Memory-Augmented Reinforcement Learning for
Hierarchical Graph Optimization of Dynamic Bills of
Materials in Sustainable Medical device Product
Families

Abdelaziz Guelfane!> Abdelhamid Boujarif?
Francesca Bugiotti’ Robert Heidsieck? Marija Jankovic! Zied Jemai'

!CentraleSupélec, Paris-Saclay University
2GE HealthCare, Buc, France

abdelaziz.guelfane@student-cs.fr

Abstract

Medical imaging devices exhibit complex hierarchical Bills of Materials (BOMs)
whose composition evolves over time due to supply disruptions, design refreshes,
and regulatory changes. We address dynamic BOM optimization for Medical
devices product families under climate and cost objectives. We propose a memory-
augmented reinforcement learning (RL) framework that operates over a hierar-
chically clustered dependency graph of parts and assemblies. The agent uses
an external memory to encode temporal intra-node dynamics and long-horizon
consequences of merge/split/reassignment actions.

On real and synthetic BOMs, our approach improves part reusand reduces lifecycle
carbon footprint compared to strong baselines, while maintaining economic feasi-
bility (100% positive Acost) and adapting to emerging technologies and market-tier
dynamics (heuristics, flat GNN+RL, and no-memory ablations). We also demon-
strate robustness under disruption scenarios of /0-20%. These results indicate
that hierarchical structure and temporal memory are key for robust, climate-aware
product family optimization in healthcare manufacturing.

1 Introduction

MRI systems comprise thousands of components organized in multi-level assemblies. Optimizing
reuse across product variants can lower costs and reduce environmental impact, yet is challenging
due to: (i) hierarchical dependencies, (ii) temporal volatility (lead times, failures, upgrades), and (iii)
coupled climate and cost objectives.

Classical clustering and deterministic planning ignore temporal dynamics; existing RL methods rarely
exploit hierarchical structure or persistent memory for long-horizon adaptation in dynamic BOMs.

Contributions. We introduce a Memory-Augmented Hierarchical Graph RL framework for dynamic
BOM optimization:

* A formalization of dynamic BOMs as a temporal attributed DAG with hierarchical clustering
tailored to reuse/LCA objectives.

* A memory-augmented RL agent that takes merge/split/reassignment actions while encoding
temporal intra-node dynamics.

* Comprehensive evaluation on real MRI BOMs and synthetic stress tests, showing possible
+20% reuse and -30% CO,.

2 Related Work

Hierarchical RL (options/skills), memory-augmented agents (NTM, DNC), graph learning for supply
chains, and Al for sustainable manufacturing.

3 Problem Setup: Dynamic BOMs

We formalize a dynamic BOM as a temporal DAG:
Gy=V,E, X)), t=0,1,...,T,
where V is the set of parts, £, C V' x V are parent—child dependencies, and X holds node attributes:
* Cost ¢, (t),

Lifecycle CO; e, (t),
* Reuse compatibility r,(t) € [0,1],

» Temporal factors: lead times, failure rates, obsolescence.
* Market positioning p,(¢) € [0, 1] (market share evolution),
* Product tier p,, € {economy, standard, premium},

* Emerging technology indicator 7, (¢) € {0, 1} (new components at time ¢).

Lifecycle Assessment (LCA).

LCA(Gr) =) ey(t) qu(t),

veV

where ¢, (t) is demand. With reuse:

eeff(t) — Cv (t)
1 + reuse_count(v)

Product portfolio context. Medical device families span economy to premium tiers, where premium
variants demand higher reuse quality standards but offer greater lifecycle value. Market dynamics
influence component selection parts from declining market segments may be phased out, while
emerging technologies (e.g., new sensor architectures appearing at time t) can be integrated when
economically justified. All optimization actions must satisfy economic feasibility: ACost(G;) > 0.

4 Reinforcement Learning Formulation

We cast BOM optimization as an MDP M = (S, A, P, R, 7).
States. s; = [cluster embeddings, X}, ¢;], where context ¢; = {u(t), paist(t), 7(t) } captures market
share, tier distribution, and emerging technology flags. Actions. The agent selects from:

* MERGE(c;, ¢;): Consolidate clusters if compatibility > 6 and Acost > 0

* SPLIT(c, k): Partition cluster ¢ into k sub-clusters maintaining tier coherence

* REASSIGN (BRANCH-OPS)(v, ¢; — ¢;): Create or delete dependency branches for com-
ponent v if lifecycle benefit exceeds migration and economic costs, if introduction of new
technology

All actions respect DAG constraints and economic feasibility. Transitions. Include supply disruptions.
Reward.

.R(St7 at) =)\reuseAReuse(Gt) —)\COQALCA(Gt) —)\COS[ACOSt(Gt).

Policy.
7o(a|se, re) = PolicyNety ([s; || re]).

Objective:
T
J(6) = Ex, [>4 Rls,a0)]
t=0

where each component incentivizes specific objectives:

new reuse opportunities

AReuse(Gy) =

)

total parts
baseline CO5 — current CO,

baseline CO5 ’
ACost(Gy) = max(0, cost savings),

ALCA(Gy) =

ensuring all changes remain economically beneficial—negative cost deltas receive zero reward.

S Memory-Augmented Policy

We add external differentiable memory M, € RE*P:
r; = Softmax(thT)V7 (1)
Mt+1 = Write(Mt, kt, ’Ut). (2)

Memory content. Each memory slot encodes:

* Historical reuse patterns across product tiers (economy vs premium strategies)
» Technology lifecycle traces (emergence, maturity, obsolescence timing)
* Market-tier compatibility mappings learned over time

* Economic feasibility outcomes from past similar actions

This enables the policy to recall that premium variants (3.0T, 7.0T MRI) benefit from different reuse
strategies than economy systems, and that emerging technologies should be evaluated against full
lifecycle cost before adoption. This captures temporal traces, improving long-horizon robustness.

6 Experiments

6.1 Datasets

Real MRI BOMs (anonymized). Synthetic with disruptions (10-20%).

6.2 Baselines

Heuristic-HC, Flat-GNN-RL, NoMem-HRL, MIP (small cases).

6.3 Metrics

Reuse ratio, CO, reduction, cost savings, robustness.

6.4 Implementation Details

RL algorithm. We train with Proximal Policy Optimization (PPO) [3]] using generalized advantage
estimation (GAE, A=0.95) and entropy regularization 5=0.01. We also confirmed stability with
A2C on small instances.

Network architecture. The policy and value networks each use a 3-layer MLP with hidden sizes
[256, 128, 64] and ReLU activations. Cluster embeddings are computed by a 2-layer GCN (d=128)
pooled hierarchically. The external memory has capacity K =64 slots of dimensionality D=128,
with single read/write heads.

Optimization. We use Adam with learning rate 3 x 10~4, batch size 1024, and horizon =200
steps. Training runs for 1M environment steps, early stopping on validation reward.

Compute. All experiments run on a single NVIDIA A100 (40GB). Training wall-clock: ~ 4 hours
per run. We report averages over 5 seeds, fixed across methods.

Software. PyTorch 2.2, RLIlib 2.5.1, and DGL 1.1.0. Configurations and seed files are released
with the anonymized code.

6.5 Results

Table 1: Main results (mean = std). Ours achieves +20% reuse and -30% CO,.

Method ReuseT CO,] Cost] Robustness T
Heuristic-HC +2.3% +5.0% -1.0% 72%
Flat-GNN-RL +8.5% +124% -3.3% 81%
NoMem-HRL +14.1% +202% -4.7% 85%
Ours +20.0% +30.0% -7.2% 91 %

Figure[2] shows the training progression. Our method converges faster than baselines and achieves
higher asymptotic performance, indicating effective exploration-exploitation balance through hierar-
chical structure and external memory.

6.6 Lifecycle and Market-Aware Optimization

We analyze how our framework handles product tier differentiation and technology evolution across
the device lifecycle.

Tier-specific reuse strategies. Premium variants achieve higher reuse rates (MRI-B 3.0T: 24.3%)
compared to economy variants (MRI-C Open: 16.8%), as the policy learns tier-appropriate compati-
bility thresholds encoded in memory. Premium tiers justify higher reuse engineering investments for
superior lifecycle performance, while economy tiers prioritize immediate cost minimization.

Emerging technology integration. When new sensor technologies appear at time ¢ = 50, the agent
evaluates lifecycle economics: immediate adoption for premium tiers (ROI < 2 years), delayed
adoption for economy tiers until cost parity (¢ ~ 80). Memory traces of technology maturation curves
guide these decisions.

Economic feasibility guarantee. Across all experiments, 100% of proposed changes maintain
positive cost delta (Acost > 0), ensuring financial viability. The max(0,-) operation in the reward
function (Eq. 45) enforces this constraint during training.

Market-driven component selection. Parts from product families with declining market share
(1 (t) < 0.3) are preferentially replaced during optimization, while components from growing
segments are retained and reused more aggressively, aligning technical decisions with business
strategy.

6.7 Ablation Studies
We conduct systematic ablations to validate our design choices and understand the contribution of
each component. Table [2] summarizes the results.

Memory Impact: Removing external memory reduces reuse improvement by 6 percentage points,
demonstrating that temporal information is crucial for long-horizon optimization decisions.

Hierarchical Structure: The flat version loses 12% of reuse improvement, confirming that hierarchi-
cal clustering captures important structural relationships in BOMs.

Graph Encoding: Without GCN-based embedding, performance drops significantly, showing the
importance of relational information in component representation.

Normal Conditions. Learning Culd4sSARRS S DRGPent Scenarios 15% Lead Time Increase

Ty

Finat 09 o %

Finat 47

\/
Final: 85 - N -
] bl \ e
20 H \ H
H R oo i
£ £ LY, H
g 2 A 2
& & \ &
15 A "
20 | .
. " AN 2 \)
25 i/ ENLAY Y
0 0z 0 05 08 10 00 02 o4 06 08 10 0w 02 o4 06 08 10
Environment Steps 106 Environment Steps o6 Environment Steps 106
20% Cost Volatilty Combined Disruptions
\
o
0 Final: 3.1
= ~
<)
5 LY
= z N
] H t
H -0 Wt A
H H X ;
& &5 by
oy
-5 o
20 Vi
e
-20 \
25 3
w0 02 o YRR
166 Environment Steps 6
— ous (Vemoy-AGHRL -+ FtGNNRL

~=+ NoWemHRL - HeursticHG

(a) Learning curve

Normal Conq¥éward Decomposition: Our Method Across Scenarid@’% Supply Disruption

Reward Component
Reward Component

— Reuse — Reuse
— O~ Reduction —— O~ Reduction
0 Cost Savings 0 Cost Savings
00 02 04 06 08 0 00 02 04 06 08 0
Environment Steps. 1e6 Environment Steps 16
15% Lead Time Increase Combined Disruptions
au Y
5 %
2 22
g g
2 2
g g
1%
£ &
3 3
§ 0 §
H U
@ @
5
—— Reuse s —— Reuse
o —— O~ Reduction —— O~ Reduction
Cost Savings 0 Cost Savings
00 02 04 06 08 w0 00 02 04 06 08 0
Environment Steps. 1e6 Environment Steps 1e6

(b) Reward Decomposition

Figure 1: Learning curves showing training progress. (a) Episode rewards across different methods
over 1M environment steps. Our memory-augmented hierarchical approach (solid blue) converges
faster and achieves higher asymptotic performance than baselines. (b) Reward decomposition
for our method showing individual contributions of reuse (purple), CO2 reduction (cyan), and
cost optimization (magenta) objectives. Separate analysis by product tier (not shown) reveals
premium variants achieve 45% higher reuse rewards than economy variants, reflecting tier-appropriate
optimization strategies.

Table 2: Ablation study: impact of each component on overall performance

Method Reuse T (%) COs | (%) Cost | (%)
Ours (Full) 200+1.2 300+1.8 7.2+05
- Memory 14.1+15 20.2 +£2.1 4.7+0.7
- Hierarchy 8.5+ 1.8 124+25 3.3+0.6

- GCN Encoding 7.8+1.6 112+22 29407

6.8 Detailed Experimental Analysis

6.8.1 Statistical Significance

All reported improvements are statistically significant using paired t-tests with Bonferroni correction
(p < 0.01). We report 95% confidence intervals across 5 independent runs with different random
seeds.

6.8.2 Learning Curves

Figure [2| shows the training progression. Our method converges faster than baselines and achieves
higher asymptotic performance, indicating effective exploration-exploitation balance.

Figure 2: Training curves showing convergence of different methods over environment steps

6.8.3 Computational Efficiency

Training wall-clock time scales approximately as O(|V|*%) with BOM size, making our approach
practical for industrial-scale problems. Memory operations add only 3-5% computational overhead
compared to the no-memory baseline.

6.8.4 Robustness Analysis

We evaluate robustness under supply chain disruptions by introducing:

* Component unavailability: Random 10-20% of parts become temporarily unavailable
* Lead time shocks: 15-25% increase in procurement times

* Cost volatility: +30% fluctuations in component costs

Our method maintains 85-91% of nominal performance across all disruption scenarios, significantly
outperforming baselines (60-75% retention).

Table 3: Main results with statistical significance (mean 4 95% CI, n = 5 seeds)

Method Reuse 7 (%) COs | (%) Cost] (%) Robustness T (%)
Heuristic-HC 2.3+£0.8 50£1.2 1.0+0.5 72+3
Flat-GNN-RL 85+14 1244+19 33406 81+2
NoMem-HRL 14.1+1.5 20.24+2.1 4.7+0.7 85+ 3
Ours 200+1.2 300+18 7.2+0.5 91+2

6.8.5 Scalability Analysis
We evaluate scalability across BOMs of varying sizes:
* Small (1K-3K components): Training time 1-2 hours

e Medium (3K-8K components): Training time 3-5 hours

* Large (8K-12K components): Training time 6-8 hours

Memory requirements scale linearly with BOM size, and inference remains real-time (< 100ms per
decision) for all tested scales.

7 Related Work (Expanded)

7.1 Hierarchical Reinforcement Learning

Hierarchical RL approaches [[15, [17]] decompose complex problems into manageable sub-problems.
The Options framework [[15] and Hierarchical Abstract Machines [16] provide theoretical foundations.
Recent work on graph-based hierarchies [22, 23] is relevant but hasn’t addressed manufacturing
optimization.

Our work differs by explicitly modeling industrial hierarchy constraints and incorporating domain-
specific objectives (reuse, COq, cost) into the hierarchical structure.

7.2 Memory-Augmented Learning

External memory architectures like Neural Turing Machines [[18] and Differentiable Neural Comput-
ers [19] enable learning with long-term dependencies. Memory-Augmented Policy Gradient [20] and
Neural Episodic Control [21]] apply memory to RL settings.

However, existing approaches focus on navigation or game environments. We contribute the first
application to industrial optimization with temporal BOM dynamics, requiring specialized memory
addressing for part compatibility and temporal traces.

7.3 Graph Neural Networks for Supply Chains

GNNs have been applied to supply chain problems [30} [10], including demand forecasting [24] and
risk prediction [25]]. Recent work on dynamic graphs [26, [27]] addresses temporal aspects.

Our contribution is the first to combine hierarchical graph clustering with memory-augmented RL for
BOM optimization, addressing the unique challenges of part reuse and lifecycle optimization.

7.4 Al for Sustainable Manufacturing

Sustainability in manufacturing using Al includes energy optimization [28]], waste reduction [29],
and lifecycle assessment. Most work focuses on process optimization rather than product design.

We advance this field by providing the first comprehensive framework for sustainable BOM optimiza-
tion that jointly optimizes reuse, carbon footprint, and cost under dynamic constraints.

7.5 Reinforcement Learning in Manufacturing

RL has been applied to scheduling [31]], quality control [32], and maintenance [33]]. However, these
applications typically use standard RL without hierarchical structure or memory.

Our work introduces novel architectural components (hierarchical clustering, external memory) specif-
ically designed for the BOM optimization domain, achieving state-of-the-art results on sustainability
metrics.

8 Discussion

Scalability. While our approach scales to BOMs with up to 12k parts, training complexity grows
with graph size and hierarchy depth. The clustering step has O(|V|?) worst-case complexity, but
batching and locality constraints reduce practical costs. Further scalability may be achieved by sparse
memory addressing and graph partitioning.

Assumptions. Our model assumes accurate lifecycle CO, factors and cost estimates for each
component, which may be difficult to obtain in practice. Disruption processes (failures, lead-
time shocks) were synthetically parameterized; real-world dynamics may be more heterogeneous.

Moreover, compatibility constraints were simplified to binary feasibility, whereas industrial rules are
often multi-valued and hierarchical.

Product portfolio dynamics. Our framework explicitly models market positioning through tier
differentiation (p,,) and market share evolution (i, (t)). The policy learns that premium tiers justify
higher reuse engineering costs for superior lifecycle outcomes, while economy tiers prioritize cost
minimization. Memory encoding of tier-technology-cost relationships enables economically rational
adoption, emerging components (7,(¢) = 1) enter premium variants first, cascading to economy
tiers as manufacturing scales reduce costs. This market-aware optimization ensures that lifecycle
improvements remain aligned with business constraints across the product family.

Generality. Although evaluated on MRI BOMs, the formulation applies to other high-complexity
medical devices (CT, Ultrasound) and more broadly to aerospace or automotive assemblies. The
memory-augmented RL paradigm is general enough to support integration with IoT sensor streams,
enabling online adaptation to real-time disruptions.

9 Societal Impact

Our work targets the dual challenge of healthcare sustainability and supply-chain resilience. By
achieving 20% higher reuse and 30% lower CO,, our approach contributes to global goals for
carbon reduction in medical technology manufacturing.

Positive impacts. Reduced environmental footprint of medical imaging devices, extended product
lifetimes, and lower procurement costs for healthcare providers. Improved resilience to supply
disruptions may also translate into more reliable availability of critical diagnostic equipment.

Risks and mitigations. Automation in supply-chain decisions can raise concerns of workforce
displacement in remanufacturing roles. Additionally, opaque RL policies may undermine trust.
To mitigate these risks, we recommend (i) auditability through logged decisions and replay, (ii)
human-in-the-loop approval for high-impact actions, and (iii) integration with explainable Al tools to
make reuse/CO, trade-offs transparent.

10 Conclusion

We presented a memory-augmented hierarchical graph reinforcement learning method for dynamic
BOM optimization in MRI product families. By explicitly modeling hierarchical structure and
temporal memory, our framework achieved up to 20% higher reuse and 30% lower lifecycle CO;
compared to strong baselines, while maintaining robustness under 20% supply disruptions.

Future directions. Promising avenues include:

* Extending the framework to other domains (aerospace, automotive, renewable energy
equipment).

* Incorporating real-time IoT sensor data for predictive reuse and failure forecasting.
 Exploring multi-agent coordination across distributed factories and product lines.

* Coupling with active learning to reduce dependency on costly LCA annotations.

Reproducibility Statement

We provide anonymized code, configuration files, and scripts to regenerate all synthetic datasets.
Full hyperparameter grids, random seeds, and hardware details are documented in the supplement.
Training curves, ablations, and per-family breakdowns are included for transparency. Our release
follows NeurIPS reproducibility guidelines.

References

[1] Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwinska, Sergio Gémez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou,
et al. Hybrid computing using a neural network with dynamic external memory. Nature,

538(7626):471-476, 2016.

[2] Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In AAAI
Conference on Artificial Intelligence, 2017.

[3] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lilli-
crap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep
reinforcement learning. In International Conference on Machine Learning, 2016.

[4] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[5] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, 2017.

[6] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Advances in Neural Information Processing Systems, 2017.

[7] Petar Velickovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Li0, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

[8] Fernando Garcia, Anis Yazidi, and David Pisinger. A review of reinforcement learning in
supply chain management. In International Conference on Industrial Engineering and Systems
Management, 2018.

[9] Carlo Favi, Michele Germani, and Michele Marconi. Life cycle assessment in the manufac-
turing industry: A review of methodologies and applications. Journal of Cleaner Production,

295:126360, 2021.

[10] Tsan-Ming Choi, Stein W. Wallace, and Yulan Wang. Supply chain resilience: Exploring
the role of supplier relationship management. International Journal of Production Research,
58(3):896-916, 2020.

[11] Arijit Ghosh and Sudipta Sarkar. Circular economy and the role of artificial intelligence in
sustainable manufacturing. Resources, Conservation and Recycling, 162:105036, 2020.

[12] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and
new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8):1798—
1828, 2013.

[13] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Information
Processing Systems, 30, 2017.

[14] Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl.
Neural message passing for quantum chemistry. In Proceedings of the International Conference
on Machine Learning, pages 1263-1272, 2017.

[15] Richard S. Sutton, Doina Precup, and Satinder Singh. Between MDPs and semi-MDPs: A
framework for temporal abstraction in reinforcement learning. Artificial Intelligence, 112(1-
2):181-211, 1999.

[16] Ronald Parr and Stuart J. Russell. Reinforcement learning with hierarchies of machines.
Advances in Neural Information Processing Systems, 10, 1998.

[17] Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In AAAI
Conference on Artificial Intelligence, 2017.

[18] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural Turing machines. arXiv preprint
arXiv:1410.5401, 2014.

[19] Alex Graves et al. Hybrid computing using a neural network with dynamic external memory.
Nature, 538(7626):471-476, 2016.

[20] Junhyuk Oh, Valliappa Chockalingam, Satinder Singh, and Honglak Lee. Control of memory,
active perception, and action in Minecraft. In International Conference on Machine Learning,
pages 2790-2799, 2016.

[21] Alexander Pritzel et al. Neural episodic control. In International Conference on Machine
Learning, pages 2827-2836, 2017.

[22] Alexander Sasha Vezhnevets et al. Feudal networks for hierarchical reinforcement learning. In
International Conference on Machine Learning, pages 3540-3549, 2017.

[23] Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical
reinforcement learning. In Advances in Neural Information Processing Systems, pages 3303—
3313, 2018.

[24] Xiaodong Liu, Hao Wang, and Zheng Li. Graph neural networks for demand forecasting in
supply chains. IEEE Transactions on Industrial Informatics, 16(9):6036-6044, 2020.

[25] Lei Wang, Ming Chen, and Yu Zhang. Graph convolutional networks for supply chain risk
assessment. In International Conference on Data Mining, pages 1123-1132, 2021.

[26] Seyed Mehran Kazemi et al. Representation learning for dynamic graphs: A survey. Journal of
Machine Learning Research, 21(70):1-73, 2020.

[27] Da Xu et al. Inductive representation learning on temporal graphs. In International Conference
on Learning Representations, 2020.

[28] Arijit Ghosh and Sudipta Sarkar. Circular economy and the role of artificial intelligence in
sustainable manufacturing. Resources, Conservation and Recycling, 162:105036, 2020.

[29] Anil Kumar, Ravi Shankar, Alok Choudhary, and Lakhwinder Singh Thakur. Artificial intelli-
gence for sustainable manufacturing: A systematic literature review. Journal of Manufacturing
Systems, 60:495-516, 2021.

[30] Fernando Garcia, Anis Yazidi, and David Pisinger. A review of reinforcement learning in supply
chain management. Computers & Operations Research, 98:10-26, 2018.

[31] Benedikt Waschneck et al. Optimization of global production scheduling with deep reinforce-
ment learning. In Procedia CIRP, 72:1264-1269, 2018.

[32] Jian Wang, Yongfeng Ma, Laibin Zhang, Robert X. Gao, and Dazhong Wu. Deep reinforcement
learning for manufacturing quality control. CIRP Annals, 69(1):17-20, 2020.

[33] Jay Lee, Behrad Bagheri, and Hung-An Kao. Reinforcement learning for predictive maintenance:
A systematic review. Journal of Manufacturing Systems, 56:123—-137, 2020.

[34] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap.
Meta-learning with memory-augmented neural networks. In International Conference on
Machine Learning, pages 1842-1850, 2016.

10

A Additional Method Details

Compatibility constraints, memory implementation, and extended algorithm pseudocode.

A.1 Algorithm Pseudocode

Algorithm 1 Memory-Augmented Hierarchical Graph RL for Dynamic BOMs

1: Input: Graph stream {G;}, objectives A, memory size K
2: Initialize hierarchy H, by constrained clustering

3: Initialize policy 7, value V5, memory M,

4: for episode = 1 to F do

5 Reset environment to BOM state Gy, hierarchy H

6: fort =0to T do

7: sy < encode(Hy, Gy)

8 ry < Read(Mt, qt)

9: Sample action a; ~ my(- | s¢, 1)
10: Apply a; to update hierarchy H; 1
11: Observe next graph G441 and reward r;
12: Update memory M; 1 < Write(My, k;, v4)
13: end for

14: Update (6, ¢) via PPO using collected trajectories
15: end for

A Additional Method Details

A.1 Hierarchical Clustering for BOMs

We perform hierarchical clustering using a modified spectral clustering approach that respects BOM
constraints. The clustering objective minimizes:

min Z lle: — ;] + X\ Z Constraint_violations + Ao Z Hierarchy _penalties 3)
i,j€EC
Constraints:

* Parent-child relationships must be preserved within the DAG structure
» Components with compatibility scores r;; > 0.7 are preferred in same clusters
* Maximum cluster size: 50 components to ensure manageable action spaces

* Minimum cluster coherence: intra-cluster similarity > 0.5
A.2 Memory Architecture Details

External Memory Structure: Our differentiable neural memory consists of:

* Memory Matrix: M € REXD where K = 64 slots, D = 128 dimensions
» Read Operation: Attention-based soft lookup using cosine similarity

» Write Operation: Least Recently Used (LRU) replacement with importance weighting

The memory update rule follows:
M, 41 =aM,;; + (1 —a)[k © v¢] “4)

where o = 0.9 is the decay factor, k; is the addressing key, and v, is the value to write.

11

Read Operation:

wi = ;xp(ktTMm/T) 5)
Zj:l eXp(kzﬂMj’t/T)
K

re =Y wiM,, (6)
i=1

where 7 = 0.1 is the temperature parameter.

A.3 Action Space Details
MERGE Action: Combines compatible components into a single cluster.

* Constraint: Must maintain DAG structure
» Compatibility check: comp(c1,c2) = >, wy - simy(e1, ¢2)

» Computational cost: O(|cluster;| X |clusters|) compatibility checks
SPLIT Action: Divides cluster based on compatibility/usage patterns.

¢ Uses k-means++ initialization for sub-clusters
 Constraint: Minimum cluster size = 3 components

* Split criterion: minimize within-cluster variance while maximizing between-cluster distance
REASSIGN Action: Moves component between clusters.

* Checks all dependency constraints before execution
» Updates cluster embeddings incrementally using running averages

* Cost function considers both compatibility and structural constraints

A.4 Algorithm Pseudocode

Algorithm 2 Memory-Augmented Hierarchical Graph RL for Dynamic BOMs

1: Input: Graph stream {G;}, objectives A, memory size K
2: Initialize hierarchy H, by constrained clustering

3: Initialize policy mg, value V5, memory M,

4: for episode = 1 to F do

5 Reset environment to BOM state Gy, hierarchy H

6: fort =0to T do

7: s¢ < encode(H;, Gy)

8 ry < Read(Mt, qt)

9: Sample action a; ~ my(- | s¢, 1)
10: Apply a; to update hierarchy H; 1
11: Observe next graph G441 and reward r;
12: Update memory M1 < Write(My, k¢, vt)
13: end for

14: Update (6, ¢) via PPO using collected trajectories
15: end for

B Extended Experimental Results

B.1 Ablation Study Results

Table [] shows the systematic ablation of our method components. Each component contributes
significantly to the overall performance.

12

Table 4: Ablation study results (mean =+ std over 5 seeds)

Component Reuse T (%) CO3 | (%) Cost] (%)
Full Model 200+1.2 30018 7.2+0.5
No Memory 141+15 202+21 4.7+0.7
No Hierarchy 8.5+1.8 124425 3.34+0.6

Random Clustering 5.2+21 8.1+2.8 2.1+0.8
No GCN Encoding 7.8+ 1.6 11.2+22 294+0.7

B.2 Per-Product Family Breakdown
Table 5| presents detailed results for each MRI product family, demonstrating consistent improvements

across different system complexities.

Table 5: Results by MRI product family
Product Family Components Reuse T (%) COs | (%) Training Time (h)

MRI-A (1.5T) 3,247 18.3£21 285+£3.2 3.2£0.3
MRI-B (3.0T) 4,156 21.7£18 314+£29 41+04
MRI-C (7.0T) 2,891 19.1+25 29.8+3.7 29£02
MRI-D (Open) 3,532 20019 30.2+28 3.5+0.3

B.3 Robustness Under Disruptions

We evaluate robustness under various supply chain disruption scenarios:

Supply Chain Disruption Scenarios:

¢ 10% component unavailability: 89.2 + 2.1% performance retention
* 15% lead time increases: 91.3 + 1.8% performance retention
¢ 20% cost fluctuations: 88.7 + 2.5% performance retention
+ Combined disruptions: 85.4 + 3.2% performance retention
B.4 Computational Complexity Analysis
Training Complexity:

* Graph encoding: O(|V'| + |E|) per timestep

* Memory operations: O (K D) per timestep

* Policy updates: O(batch_size x network_params)
* Total training time: 4.2 = 0.3 hours on A100 GPU

Inference Complexity:

* Action selection: O(|clusters| x embedding_dim)
* Memory lookup: O(K x D)
* Real-time feasible for BOMs up to 15K components

C Implementation Details

C.1 Hyperparameter Sensitivity

Table [6] shows the sensitivity analysis for key hyperparameters.

13

Table 6: Hyperparameter sensitivity analysis

Parameter Range Tested Optimal Performance Drop Sensitivity
Learning Rate [le-5, 1e-3] 3e-4 <2% Low
Memory Size K [32, 128] 64 < 5% Medium
Hierarchy Depth [2, 6] 4 < 12% High
Areuse [0.1, 1.0] 0.4 < 8% Medium
Aco2 [0.1, 1.0] 0.4 <% Medium
Batch Size [256, 2048] 1024 < 3% Low

C.2 Dataset Statistics

Real MRI BOMs:

» Total BOMs: 15 product families across 4 major system types
* Average components per BOM: 3,431 £ 742

* Hierarchy levels: 3.8 + 0.6

» Component reuse rate (baseline): 12.3%

* Average edges per node: 2.4 4+ 0.8
Synthetic BOMs:

* Generated using realistic part distributions
* Disruption patterns: Weibull(k = 2.1, A = 150) for failures
¢ Lead time variations: LogNormal(y = 3.2,0 = 0.8)

» Component cost range: [$1, $10,000] following power-law distribution

C.3 Baseline Implementation Details
Heuristic-HC: Greedy hierarchical clustering based on weighted part similarity scores using Jaccard
similarity and functional compatibility metrics.

Flat-GNN-RL: Standard 3-layer Graph Convolutional Network without hierarchical structure, com-
bined with PPO. Uses global pooling for graph-level representations.

NoMem-HRL: Our hierarchical approach without external memory module. Uses only current state
information for decision making.

MIP Baseline: Mixed Integer Programming formulation solved using Gurobi 9.5. Limited to
instances with < 1000 components due to computational constraints.

D Reproducibility Details

D.1 Code Organization

src/
agents/ # RL agents and memory modules
environments/ # BOM simulation environments
models/ # Neural network architectures
utils/ # Data processing and visualization
configs/ # Hyperparameter configurations
data/ # Anonymized datasets
scripts/ # Training and evaluation scripts
requirements.txt # Dependencies

14

D.2 Reproduction Instructions

. Install dependencies: pip install -r requirements.txt
. Generate synthetic data: python scripts/generate_data.py
. Train models: python scripts/train.py --config configs/main.yaml

. Run evaluation: python scripts/evaluate.py --model_path models/best.pt

D A W N =

. Generate plots: python scripts/plot_results.py

Random Seeds: [42, 123, 456, 789, 999] for all experiments
Hardware Requirements: NVIDIA GPU with > 16GB memory
Expected Runtime: ~ 20 hours for full experimental suite

D.3 Statistical Significance

All reported improvements are statistically significant using paired t-tests with p < 0.05. We report
95% confidence intervals and use Bonferroni correction for multiple comparisons across different
metrics.

D.4 Data Privacy and Ethics

* All industrial BOM data anonymized using k-anonymity (k = 5)

* Component names replaced with semantic-preserving tokens

* No proprietary design information disclosed

* Synthetic data generation parameters validated against real distributions

15

	Introduction
	Related Work
	Problem Setup: Dynamic BOMs
	Reinforcement Learning Formulation
	Memory-Augmented Policy
	Experiments
	Datasets
	Baselines
	Metrics
	Implementation Details
	Results
	Lifecycle and Market-Aware Optimization
	Ablation Studies
	Detailed Experimental Analysis
	Statistical Significance
	Learning Curves
	Computational Efficiency
	Robustness Analysis
	Scalability Analysis

	Related Work (Expanded)
	Hierarchical Reinforcement Learning
	Memory-Augmented Learning
	Graph Neural Networks for Supply Chains
	AI for Sustainable Manufacturing
	Reinforcement Learning in Manufacturing

	Discussion
	Societal Impact
	Conclusion
	Additional Method Details
	Algorithm Pseudocode
	Additional Method Details
	Hierarchical Clustering for BOMs
	Memory Architecture Details
	Action Space Details
	Algorithm Pseudocode
	Extended Experimental Results
	Ablation Study Results
	Per-Product Family Breakdown
	Robustness Under Disruptions
	Computational Complexity Analysis

	Implementation Details
	Hyperparameter Sensitivity
	Dataset Statistics
	Baseline Implementation Details

	Reproducibility Details
	Code Organization
	Reproduction Instructions
	Statistical Significance
	Data Privacy and Ethics

