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ABSTRACT

We explore brokerage between traders in an online learning framework. At any
round t, two traders meet to exchange an asset, provided the exchange is mutually
beneficial. The broker proposes a trading price, and each trader tries to sell their
asset or buy the asset from the other party, depending on whether the price is higher
or lower than their private valuations. A trade happens if one trader is willing to
sell and the other is willing to buy at the proposed price. Previous work provided
guidance to a broker aiming at enhancing traders’ total earnings by maximizing the
gain from trade, defined as the sum of the traders’ net utilities after each interaction.
This classical notion of reward can be highly unfair to traders with small profit
margins, and far from the real-life utility of the broker. For these reasons, we
investigate how the broker should behave to maximize the trading volume, i.e., the
total number of trades. We model the traders’ valuations as an i.i.d. process with an
unknown distribution. If the traders’ valuations are revealed after each interaction
(full-feedback), and the traders’ valuations cumulative distribution function (cdf)
is continuous, we provide an algorithm achieving logarithmic regret and show its
optimality up to constants. If only their willingness to sell or buy at the proposed
price is revealed after each interaction (2-bit feedback), we provide an algorithm
achieving poly-logarithmic regret when the traders’ valuations cdf is Lipschitz and
show its near-optimality. We complement our results by analyzing the implications
of dropping the regularity assumptions on the unknown traders’ valuations cdf.
If we drop the continuous cdf assumption, the regret rate degrades to Θ(

√
T ) in

the full-feedback case, where T is the time horizon. If we drop the Lipschitz cdf
assumption, learning becomes impossible in the 2-bit feedback case.

1 INTRODUCTION

In modern financial markets, Over-the-Counter (OTC) trading platforms have emerged as dynamic
and decentralized hubs, offering diverse alternatives to traditional exchanges. In recent years, these
markets have experienced remarkable growth, solidifying their central role in the global financial
ecosystem: OTC asset trading in the US surpassed 50 trillion USD in value in 2020 (Weill, 2020),
with an upward trend documented since 2016 (www.bis.org, 2022).

Brokers play a crucial role in OTC markets. Beyond acting as intermediaries between traders, they
utilize their understanding of the market to identify the optimal prices for assets. Additionally, traders
in these markets often respond to price changes: higher prices usually lead to selling, while lower
prices typically result in buying (Sherstyuk et al., 2020). This adaptability appears across various
asset classes, including stocks, derivatives, art, collectibles, precious metals and minerals, energy
commodities (like gas and oil), and digital currencies (cryptocurrencies) (Bolić et al., 2024).

Our study draws inspiration from recent research analyzing the bilateral trade problem from an online
learning perspective (Cesa-Bianchi et al., 2021; Azar et al., 2022; Cesa-Bianchi et al., 2023; 2024a;
Bolić et al., 2024; Bernasconi et al., 2024; Bachoc et al., 2024a;b). In particular, we build on insights
from Bolić et al. (2024), which addresses the brokerage problem in OTC markets where traders may
decide to buy or sell their assets depending on prevailing market conditions.
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1.1 MOTIVATIONS FOR CHOOSING TRADING VOLUME AS REWARD

Previous works have entirely focused on scenarios where brokers aim at maximizing the so-called
cumulative gain from trade—the sum of the net utilities of the traders over the entire sequence of
interactions with the broker. This classical approach has the two following pitfalls.

Traders’ Perspective. Gain-from-trade maximization can cause unfairness in settings where the
majority of traders make a living off of small margins (e.g., in micro trading or high-frequency
trading), and only a handful of high-payoff trades have the potential to occur. In these cases, gain-
from-trade maximization can lead to sacrificing the majority of the population in favor of a small
minority of traders that are lucky enough to be paired with people that are willing to be greatly
underpaid for the good on sale. In contrast, trading-volume maximization gives the same dignity to
all traders, granting everybody the same opportunity to trade, independently of their buying power.
For a striking concrete example of this pitfall, see Section 3.

Broker’s Perspective. From the broker’s perspective, too, it might not be as beneficial to potentially
miss out on traders’ exchanges by maximizing the gain from trade, given that, typically, brokers only
earn when trades occur. For example, in settings where traders have to pay a small fee for each trade,
it is clear that the broker’s ultimate goal is to maximize trading volume. Another example where
maximizing trading volume is superior to maximizing the gain from trade is the one discussed in the
Trader’s Perspective paragraph (and Section 3). In this case, a gain-from-trade maximizing broker
would risk alienating the vast majority of the population which, realistically, would end up leaving a
broker that does not give them trading opportunities, consequently hurting the broker’s bottom line.

For these reasons, in this work, we aim at providing strategies that boost the trading volume by
maximizing the number of trades in the broker-traders interaction sequence.

1.2 SETTING

In what follows, for any two real numbers a, b, we denote their minimum by a∧ b and their maximum
by a ∨ b. We now describe the brokerage online learning protocol.

For any time t = 1,2, . . .

● Two traders arrive with their private valuations V2t−1 and V2t

● The broker proposes a trading price Pt

● If the price Pt is between the lowest valuation V2t−1 ∧ V2t and the highest valuation V2t−1 ∨
V2t—meaning the trader with the lower valuation is willing to sell at Pt and the trader with
the higher valuation is willing to buy at Pt—the transaction occurs with the higher-valuation
trader purchasing the asset from the lower-valuation trader at the price Pt

● The broker receives some feedback

As commonly assumed in the existing bilateral trade literature, we assume valuations and prices
belong to [0,1]. While previous literature aims at maximizing the cumulative gain from trade—
defined as the sum of traders’ net utilities1 in the whole interaction sequence—our objective is to
maximize the number of trades. Formally, for any p, v1, v2 ∈ [0,1], our utility posting a price p when
the valuations of the traders are v1 and v2 is

g(p, v1, v2) ∶= I{v1 ∧ v2 ≤ p ≤ v1 ∨ v2} .

The goal of the broker is to minimize the regret, defined, for any time horizon T ∈ N, as

RT ∶= sup
p∈[0,1]

E [
T

∑
t=1
(Gt(p) −Gt(Pt))] ,

where Gt(q) ∶= g(q, V2t−1, V2t) for all q ∈ [0,1] and t ∈ N, and the expectation is taken over the
randomness present in (Vt)t∈N and the (possible) randomness used by the broker’s algorithm to
generate the prices (Pt)t∈N.

1Formally, for any p, v1, v2 ∈ [0,1], the gain from trade of a price p when the valuations of the traders are v1
and v2 is GFT(p, v1, v2) ∶= (v1 ∨ v2 − v1 ∧ v2) I{v1 ∧ v2 ≤ p ≤ v1 ∨ v2}.
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M -Lipschitz Continuous General

Full Ω(lnT ) Thm 2 O(lnT ) Thm 1 Θ(
√
T) Thm 5+6

2-Bit O(ln(MT ) lnT ), Ω(ln(MT )) Thm 3+4 Ω(T ) Thm 7 Ω(T )

Table 1: Overview of all the regret regimes: lnT (cyan), ln(MT ) (green),
√
T (yellow), and T (red), depending

on the feedback (full or 2-bit) and the assumption on the cdf (M -Lipschitz, continuous, or no assumptions).

As in Bolić et al. (2024), we assume that traders’ valuations V,V1, V2, . . . are generated i.i.d. from an
unknown distribution ν—a practical assumption for large and stable markets.

Finally, we consider the following two different types of feedback commonly studied in the online
learning bilateral trade literature:

• Full-feedback. At each round t, after having posted the price Pt, the broker has access to the
traders’ valuations V2t−1 and V2t.

• 2-bit feedback. At each round t, after having posted the price Pt, the broker has access to
the indicator functions I{V2t−1 ≤ Pt} and I{V2t ≤ Pt}.

The full-feedback model draws its motivation from direct revelation mechanisms, where the traders
disclose their valuations V2t−1 and V2t before each round, but the mechanism has access to this
information only after having posted the current bid Pt (Cesa-Bianchi et al., 2021; 2024a).

The 2-bit feedback model corresponds to posted price mechanisms, where the broker has access only
to the traders’ willingness to buy or sell at the proposed posted price, and the valuations V2t−1 and
V2t are never revealed.

1.3 OVERVIEW OF OUR CONTRIBUTIONS

In the full-feedback case, if the distribution ν of the traders’ valuations has a continuous cdf, we
design an algorithm (Algorithm 1) suffering O(lnT ) regret in the time horizon T (Theorem 1), and
we provide a matching lower bound (Theorem 2). We complement these results by showing that
dropping the continuous cdf assumption leads to a worse regret rate of Ω(

√
T ) (Theorem 5), and we

design an algorithm (Algorithm 3) achieving O(
√
T ) regret (Theorem 6).

In the 2-bit feedback case, if the cdf of the traders’ valuations is M -Lipschitz, we design an algorithm
(Algorithm 2) achieving regret O(ln(MT ) lnT ) (Theorem 3) where T is the time horizon, and
provide a near-matching lower bound Ω(ln (MT )) (Theorem 4). We complement these results by
showing that the problem becomes unlearnable if we drop the Lipschitzness assumption (Theorem 7).

For a full summary of our results, see Table 1.

1.4 TECHNIQUES AND CHALLENGES

Online learning with a continuous action domain and full-feedback is usually tackled by discretizing
the action domain and then playing an optimal expert algorithm on the discretization, or by directly
running exponential weights algorithms in the continuum (Maillard & Munos, 2010; Krichene et al.,
2015; Cesa-Bianchi et al., 2024b). These approaches require that the (expected) reward function is
Lipschitz and lead to a regret rate of order Õ(

√
T ). In contrast, our expected reward function is not

Lipschitz in general. To overcome this challenge, we leverage the specific structure of the problem
by proving Lemma 1, which enables us to design an algorithm that achieves an exponentially better
regret rate of O(lnT ) even when the underlying cdf—and hence the associated reward function—
is only continuous. Moreover, we establish a matching Ω(lnT ) lower bound that, surprisingly,
applies even when the reward function is Lipschitz, demonstrating that additional Lipschitz regularity
beyond continuity does not contribute to faster rates in this setting. This lower bound construction
is particularly challenging because the shape of the function p↦ E[Gt(p)] can only be controlled
indirectly through the traders’ valuation distribution: to avoid exceedingly complex calculations,
extra care is required in selecting appropriate instances. Even then, we needed a subtle and somewhat
intricate Bayesian argument to obtain the lower bound.
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In the 2-bit feedback model, we remark that the available feedback is enough to reconstruct bandit
feedback. Consequently, when the underlying cdf—and hence the expected reward function—is
M -Lipschitz, a viable approach is to discretize the action space [0,1] with K uniformly spaced
points and run an optimal bandit algorithm on the discretization. This approach immediately yields
a regret rate of order O(MT /K +

√
KT ). This bound leads to a regret of order O(M1/3T 2/3)

by tuning K ∶= Θ(M2/3T 1/3) when M is known to the learner, or of order O(MT 2/3) by tuning
K ∶= Θ(T 2/3) when the learner does not possess this knowledge. In contrast, we exploit the extra
information provided by the 2-bit feedback and the intuition provided by Lemma 1 to devise a binary
search algorithm achieving the exponentially better rate of O(ln(MT ) lnT ), with the additional
feature of being oblivious to M . Our corresponding lower bound shows that this rate is optimal (up
to a lnT factor), demonstrating through an information-theoretic argument that some sort of binary
search is essentially a necessary step for optimal learning.

1.5 RELATED WORK

Since the pioneering work of Myerson and Satterthwaite (Myerson & Satterthwaite, 1983), the study
of bilateral trade has grown significantly, particularly from a game-theoretic and approximation
perspective (Colini-Baldeschi et al., 2016; 2017; Blumrosen & Mizrahi, 2016; Brustle et al., 2017;
Colini-Baldeschi et al., 2020; Babaioff et al., 2020; Dütting et al., 2021; Deng et al., 2022; Kang et al.,
2022; Archbold et al., 2023). For a comprehensive overview, refer to Cesa-Bianchi et al. (2024a).

In recent years, the focus has expanded to include online learning settings for bilateral trade. Given
their close relevance to our paper, we concentrate our discussion on these works.

In Cesa-Bianchi et al. (2021); Azar et al. (2022); Cesa-Bianchi et al. (2024a; 2023); Bernasconi et al.
(2024); Cesa-Bianchi et al. (2024b), the authors examined bilateral trade problems where the reward
function is the gain from trade and each trader has a fixed role as either a seller or a buyer.

In Cesa-Bianchi et al. (2021), the authors investigated a scenario where seller and buyer valuations
form two distinct i.i.d. sequences. In the full-feedback case, they achieved a regret bound of Õ(

√
T ),

which was later refined to O(
√
T ) in Cesa-Bianchi et al. (2024a). They also demonstrated a worst-

case regret of Ω(
√
T ) even when sellers’ and buyers’ valuations are independent of each other and

their cdfs are Lipschitz. For the 2-bit feedback scenario under i.i.d. valuations, Cesa-Bianchi et al.
(2021) proved that any algorithm must suffer linear regret, even under either the M -Lipschitz joint cdf
assumption or the traders’ valuation independence assumption. However, when both conditions are
simultaneously satisfied, they proposed an algorithm achieving a regret rate of Õ(M1/3T 2/3), later
refined to O(M1/3T 2/3) in Cesa-Bianchi et al. (2024a). Cesa-Bianchi et al. (2021) also established
a worst-case regret lower bound of Ω(T 2/3) in this case, which, however, does not display any
dependence on M .

Cesa-Bianchi et al. (2021; 2024a) also showed that the adversarial bilateral trade problem is un-
learnable even with full-feedback. To achieve learnability beyond the i.i.d. case, Cesa-Bianchi et al.
(2023; 2024b) explored weakly budget-balanced mechanisms, allowing the broker to post differ-
ent selling and buying prices as long as the buyer pays more than what the seller receives. They
demonstrated that learning can be achieved using weakly budget-balanced mechanisms in the 2-bit
feedback setting at a regret rate of Õ(MT 3/4) when the joint seller/buyer cdf may vary over time
but is M -Lipschitz. Furthermore, for the same setting, they provided a Ω(T 3/4) matching lower
bound in the time horizon, even when the process is required to be i.i.d., but their lower bound does
not feature any dependence on M . Azar et al. (2022) investigated whether learning is possible in
the adversarial case by considering α-regret, achieving Θ̃(

√
T ) bounds for 2-regret in full-feedback,

and a Õ(T 3/4) upper bound in 2-bit feedback. Following another direction, Bernasconi et al. (2024)
explored globally budget-balanced mechanisms in the adversarial case, showing a Θ(

√
T ) regret rate

in full-feedback and a Õ(T 3/4) rate in the 2-bit feedback case.

The closest to our work is Bolić et al. (2024), where the authors studied the same i.i.d. version of our
trading problem with flexible seller and buyer roles, but with the target reward function being the
gain from trade. Under the M -Lipschitz cdf assumption, they obtained tight Θ(M lnT ) regret in
the full-feedback case. Surprisingly, in the same full-feedback case, but using our different reward
function, we achieve a Θ(lnT ) regret rate even when the cdf is only continuous: in our case, the
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additional Lipschitz regularity does not offer any speedup once the continuity assumption is fulfilled.
Furthermore, under the M -Lipschitz cdf assumption, Bolić et al. (2024) proved a sharp rate of
Θ(
√
MT ) in the 2-bit feedback case. Interestingly, using our different reward function, we achieve

an exponentially faster upper bound of O(ln(MT ) lnT ), which is tight up to a lnT factor. If the
Lipschitz cdf assumption is removed, the learning rate for both our problem and the one in Bolić et al.
(2024) degrades to Θ(

√
T ) in the full-feedback case, and the problem becomes unlearnable in the

2-bit feedback case.

2 THE MEDIAN LEMMA

In this section, we present the Median Lemma (Lemma 1), a simple but crucial result for what follows,
and the key upon which our main algorithms are based. At a high level, Lemma 1 states that a broker
who aims at maximizing the number of trades should post prices that are as close as possible to the
median of the (unknown) traders’ valuation distribution ν, and the instantaneous regret which the
broker incurs by playing any price is (proportional to) the square of the distance between the median
and the price, if distances are measured with respect to the pseudo-metric induced by the traders’
valuation cdf.
Lemma 1 (The median lemma). If the cdf F of ν is continuous, then, for any t ∈ N and any p ∈ [0,1],

E[Gt(p)] = 2F (p)(1 − F (p)) and
1

2
−E[Gt(p)] = 2(

1

2
− F (p))

2

.

In particular, the function p↦ E[Gt(p)] is maximized at any point m ∈ [0,1] such that F (m) = 1
2

.

Before presenting the proof of Lemma 1, we just remark that points m ∈ [0,1] satisfying F (m) = 1/2
do exist by the intermediate value theorem, because F (0) = 0, F (1) = 1, and F is continuous.

Proof. For each t ∈ N and each p ∈ [0,1], we have that

E[Gt(p)] = P[{V2t−1 ≤ p < V2t} ∪ {V2t ≤ p ≤ V2t−1}]

= P[V2t−1 ≤ p]P[p < V2t] + P[V2t ≤ p]P[p ≤ V2t−1] = 2F (p)(1 − F (p)) ,
where the second equality follows from additivity and independence, while in the last equality we
leveraged the continuity of F to obtain P[p ≤ V2t−1] = P[p < V2t−1] = 1 − F (p). To conclude, it is
enough to note that, for each p ∈ [0,1] it holds that 1/4 − F (p)(1 − F (p)) = (1/2 − F (p))2.

3 TRADING VOLUME VS GAIN FROM TRADE

In this section, we leverage Lemma 1 to show with a formal example that, unlike trading-volume
maximizing brokers, gain-from-trade maximization brokers can be heavily biased towards small
segments of the population and, as a result, end up hurting their own bottom lines.

Assume that the distribution of the traders’ valuations V,V1, V2, . . . have common density f defined,
for all x ∈ [0,1], by f(x) ∶= ( 1

ε
− 1)I{ 1

2
− ε ≤ x ≤ 1

2
} + I{1 − ε ≤ x ≤ 1}, for some ε ∈ (0, 1

2
).

At a high level, this population of traders is clustered into two segments: a low-valuation cluster L
that believes that the good on sale has a value slightly smaller than 1

2
and a high-valuation cluster H

that believes the value is slightly smaller than 1. If ε ≈ 0, the overwhelming majority of the population
belongs to the low-valuation cluster L. In this case, we will prove that a gain-from-trade maximizing
broker would sacrifice the majority of the population to favor trades that include a trader coming
from the (extremely small) high-valuation cluster H .

Indeed, by Bolić et al. (2024), a gain-from-trade maximizing broker would post the expectation
E[V ] = 1

2
. In contrast, by Lemma 1, a trade-volume maximizing broker would post the median

m ∶= 1
2
− ε

2
⋅ 1−2ε

1−ε of V , which is a value roughly in the middle of the low-valuation cluster L.

By posting the expectation, the probability of having a trade is, for all t ∈ N, P[V2t−1 ∧ V2t ≤ 1
2
≤

V2t−1 ∨ V2t] = 2(1 − ε)ε, which is close to zero when ε ≈ 0.
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In contrast, by posting the median, the probability of having a trade is, for all t ∈ N, P[V2t−1 ∧ V2t ≤
m ≤ V2t−1 ∨ V2t] = 1

2
, which is always bounded away from zero, irrespectively of ε.

This shows two ways in which (unlike a trade-volume maximizing broker) a gain-from-trade max-
imizing broker is biased towards favoring the high valuation cluster H . First, they are willing to
accept that only a negligible fraction of the population will trade. Second, being E[V ] = 1

2
, they

only (with probability 1) allow trades where one of the two traders comes from the high-valuation
cluster H , resulting in only the high-valuation trader making a large profit, while the low valuation
trader is left with a profit of order ε ≈ 0, even in the low-probability event where they are given the
opportunity to trade. It is easy to imagine that, in real life, such a bias would cause the low-valuation
traders in L to leave the broker, in turn greatly reducing the broker’s own profit.

4 FULL-FEEDBACK

We now investigate how the broker should behave to maximize the number of trades in the full-
feedback case where after each interaction the traders’ valuations are disclosed. We begin by studying
the full-feedback case under the continuous cdf assumption. In this case, taking inspiration from
Lemma 1, a natural strategy is to play the empirical median, which leads to Algorithm 1.

Algorithm 1: Follow the Empirical Median (FEM)
Post P1 ∶= 1/2 and receive feedback V1, V2;
for time t = 2,3, . . . do

Post the empirical median Pt ∶= 1
2
(V (t−1)

2(t−1) + V
(t)
2(t−1)), where V

(1)
2(t−1), . . . , V

(2(t−1))
2(t−1) are the

order statistics of the observed sample V1, . . . , V2(t−1), and receive feedback V2t−1, V2t;

The next theorem leverages Lemma 1 to show that Algorithm 1 suffers regret O(lnT ) when the
traders’ valuation cdf is continuous.

Theorem 1. If ν has a continuous cdf F , the regret of FEM satisfies, for all time horizons T ∈ N,

RT ≤
1

2
+ π

2
(1 + ln(T − 1)) .

Proof. Without loss of generality, we can (and do!) assume that T ≥ 2. Then, we have

RT ≤
1

2
+ max

p∈[0,1]
E [

T

∑
t=2

Gt(p)] −E [
T

∑
t=2

Gt(Pt)] =
1

2
+ 2 ⋅

T

∑
t=2

E [(1
2
− F (Pt))

2

]

Now, let m ∈ [0,1] be such that F (m) = 1/2, and let V be a random variable whose distribution is ν,
independent of V1, V2, . . . . Then, for any t ∈ N such that t ≥ 2 we have

E [(1
2
− F (Pt))

2

] = E [(P[m ≤ V ≤ Pt ∣ Pt])2] +E [(P[Pt ≤ V ≤m ∣ Pt])2] =∶ (I) + (II) .

Now, for the term (I), leveraging the fact that V and Pt are independent of each other, together with
the Minkowski’s integral inequality (see, e.g., (Stein, 1970, Appendix A.1)), we have:

√
(I) =

√
E [(E[I{m ≤ V ≤ Pt} ∣ Pt])

2] ≤ E [
√

E [(I{m ≤ V ≤ Pt})
2 ∣ V ]]

= E [
√
P[m ≤ V ≤ Pt ∣ V ]] = ∫

[m,1]

√
P[x ≤ Pt]dPV (x) = ∫

[m,1]

√
P[x ≤ Pt]dν(x) = (⋆)

For each x ∈ [0,1] and for any s ∈ N, let Bs(x) ∶= I{x ≤ Vs}, and notice that B1(x),B2(x), . . . is
an i.i.d. sequence of Bernoulli random variables of parameter 1 − F (x). Let V (1)

2(t−1), . . . , V
(2(t−1))
2(t−1)

be the order statistics of the observed sample V1, . . . , V2(t−1). For any x ∈ [m,1], observing that

6
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0 1/8 7/8 1

2ε

2(1 − ε)

1

2ε′

2(1 − ε′)

0 1/8 7/8 1Θ(∣ε − ε′∣)

Θ(∣ε − ε′∣2)

Figure 1: Qualitative plots of the densities fε, fε′ (left) and corresponding expected rewards (right)
used in the proof of Theorem 2 for two values ε, ε′ > 0. Note that the difference in reward by posting
a price that is optimal for one instance ε′ when the actual instance is ε is Θ(∣ε − ε′∣2).

F (x) − 1
2
≥ 0 and P[x ≤ Pt] ≤ P [x ≤ V (t)

2(t−1)] ≤ P [∑2(t−1)
s=1 Bs(x) ≥ t − 1], we can leverage

Hoeffding’s inequality to obtain

P[x ≤ Pt] ≤ P
⎡⎢⎢⎢⎢⎣

2(t−1)

∑
s=1

Bs(x) ≥ t − 1
⎤⎥⎥⎥⎥⎦
= P
⎡⎢⎢⎢⎢⎣

2(t−1)

∑
s=1

Bs(x)
2(t − 1)

− (1 − F (x)) ≥ t − 1
2(t − 1)

− (1 − F (x))
⎤⎥⎥⎥⎥⎦

= P
⎡⎢⎢⎢⎢⎣

2(t−1)

∑
s=1

Bs(x)
2(t − 1)

− (1 − F (x)) ≥ F (x) − 1

2

⎤⎥⎥⎥⎥⎦
≤ e−4(t−1)(F (x)−

1
2
)2 = e−4(t−1)(ν[[0,x]]−

1
2
)2 ,

from which, by the change of variable formula (Revuz & Yor, 2013, Proposition 4.10, Chapter 1), it
follows also that

(⋆) ≤ ∫
[m,1]

¿
ÁÁÀexp(−4(t − 1) (ν[[0, x]] − 1

2
)
2

)dν(x) = ∫
1

1/2
exp(−2(t − 1) (1

2
− u)

2

) du

≤ 1√
2(t − 1) ∫

∞

0
exp (−r2) dr =

√
π

2
√
2
⋅ 1√

t − 1
,

and hence (I) ≤ π
8(t−1) . Analogously, we can prove that (II) ≤ π

8(t−1) . Hence,

RT ≤
1

2
+π
2
⋅
T

∑
t=2

1

t − 1
= 1

2
+π
2
+π
2
⋅
T−1
∑
t=2
∫

t

t−1

1

t
ds ≤ 1

2
+π
2
+π
2
⋅∫

T−1

1

1

s
ds = 1

2
+π
2
(1+ln(T−1)) .

We now establish the optimality of FEM by demonstrating a matching Ω(lnT ) regret lower bound.
We remark that this result holds even when competing against underlying distributions that have a
2-Lipschitz cdf, thus proving the optimality of FEM even under the Lipschitz cdf assumption.
Theorem 2. There exist two numerical constants c1 and c2 such that, for any time horizon T ≥ c2,
the worst-case regret of any full-feedback algorithm satisfies

sup
ν∈D2

Rν
T ≥ c1 lnT ,

where Rν
T is the regret at time T of the algorithm when the i.i.d. sequence of traders’ valuations

follows the distribution ν, and D2 is the set of all distributions ν that admit a 2-Lipschitz cdf.

Due to space constraints, we defer the (long and technical) proof of this result to Appendix A and
only present a short, high-level sketch here.

Proof sketch. In the proof, we build a family of 2-Lipschitz cdfs Fε parameterized by ε ∈ [0,1], so
that if two instances are parameterized by ε and ε′ respectively, then their medians are Θ(∣ε − ε′∣)-
away from each other (Figure 1). The high-level idea is to leverage a Bayesian argument to show that
if the underlying instance FE is such that E is drawn uniformly at random in [0,1], then, at round
t, the broker cannot reliably determine prices that are much closer than 1/

√
t to the corresponding

median mE when distances are measured with respect to the metric induced by the cdf FE . This,
together with our key Lemma 1, leads to the conclusion.

7
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5 2-BIT FEEDBACK

We start the study of the 2-bit feedback case under the assumption that the traders’ valuation
distribution admits a Lipschitz cdf F . The algorithm we propose (Algorithm 2) is based on the
following observation: by posting any price p, the broker has access to two noisy realizations of F (p).
Recalling that Lemma 1 suggests tracking the median of F (i.e., a point m at which F (m) = 1/2),
and since F is a non-decreasing function, we can proceed using a natural binary search strategy to
move toward the median. This can be done in epochs: in each one, we repeatedly test a (dyadic) price
until the first time we can confidently decide that the median is to the left or right of the current price.

Algorithm 2: Median Binary Search (MBS)
Input: Confidence parameter δ ∈ (0,1), time horizon n ∈ N;
Initialization: Q1 ∶= 1

2
, τ ∶= 1, t ∶= 1;

while time t ≤ n do
Let s ∶= 0, Yτ,s ∶= 0, tτ−1 ∶= t − 1;
while time t ≤ n do

Post Pt ∶= Qτ and receive feedback I{V2t−1 ≤ Pt}, I{V2t ≤ Pt};
Update s ∶= s + 2, Yτ,s ∶= Yτ,s−2 + I{V2t−1 ≤ Pt} + I{V2t ≤ Pt}, t ∶= t + 1;

if 1
s
Yτ,s +

√
ln(2/δ)

2s
< 1

2
then let Qτ+1 ∶= Qτ+1 + 1

2τ+1
, sτ ∶= s, τ ∶= τ + 1, and break;

else if 1
s
Yτ,s −

√
ln(2/δ)

2s
> 1

2
then let Qτ+1 ∶= Qτ+1 − 1

2τ+1
, sτ ∶= s, τ ∶= τ + 1, and break;

We now show that a suitably tuned Algorithm 2 has regret guarantees of O(ln(MT ) ln(T )). In
particular, we stress that the tuning of Algorithm 2 does not need prior knowledge of M . Due to
space constraints, we defer the full proof of the next result to Appendix B.

Theorem 3. If ν has an M -Lipschitz cdf F for some M ≥ 1, then, for all time horizons T ∈ N, the
regret of MBS tuned with parameters δ ∶= 2/T 3 and n ∶= T satisfies

RT ≤ 2 + 6 log2(MT ) ln(T ) .

Proof sketch. The proof is based on the following observations. First, during an epoch where a price
p is tested, given that one has to distinguish if the parameter F (p) of a sequence of Bernoulli random
variables is bigger or smaller than 1/2, a concentration argument shows that the duration of this epoch
is at most O(ln(1/δ)/(1/2 − F (p))2), where δ is the confidence parameter. Second, by Lemma 1,

the broker regrets 2(1/2 − F (p))2 by playing a price p, and hence the total regret of an epoch where
the broker tests p is at most O(ln(1/δ)). We then use the fact that the F is M -Lipschitz to prove that,
after at most O(log2(MT )) epochs, the cumulative regret that the algorithm suffers from that point
onward is constant, and conclude by showing that the tuning of δ leads to the stated guarantees.

We now show that Algorithm 2 is optimal, up to a multiplicative lnT term. Due to space constraints,
we defer the full proof of this result to Appendix C.

Theorem 4. There exist two numerical constants c1 and c2 such that for any M ≥ 16 and any time
horizon T ≥ c2 log2(M), the worst-case regret of any 2-bit feedback algorithm satisfies

sup
ν∈DM

Rν
T ≥ c1 ln(MT ) ,

where Rν
T is the regret at time T of the algorithm when the i.i.d. sequence of traders’ valuations

follows the distribution ν, and DM is the set of all distributions ν that admits an M -Lipschitz cdf.

Proof sketch. The proof builds a family of distributions, each supported in a different region of length
Θ(1/M), whose cdfs are M -Lipschitz. To avoid suffering linear regret if the traders’ valuations are
generated according to one of these distributions, the broker has to detect the corresponding support.
To accomplish this task, we show that the broker is essentially forced to solve a binary search problem
that needs log2(M) rounds in each of which the instantaneous regret is constant. Noticing that any
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regret lower bound for full-feedback algorithms also applies to 2-bit feedback algorithms, the lnT
lower bound of Theorem 2 together with the binary search lnM lower bound yield a lower bound of
Ω(max(lnT, lnM)) = Ω(ln(MT )).

6 NON-LIPSCHITZ OR DISCONTINUOUS PDFS

We now investigate how the problem changes if we lift the assumption that ν has a Lipschitz or
continuous cdf. First, note that when the cdf of ν is not continuous, Lemma 1, and, consequently, the
guarantees of Theorem 1, no longer hold. Indeed, in general, no full-feedback algorithm can achieve
regret guarantees better than

√
T . As shown in the proof of the next theorem, the reason is that our

problem contains instances that resemble online learning with expert advice (with 2 experts), which
has a known lower bound of Ω(

√
T ).

Theorem 5. There exist two numerical constants c1 and c2 such that, for any time horizon T ≥ c2,
the worst-case regret of any full feedback algorithm satisfies

sup
ν∈D

Rν
T ≥ c1

√
T ,

where Rν
T is the regret at time T of the algorithm when the i.i.d. sequence of traders’ valuations

follows the distribution ν, and D is the set of all distributions ν.

Proof sketch. For each ε ∈ [−1/4,1/4], define νε ∶= 1−ε
4
δ0 + 1

4
δ1/3 + 1

4
δ2/3 + 1+ε

4
δ1, where, for any

a ∈ R, we denoted by δa the Dirac’s delta probability measure centered at a. Let (Vε,t)ε∈[−1/4,1/4],t∈N
be an independent family such that for each ε ∈ [−1/4,1/4] the sequence Vε,1, Vε,2, . . . is i.i.d.
with common distribution νε. For each ε ∈ [−1/4,1/4], each t ∈ N, and each p ∈ [0,1], define
Gε,t(p) ∶= g(p, Vε,2t−1, Vε,2t). Straightforward computations show that, for each ε ∈ [−1/4,1/4] and
each t ∈ N, the function p↦ E[Gε,t(p)] is maximized at 1/3 or at 2/3, with any other point having an
expected reward that is less than 31/256-away from the minimum expected reward achieved at 1/3 or
2/3. Furthermore, for any ε ∈ [−1/4,1/4] and any t ∈ N, the maximum is at 1/3 or 2/3 depending on
whether ε < 0 or ε > 0, given that E[Gε,t(1/3)] = 11

16
− ε

8
− ε2

8
and E[Gε,t(2/3)] = 11

16
+ ε

8
− ε2

8
, from

which it follows also that E[Gε,t(2/3)] −E[Gε,t(1/3)] = ε
4

. Hence, in order not to suffer Ω(∣ε∣T )
regret, an algorithm has to detect the sign of ε. However, a standard information-theoretic argument
shows that a sample of order Ω(1/ε2) is required in order to detect the sign of ε. During this period,
the best any algorithm can do is to play blindly in the set {1/3,2/3}, incurring in a cumulative regret
of order Ω ( 1

ε2
⋅ ∣ε∣) = Ω (1/ ∣ε∣). Overall, any learner has to suffer Ω (min ( 1

∣ε∣ , ∣ε∣T)) worst-case

regret, which, by tuning ∣ε∣ = Θ(1/
√
T ), leads to a worst-case regret lower bound of Ω(

√
T ).

We now focus on the upper bound. A closer look at the proof of Lemma 1 shows that if we drop the
cdf continuity assumption in the Median Lemma, the formula generalizes to

E[Gt(p)] = 2F (p)(1 − F (p)) + F (p)F ○(p) =∶ Ψ(p) , ∀p ∈ [0,1], ∀t ∈ N,

with no assumptions on ν, and where F is the cdf of ν and we defined F ○(p) ∶= ν[{p}]. This suggests
the strategy of building an empirical proxy Ψ̂t of Ψ with the feedback available at time t, and posting
prices that maximize Ψ̂t. By replacing the theoretical quantities by their empirical counterparts, for
any t ∈ N and any p ∈ [0,1], we define an empirical proxy for Ψ(p) as follows:

Ψ̂t+1(p) ∶= 2
1

2t

2t

∑
s=1

I{Vs ≤ p}
1

2t

2t

∑
s=1

I{p < Vs} +
1

2t

2t

∑
s=1

I{Vs ≤ p}
1

2t

2t

∑
s=1

I{Vs = p} .

This definition leads to Algorithm 3.

We now state regret guarantees for Algorithm 3. The proof of the following result (which hinges on
showing that Ψ̂t is uniformly close to Ψ with high probability) is deferred to Appendix D.
Theorem 6. For all time horizons T ∈ N, the regret of FEΨ satisfies

RT ≤ 1 + 8
√
π ⋅
√
T − 1 .

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Algorithm 3: Follow the Empirical Ψ (FEΨ)

Post P1 = 1
2

and receive feedback V1, V2;
for time t = 2,3, . . . do

Post Pt ∈ argmaxp∈[0,1] Ψ̂t(p) and receive feedback V2t−1, V2t;

We conclude by showing that, without the Lipschitz cdf assumption, the 2-bit feedback problem is
unlearnable. This can be deduced as a simple corollary of the proof of Theorem 4. Specifically, we
can obtain a linear worst-case lower bound for any 2-bit feedback algorithm, even if we assume that
the underlying distribution has a continuous cdf.

Theorem 7. There exist two numerical constants c1 and c2 such that, for any time horizon T ≥ c2,
the worst-case regret of any 2-bit feedback algorithm satisfies

sup
ν∈Dc

Rν
T ≥ c1T ,

where Rν
T is the regret at time T of the algorithm when the i.i.d. sequence of traders’ valuations

follows the distribution ν, and Dc is the set of all distributions ν that admits a continuous cdf.

Proof. As a consequence of the last part of the proof of Theorem 4 (see Appendix C) we have that,
for any time horizon T ≥ 4, if we set M ∶= 2T , then the conditions M ≥ 16 and T ≥ log2(M)
in that proof holds, and hence, any 2-bit feedback algorithm has worst-case regret that is at least

1
4 ln2

lnM = 1
4 ln2

T .

7 CONCLUSIONS AND OPEN PROBLEMS

Motivated by maximizing trading volume in OTC markets, we proposed a novel objective that
departs from the classical gain-from-trade reward studied in the bilateral trade literature. For this new
problem, we investigated optimal brokerage strategies from an online learning perspective. Under
the assumption that traders are free to sell or buy depending on the trading price and that traders’
valuations form an i.i.d. sequence, we provided a complete picture with matching (up to, at most,
logarithmic factors) upper and lower bounds in all the proposed settings, fleshing out the role of
regularity assumptions in achieving these fast regret rates.

In addition to closing the logarithmic lnT gap in the regret rate of the 2-bit feedback setting, a few
other future research directions are to find non-stationary variants of this problem where learning is
still achievable, investigate trading volume maximization when traders have definite seller and buyer
roles, and explore the contextual version of the problem when the broker has access to relevant side
information before posting each price.
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A PROOF OF THEOREM 2

For each ε ∈ [0,1], consider the following density function (see Figure 1, left)

fε∶ [0,1]→ [0,2], x↦ 2εI{x ≤ 1

8
} + I{1

8
< x < 7

8
} + 2(1 − ε)I{x ≥ 7

8
} ,

Notice that, for each ε ∈ [0,1] the cumulative function associated to the density fε is 2-Lipschitz
with explicit expression given by

Fε∶ [0,1]→ [0,1], x↦ 2εxI{x ≤ 1

8
}+(2ε − 1

8
+ x) I{1

8
< x < 7

8
}+(2ε−1−2(ε−1)x)I{x ≥ 7

8
} .

Consider for each ε ∈ [0,1], an i.i.d. sequence (Bε,t)t∈N of Bernoulli random variables of parameter
ε, an i.i.d. sequence (Dt)t∈N of Bernoulli random variables of parameter 1

4
, an i.i.d. sequence

(Ut)t∈N of uniform random variables on [0,1], and a uniform random variable E on [0,1], such
that ((Bε,t)t∈N,ε∈[0,1], (Dt)t∈N, (Ut)t∈N,E) is an independent family. For each ε ∈ [0,1] and t ∈ N,
define

Vε,t ∶=Dt ⋅ (Bε,t
Ut

8
+ (1 −Bε,t)

7 +Ut

8
) + (1 −Dt) ⋅ (

1

8
+ 3

4
Ut) . (1)

Tedious but straightforward computations show that, for each ε ∈ [0,1] the sequence (Vε,t)t∈N is
i.i.d. with common density given by fε, and this sequence is independent of E. For any ε ∈ [0,1],
p ∈ [0,1], and t ∈ N, let Gε,t(p) ∶= g(p, Vε,2t−1, Vε,2t) (for a qualitative representation of its
expectation, see Figure 1, right). We now show how to lower bound the worst-case regret of any
arbitrary deterministic algorithm for the full-feedback setting (αt)t∈N, i.e., a sequence of functions
αt∶ ([0,1] × [0,1])

t−1 → [0,1] where each element maps past feedback into a price (with the
convention that α1 is a number in [0,1]). We remark that we do not lose any generality in considering
only deterministic algorithms given that we are in a stochastic i.i.d. setting, and the minimax regret
over deterministic algorithms coincides with that over randomized algorithms. For each t ∈ N, define
α̃t∶ ([0,1] × [0,1])

t−1 → [ 1
8
, 7
8
] equal to αt whenever αt takes values in [ 1

8
, 7
8
], and equal to 1/2

otherwise. Notice that for each ε ∈ [0,1] it holds that (Fε○α̃t)⋅(1 − Fε ○ α̃t) ≥ (Fε○αt)⋅(1 − Fε ○ αt),
and hence, due to Lemma 1, for each t ∈ N, it holds that E [Gε,t(α̃t(Vε,1, . . . , Vε,2(t−1)))] ≥

12
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E [Gε,t(αt(Vε,1, . . . , Vε,2(t−1)))]. Notice also that for each ε ∈ [0,1], we have that mε ∶= 5−2ε
8

is the
unique element in [0,1] such that Fε(mε) = 1/2. For any time horizon T ≥ 144, we have that the
worst-case regret of the algorithm (αt)t∈N can be lower bounded as follows

sup
ν∈DM

Rν
T ≥ sup

ε∈[0,1]

T

∑
t=13

E[Gε,t(mε) −Gε,t(αt(Vε,1, . . . , Vε,2(t−1)))]

≥ sup
ε∈[0,1]

T

∑
t=13

E[Gε,t(mε) −Gε,t(α̃t(Vε,1, . . . , Vε,2(t−1)))] ♠= sup
ε∈[0,1]

T

∑
t=13

E [2(1
2
− Fε(α̃t(Vε,1, . . . , Vε,2(t−1))))

2

]

○

≥
T

∑
t=13

E [2(1
2
− FE(α̃t(VE,1, . . . , VE,2(t−1))))

2

] ♣= 2
T

∑
t=13

E [(5 − 2E
8

− α̃t(VE,1, . . . , VE,2(t−1)))
2

]

♥
≥ 2

T

∑
t=13

E [(5 − 2E
8

− E [5 − 2E
8

∣ BE,1, . . . ,BE,2(t−1),D1, . . . ,D2(t−1), U1, . . . , U2(t−1)])
2

]

♦= 2
T

∑
t=13

E [(5 − 2E
8

− E [5 − 2E
8

∣ BE,1, . . . ,BE,2(t−1)])
2

] = 1

8

T

∑
t=13

E [(E − E [E ∣ BE,1, . . . ,BE,2(t−1)])
2]

∗= 1

8

T

∑
t=13

E
⎡⎢⎢⎢⎢⎣

⎛
⎝
E − ∑

2(t−1)
s=1 BE,s + 1

2t

⎞
⎠

2⎤⎥⎥⎥⎥⎦
= 1

8

T

∑
t=13
∫

1

0
E
⎡⎢⎢⎢⎢⎣

⎛
⎝
ε − ∑

2(t−1)
s=1 Bε,s + 1

2t

⎞
⎠

2⎤⎥⎥⎥⎥⎦
dε

= 1

8

T

∑
t=13
∫

1

0
E
⎡⎢⎢⎢⎢⎣

⎛
⎝
ε − ∑

2(t−1)
s=1 Bε,s

2(t − 1) + ∑
2(t−1)
s=1 Bε,s

2(t − 1) − ∑
2(t−1)
s=1 Bε,s

2t
− 1

2t

⎞
⎠

2⎤⎥⎥⎥⎥⎦
dε

= 1

8

T

∑
t=13
∫

1

0
E
⎡⎢⎢⎢⎢⎣

⎛
⎝
ε − ∑

2(t−1)
s=1 Bε,s

2(t − 1) + 1

2t(t − 1)
2(t−1)

∑
s=1

Bε,s −
1

2t

⎞
⎠

2⎤⎥⎥⎥⎥⎦
dε

≥ 1

8

T

∑
t=13
∫

1

0
E
⎡⎢⎢⎢⎢⎣

⎛
⎝
ε − ∑

2(t−1)
s=1 Bε,s

2(t − 1)
⎞
⎠

2

− 2
RRRRRRRRRRR
ε − ∑

2(t−1)
s=1 Bε,s

2(t − 1)

RRRRRRRRRRR

RRRRRRRRRRR

1

2t(t − 1)
2(t−1)

∑
s=1

Bε,s −
1

2t

RRRRRRRRRRR

⎤⎥⎥⎥⎥⎦
dε

≥ 1

8

T

∑
t=13
∫

1

0
E
⎡⎢⎢⎢⎢⎣

⎛
⎝
ε − ∑

2(t−1)
s=1 Bε,s

2(t − 1)
⎞
⎠

2

− 1

t

RRRRRRRRRRR
ε − ∑

2(t−1)
s=1 Bε,s

2(t − 1)

RRRRRRRRRRR

⎤⎥⎥⎥⎥⎦
dε

⋆

≥ 1

8

T

∑
t=13
∫

1

0

⎛
⎜
⎝
Var(Bε,1)
2(t − 1) −

1

t

¿
ÁÁÀVar(Bε,1)

2(t − 1)
⎞
⎟
⎠
dε = 1

8

T

∑
t=13
∫

1

0

⎛
⎜
⎝
ε(1 − ε)
2(t − 1) −

1

t

¿
ÁÁÀε(1 − ε)

2(t − 1)
⎞
⎟
⎠
dε

= 1

8

T

∑
t=13

⎛
⎝

1

12(t − 1) −
π

8t
√
2(t − 1)

⎞
⎠
≥ 1

8
( 1

12
− π

16
√
6
)

T−1

∑
t=12

1

t
≥ 1

8
( 1

12
− π

16
√
6
)∫

T

12

1

s
ds

= 1

8
( 1

12
− π

16
√
6
) ln( T

12
) ≥ 1

16
( 1

12
− π

16
√
6
) ln(T ) .

where “♠” follows from Lemma 1; “○” follows from the fact that E and Vε,1, . . . , Vε,2(t−1) are inde-
pendent of each other; “♣” follows from the fact that α̃t takes values in [ 1

8
, 7
8
] and the explicit formula

of Fε in that interval for any ε ∈ [0,1]; “♥” follows from the fact that α̃t(VE,1, . . . , VE,2(t−1)) is
Ft ∶= σ(BE,1, . . . ,BE,2(t−1),D1, . . . ,D2(t−1), U1, . . . , U2(t−1))-measurable and that, for any Y the
minimizer in L2(Ft) of the functional X ↦ E [(Y −X)2] is X = E[Y ∣ Ft]; “♦” follows from the
fact that E and (D1, . . . ,D2(t−1), U1, . . . , U2t−1) are independent of each other; “∗” follows from the
fact E ∣ BE,1, . . . ,BE,2(t−1) has a beta distribution; and “⋆” follows from the fact that Bε,1,Bε,2, . . .
is an i.i.d. Bernoulli process of parameter ε, together with Jensen’s inequality.

B PROOF OF THEOREM 3

Without loss of generality, we can (and do!) assume that T ≥ 2, and so log2(MT ) ≥ 1. First, let
τT be the final value of τ if the algorithm ends at time T without a break, or define it as τ − 1 if it
ends with a break. For each τ ∈ [τT ], we define the epoch τ as the collection of rounds from tτ−1 + 1
to tτ . Notice that, for each τ ∈ [τT ], we have that sτ is the number of bits collected during the
epoch τ . Let Q⋆1 ∶= 1/2, and define by induction Q⋆τ+1 as Q⋆τ + 1

2τ+1
if F (Q⋆τ) < 1/2, as Q⋆τ − 1

2τ+1

if F (Q⋆τ) > 1/2, or as Q⋆τ if F (Q⋆τ) = 1/2. If there is τ ∈ N such that F (Q⋆τ) = 1/2, let m ∶= Q⋆τ .

13
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Otherwise, let m ∈ [0,1] be such that F (m) = 1/2 (its existence has already been pointed out after
Lemma 1). Crucially, notice that for each τ ∈ N, we have that ∣m −Q⋆τ ∣ ≤ 2−τ .

Let (Vx,k)x∈[0,1],k∈N be an independent family of random variables with common distribution given
by ν, and for each x ∈ [0,1] and t ∈ N, define Nt(x) ∶= 2 ⋅∑t−1

k=1 I{Pk = x}. Notice that without
loss of generality, we can assume that for each t ∈ N it holds that V2t−1 ∶= VPt,Nt(Pt)+1 and
V2t ∶= VPt,Nt(Pt)+2. Define the “good” event

E ∶=
T

⋂
i=1

T

⋂
j=1
j even

⎧⎪⎪⎨⎪⎪⎩
∣1
j

j

∑
k=1

I{VQ⋆i ,k
≤ Q⋆i } − F (Q⋆i )∣ <

√
ln(2/δ)

2j

⎫⎪⎪⎬⎪⎪⎭
,

and notice that by De Morgan’s laws, a union bound, and Hoeffding’s inequality, we can upper bound
the probability of the “bad” event Ec by P[Ec] ≤ δT 2. Notice that for each i, j ∈ [T ] with F (Q⋆i ) ≠ 1

2

and j even satisfying j ≥ 2 ln(2/δ)
( 1
2−F (Q

⋆

i ))
2 , then, whenever we are in the good event E , we have that

1

j

j

∑
k=1

I{VQ⋆i ,k
≤ Q⋆i } +

√
ln(2/δ)

2j
< F (Q⋆i ) +

√
2 ln(2/δ)

j
≤ 1

2
,

whenever F (Q⋆i ) < 1/2, while

1

j

j

∑
k=1

I{VQ⋆i ,k
≤ Q⋆i } −

√
ln(2/δ)

2j
> F (Q⋆i ) −

√
2 ln(2/δ)

j
≥ 1

2
.

whenever F (Q⋆i ) > 1/2. Instead, if i, j ∈ [T ] with F (Q⋆i ) = 1
2

and j is even, we have that

1

j

j

∑
k=1

I{VQ⋆i ,k
≤ Q⋆i } +

√
ln(2/δ)

2j
≥ F (Q⋆i ) =

1

2

and analogously

1

j

j

∑
k=1

I{VQ⋆i ,k
≤ Q⋆i } −

√
ln(2/δ)

2j
≤ F (Q⋆i ) =

1

2
.

In particular, if we are in the good event E , these inequalities imply on the one hand that Q1 =
Q⋆1, . . . ,QτT = Q⋆τT and, if τ ∈ [τT ] is such that F (Q⋆τ) = 1/2, then τ = τT . On the other hand, if
τ ∈ [τT ] is such that F (Q⋆τ) ≠ 1/2 and we are in the good event E , they imply that the number of bits
sτ collected during the epoch τ cannot be greater than 2 ln(2/δ)

( 1
2−F (Q⋆τ ))

2 , because the condition that ends

the epoch τ with a break is met by the time that we have collected 2 ln(2/δ)
( 1
2−F (Q⋆τ ))

2 bits in that epoch.

Define τ#T ∶= ⌈log2(MT )⌉, define τ ♭T as the smallest τ ∈ N such that F (Q⋆τ) = 1/2 if it exists,
and +∞ otherwise, and define τ⋆T ∶= min(τ#T , τ ♭T , τT ). In what follows, when we are in the event
τ#T > max(τ ♭T , τT ), we use the convention that any summation of the form ∑τT

τ=τ⋆
T
+1 is zero by

definition. For each t ∈ [T ], defineHt ∶= σ(V1, . . . , V2t−2) as the σ-algebra generated by the history

14
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observed before time t. We can control the regret in the following way

RT =
T

∑
t=1

E[Gt(m) −Gt(Pt)] =
T

∑
t=1

E[E[Gt(m) −Gt(Pt) ∣Ht]]

♠=
T

∑
t=1

E[[E[Gt(m) −Gt(p)]]
p=Pt

] ♣= 2 ⋅
T

∑
t=1

E [(1
2
− F (Pt))

2

]

≤ 2 ⋅
T

∑
t=1

E [(1
2
− F (Pt))

2

IE] +
T

2
⋅ P[Ec]

= E
⎡⎢⎢⎢⎢⎣

τ⋆T−1

∑
τ=1

sτ ⋅ (
1

2
− F (Q⋆τ))

2

IE
⎤⎥⎥⎥⎥⎦
+E
⎡⎢⎢⎢⎢⎣

τT

∑
τ=τ⋆

T

sτ ⋅ (
1

2
− F (Q⋆τ))

2

IE
⎤⎥⎥⎥⎥⎦
+ T

2
⋅ P[Ec]

♥
≤ E
⎡⎢⎢⎢⎢⎣

τ⋆T−1

∑
τ=1

2 ln(2/δ)
( 1
2
− F (Q⋆τ))

2
⋅ (1

2
− F (Q⋆τ))

2

IE
⎤⎥⎥⎥⎥⎦
+E
⎡⎢⎢⎢⎢⎣

τT

∑
τ=τ⋆

T

sτ ⋅M2 ⋅ ∣m −Q⋆τ ∣2
⎤⎥⎥⎥⎥⎦
+ T

2
⋅ P[Ec]

≤ (τ#T − 1) ⋅ 2 ⋅ ln(2/δ) + T ⋅M
2 ⋅ 2−2τ

#
T + δ ⋅ T

3

2
≤ 2 + 6 log2(MT ) ln(T ) ,

where in ♠ we used the Freezing Lemma (see, e.g.,(Cesari & Colomboni, 2021, Lemma 8)), in ♣ we
used Lemma 1, and in ♥ we used that fact that F (m) = 1/2 and F is M -Lipschitz.

C PROOF OF THEOREM 4

We already know that algorithms that have access to full-feedback have to suffer worst-case regret
of at least c1 lnT if T ≥ c2, where c1 and c2 are the constants in the statement of Theorem 2. In
particular, the same statement holds a fortiori for any 2-bit feedback algorithm, given that any 2-bit
feedback algorithm can be trivially converted into an algorithm operating with full-feedback. It
follows that it is enough to prove that there exist two universal constants c̃1 and c̃2 such that the worst-
case regret of any 2-bit feedback algorithm is at least c̃1 lnM whenever T ≥ c̃2 log2(M). In fact, in
this case, we can set c̄1 ∶= 1

2
min(c1, c̃1) and c̄2 ∶=max(c2, c̃2) to obtain that the worst-case regret of

any 2-bit feedback algorithm is at least 2c̄1max(lnT, lnM) ≥ c̄1 ln(MT ) whenever T ≥ c̄2 log2M .

We now prove the existence of c̃1 and c̃2. Let n ∈ N be the greatest integer such that 2n ≤M and
consider the elements νk ∈ DM whose density is 2n ⋅ I( k−12n , k

2n )
for some k ∈ [2n], and notice that the

corresponding cdfs are M -Lipschitz.

Consider the following surrogate game. The adversary secretly chooses k⋆ ∈ [2n]. The player action
space is [2n]. The surrogate game ends the first time t ∈ N when the player plays It = k⋆. Before
that, if the player plays It ≠ k⋆, the player suffers a loss 1/2 and receives I{It ≤ k⋆} as feedback.
Now, note that we can convert any algorithm α for the 2-bit feedback problem into an algorithm α̃
for the surrogate game in the following way. For each k ∈ [2n − 1], define Jk ∶= [(k − 1)2−n, k2−n)
and J2n ∶= [(2n − 1)2−n,1]. Whenever the algorithm α plays Pt ∈ Jk, the algorithm α̃ plays It ∶= k
and passes (I{It ≤ k⋆}, I{It ≤ k⋆}) to α, where k⋆ is the underlying instance of the surrogate game.
Now, notice that we can map every instance k⋆ ∈ [2n] for the surrogate game into the instance
νk⋆ ∈ DM of the original problem and that the regret of the algorithm α on the instance νk⋆ is greater
than or equal to than the regret of the algorithm α̃ on the instance k⋆. It follows that a worst-case
regret lower bound for the surrogate game is also a worst-case regret lower bound for the original
problem.

Fix an algorithm α for the surrogate game. Given that the surrogate game is deterministic, without
any loss of generality we can assume that α is deterministic. We say that S ⊂ [2n] is a discrete
segment if S is of the form {k ∈ [2n] ∣ a ≤ k ≤ b} for some a, b ∈ [2n] with a ≤ b. We can prove the
following property by induction on t = 0,1, . . . , n − 1: there is a discrete segment Jt with at least
2n−t − 1 elements such that, for each k, k′ ∈ St, the algorithm has not won the game by the time t
and receives the same feedback (and hence selects the same actions) if the underlying instance is k
or k′. For t = 0 the property is true by setting S0 ∶= [2n]. Assume that the property is true for some
t ∈ {0,1, . . . , n − 2}. Assume that a, b ∈ [2n] with a ≤ b are such that St = {k ∈ [2n] ∣ a ≤ k ≤ b},
where St is a segment that enjoys the property. Now, if the algorithm plays It+1 ∉ St we can
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set St+1 ∶= St, and we see that the required properties hold trivially. Instead, if It+1 ∈ St we set
St+1 ∶= {k ∈ [2n] ∣ It + 1 ≤ k ≤ b} if It+1 < a+b

2
and we set St+1 ∶= {k ∈ [2n] ∣ a ≤ k ≤ It − 1}

if It+1 ≥ a+b
2

. Notice that given that St has at least 2n−t − 1 points, we have that St+1 contains at
least 2n−t−2

2
= 2n−(t+1) − 1 points and, for each k ∈ St+1, the game does not end by the time t + 1.

Hence the induction step is proved. It follows that Sn−1 is non-empty and, if we pick k⋆ ∈ Sn−1,
the game goes on at least up to time n − 1 whenever the time horizon T is at least n − 1. Hence, if
T ≥ log2(M) (which implies in particular that T ≥ n − 1), the worst-case regret of the algorithm α is
at least n−1

2
= n+1

2
− 1 ≥ log2(M)

2
− 1 ≥ log2(M)

4
= 1

4 ln(2) lnM , where in the last inequality we used
M ≥ 16. Hence, we can pick c̃1 ∶= 1

4 ln2
and c̃2 ∶= 1, concluding the proof.

D PROOF OF THEOREM 6

For any t ∈ N, tedious but straightforward computations show that

P
⎡⎢⎢⎢⎣
sup

p∈[0,1]
∣Ψ(p) − Ψ̂t(p)∣ ≥ ε

⎤⎥⎥⎥⎦
≤ P [sup

p∈R
∣ 1
2t

2t

∑
s=1

I{Vs ≤ p} − F (p)∣ ≥
ε

4
] ≤ 2 exp(−1

4
ε2t) ,

where the last inequality follows from the DKW inequality (Massart, 1990). Let p⋆ ∈
argmaxp∈[0,1]Ψ(p) (which does exist due to the upper-semicontinuity of Ψ). Then, for any t ∈ N,
we have that

E [Ψ(p⋆) −Ψ(Pt+1)] = E [Ψ(p⋆) − Ψ̂t(p⋆)] +E[Ψ̂t(p⋆) − Ψ̂t(Pt+1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≤0

] +E [Ψ̂t(Pt+1) −Ψ(Pt+1)]

≤ 2E
⎡⎢⎢⎢⎣
sup

p∈[0,1]
∣Ψ(p) − Ψ̂t(p)∣

⎤⎥⎥⎥⎦
= 2∫

+∞

0
P
⎡⎢⎢⎢⎣
sup

p∈[0,1]
∣Ψ(p) − Ψ̂t(p)∣ ≥ ε

⎤⎥⎥⎥⎦
dε

≤ 2∫
+∞

0
2 exp(−1

4
ε2t) dε = 4

√
π√
t

.

Hence

RT ≤ 1 +E [
T

∑
t=2
(Ψ(p⋆) −Ψ(Pt))] ≤ 1 + 4

√
π

T−1
∑
t=1

1√
t
≤ 1 + 8

√
π ⋅
√
T − 1 .
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