update rules,
often in a manner that favors fitter individuals. Algorithm 1 gives the general structure of SynGA.
Further details and hyperparameters are given in Section 4.1.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Genetic operators. Key to the success of any GA is the design of its genetic operators; our custom
crossover and mutation operators enable SynGA to operate directly over synthesis trees (Figure 1).
Given two parent trees T1, T2 ∈ T , we perform crossover by enumerating their subtrees S1,S2 ⊆ T .
Then, we sample a random (S1, S2) ∈ S1 × S2 that are compatible with at least one bimolecular
reaction R ∈ R in the sense that R(M(S1),M(S2)) ̸= ∅, where M(T ) is the final product of T . If
such a pair exists, we join (S1, S2) at a new root node by sampling a random compatible reaction
and product. Our crossover is motivated by the intuition that if S is a subtree of T , then M(S) is
similar to a fragment of M(T ). Our crossover corresponds roughly to fusing one fragment from each
parent, which has been shown to be an effective in synthesis-agnostic GAs (Jensen, 2019; Tripp &
Hernández-Lobato, 2023).

Given a tree T ∈ T , mutation randomly performs one of five operations:

• Grow. Apply a random reaction R ∈ R compatible with M(T ), and choose a random product.
If R is bimolecular, then we also sample a building block compatible with M(T ) and R. The
root of T becomes the child of the mutant tree’s root.

• Shrink. Randomly restrict to one of the subtrees rooted at the children of the root of T .

• Rerun. Keeping the blocks and reactions fixed, randomly reassign the intermediate products,
i.e., Mv for internal nodes v. Conceptually, we execute T in a bottom-up (forward) direction but
instead of selecting a single product Mv ∈ MS per reaction, we maintain and propagate sets
of intermediatesMv ⊆ MS , such thatMv =

⋃
Rv({Mw ∈ Mw | w is a child of v}). This

yields a set of alternate productsMroot − {M(T )} that can be produced using T . We randomly
pick one of them and backtrack to resolve the intermediates leading to it. In practice, Rerun is
implemented using a one-pass algorithm that streams the reassignments in random order, such
that intermediates are only ever materialized on demand.

• Change internal. Randomly change the reaction assigned to an internal node to a new one that
is compatible with its children. Rerun to obtain the mutant tree.

• Change leaf. Randomly change the block assigned to a leaf to a new one that is compatible with
its parent and sibling (if any). Rerun to obtain the mutant tree.

Grow and Shrink are picked with probability 0.125 and the others with probability 0.25. Grow can
also be used to sample full synthesis trees by repeatedly applying it to a random building block for a
random number of steps. We use this to initialize the population in SynGA and to generate datasets
for ML. Appendix A.2 discusses additional implementation details that we omitted for clarity.

Fitness functions. A strength of GAs is their flexibility in choice of fitness function f , allowing us to
support both property optimization and analog search under a unified framework. For the former,
the goal is to maximize a property ρ of interest, so we can simply set f = ρ. For analog search, f
can be taken to be some notion of similarity to the query molecule. Although both problems can be
framed as fitness maximization, a key distinction is that in property optimization, the fitness function
is treated as an opaque oracle for which sample-efficiency is a priority. In contrast, in analog search,
one can evaluate the fitness function trivially and the task’s goal (the query molecule) is known. This
difference impacts how we can interface SynGA with ML.

3.2 BUILDING BLOCK FILTERING

We propose an elegant ML complement to SynGA that is deep block filtering. In the context of
analog search, we learn a network πθ : M 7→ FM ⊆ B that selects the most relevant building blocks
FM to some query molecule M . If |FM | ≪ |B|, filtering can be highly effective, especially since
our experiments use a catalog of almost 200k blocks. To search for an analog of M , SynGA can then
be run using FM instead of B. However, we consider an ε-filtered approach to account for potential
errors made by πθ. When a block is to be sampled from a space S ⊆ B, we instead sample from the
filtered intersection S ∩FM with probability 1− ε (if nonempty), and the original subset S otherwise.
We set ε = 0.1 in all our experiments.

Since B is large and discrete, parameterizing a πθ that selects from it is challenging. Prior work has
approached this problem by using a diffusion model that generates fingerprints and then performing
nearest neighbor searches (Gao et al., 2024). Instead, we frame the problem as a classification task.
That is, we learn a binary classifier πθ :M×B → (0, 1) that predicts whether a block can be used

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

to produce a molecule. Then, we can filter FM = {πθ(M,B) > µ | B ∈ B}, for some threshold µ.
Since B is given as input, the model has explicit access to the structure of B and does not have to
learn it implicitly. This allows us to use a much smaller multilayer perceptron (MLP) model while
achieving strong performance. We train πθ on a dataset D = {(M,BM )} of product-block(s) pairs
obtained by randomly sampling millions of synthesis routes. We use the binary cross entropy loss
and resample the positive set BM and negative set B −BM with equal probability, since the former is
orders of magnitude smaller. Further details on architecture and training are given in Section 4.2.1.
Although πθ is trained on exact product-block pairs, we use πθ(M,B) to predict whether B can
produce an analog of M , if M is unsynthesizable.

3.3 BLOCK ADDITIVE MODELS

For property optimization, the above approach to block filtering is infeasible since generating a large
dataset would be too sample-inefficient. Moreover, the tasks do not have explicit goal states, so the
classification formulation is less applicable. Thus, we approach block filtering by fitting a neural
additive model (NAM) (Agarwal et al., 2021) over a synthesis route’s building blocks. Our choice is
motivated by the simplicity and intrinsic interpretability of NAMs. Formally, given a property ρ and
product-block(s) pair (M,BM ), the NAM models ρ(M) using a sum of bb-wise scores:

ρθ(BM ) =
(
α+ (1− α)|BM |−1

) ∑
B∈BM

sθ(B). (1)

Here, sθ : B → R is an MLP and α ∈ [0, 1] is a learnable parameter that interpolates between a sum
and mean. NAMs are easily interpretable in that each block B is assigned a score sθ(B) such that
products formed from higher scoring blocks will have higher predicted property scores. Assuming
the NAM is reasonably accurate, we can then obtain a subset of promising blocks FM by filtering
out the highest-scoring ones.

Although some popular properties for drug discovery are roughly additive, others are complex and
non-linear, and hence difficult to accurately model with NAMs (Levin et al., 2023). To mitigate this,
we first note that our NAM only needs to be accurate with respect to the relative ranking between
product scores. Thus, we train it with a pairwise ranking objective (Burges et al., 2005) instead of a
regression loss. Second, we couple the NAM with a more powerful predictor that filters the samples
post-hoc from SynGA. The predictor can correct errors made by the NAM, and conversely, the NAM
imposes a prior on the building block space that allows for more targeted exploration, playing an
analogous role to a generative model. We find this is sufficient for obtaining state-of-the-art results
in our experiments, though future work could explore NAMs with higher-order terms or attribution
methods to improve the filter’s expressivity.

These components are then integrated in a broader Bayesian optimization algorithm, which we call
SynGBO (Algorithm 2). At each step, we use SynGA with NAM filtering to maximize an acquisition
function under a Gaussian process (GP) surrogate. The most fit candidates from this inner loop are
evaluated under the true oracle, and the outer loop continues until the oracle budget is consumed. The
NAM and GP are also periodically refitted as new samples are discovered. SynGBO runs SynGA as
a subroutine for roughly 100× more iterations than the standard version of SynGA, but this does not
incur prohibitive cost due to the lightweight nature of SynGA and its parallelizability. Further details
are given in Appendix C.4.

4 EXPERIMENTS

4.1 SETUP

Building blocks. We start with 211,220 molecules from the Enamine Building Blocks catalog (US
Stock, Oct. 2023) (Enamine, 2023) processed by Luo et al. (2024). We further discard deuterated
compounds and those containing elements other than B, Br, C, Cl, F, H, I, N, O, P, S, Se, Si
(e.g., organometallics). Then, the remaining molecules are sanitized and standardized using RDKit
(Landrum et al., 2006). Lastly, removing duplicates and blocks unsupported by any reaction template
leaves our final set of 196,907 building blocks.

Reactions. We use the reaction set from Gao et al. (2022b), which comprises 91 uni- or bi-molecular
reaction templates compiled from Hartenfeller et al. (2011) and Button et al. (2019).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Table 1: Ablation of different building block filters for SynGA on the validation set and 100 test
molecules sampled from the ChEMBL. We compare no filtering (None), a similarity heuristic (Sim),
an MLP, and an MLP trained with hard negative mining to enhance precision (MLP + Mine).

Filter AUPRC AUROC RR Morgan Scaffold Gobbi Subset

None − − 0.00 0.459 0.526 0.400 196,907
Sim 0.217 0.970 0.06 0.625 0.634 0.515 9892
MLP 0.212 0.999 0.22 0.721 0.724 0.635 117
MLP + Mine 0.764 0.999 0.20 0.664 0.671 0.570 184

Table 2: Average similarity scores between 1k molecules from ChEMBL and their proposed analogs.
Results for SynNet and ChemProjector are taken from Luo et al. (2024). SynthesisNet and SynFormer
results were reproduced with their default parameters, and we use the non-MCMC version (τ , in their
paper) for SynthesisNet due to compute limitations.

Method Valid RR Morgan Scaffold Gobbi Time

SynNet 0.850 0.054 0.427 0.417 0.268 −
SynthesisNet 1.000 0.070 0.543 0.530 0.452 −
ChemProjector 0.988 0.133 0.598 0.587 0.557 −
SynFormer 0.998 0.190 0.668 0.667 0.635 80 m

SynGA (Sim) 1.000 0.064 0.631 0.638 0.534 −
SynGA (MLP) 1.000 0.196 0.711 0.694 0.623 250 m

Genetic algorithm. We use a population size of 500, offspring size of 5, crossover rate rcross = 0.8,
mutation rate rmut = 0.5, and elitist selection (Algorithm 1). Parents are sampled with probability
proportional to their inverse rank, which is a simple approximation to the quantile-based sampling
scheme used by MolGA (Appendix A.3). To focus on small molecules, we cap all synthesis routes to
at most 5 steps (internal nodes) and all products to a generous upper-bound weight of 1000 Da.

Fingerprints. For ML modeling and similarity calculations, we use count Morgan fingerprints of
radius 2 by default, due to their greater specificity compared to binary fingerprints, which can fail to
discriminate between substructure repetitions. The Tanimoto similarity between fingerprints x and
y in both cases is ||min(x,y)||1/||max(x,y)||1, where min and max are applied elementwise. We
use 4096-dim. fingerprints for the analog search fitness function and other similarity computations.

4.2 SYNTHESIZABLE ANALOG SEARCH

4.2.1 BLOCK FILTERING

We begin by exploring various building block filtering models for analog search. To do so, we consider
the smaller-scale task of generating analogs for 100 random molecules drawn from ChEMBL (Zdrazil
et al., 2023). This was originally proposed in Gao et al. (2022b) as a challenging task for assessing
their model’s ability to generalize to “unreachable” queries. Since sample-efficiency is not a primary
concern in analog search, we run our GAs with a large initial population of 5k and a total budget of
10k oracle calls. To directly optimize for the evaluations metrics from Luo et al. (2024), we set the
fitness function to 0.9 ·Morgan+0.1 ·Murcko for the ChEMBL tasks, which are defined shortly later.
For each query M , the most fit individual is taken as the proposed analog A for further evaluation,
leading to 100 query-analog pairs.

The first two rows of Table 1 are ML-free approaches. None is the base SynGA, and Sim selects all
building blocks with count fingerprints b such that ||min(b,q)||1/||b||1 > 0.5, where q is the query
fingerprint. Intuitively, we threshold on the fraction of local structures in the building block that are
present in the query. For metrics, the reconstruction rate RR is the fraction of cases where M = A.
Morgan, Scaffold, and Gobbi are the average similarity between M and A under different metrics,
namely, the Tanimoto similarity between the Morgan bit fingerprints of the pair and their Murcko
scaffolds, and the dice similarity of their pharmacophore fingerprints (Gobbi & Poppinger, 1998).

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Table 3: Projection of N query molecules designed by generative models on 6 tasks. If y and y′ are
the scores of the query and analog molecules respectively, then ∆ = y′ − y. We report the mean
and standard deviations across queries, and the methods’ runtimes in the header. The Valid column
pertains to SynFormer and we omit it for SynGA since it always achieves perfect validity.

SynFormer (70 m) SynGA (MLP) (180 m)
Task N Valid Sim. ∆ (↑) Sim. ∆ (↑)
ALDH1 230 1.000 0.457± 0.173 0.118± 1.190 0.536± 0.119 0.302± 1.134
ESR_ant 203 1.000 0.553± 0.151 0.002± 0.832 0.644± 0.134 0.231± 0.803
TP53 232 1.000 0.590± 0.173 0.290± 0.660 0.630± 0.144 0.359± 0.574

O. MPO 46 1.000 0.406± 0.163 −0.157± 0.157 0.468± 0.155 −0.162± 0.152
P. MPO 41 0.976 0.503± 0.158 −0.173± 0.195 0.566± 0.116 −0.156± 0.197
S. Hop 35 1.000 0.523± 0.112 −0.360± 0.166 0.594± 0.068 −0.351± 0.136

Subset is the average size of the restricted block subset |FM |. Surprisingly, the simple similarity
heuristic improves performance significantly and reduces the building blocks by orders of magnitude.

Inspired by this, we train a small fingerprint-based MLP model for filtering (Appendix B.1). We
generate a dataset by randomly sampling synthesis routes until 10M unique products are found, and
hold out 10k of them for validation. Across the validation set, the per-example AUROC and AUPRC,
with respect to the B-wise filter scores and the binary labels, are averaged and reported in Table 1.
The MLP filter obtains strong performance on the validation set and retrieves better analogs on the
test set, using a score cutoff of 0.5. We further characterize the contributions of the GA and filter
in Appendix B.2, and in Appendix B.3, we describe how the model’s precision can be increased
substantially using hard negative mining (Robinson et al., 2021) (MLP + Mine) but with degraded
performance on ChEMBL.

4.2.2 COMPARISONS AGAINST BASELINES

We benchmark SynGA on the 1k molecule ChEMBL task from Luo et al. (2024) in Table 2. For
baselines, we consider SynNet (Gao et al., 2022b), SynthesisNet (Sun et al., 2025b), ChemProjector
(Luo et al., 2024), and SynFormer (Gao et al., 2024), which are ML models that decode a query
directly into synthesis route, represented as actions in a Markov decision process or a postfix string.
The search space of SynGA is most comparable to that of ChemProjector. SynNet and SynthesisNet
use the same 91 reaction templates but an older and smaller catalog of 147k Enamine building blocks.
In contrast, SynFormer uses an expanded 115 template set which includes trimolecular reactions and
a newer set of 223k building blocks.

Despite its smaller search space, SynGA (MLP) achieves competitive performance in both recon-
struction and analog search. In particular, some methods produce a small fraction of invalid routes
(Valid), whereas SynGA will always yield valid routes by design of its genetic operators. However,
SynGA is over 3× slower than SynFormer (see Time, although our analysis has limitations discussed
in Appendix B.4). This is expected since amortized methods benefit from little to no searching
during inference in exchange for a relatively larger model and expensive training stage. In contrast,
SynGA is more lightweight but relies on a more expensive search during inference. Hence, while
SynGA is less efficient, it is easier to adopt out of the box on new building blocks and reaction sets.
Furthermore, we are able to directly optimize for arbitrary notions of chemical similarity.

4.2.3 PROJECTING STRUCTURE-BASED AND GOAL-DIRECTED MOLECULAR DESIGNS

Many state-of-the-art generative models are synthesis-agnostic and often propose unsynthesizable
molecules (Gao & Coley, 2020). Commonly, SAscore (Ertl & Schuffenhauer, 2009) is used to justify
the synthetic accessibility of a model’s samples are. However, it has limitations as a heuristic and,
ideally, we not only want to know if a molecule can be made but also how to make it. A nice use case
of synthesis models such as SynGA is then to “project" arbitrary designs back onto synthesis route
space. Even if the original molecule is already synthesizable, doing so can uncover alternatives that
are cheaper or more experimentally feasible to synthesize. In the following, we perform synthesizable

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Table 4: Sum of the top-10 AUC scores over the PMO suite. Results are taken from their respective
papers, except MolGA, REINVENT, and SynNet are taken from Kim et al. (2024). We average
over 5 seeds, except f -RAG and SynthesisNet use only 3 and 1 seeds, respectively. Separate tables
for SynthesisNet and SynFlowNet are given since they were assessed only on 13 and 2 PMO tasks,
instead of the full 22. Task-wise results are given in Appendix C.5.

Method Synthesis AUC

f -RAG ✗ 16.301
GPBO ✗ 16.304
Genetic GFN ✗ 16.078
MolGA ✗ 15.686
REINVENT ✗ 15.003
SynNet ✓ 12.610

SynGA ✓ 13.366
SynGBO ✓ 16.426

Method Synthesis AUC

SynthesisNet ✓ 7.906
SynGA ✓ 7.836
SynGBO ✓ 9.332

Method Synthesis AUC

SynFlowNet ✓ 1.576
SynGA ✓ 1.842
SynGBO ✓ 1.905

hit expansions around molecules produced by structure-based and goal-directed generative models
and quantify how their docking and property scores change as a result.

For structure-based design, we sample ligands binding to three receptors (ALDH1, ESR_ant, TP53)
from LIT-PBCA (Tran-Nguyen et al., 2020), and for goal-directed design, molecules that optimize for
three property oracles (Osimertinib MPO, Perindopril MPO, scaffold hop) from GuacaMol (Brown
et al., 2019). For ligand design, we use the negative QuickVina2 (Alhossary et al., 2015) docking
score, so that all properties are to be maximized. Following Luo et al. (2024), for each receptor,
ligands are produced using Pocket2Mol (Peng et al., 2022), and for each GuacaMol oracle, we filter
the molecules produced by Gao & Coley (2020) (using three methods (Jensen, 2019; Yoshikawa
et al., 2018; Segler et al., 2018) adapted by GuacaMol) that are unsynthesizable under ASKCOS
(Coley et al., 2019). We noticed clusters of highly similar molecules in our query set, particularly in
the GuacaMol tasks where high-scoring molecules are by definition those similar to some reference
molecule and, hence, to each other. Consequentially, we greedily cluster our dataset using a similarity
cutoff of 0.7, and retain the highest-scoring representative from each cluster.

For each query, we run SynGA (MLP) as in Section 4.2.1 but optimizing only Morgan count similarity.
We dock or evaluate the five most fit analogs and retain the one with the best property score. In Table
3, we report the average similarity between the queries and analogs as well as their average difference
in property score. We compare against SynFormer, using their default sampling parameters and also
dropping queries that fails to decode into valid analogs for metric computation. Overall, SynGA finds
better analogs in terms of both similarity and score preservation or improvement.

4.3 DE NOVO SYNTHESIS-AWARE PROPERTY OPTIMIZATION

4.3.1 BLOCK ADDITIVE MODELS

We first ablate the utility of NAMs in the data-limited regime in Appendix C.1. On small datasets, we
find NAMs are able to achieve good test correlation and bias products towards higher scores through
building block filtering. However, by coupling NAMs with a more accurate GP predictor, we are able
to surpass the performance of both components in isolation, motivating SynGBO’s design.

4.3.2 COMPARISONS AGAINST BASELINES: PMO

We run SynGA on the Practical Molecular Optimization (PMO) benchmark (Gao et al., 2022a), im-
plemented by the Therapeutics Data Commons (TDC) (Huang et al., 2021). On the PMO benchmark,
algorithms optimize against a suite of 23 tasks within 10k oracle calls. Their suggested metric is the
area under the curve (AUC) of the top-10 molecules, normalized to [0, 1]. However, we remove the
Valsartan SMARTS task for reasons discussed in Appendix C.5, among other details. For baselines,
we use f -RAG (Lee et al., 2024), Genetic GFN (Kim et al., 2024), and GPBO (Tripp et al., 2021;
Tripp & Hernández-Lobato, 2024), synthesis-agnostic state-of-the-art algorithms that use MolGA as
a component. f -RAG and Genetic GFN couple GraphGA with retrieval-augmented generation and

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Table 5: Vina docking scores of the top-100 diverse modes on three receptors from the LIT-PCBA
dataset. Results for baselines are taken from Seo et al. (2025) and Shen et al. (2025). We report the
mean and standard deviation over 4 seeds.

Method Calls ALDH1 ESR_ant TP53

SynNet

64000

−8.81± 0.21 −8.52± 0.16 −5.34± 0.23
BBAR −10.06± 0.14 −9.92± 0.05 −7.05± 0.09
SynFlowNet −10.69± 0.09 −10.27± 0.04 −7.90± 0.10
RFGN −9.93± 0.11 −9.72± 0.14 −7.07± 0.06
RxnFlow −11.26± 0.07 −10.77± 0.04 −8.09± 0.06
3DSynthFlow −11.82± 0.04 −11.23± 0.08 −8.41± 0.17

SynGA 16000 −11.97± 0.04 −11.07± 0.20 −8.23± 0.14
SynGBO −12.36± 0.04 −11.68± 0.21 −8.51± 0.20

GFlowNets, while GPBO uses MolGA to optimize an acquisition function in Bayesian optimization.
We also report REINVENT (Olivecrona et al., 2017) and MolGA (Tripp & Hernández-Lobato, 2023),
which were top-performing at the time of publication of PMO. For a synthesis-aware baseline, we
use SynNet (Gao et al., 2022b) which couples a synthesis projection model with a fingerprint-based
GA. Table 4 provides our results along with more recent synthesis models, SynthesisNet (Sun et al.,
2025b) and SynFlowNet (Cretu et al., 2025), that were only assessed on subsets of PMO. SynGA
is competitive with the synthesis-aware algorithms on PMO, but lags behind the synthesis-agnostic
algorithms. This may reflect the more constrained nature of SynGA’s search space, which is a specific
subset of (predicted) synthesizable molecules. To bridge the gap, we turn SynGA into a model-based
algorithm SynGBO, inspired by the significant improvement of GPBO upon MolGA (Appendix C.4).
SynGBO attains state-of-the-art performance on PMO, being competitive with or outperforming even
the top unconstrained algorithms.

4.3.3 COMPARISONS AGAINST BASELINES: DOCKING

To test SynGA on 3D objectives, we optimize for the UniDock (Yu et al., 2023) Vina docking scores
of LIT-PCBA receptors (Tran-Nguyen et al., 2020), following Seo et al. (2025), except we arbitrarily
subset to ALDH1, ESR_ant, and TP53 as before. To prevent reward hacking, we use the average
between the QED (Bickerton et al., 2012) and normalized Vina score (−0.1 · Vina) as our fitness
function, and set a cap of 50 heavy atoms. We collect the top diverse modes, by filtering samples by
QED > 0.5 and greedily clustering with a similarity threshold of 0.5, and report their average docking
scores in Table 5. As baselines, we consider a variety of synthesis-aware methods: SynNet (Gao et al.,
2022b), BBAR (Seo et al., 2023), GFlowNets (SynFlowNet, RxnFlow, RFGN) (Cretu et al., 2025;
Seo et al., 2025; Koziarski et al., 2024), and 3DSynthFlow (Shen et al., 2025). Surprisingly, SynGA
attains better docking scores than all baselines except 3DSynthFlow with only a quarter of the oracle
calls. This highlights the sample-efficiency and effectiveness of GAs. We note that 3DSynthFlow
jointly designs the synthesis route and binding pose and similarly incorporating 3D information into
SynGA (e.g., as in Fu et al. (2022)) could be promising for future work. However, we proceed by
augmenting SynGA into the model-based version SynGBO, in line with our approach for PMO, to
attain the best docking scores overall. Further details are given in Appendix C.6.

5 CONCLUSION

We propose SynGA, a simple synthesis-constrained GA that operates directly on synthesis routes.
Within a unified framework of fitness maximization, we demonstrate the effectiveness of our method
at synthesizable analog search and property optimization. SynGA is further enhanced by ML through
a lightweight building block filter, which manifests as a classifier trained on millions of synthesis
routes for analog search and an interpretable block-additive model for sample-efficient property
optimization. The latter leads to the model-based variant SynGBO, which achieves state-of-the-art
performance on both the PMO benchmark and docking tasks. However, we note that this is just one
possibility, and we expect that SynGA can be readily hybridized with ML in many other ways. We
provide an extended outlook in Appendix D.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

REPRODUCIBILITY STATEMENT

Hardware specifications are provided in Appendix E along with our source code, which provides
documentation for preparing data and running experiments. Our MLP filter checkpoint for analog
search will be included upon publication.

REFERENCES

Rishabh Agarwal, Levi Melnick, Nicholas Frosst, Xuezhou Zhang, Ben Lengerich, Rich Caruana,
and Geoffrey Hinton. Neural additive models: Interpretable machine learning with neural nets. In
Advances in Neural Information Processing Systems, 2021.

Sungsoo Ahn, Junsu Kim, Hankook Lee, and Jinwoo Shin. Guiding deep molecular optimization
with genetic exploration. In Advances in Neural Information Processing Systems, volume 33, pp.
12008–12021. Curran Associates, Inc., 2020.

Amr Alhossary, Stephanus Daniel Handoko, Yuguang Mu, and Chee-Keong Kwoh. Fast, accurate,
and reliable molecular docking with QuickVina 2. Bioinformatics, 31(13):2214–2216, 02 2015.
doi: 10.1093/bioinformatics/btv082.

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow
network based generative models for non-iterative diverse candidate generation. In Advances in
Neural Information Processing Systems, 2021.

G. Richard Bickerton, Gaia V. Paolini, Jérémy Besnard, Sorel Muresan, and Andrew L. Hopkins.
Quantifying the chemical beauty of drugs. Nature Chemistry, 4(2):90–98, Feb 2012. doi: 10.1038/
nchem.1243.

John Bradshaw, Brooks Paige, Matt J Kusner, Marwin Segler, and José Miguel Hernández-Lobato.
A model to search for synthesizable molecules. In Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019.

John Bradshaw, Brooks Paige, Matt J Kusner, Marwin Segler, and José Miguel Hernández-Lobato.
Barking up the right tree: an approach to search over molecule synthesis DAGs. In Advances in
Neural Information Processing Systems, volume 33, pp. 6852–6866. Curran Associates, Inc., 2020.

Nathan Brown, Marco Fiscato, Marwin H.S. Segler, and Alain C. Vaucher. GuacaMol: Benchmarking
models for de novo molecular design. Journal of Chemical Information and Modeling, 59(3):
1096–1108, 2019. doi: 10.1021/acs.jcim.8b00839.

Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton, and Greg
Hullender. Learning to rank using gradient descent. In Proceedings of the 22nd International Con-
ference on Machine Learning, pp. 89–96, New York, NY, USA, 2005. Association for Computing
Machinery. doi: 10.1145/1102351.1102363.

Alexander Button, Daniel Merk, Jan A. Hiss, and Gisbert Schneider. Automated de novo molecular
design by hybrid machine intelligence and rule-driven chemical synthesis. Nature Machine
Intelligence, 1(7):307–315, Jul 2019. doi: 10.1038/s42256-019-0067-7.

Connor W. Coley, Dale A. Thomas, Justin A. M. Lummiss, Jonathan N. Jaworski, Christopher P.
Breen, Victor Schultz, Travis Hart, Joshua S. Fishman, Luke Rogers, Hanyu Gao, Robert W.
Hicklin, Pieter P. Plehiers, Joshua Byington, John S. Piotti, William H. Green, A. John Hart,
Timothy F. Jamison, and Klavs F. Jensen. A robotic platform for flow synthesis of organic
compounds informed by AI planning. Science, 365(6453):eaax1566, 2019. doi: 10.1126/science.
aax1566.

Miruna Cretu, Charles Harris, Ilia Igashov, Arne Schneuing, Marwin Segler, Bruno Correia, Julien
Roy, Emmanuel Bengio, and Pietro Lio. SynFlowNet: Design of diverse and novel molecules with
synthesis constraints. In The Thirteenth International Conference on Learning Representations,
2025.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic algorithm:
NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182–197, 2002. doi: 10.1109/
4235.996017.

Jörg Degen, Christof Wegscheid-Gerlach, Andrea Zaliani, and Matthias Rarey. On the art of compiling
and using ‘drug-like’ chemical fragment spaces. ChemMedChem, 3(10):1503–1507, 2008. doi:
10.1002/cmdc.200800178.

Enamine. Building blocks catalog, 2023. URL https://enamine.net/building-blocks/
building-blocks-catalog.

Peter Ertl and Ansgar Schuffenhauer. Estimation of synthetic accessibility score of drug-like
molecules based on molecular complexity and fragment contributions. Journal of Cheminformatics,
1(1):8, Jun 2009. doi: 10.1186/1758-2946-1-8.

Tianfan Fu, Wenhao Gao, Connor Coley, and Jimeng Sun. Reinforced genetic algorithm for structure-
based drug design. In Advances in Neural Information Processing Systems, volume 35, pp.
12325–12338. Curran Associates, Inc., 2022.

Wenhao Gao and Connor W. Coley. The synthesizability of molecules proposed by generative models.
Journal of Chemical Information and Modeling, 60(12):5714–5723, 2020. doi: 10.1021/acs.jcim.
0c00174.

Wenhao Gao, Tianfan Fu, Jimeng Sun, and Connor Coley. Sample efficiency matters: A benchmark
for practical molecular optimization. In Advances in Neural Information Processing Systems,
volume 35, pp. 21342–21357. Curran Associates, Inc., 2022a.

Wenhao Gao, Rocío Mercado, and Connor W. Coley. Amortized tree generation for bottom-up
synthesis planning and synthesizable molecular design. In International Conference on Learning
Representations, 2022b.

Wenhao Gao, Shitong Luo, and Connor W. Coley. Generative artificial intelligence for navigating
synthesizable chemical space. arXiv preprint arXiv:2410.03494, 2024.

Jacob R Gardner, Geoff Pleiss, David Bindel, Kilian Q Weinberger, and Andrew Gordon Wilson.
GPyTorch: Blackbox matrix-matrix gaussian process inference with GPU acceleration. In Advances
in Neural Information Processing Systems, 2018.

Alberto Gobbi and Dieter Poppinger. Genetic optimization of combinatorial libraries. Biotechnol-
ogy and Bioengineering, 61(1):47–54, 1998. doi: 10.1002/(SICI)1097-0290(199824)61:1<47::
AID-BIT9>3.0.CO;2-Z.

Sai Krishna Gottipati, Boris Sattarov, Sufeng Niu, Yashaswi Pathak, Haoran Wei, Shengchao Liu,
Shengchao Liu, Simon Blackburn, Karam Thomas, Connor Coley, Jian Tang, Sarath Chandar,
and Yoshua Bengio. Learning to navigate the synthetically accessible chemical space using
reinforcement learning. In Proceedings of the 37th International Conference on Machine Learning,
volume 119 of Proceedings of Machine Learning Research, pp. 3668–3679. PMLR, 13–18 Jul
2020.

Ryan-Rhys Griffiths, Leo Klarner, Henry Moss, Aditya Ravuri, Sang Truong, Yuanqi Du, Samuel
Stanton, Gary Tom, Bojana Rankovic, Arian Jamasb, et al. GAUCHE: A library for Gaussian
processes in chemistry. Advances in Neural Information Processing Systems, 36, 2024.

Jeff Guo and Philippe Schwaller. Saturn: Sample-efficient generative molecular design using memory
manipulation. arXiv preprint arXiv:2405.17066, 2024.

Jeff Guo and Philippe Schwaller. Directly optimizing for synthesizability in generative molecular
design using retrosynthesis models. Chem. Sci., 16:6943–6956, 2025. doi: 10.1039/D5SC01476J.

Rafael Gómez-Bombarelli, Jennifer N. Wei, David Duvenaud, José Miguel Hernández-Lobato, Ben-
jamín Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D. Hirzel,
Ryan P. Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven
continuous representation of molecules. ACS Central Science, 4(2):268–276, 2018. doi:
10.1021/acscentsci.7b00572.

11

https://enamine.net/building-blocks/building-blocks-catalog
https://enamine.net/building-blocks/building-blocks-catalog


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Markus Hartenfeller, Martin Eberle, Peter Meier, Cristina Nieto-Oberhuber, Karl-Heinz Altmann,
Gisbert Schneider, Edgar Jacoby, and Steffen Renner. A collection of robust organic synthesis
reactions for in silico molecule design. Journal of Chemical Information and Modeling, 51(12):
3093–3098, 2011. doi: 10.1021/ci200379p.

John H Holland. Adaptation in natural and artificial systems: an introductory analysis with applica-
tions to biology, control, and artificial intelligence. MIT press, 1992.

Julien Horwood and Emmanuel Noutahi. Molecular design in synthetically accessible chemical
space via deep reinforcement learning. ACS Omega, 5(51):32984–32994, Dec 2020. doi: 10.1021/
acsomega.0c04153.

Kexin Huang, Tianfan Fu, Wenhao Gao, Yue Zhao, Yusuf Roohani, Jure Leskovec, Connor W Coley,
Cao Xiao, Jimeng Sun, and Marinka Zitnik. Therapeutics Data Commons: Machine learning
datasets and tasks for drug discovery and development. Proceedings of Neural Information
Processing Systems, NeurIPS Datasets and Benchmarks, 2021.

John J. Irwin, Khanh G. Tang, Jennifer Young, Chinzorig Dandarchuluun, Benjamin R. Wong,
Munkhzul Khurelbaatar, Yurii S. Moroz, John Mayfield, and Roger A. Sayle. ZINC20—a free
ultralarge-scale chemical database for ligand discovery. Journal of Chemical Information and
Modeling, 60(12):6065–6073, 2020. doi: 10.1021/acs.jcim.0c00675.

Jan H. Jensen. A graph-based genetic algorithm and generative model/monte carlo tree search for the
exploration of chemical space. Chem. Sci., 10:3567–3572, 2019. doi: 10.1039/C8SC05372C.

Chiho Kim, Rohit Batra, Lihua Chen, Huan Tran, and Rampi Ramprasad. Polymer design using
genetic algorithm and machine learning. Computational Materials Science, 186:110067, 2021.
doi: 10.1016/j.commatsci.2020.110067.

Hyeonah Kim, Minsu Kim, Sanghyeok Choi, and Jinkyoo Park. Genetic-guided GFlownets for
sample efficient molecular optimization. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024.

Hyeonah Kim, Sanghyeok Choi, Jiwoo Son, Jinkyoo Park, and Changhyun Kwon. Neural genetic
search in discrete spaces. In Forty-second International Conference on Machine Learning, 2025.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015.

Hannes Kneiding and David Balcells. Augmenting genetic algorithms with machine learning for
inverse molecular design. Chem. Sci., 15:15522–15539, 2024. doi: 10.1039/D4SC02934H.

Michał Koziarski, Andrei Rekesh, Dmytro Shevchuk, Almer van der Sloot, Piotr Gaiński, Yoshua
Bengio, Cheng-Hao Liu, Mike Tyers, and Robert A. Batey. RGFN: Synthesizable molecular
generation using gflownets. In Advances in Neural Information Processing Systems, volume 37,
pp. 46908–46955. Curran Associates, Inc., 2024.

Mario Krenn, Florian Häse, AkshatKumar Nigam, Pascal Friederich, and Alan Aspuru-Guzik. Self-
referencing embedded strings (SELFIES): A 100Machine Learning: Science and Technology, 1
(4):045024, oct 2020. doi: 10.1088/2632-2153/aba947.

Greg Landrum et al. RDKit: Open-source cheminformatics, 2006.

Seul Lee, Karsten Kreis, Srimukh Prasad Veccham, Meng Liu, Danny Reidenbach, Saee Gopal
Paliwal, Arash Vahdat, and Weili Nie. Molecule generation with fragment retrieval augmentation.
In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.

Itai Levin, Michael E. Fortunato, Kian L. Tan, and Connor W. Coley. Computer-aided evaluation and
exploration of chemical spaces constrained by reaction pathways. AIChE Journal, 69(12):e18234,
2023. doi: 10.1002/aic.18234.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Xiao Qing Lewell, Duncan B. Judd, Stephen P. Watson, and Michael M. Hann. RECAP- retrosynthetic
combinatorial analysis procedure: A powerful new technique for identifying privileged molecular
fragments with useful applications in combinatorial chemistry. Journal of Chemical Information
and Computer Sciences, 38(3):511–522, 1998. doi: 10.1021/ci970429i.

Yibo Li, Liangren Zhang, and Zhenming Liu. Multi-objective de novo drug design with con-
ditional graph generative model. Journal of Cheminformatics, 10(1):33, Jul 2018. doi:
10.1186/s13321-018-0287-6.

Alston Lo, Robert Pollice, AkshatKumar Nigam, Andrew D. White, Mario Krenn, and Alán Aspuru-
Guzik. Recent advances in the self-referencing embedded strings (SELFIES) library. Digital
Discovery, 2:897–908, 2023. doi: 10.1039/D3DD00044C.

Shitong Luo, Wenhao Gao, Zuofan Wu, Jian Peng, Connor W. Coley, and Jianzhu Ma. Projecting
molecules into synthesizable chemical spaces. In Forty-first International Conference on Machine
Learning, 2024.

Andres M. Bran, Sam Cox, Oliver Schilter, Carlo Baldassari, Andrew D. White, and Philippe
Schwaller. Augmenting large language models with chemistry tools. Nature Machine Intelligence,
6(5):525–535, May 2024. doi: 10.1038/s42256-024-00832-8.

AkshatKumar Nigam, Pascal Friederich, Mario Krenn, and Alan Aspuru-Guzik. Augmenting genetic
algorithms with deep neural networks for exploring the chemical space. In International Conference
on Learning Representations, 2020.

AkshatKumar Nigam, Robert Pollice, and Alán Aspuru-Guzik. Parallel tempered genetic algorithm
guided by deep neural networks for inverse molecular design. Digital Discovery, 1:390–404, 2022.
doi: 10.1039/D2DD00003B.

AkshatKumar Nigam, Robert Pollice, Gary Tom, Kjell Jorner, John Willes, Luca Thiede, Anshul
Kundaje, and Alan Aspuru-Guzik. Tartarus: A benchmarking platform for realistic and practical
inverse molecular design. In Advances in Neural Information Processing Systems, volume 36, pp.
3263–3306. Curran Associates, Inc., 2023.

AkshatKumar Nigam, Robert Pollice, Pascal Friederich, and Alán Aspuru-Guzik. Artificial design
of organic emitters via a genetic algorithm enhanced by a deep neural network. Chem. Sci., 15:
2618–2639, 2024. doi: 10.1039/D3SC05306G.

Marcus Olivecrona, Thomas Blaschke, Ola Engkvist, and Hongming Chen. Molecular de-novo
design through deep reinforcement learning. Journal of Cheminformatics, 9(1):48, Sep 2017. doi:
10.1186/s13321-017-0235-x.

Xingang Peng, Shitong Luo, Jiaqi Guan, Qi Xie, Jian Peng, and Jianzhu Ma. Pocket2Mol: Efficient
molecular sampling based on 3d protein pockets. In International Conference on Machine Learning,
2022.

Pavel Polishchuk. CReM: chemically reasonable mutations framework for structure generation.
Journal of Cheminformatics, 12(1):28, Apr 2020. doi: 10.1186/s13321-020-00431-w.

Daniel Probst and Jean-Louis Reymond. SmilesDrawer: Parsing and drawing smiles-encoded
molecular structures using client-side javascript. Journal of Chemical Information and Modeling,
58(1):1–7, 2018. doi: 10.1021/acs.jcim.7b00425.

Joshua David Robinson, Ching-Yao Chuang, Suvrit Sra, and Stefanie Jegelka. Contrastive learning
with hard negative samples. In International Conference on Learning Representations, 2021.

Lakshidaa Saigiridharan, Alan Kai Hassen, Helen Lai, Paula Torren-Peraire, Ola Engkvist, and
Samuel Genheden. AiZynthFinder 4.0: developments based on learnings from 3 years of industrial
application. Journal of Cheminformatics, 16(1):57, May 2024. ISSN 1758-2946. doi: 10.1186/
s13321-024-00860-x.

Marwin H. S. Segler, Thierry Kogej, Christian Tyrchan, and Mark P. Waller. Generating focused
molecule libraries for drug discovery with recurrent neural networks. ACS Central Science, 4(1):
120–131, 2018. doi: 10.1021/acscentsci.7b00512.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Seonghwan Seo, Jaechang Lim, and Woo Youn Kim. Molecular generative model via retrosyntheti-
cally prepared chemical building block assembly. Adv. Sci., 10(8):2206674, 2023.

Seonghwan Seo, Minsu Kim, Tony Shen, Martin Ester, Jinkyoo Park, Sungsoo Ahn, and Woo Youn
Kim. Generative flows on synthetic pathway for drug design. In The Thirteenth International
Conference on Learning Representations, 2025.

Julius Seumer and Jan H. Jensen. Beyond predefined ligand libraries: A genetic algorithm approach
for de novo discovery of catalysts for the suzuki coupling reactions. ChemRxiv, 2024. doi:
10.26434/chemrxiv-2024-9xh38.

Tony Shen, Seonghwan Seo, Ross Irwin, Kieran Didi, Simon Olsson, Woo Youn Kim, and Martin
Ester. Compositional flows for 3d molecule and synthesis pathway co-design. In Forty-second
International Conference on Machine Learning, 2025.

Megan Stanley and Marwin Segler. Fake it until you make it? generative de novo design and virtual
screening of synthesizable molecules. Current Opinion in Structural Biology, 82:102658, 2023.
doi: 10.1016/j.sbi.2023.102658.

Kunyang Sun, Dorian Bagni, Joseph M. Cavanagh, Yingze Wang, Jacob M. Sawyer, Andrew
Gritsevskiy, and Teresa Head-Gordon. SynLlama: Generating synthesizable molecules and their
analogs with large language models. arXiv preprint arXiv:2503.12602, 2025a.

Michael Sun, Alston Lo, Minghao Guo, Jie Chen, Connor W. Coley, and Wojciech Matusik. Procedu-
ral synthesis of synthesizable molecules. In The Thirteenth International Conference on Learning
Representations, 2025b.

Kyle Swanson, Gary Liu, Denise B. Catacutan, Autumn Arnold, James Zou, and Jonathan M. Stokes.
Generative AI for designing and validating easily synthesizable and structurally novel antibiotics.
Nature Machine Intelligence, 6(3):338–353, Mar 2024. doi: 10.1038/s42256-024-00809-7.

Lothar Terfloth and Johann Gasteiger. Neural networks and genetic algorithms in drug design. Drug
Discovery Today, 6:102–108, 2001.

Viet-Khoa Tran-Nguyen, Célien Jacquemard, and Didier Rognan. LIT-PCBA: An unbiased data set
for machine learning and virtual screening. Journal of Chemical Information and Modeling, 60(9):
4263–4273, 2020. doi: 10.1021/acs.jcim.0c00155.

Austin Tripp and José Miguel Hernández-Lobato. Diagnosing and fixing common problems in
bayesian optimization for molecule design. In ICML 2024 AI for Science Workshop, 2024.

Austin Tripp and José Miguel Hernández-Lobato. Genetic algorithms are strong baselines for
molecule generation. arXiv preprint arXiv:2310.09267, 2023.

Austin Tripp, Gregor N. C. Simm, and José Miguel Hernández-Lobato. A fresh look at de novo
molecular design benchmarks. In NeurIPS 2021 AI for Science Workshop, 2021.

H. Maarten Vinkers, Marc R. de Jonge, Frederik F. D. Daeyaert, Jan Heeres, Lucien M. H. Koymans,
Joop H. van Lenthe, Paul J. Lewi, Henk Timmerman, Koen Van Aken, and Paul A. J. Janssen.
SYNOPSIS: Synthesize and optimize system in silico. Journal of Medicinal Chemistry, 46(13):
2765–2773, 2003. doi: 10.1021/jm030809x.

Haorui Wang, Jeff Guo, Lingkai Kong, Rampi Ramprasad, Philippe Schwaller, Yuanqi Du, and Chao
Zhang. LLM-augmented chemical synthesis and design decision programs. In Towards Agentic AI
for Science: Hypothesis Generation, Comprehension, Quantification, and Validation, 2025.

Jike Wang, Xiaorui Wang, Huiyong Sun, Mingyang Wang, Yundian Zeng, Dejun Jiang, Zhenxing
Wu, Zeyi Liu, Ben Liao, Xiaojun Yao, Chang-Yu Hsieh, Dongsheng Cao, Xi Chen, and Tingjun
Hou. ChemistGA: A chemical synthesizable accessible molecular generation algorithm for
real-world drug discovery. Journal of Medicinal Chemistry, 65(18):12482–12496, 2022. doi:
10.1021/acs.jmedchem.2c01179.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Naruki Yoshikawa, Kei Terayama, Masato Sumita, Teruki Homma, Kenta Oono, and Koji Tsuda.
Population-based de novo molecule generation, using grammatical evolution. Chemistry Letters,
47(11):1431–1434, 10 2018. doi: 10.1246/cl.180665.

Yuejiang Yu, Chun Cai, Jiayue Wang, Zonghua Bo, Zhengdan Zhu, and Hang Zheng. Uni-Dock:
GPU-accelerated docking enables ultralarge virtual screening. Journal of Chemical Theory and
Computation, 19(11):3336–3345, Jun 2023. doi: 10.1021/acs.jctc.2c01145.

Barbara Zdrazil, Eloy Felix, Fiona Hunter, Emma J Manners, James Blackshaw, Sybilla Corbett,
Marleen de Veij, Harris Ioannidis, David Mendez Lopez, Juan F Mosquera, Maria Paula Magarinos,
Nicolas Bosc, Ricardo Arcila, Tevfik Kizilören, Anna Gaulton, A Patrícia Bento, Melissa F Adasme,
Peter Monecke, Gregory A Landrum, and Andrew R Leach. The ChEMBL database in 2023: a
drug discovery platform spanning multiple bioactivity data types and time periods. Nucleic Acids
Research, 52(D1):D1180–D1192, 11 2023. doi: 10.1093/nar/gkad1004.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

A GENETIC ALGORITHM

A.1 PSEUDOCODE

In the following, the product of a synthesis tree T ∈ T is denoted M(T ) ∈MS . SynGA uses elitist
selection where only the fittest among the parents and offspring are retained, and is run until a budget
of fitness evaluations is fully consumed.

Algorithm 1 Pseudocode for SynGA.

Require: Initial size n0, population size n, offspring size m, crossover rate rcross, mutation rate rmut,
budget B, a fitness function f :M→ R.

1: Sample P ⊆ T of size n0

2: H ← {M(T )→ f(M(T )) | T ∈ P} ▷ keep track of unique fitness evaluations
3: while |H| < B do
4: O ← ∅
5: for m repeats do
6: Sample T1, T2 ∈ P without replacement
7: if rand() < rcross then
8: T ← crossover(T1, T2)
9: if rand() < rmut then

10: T ← mutate(T )

11: else
12: T ← mutate(T1)

13: if T ̸= None and M(T ) /∈ H and |H| < B then
14: H[M(T )]← f(M(T ))
15: O ← O ∪ {T}
16: P ← the n fittest individuals from P ∪ O
17: return P

A.2 IMPLEMENTATION DETAILS

SMARTS. We leverage the fact that the reaction templates are implemented as SMARTS strings
to improve the efficiency of SynGA. At a high level, a SMARTS string matches pattern(s) in the
input molecules and defines a transformation over them to yield the product(s). The reaction will
proceed with one or more products if and only if the input reactants contain the specified patterns.
Concretely, a bimolecular SMARTS reaction is of the syntax S1.S2>>P, where S1 and S2 encode
molecular substructures. The reaction will proceed if and only if one of the input molecules contains
S1 and the other S2. Thus, we precompute the necessary substructure matches on the base building
blocks and cache them for products during run time. In doing so, we can efficiently infer whether
two molecules can react and which blocks are compatible with a given reaction (or vice versa). This
strategy, however, is unlikely to scale to large libraries, although most template-based approaches use
relatively small (∼100s) template sets to our knowledge.

Edge cases. There are a number of cases in which crossover and mutation may fail. For example, a
Grow operation may produce a molecule over 1000 Da, or crossover may fail to find two internal
nodes that can be linked by a reaction. Depending on the edge case, we employ one of two strategies
to handle it: (1) imposing boundary conditions to prevent invalidating operations from being taken,
and (2) retrying the same (random) operation up to 10 times, as in GraphGA (Jensen, 2019).

Parallelization. Fortunately, GAs are highly amenable to parallelization. In particular, sampling the
initial population, crossover and mutation for parent pairs, and evaluating the fitness function over
offspring can all be implemented in a parallel manner. Benchmarks that require running multiple GA
trials can also be parallelized. We leverage this in our implementation.

A.3 INVERSE-RANK SAMPLING

MolGA (Tripp & Hernández-Lobato, 2023) samples its mating pool through independent repetitions
of the following: first sample u ∼ U [−3, 0] and then sample uniformly from the top ε = 10u

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Table 6: Sum of the top-10 AUC scores for JNK3 and Osimertinib MPO. The last row corresponds to
our current hyperparameters. We report the mean and standard deviation over 5 seeds.

Grow Shrink Rerun CI CL AUC

0 1 1 1 1 1.465± 0.068
1 0 1 1 1 1.465± 0.076
1 1 0 1 1 1.496± 0.052
1 1 1 0 1 1.470± 0.067
1 1 1 1 0 1.451± 0.104
1 1 1 1 1 1.457± 0.044

1 1 2 2 2 1.504± 0.131

fraction of the population. To accommodate different population sizes n, suppose we instead sample
u ∼ U [− log10(n), 0]. Then a change of variables shows that ε has the density

p(ε) =
1

log10(n)
·
∣∣∣∣ ddε log10(ε)

∣∣∣∣ = 1

Zε
,

supported on [ 1n , 1], for some normalization constant Z. Now for 1 ≤ k ≤ n, the probability pk of
sampling the k-th most fit individual is

pk =

∫ 1

1/n

p(k | ε)p(ε) dε, where p(k | ε) =
{
1/⌊nε⌋, if ε ≥ k/n,

0, otherwise.

Since n is large and 1/⌊nε⌋ ≈ 1/nε, we can approximate that

pk ≈
∫ 1

k/n

1

Znε2
dε ∝ 1

k
− 1

n
≈ 1

k
.

Hence, the sampling strategy used in MolGA can be well-approximated by sampling proportionally
to each individual’s inverse rank. We use inverse-rank sampling for SynGA due to its simplicity,
especially when sampling without replacement. Lastly, we note that the more general distribution

pk ∝
1

k + λn
,

has been proposed in prior work (Kim et al., 2024), although its mathematical connection to MolGA
was not made explicit. Here, setting λ = 0 recovers inverse-rank sampling.

A.4 MUTATION ABLATIONS

Mutation probabilities are set proportionally to an assigned weight for each of the five actions. In
our experiments, we assign a weight of 1 to Grow and Shrink, but 2 to Rerun, Change Internal (CI),
and Change Leaf (CL) operation probabilities (i.e., making them twice as likely), since we expected
the latter to produce more local perturbations. As a sensitivity ablation, we explore various action
weights on two tasks from the PMO benchmark, following the setup in Section 4.3.2. Table 6 shows
that SynGA is robust across multiple settings. We acknowledge that our ablation may not necessarily
extend to other property functions, though hyperparameter tuning on the full PMO suite would also
likely be overfitting.

B SYNTHESIZABLE ANALOG SEARCH

B.1 CLASSIFIER MODELLING

We use a five-layer MLP of width 256 that takes as input [q,b,min(q,b)] ∈ N3d
0 , where d = 2048

and q and b are the Morgan count fingerprints of the query and building block, respectively. We use
GELU activations and batch normalization. The MLP has 1.8M parameters but 1.6M of them are
allocated to the first layer. The MLP is trained for 500k steps using the Adam (Kingma & Ba, 2015)
optimizer with learning rate 5 × 10−4, and batch size 1024. We opt for an MLP for its simplicity
and efficiency; the success of the fingerprint-similarity heuristic suggested that such a network could
work well in the first place. We leave exploring more sophisticated architectures for future work.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Table 7: Ablation of SynGA versus pure random search on base and MLP-filtered building blocks.

Method Filter RR Morgan Scaffold Gobbi

Random None 0.00 0.277 0.364 0.288
MLP 0.14 0.619 0.629 0.534

SynGA None 0.00 0.459 0.526 0.400
MLP 0.22 0.721 0.724 0.635

B.2 RANDOM SEARCH OVER FILTERED BUILDING BLOCKS

We quantify the contribution of SynGA on the 100 molecule ChEMBL task in Table 7. Instead of
running SynGA, we sample an additional 5k synthesis routes (Random) under both the base and
MLP-filtered building blocks. Our results suggest that, while filtering alone works reasonably well
for analog search, it couples synergistically with SynGA to produce even stronger performance.

B.3 HARD-NEGATIVE MINING

To improve the MLP filter’s precision, we explore hard-negative mining from the contrastive learning
literature (Robinson et al., 2021). Given a molecule M and building blocks BM ⊆ B that can
produce it, we draw negative samples uniformly from B − BM . Since |BM | ≪ |B|, its complement
includes many blocks that are highly dissimilar to those in BM , i.e., “easy" negatives. Thus, we
obtain more targeted negative examples by precomputing the 100 most similar blocks N (B) to each
block B. Then, after selecting a positive example B1 ∈ BM , we sample the negative example from
N (B1)−BM with probability 0.5, and B −BM otherwise. Negative mining (MLP + Mine in Table
1) significantly improves the model’s precision on the validation set, but decreases performance
on ChEMBL. We attribute this to two potential reasons: (1) test molecules in ChEMBL may be
out-of-distribution since the model is only ever shown “reachable” examples, and (2) our negative
set may contain false negatives, as we can never know with certainty that a given block cannot
produce a given molecule (only that certain blocks do). This underscores the limitations behind using
performance on our classification task as a direct indicator of filter quality.

B.4 RUNTIME BENCHMARKING

Experiments were run on an NVIDIA RTX A6000 GPU and a 64-core AMD Ryzen Threadripper
PRO 3995WX processor. For SynFormer, we use 12 workers since too many resulted in the GPU
going out of memory. For SynGA, we use 100 workers parallelized across the batch dimension, so
that each query is run with 1 worker. In general, we expect SynFormer to benefit more from better
GPU compute since it requires multiple inference calls with a large ML model, in contrast to SynGA
which predominantly CPU-bound.

Limitations. Our runtime metrics in Table 2 should only be taken as a rough estimate. For future
work, a more careful analysis could explore different environments and inputs over multiple trials.
Also of note is that SynGA and SynFormer are research projects, whose codebases are not written
with maximal efficiency in mind. It is likely that the efficiency of both methods can be improved
through better engineering.

C DE NOVO SYNTHESIS-AWARE PROPERTY OPTIMIZATION

C.1 NAM ABLATIONS

We first explore the utility of NAMs in the data-limited regime on two property oracles, JNK3
(Li et al., 2018) and Osimertinib MPO (Brown et al., 2019). For each, we run SynGA for 1100
oracle calls and hold out the last 100 discovered molecules as our test set. We apply a random 9:1
training-validation split of the first 1000 molecules, fit a NAM on the training set (Appendix C.2), and
filter the top 1000 highest-scoring building blocks under the NAM. Then, we sample 100 synthesis
routes and measure their average property score (Score). We also measure the Spearman correlation

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Table 8: Test correlation and sample score of additive models on two oracles. Coupling the NAM with
a more accurate predictor (GP) improves the score of sampled molecules. The mean and standard
deviation over 5 seeds is reported.

JNK3 Osimertinib MPO
Model Corr. Score Corr. Score

Random − 0.058± 0.002 − 0.132± 0.023
Oracle (Sum) 0.739± 0.127 0.185± 0.010 0.408± 0.159 0.497± 0.021
Oracle (Mean) 0.411± 0.183 0.185± 0.010 0.444± 0.106 0.497± 0.021
NAM 0.877± 0.043 0.115± 0.016 0.647± 0.070 0.603± 0.027

GP 0.959± 0.017 0.188± 0.009 0.847± 0.055 0.679± 0.005
NAM + GP − 0.297± 0.050 − 0.714± 0.020

between the predicted and true property scores over the test set; we choose this metric because our
block filtering and SynGA are rank-based methods (e.g., elitist selection depends only on rank).

As seen in the first section of Table 8, the NAM is able to achieve good test correlation and sampling
from its filtered building blocks biases products towards higher scores, compared to random sampling
from an unfiltered block set (Random). We also report Oracle, which takes sθ in Equation 1 to
be the property function and α = 1 (Sum) or α = 0 (Mean). This can be thought of an idealized
model that measures how additive the property functions are. The NAM’s performance can be pushed
further by coupling it with a stronger predictive model. We fit a Gaussian process (GP) to the training
set (Appendix C.3), sample 10k synthesis routes, and use the posterior mean to select 100 products
for further evaluation. Their average scores are given in the second section along with the GP’s test
set correlation. NAM + GP samples from the NAM-filtered building blocks, whereas GP uses just
the base blocks. As expected, the GP is more accurate than the NAM, but by coupling the two we are
able to surpass the performance of both components in isolation.

C.2 NAM MODELLING

To implement the NAM sθ, we use a five-layer MLP of width 64 that takes as input the 2048-count
Morgan fingerprint of the input block. We use GELU activations and no normalization. The NAM
has 140k parameters. We train the NAM using the Adam (Kingma & Ba, 2015) optimizer with
learning rate 5× 10−4, batch size 50, and early stopping on the validation Spearman correlation with
a 5 epoch patience. We use the RankNet (Burges et al., 2005) objective which computes the loss as:

L(θ) = BCE

(
ρθ(B1)− ρθ(B2), I [ρ(M1) > ρ(M2)]

)
,

for a pair of examples (M1,B1) and (M2,B2), where ρθ is the NAM and ρ is the property function
and I is the indicator function. We average the loss over pairwise combinations of the batch.

We found ranking loss to outperform the standard mean-squared-error (MSE) loss for both the NAM
and NAM + GP models (Table 9). The ranking objective leads to better NAM test correlation on both
objectives. On Osimertinib MPO, this translates to an increase in sample scores. On JNK3, scores are
marginally worse, which we hypothesize is because the JNK3 oracle is already well-approximated by
additive models, as shown in Table 8.

C.3 GAUSSIAN PROCESSES

Our Gaussian process uses 2048-count Morgan fingerprints as the features, the MinMax kernel from
Gauche (Griffiths et al., 2024), and GPytorch (Gardner et al., 2018) for its implementation.

C.4 SYNGBO

Inspired by GPBO (Tripp & Hernández-Lobato, 2024), we convert SynGA into a model-based variant
SynGBO. At a high level, SynGBO uses SynGA to optimize an acquisition function within a broader
Bayesian optimization loop. At each step, a GP and NAM are fit to the samples discovered thus far,

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Table 9: Ablation of MSE versus ranking loss for NAM training. The mean and standard deviation
over 5 seeds is reported.

JNK3 Osimertinib MPO
Model Loss Corr. Score Corr. Score

NAM MSE 0.864± 0.035 0.118± 0.023 0.458± 0.110 0.450± 0.058
Rank 0.877± 0.043 0.115± 0.016 0.647± 0.070 0.603± 0.027

NAM + GP MSE − 0.301± 0.059 − 0.709± 0.007
Rank − 0.297± 0.050 − 0.714± 0.020

following Appendix C.2 and C.3. Since GPs scale poorly with dataset size, we subset to the top 2500
samples and a random subset of 2500 other samples in practice, and to avoid repeated retrainings, we
only refit the NAM every 25 steps. Then, we use SynGA to optimize an acquisition function under
the GP surrogate. Following Tripp & Hernández-Lobato (2024), we use the upper bound confidence
acquisition with β ∼ [0.01, 1] sampled logarithmically until 5000 samples are obtained, after which
we set β = 0 and maximize the posterior mean. The process repeats until a budget of oracle calls is
exhausted (Algorithm 2).

In the inner loop, we run SynGA for 5 generations with an offspring size of 100. We use a population
size of 1000 starting with 500 randomly sampled individuals and the top 1000 scoring molecules. All
other parameters are kept the same as Section 4.1. In total, SynGA proposes 500 + 5 · 100 = 1000
new molecules at most, of which the 10 most fit ones are evaluated by the true oracle. Hence, SynGA
proposes 100 molecules for every molecule evaluated. In contrast, GPBO proposes roughly 1000. As
noted by Tripp & Hernández-Lobato (2024), performance can likely be improved by increasing the
number of outer and inner loop iterations of SynGBO.

Algorithm 2 Pseudocode for SynGBO.

Require: Proposal size m, budget B, GP g, NAM sθ, a fitness function f :M→ R.
1: H ← {M(Ti)→ f(M(Ti)) | Ti ∈ T } for m samples
2: i← 0
3: while |H| < B do
4: if |H| ≥ 500 and i ≡ 0 (mod 25) then
5: Fit sθ toH
6: F ← top-1000 scoring blocks in B under sθ
7: else
8: F ← B
9: Fit g toH, or a subset if |H| is large

10: P0 ← top-1000 candidates inH and 500 random routes
11: α← UCB(g, β) for β ∼ p(β)
12: Run SynGA with filtered blocks F from initial population P0 with fitness function α
13: for the m fittest individuals T from SynGA do
14: H[M(T )]← f(M(T ))

15: i← i+ 1
16: return P

C.5 PRACTICAL MOLECULAR OPTIMIZATION BENCHMARK

The top-k AUC PMO metric is formally defined as 1
B

∑B
t=1 ρ̄k,t, where B is the budget and ρ̄k,t is

the average of the top k oracle scores within the first t samples. In Gao et al. (2022a), this is further
estimated using the trapezoidal rule at 100 sample intervals. Tables 12, 13, and 14 give the expanded
task-wise results of Table 4.

PyTDC. The original PMO implementation from Gao et al. (2022a) used PyTDC 0.3.6 (Huang
et al., 2021). On 0.3.7 onwards, PyTDC made a bug fix1 that led to breaking changes in the Isomers,

1https://github.com/mims-harvard/TDC/pull/171

20

https://github.com/mims-harvard/TDC/pull/171


1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Table 10: Ligand efficiency of the top-100 diverse modes on three receptors from the LIT-PCBA
dataset. Results for baselines are taken from Seo et al. (2025) and Shen et al. (2025). We report the
mean and standard deviation over 4 seeds.

Method Calls ALDH1 ESR_ant TP53

SynNet

64000

0.272± 0.006 0.289± 0.020 0.211± 0.031
BBAR 0.401± 0.008 0.387± 0.003 0.288± 0.005
SynFlowNet 0.380± 0.007 0.361± 0.004 0.287± 0.008
RFGN 0.357± 0.004 0.344± 0.002 0.271± 0.001
RxnFlow 0.396± 0.005 0.380± 0.004 0.289± 0.003
3DSynthFlow 0.395± 0.006 0.398± 0.016 0.294± 0.006

SynGA 16000 0.411± 0.010 0.385± 0.006 0.299± 0.011
SynGBO 0.459± 0.008 0.451± 0.007 0.336± 0.008

Table 11: Number of discovered modes (i.e., docking score < 10, QED > 0.5, similarity threshold of
0.5) for the ALDH1 task. Results for baselines are taken from Shen et al. (2025). We report the mean
and standard deviation over 4 seeds We report the mean and standard deviation over 4 seeds.

Method 1k Calls 5k Calls 10k Calls

RxnFlow 4.5± 2.1 26.5± 7.8 73.5± 33.2
3DSynthFlow 18.5± 14.8 112.0± 94.8 326.5± 316.1

SynGA 32.5± 1.5 144.2± 16.2 241.5± 29.0
SynGBO 50.5± 18.5 171.8± 36.8 182.0± 30.9

Sitagliptin MPO, and Zaleplon MPO oracles. For example, Kim et al. (2024) reproduce PMO with
PyTDC 0.4.0, and we observe a consistent increase in PMO scores in their results. Thus, care must
be taken to pin the PyTDC version when using numbers from Gao et al. (2022a). However, we found
PyTDC 0.3.6 difficult to install due to dependency conflicts and its pins to overly old versions of
some libraries. In the interest of using up-to-date packages, we use PyTDC 1.1.14 and avoid numbers
from the original PMO paper. We also spot check 10k molecules from ZINC (Irwin et al., 2020) to
confirm that there are no discrepancies between PyTDC 1.1.14 and 0.3.6 for oracles other than those
mentioned above.

Valsartan SMARTS. Many methods fail to optimize the Valsartan SMARTS task. This is because
the oracle returns 0 if the input does not contain CN(C=O)Cc1ccc(c2ccccc2)cc1. That is,
models are given no signal (i.e., the oracle appears constant) until they propose a molecule with
one specific substructure. But a priori, without any signal or information about the task, there is
no reason an algorithm should do so. For this reason, we argue Valsartan SMARTS is ill-suited for
benchmarking and remove it.

Extended Results. Table 15 reports other metrics for SynGA and SynGBO, for completeness.

C.6 LIT-PCBA DOCKING BENCHMARK

To better leverage the GPU batching of UniDock, we increase the offspring size of SynGA to 100 and
the proposal size of SynGBO to 20. Since the benchmark emphasizes diversity, we further increase
the population size of SynGA to 5000 and initial population size to 1000. We also report the average
ligand efficiency (Vina score normalized by heavy atom count) of the top modes (Table 10) and the
number of discovered modes as a function of oracle calls (Table 11). For each seed, an example
ligand proposed by SynGA and SynGBO is displayed in Figures 2 and 3, which we obtain from the
top mode that passes the Tartarus (Nigam et al., 2023) filters and whose ring systems all appear in
ChEMBL at least 5 times.2 For future work, many of these filters can be applied on the block- or
GA-level, which can minimize the number of rejected samples from applying them post-hoc.

2https://github.com/PatWalters/useful_rdkit_utils

21

https://github.com/PatWalters/useful_rdkit_utils


1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

D EXTENDED OUTLOOK

Limitations. SynGA inherits the general limitations of template-based approaches to synthesis. For
example, our templates do not guarantee synthesizability, nor do they consider reaction conditions,
stereochemistry, yield, or cost. Any fixed template library also necessarily restricts exploration to a
biased subset of synthesizable space. This can be mitigated by enlarging the template set, though a
naïve extension may degrade efficiency and robustness. In addition, the tasks considered in this work
are single-objective (or scalarized) whereas real-world molecular design is highly multi-objective.
Fortunately, multi-objective GAs such as NSGA-II (Deb et al., 2002) can be easily integrated with our
proposed genetic operators. Many of the tasks are also synthesis-agnostic and we treat synthesizability
as an additional dimension that contextualizes our results. Evaluating SynGA on benchmarks such
as Tartarus (Nigam et al., 2023) that attempt to penalize “unreasonable" samples could enrich our
comparisons with synthesis-agnostic baselines for future work.

Future directions. While we present SynGA as a standalone work, our hope is that SynGA can also
serve as a building block for future ML algorithms. For analog search, one prospective direction
could be to refine the outputs of synthesis models like SynFormer (Gao et al., 2024) by running
SynGA briefly, and potentially even improve the model by finetuning on the better analogs. For
property optimization, SynGA can be used to boost exploitation or exploration in generative models.
Augmenting SynGA with ML may also be promising, such as using a 3D network to enhance the
genetic operators for docking tasks. Finally, we note that SynGA is just one synthesis-constrained
GA, and future work can look into exploring the rich design space of genetic operators.

E REPRODUCIBILITY

Compute. All experiments were run on a single NVIDIA RTX A6000 GPU and a 64-core AMD
Ryzen Threadripper PRO 3995WX processor. The compute used for analog search is discussed in
Appendix B.4 and runtimes are given in Table 2. Training the MLP block filter took ∼4 hours. For
PMO, SynGA took ∼20 min per trial with 5 workers and SynGBO took ∼6 hours per trial with 20
workers. However, we ran many trials concurrently on the same machine, so these times are likely
inflated. For the docking experiments, SynGA took ∼3 hours with 50 workers and SynGBO took ∼4
hours with 20 workers. We ran trials sequentially and we found that computing the docking scores
was a significant portion of the runtime.

Code. https://anonymous.4open.science/r/synga-FE64/README.md

22

https://anonymous.4open.science/r/synga-FE64/README.md


1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Table 12: Task-wise results of Table 4.

Oracle f -RAG GPBO G. GFN SynGA SynGBO
Synthesis ✗ ✗ ✗ ✓ ✓

Albu. Sim. 0.977 ± 0.002 0.964 ± 0.050 0.949 ± 0.010 0.649 ± 0.058 0.947 ± 0.024
Amlo. MPO 0.749 ± 0.019 0.720 ± 0.061 0.761 ± 0.019 0.573 ± 0.019 0.670 ± 0.088
Cele. Redisc. 0.778 ± 0.007 0.860 ± 0.002 0.802 ± 0.029 0.494 ± 0.063 0.856 ± 0.013
Deco Hop 0.936 ± 0.011 0.672 ± 0.118 0.733 ± 0.109 0.629 ± 0.014 0.831 ± 0.039
DRD2 0.992 ± 0.000 0.902 ± 0.117 0.974 ± 0.006 0.976 ± 0.006 0.981 ± 0.010
Fexo. MPO 0.856 ± 0.016 0.806 ± 0.006 0.856 ± 0.039 0.773 ± 0.018 0.833 ± 0.018
GSK3β 0.969 ± 0.003 0.877 ± 0.055 0.881 ± 0.042 0.866 ± 0.072 0.924 ± 0.027
Isom. C7H8. 0.955 ± 0.008 0.911 ± 0.031 0.969 ± 0.003 0.840 ± 0.016 0.975 ± 0.006
Isom. C9H10. 0.850 ± 0.005 0.828 ± 0.126 0.897 ± 0.007 0.707 ± 0.040 0.875 ± 0.013
JNK3 0.904 ± 0.004 0.785 ± 0.072 0.764 ± 0.069 0.683 ± 0.132 0.910 ± 0.021
Median 1 0.340 ± 0.007 0.415 ± 0.001 0.379 ± 0.010 0.254 ± 0.017 0.357 ± 0.001
Median 2 0.323 ± 0.005 0.408 ± 0.003 0.294 ± 0.007 0.226 ± 0.009 0.349 ± 0.001
Mest. Sim. 0.671 ± 0.021 0.930 ± 0.106 0.708 ± 0.057 0.480 ± 0.008 0.759 ± 0.023
Osim. MPO 0.866 ± 0.009 0.833 ± 0.011 0.860 ± 0.008 0.820 ± 0.003 0.856 ± 0.024
Peri. MPO 0.681 ± 0.017 0.651 ± 0.030 0.595 ± 0.014 0.556 ± 0.032 0.774 ± 0.006
QED 0.939 ± 0.001 0.947 ± 0.000 0.942 ± 0.000 0.938 ± 0.001 0.940 ± 0.002
Rano. MPO 0.820 ± 0.016 0.810 ± 0.011 0.819 ± 0.018 0.802 ± 0.009 0.839 ± 0.016
Scaffold Hop 0.576 ± 0.014 0.529 ± 0.020 0.615 ± 0.100 0.532 ± 0.014 0.541 ± 0.008
Sita. MPO 0.601 ± 0.011 0.474 ± 0.085 0.634 ± 0.039 0.348 ± 0.022 0.454 ± 0.074
Thio. Redisc. 0.584 ± 0.009 0.727 ± 0.089 0.583 ± 0.034 0.433 ± 0.033 0.647 ± 0.003
Trog. Redisc. 0.448 ± 0.017 0.756 ± 0.141 0.511 ± 0.054 0.322 ± 0.013 0.579 ± 0.002
Zale. MPO 0.486 ± 0.004 0.499 ± 0.025 0.552 ± 0.033 0.465 ± 0.017 0.529 ± 0.017

Sum 16.301 16.304 16.078 13.366 16.426

Table 13: Task-wise results of Table 4 (continued).

Oracle REINVENT MolGA SynNet SynGA SynGBO
Synthesis ✗ ✗ ✓ ✓ ✓

Albu. Sim. 0.881 ± 0.016 0.928 ± 0.015 0.568 ± 0.033 0.649 ± 0.058 0.947 ± 0.024
Amlo. MPO 0.644 ± 0.019 0.740 ± 0.055 0.566 ± 0.006 0.573 ± 0.019 0.670 ± 0.088
Cele. Redisc. 0.717 ± 0.027 0.629 ± 0.062 0.439 ± 0.035 0.494 ± 0.063 0.856 ± 0.013
Deco Hop 0.662 ± 0.044 0.656 ± 0.013 0.635 ± 0.043 0.629 ± 0.014 0.831 ± 0.039
DRD2 0.957 ± 0.007 0.950 ± 0.004 0.970 ± 0.006 0.976 ± 0.006 0.981 ± 0.010
Fexo. MPO 0.781 ± 0.013 0.835 ± 0.012 0.750 ± 0.016 0.773 ± 0.018 0.833 ± 0.018
GSK3β 0.885 ± 0.031 0.894 ± 0.025 0.713 ± 0.057 0.866 ± 0.072 0.924 ± 0.027
Isom. C7H8. 0.942 ± 0.012 0.926 ± 0.014 0.862 ± 0.004 0.840 ± 0.016 0.975 ± 0.006
Isom. C9H10. 0.838 ± 0.030 0.894 ± 0.005 0.657 ± 0.030 0.707 ± 0.040 0.875 ± 0.013
JNK3 0.782 ± 0.029 0.835 ± 0.040 0.574 ± 0.103 0.683 ± 0.132 0.910 ± 0.021
Median 1 0.363 ± 0.011 0.329 ± 0.006 0.236 ± 0.015 0.254 ± 0.017 0.357 ± 0.001
Median 2 0.281 ± 0.002 0.284 ± 0.035 0.241 ± 0.007 0.226 ± 0.009 0.349 ± 0.001
Mest. Sim. 0.634 ± 0.042 0.762 ± 0.048 0.402 ± 0.017 0.480 ± 0.008 0.759 ± 0.023
Osim. MPO 0.834 ± 0.010 0.853 ± 0.005 0.793 ± 0.008 0.820 ± 0.003 0.856 ± 0.024
Peri. MPO 0.535 ± 0.015 0.610 ± 0.038 0.541 ± 0.021 0.556 ± 0.032 0.774 ± 0.006
QED 0.941 ± 0.000 0.941 ± 0.001 0.941 ± 0.001 0.938 ± 0.001 0.940 ± 0.002
Rano. MPO 0.770 ± 0.005 0.830 ± 0.010 0.749 ± 0.009 0.802 ± 0.009 0.839 ± 0.016
Scaffold Hop 0.551 ± 0.024 0.568 ± 0.017 0.506 ± 0.012 0.532 ± 0.014 0.541 ± 0.008
Sita. MPO 0.470 ± 0.041 0.677 ± 0.055 0.297 ± 0.033 0.348 ± 0.022 0.454 ± 0.074
Thio. Redisc. 0.544 ± 0.026 0.544 ± 0.067 0.397 ± 0.012 0.433 ± 0.033 0.647 ± 0.003
Trog. Redisc. 0.458 ± 0.018 0.487 ± 0.024 0.280 ± 0.006 0.322 ± 0.013 0.579 ± 0.002
Zale. MPO 0.533 ± 0.009 0.514 ± 0.033 0.493 ± 0.014 0.465 ± 0.017 0.529 ± 0.017

Sum 15.003 15.686 12.610 13.366 16.426

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Table 14: Task-wise results of Table 4 (continued).

Oracle SynthesisNet SynFlowNet SynGA SynGBO
Synthesis ✓ ✓ ✓ ✓

Amlo. MPO 0.608 − 0.573 ± 0.019 0.670 ± 0.088
Cele. Redisc. 0.582 − 0.494 ± 0.063 0.856 ± 0.013
DRD2 0.960 0.885 ± 0.027 0.976 ± 0.006 0.981 ± 0.010
Fexo. MPO 0.791 − 0.773 ± 0.018 0.833 ± 0.018
GSK3β 0.848 0.691 ± 0.034 0.866 ± 0.072 0.924 ± 0.027
JNK3 0.639 − 0.683 ± 0.132 0.910 ± 0.021
Median 1 0.305 − 0.254 ± 0.017 0.357 ± 0.001
Median 2 0.257 − 0.226 ± 0.009 0.349 ± 0.001
Osim. MPO 0.810 − 0.820 ± 0.003 0.856 ± 0.024
Peri. MPO 0.524 − 0.556 ± 0.032 0.774 ± 0.006
Rano. MPO 0.741 − 0.802 ± 0.009 0.839 ± 0.016
Sita. MPO 0.313 − 0.348 ± 0.022 0.454 ± 0.074
Zale. MPO 0.528 − 0.465 ± 0.017 0.529 ± 0.017

Table 15: Extended metrics on the PMO benchmark: the mean score and AUC score for the top-k
molecules summed across tasks, as well as their average diversity. We report the mean and standard
deviation over 5 seeds. The minor discrepancy in top-10 AUC scores with Table 4 is due to rounding.
Here, we average the metrics per seed and round as a final step, whereas Table 4 computes the metrics
task-wise, rounds, and then sums.

Metric SynGA SynGBO

Top-1 Mean 14.927± 0.164 17.460± 0.142

Top-10
Mean 14.464± 0.152 17.195± 0.115
AUC 13.369± 0.175 16.425± 0.116
Diversity 0.514± 0.008 0.388± 0.011

Top-100
Mean 13.699± 0.199 16.824± 0.095
AUC 12.211± 0.187 15.856± 0.113
Diversity 0.613± 0.014 0.462± 0.010

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Figure 2: An example ligand proposed by SynGA for each seed.

Figure 3: An example ligand proposed by SynGBO for each seed.

25


