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Amaru Cuba Gyllensten Magnus Sahlgren

RISE - NLU Group
{firstname.lastname}@ri.se

ABSTRACT

Extracting semantically useful natural language sentence representations from
pre-trained deep neural networks such as Transformers remains a challenge. We
first demonstrate that pre-training objectives impose a significant task bias onto
the final layers of models, with a layer-wise survey of the Semantic Textual Simi-
larity (STS) correlations for multiple common Transformer language models. We
then propose a new self-supervised method called Contrastive Tension (CT) to
counter such biases. CT frames the training objective as a noise-contrastive task
between the final layer representations of two independent models, in turn making
the final layer representations suitable for feature extraction. Results from multi-
ple common unsupervised and supervised STS tasks indicate that CT outperforms
previous State Of The Art (SOTA), and when combining CT with supervised data
we improve upon previous SOTA results with large margins.

1 INTRODUCTION

Representation learning concerns the pursuit of automatically learning representations of data that
are useful for future extraction of information (Bengio et al., 2013). Recent work has predominantly
been focused on training and extracting such representations from various deep neural architectures.
However, as these deep models are mostly trained via error minimization of an objective function
applied to the final layers (Rumelhart et al., 1988), features residing in layers close to the objec-
tive function will be task-specific Yosinski et al. (2014). Therefore, to reduce the representation’s
bias towards the objective function it is common to discard one or several of the final layers, or
alternatively consider features of other intermediate layers, as with AutoEncoders (Rumelhart et al.,
1986).

One domain where this issue is particularly striking is learning semantic sentence embeddings with
deep Transformer networks (Vaswani et al., 2017) pre-trained towards some language modeling
task. Although utilizing pre-trained Transformer models such as BERT, XLnet, ELECTRA and
GPT-2(Devlin et al., 2019; Yang et al., 2019; Clark et al., 2020; Brown et al., 2020) has become the
dominant approach within the field of Natural Language Processing (NLP), with current State Of
The Art (SOTA) results in basically all NLP tasks belonging to fine-tuned versions of such models,
it has been shown that simply extracting features from the layers of such models does not produce
competitive sentence embeddings (Reimers & Gurevych, 2019; Liu et al., 2019a). Our interpretation
of this phenomenon, which we will demonstrate in this paper, is that the currently used language
modeling objectives enforce a task-bias at the final layers of the Transformer, and that this bias is
not beneficial for the learning of semantic sentence representations.

Reimers & Gurevych (2019) propose to solve this by pooling a fixed size sentence embedding from
the final Transformer layer and fine-tune towards a Natural Language Inference (NLI) task, an ap-
proach that when applied to Transformers is known as Sentence-BERT (or S-BERT in short). While
Hill et al. (2016a) empirically show that fine-tuning language models towards NLI data yields good
results on Semantic Textual Similarity (STS), there exists no convincing argument for why NLI is
preferred over other tasks. Hence, it is unclear whether the impressive improvements of S-BERT are
to be mainly attributed to the NLI task itself, or if this merely trains the model to output sentence
embeddings, in turn exposing the semantics learned during pre-training. Since NLI requires labeled
data, it would be highly valuable if an alternative method that requires no such labels was possible.

∗Main contribution.
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We therefore propose a fully self-supervised training objective that aims to remove the bias posed
by the pre-training objective and to encourage the model to output semantically useful sentence
representations. Our method trains two separate language models on the task of maximizing the dot
product between the two models' representations for identical sentences, and minimizing the dot
product between the models' representations for different sentences. When applied to pre-trained
BERT models, our method achieves SOTA results for multiple unsupervised STS tasks, and when
applied to the S-BERT model it outperforms previous SOTA by a clear margin. To further bolster
the robustness of our method, we demonstrate that CT drastically improves STS scores for various
models, across multiple languages.

Additionally, we contribute with a layer-wise STS survey for the most common Transformer-based
language models, in which we �nd great variability in performance between different architectures
and pre-training objectives. Finally, by introducing an alteration to the supervised regression task of
S-BERT, we are able to improve upon the supervised STS embedding results for all tested models.
In summary, the main contributions of our paper are as follows:

1. A novel self-supervised approach for learning sentence embeddings from pre-trained lan-
guage models.

2. Analytical results of the layer-wise STS performance for commonly used language models.

3. An improvement to the supervised regression task of S-BERT that yields a higher perfor-
mance for all tested models.

Code and models is available atGithub.com/FreddeFrallan/Contrastive-Tension

2 RELATED WORK

Where earlier work for learning sentence embeddings focused on the composition of pre-trained
word embeddings (Le & Mikolov (2014); Wieting et al. (2015); Arora et al. (2016)), recent work
has instead favored extracting features from deep neural networks. The training methods of such
networks can be divided into supervised and self-supervised. A systematic comparison of pre-
Transformer sentence embedding methods is available in the works of Hill et al. (2016b).

Self-supervisedmethods typically rely on the assumption that sentences sharing similar adjacent
sentences, have similar meaning. Utilizing this assumption, Kiros et al. (2015) introduced Skip-
Thoughts that trains an encoder-decoder to reconstruct surrounding sentences from an encoded pas-
sage. Logeswaran & Lee (2018) proposed QuickThoughts that instead frames the training objective
as a sentence context classi�cation task. Recently, and still under peer-review, Giorgi et al. (2020)
proposed DeCLUTR that uses a setup similar to QuickThoughts, but allow positive sentences to be
overlapping or subsuming (one being a subsequence of the other), which further improves results.

Supervisedmethods utilize labeled datasets to introduce a semantic learning signal. As the amount
of explicitly labeled STS data is very limited, supervised methods often rely on various proxy tasks
where more labeled data is available. Conneau et al. (2017) introduced InferSent that learns sentence
embeddings via a siamese BiLSTM trained on NLI data. The Universal Sentence Encoder (USE)
of Cer et al. (2018) is a Transformer encoder trained with both unlabeled data and labeled NLI
data. S-BERT by Reimers & Gurevych (2019) adopts the training objective of InferSent but instead
applies pre-trained BERT models. Finally, Wang & Kuo (2020) recently proposed S-BERT-WK,
an extension to S-BERT that further increases the performance by subspace analysis of the model's
layer-wise word features.

Recently, Grill et al. (2020) introduced the self-supervised BYOL framework that attain useful image
representations, comparable with previous supervised methods. Although their method also utilizes
two untied dual networks, the main training objective and the underlying motivation for this differ
greatly. Where BYOL train using solely positive samples generated via data augmentation, our
method mainly aims to dissipate negative examples and relies on two networks in order to stabilize
the training process. To the best of our knowledge, our work is the �rst that suggests learning
sentence representations by removing the bias imposed from the pre-training objective.
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3 LAYER-WISE STUDY OF TRANSFORMERMODELS

Previous work analyzing the downstream applicability of layer-wise features in Transformer model
reports similar trends of performance increasing until the middle layers before decreasing towards
the �nal layers. Merchant et al. (2020) found the best suited features for linguistic tasks such as
entity typing and relation classi�cation reside in the intermediate layers of BERT, and Chen et al.
(2020) found the most useful representations for image classi�cation in the intermediate layers of
Image-GPT.

We contribute with a layer-wise study of the semantic quality of the sentence representations found
in a selected number of common Transformer architectures. Following the approach of S-BERT, we
generate sentence embeddings by mean pooling over the word-piece features of a given layer. These
sentence embeddings are directly evaluated towards the STS-b test (Cer et al., 2017), without any
additional training, from which we report the Spearman correlation between the cosine similarity
of the embeddings and the manually collected similarity scores. The test partition of the dataset
contains 1,379 sentence pairs, with decimal human similarity scores ranging from 0.0 (two sentences
having completely different meanings) to 5.0 (two sentences have identical meaning).

Figure 1 shows the results for BERT, Electra, XLNet and GPT-2, with results for additional models
in appendix B.4. Although the different models display different layer-wise patterns, a common
theme is that it is not obvious where to extract features for semantic sentence embeddings; the
worst-performing representations are often found in the layers close to the objective function, with
the exception of RoBerta base (Liu et al., 2019b). Considering the discrepancy between BERT and
Electra which share an almost identical architecture but differ drastically in their pre-training objec-
tives, it is clear that the semantic quality of a model's sentence representations is heavily impacted
by the choice of pre-training objective.

Figure 1: Layer-wise unsupervised STS performance on the STS-b test set. X-axis denotes the layers
of the depicted model and the Y-axis denotes the Spearman correlation (x100). Color is a redundant
indicator of the Spearman correlation and the value 50 is included for visual comparison.
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4 METHOD

To counter the negative trend found in Section 3, where the lacking STS performance of the sen-
tence representations in the �nal layers became apparent, we de�ne a training objective meant to
encourage the model to retain a semantically distinguishable sentence representation until the �nal
layer. We name this methodContrastive Tension(CT), where two independent models, with identi-
cally initialized weights, are set to maximise the dot product between their sentence representations
for identical sentences, and minimize the dot product for their sentence representations of differing
sentences. Hence, the CT objective is de�ned as:

z = f 1(s1)T � f 2(s2)

L (z; s1; s2) =
�

� log � (z) if s1 = s2

� log � (1 � z) if s1 6= s2

(1)

Wheref 1 andf 2 are two independently parameterized models that given a sentences produces a
�xed size vector representation and where� refers to the Logistic function.

Following the works of Reimers & Gurevych (2019), we generate �xed size sentence representations
by mean pooling over the features in the �nal layer of pre-trained transformer models. Training
data is randomly generated from a given corpus, where for each randomly selected sentences, K
negative sentences are sampled to generateK + 1 training samples by pairings with the negative
sentences and copyings into an identical sentence pair. This yields one positive training sample and
K negative training samples. We include theK + 1 training samples in the same batch and always
usef 2 to embed theK negative sentences (See Appendix A.1 for a visual example). Our approach
for generating negative samples is based on the assumption that two randomly selected sentences
are very likely to be semantically dissimilar.

As the models are initialized with identical weights, the CT objective creates a tension between
having the two models retain similar representations for identical sentences, at the same time as
the two models are encouraged to distinguish their representations for differing sentences. Our
intuition is that this creates a training dynamic where the two models acts assmooth anchorsto each
other, where the tension to remain synchronized mitigates the downsides of simply distancing the
embeddings of differing sentences. This makes CT a nondestructive method for distinguishing the
sentence embeddings of non semantically similar sentences.

5 EXPERIMENTS

Unless stated otherwise, the following set of hyperparameters is applied when using CT throughout
all experiments: Training data is randomly sampled from English Wikipedia (See Appendix C.2),
where we collectK = 7 negative sentence pairs for each positive sentence pair. The batch size is set
to 16, which results in every batch having2 positive sentence pairs and14 negative sentence pairs.
We apply an RMSProp optimizer (Hinton, 2012) with a �xed learning rate schedule that decreases
from 1e� 5 to 2e� 6 (Appendix A.3). To showcase the robustness and unsupervised applicability of
CT, we strictly perform 50,000 update steps before evaluating, and for all unsupervised tasks we
report results for theworst-performing of the two models used in the CT setup. The experiment
section follows the model naming convention elaborated upon in A.2, which describes the order and
what training objectives that has been applied to a model.

There exists a clear discrepancy between previously reported STS scores for various methods and
models. To improve upon this state of confusion we perform all evaluation with the SentEval pack-
age (Conneau & Kiela, 2018), to which we provide code and models for full reproducability of
all tested methods. A Discussion regarding our experience with trying to reproduce previous work
is available in Appendix A.4. A comprehensive list of all used model checkpoints is available in
Appendix C.1
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Table 1: Pearson and Spearman correlation (x100) on various unsupervised semantic textual simi-
larity tasks.

STS12 STS13 STS14 STS15 STS16 Avg.
InferSent-GloVe 56.39 / 57.27 56.02 / 55.22 65.53 / 63.41 67.79 / 69.02 64.10 / 65.09 62.00 / 62.00
USE v4 67.37 / 65,56 67.11 / 67.95 74.32 / 71.48 80.03 / 80.82 77.79 / 78.74 73.32 / 72.91
BERT-Distil 54.03 / 56.15 58.24 / 59.83 63.00 / 60.42 67.33 / 67.81 67.22 / 69.01 61.96 / 62.64
BERT-Base 46.88 / 50.07 52.77 / 52.91 57.15 / 54.91 63.47 / 63.37 64.51 / 64.96 56.96 / 57.24
BERT-Large 42.59 / 49.01 47.35 / 50.88 49.31 / 49.69 55.56 / 56.79 60.43 / 61.41 51.05 / 53.56
S-BERT-Distil 64.07 / 63.06 66.42 / 68.31 72.29 / 72.23 74.44 / 75.09 71.17 / 73.86 69.68 / 70.51
S-BERT-Base 66.61 / 63.80 67.54 / 69.34 73.22 / 72.94 74.34 / 75.16 70.16 / 73.27 70.37 / 70.90
S-BERT-Large 66.90 / 66.85 69.42 / 71.46 74.20 / 74.31 77.26 / 78.26 72.82 / 75.12 72.12 / 73.20
S-BERT-Base-WK 70.23 / 68.26 68.13 / 68.82 75.46 / 74.26 76.94 / 77.54 74.51 / 76.97 73.05 / 73.17
S-BERT-Large-WK 56.51 / 55.82 47.95 / 78.94 56.46 / 55.61 63.41 / 64.14 57.84 / 59.42 56.43 / 56.79
Our Contributions
BERT-Distil-CT 67.27 / 66.92 71.31 / 72.41 75.68 / 72.72 77.73 / 78.26 77.17 / 78.60 73.83 / 73.78
BERT-Base-CT 67.19 / 66.86 70.77 / 70.91 75.64 / 72.37 77.86 / 78.55 76.65 / 77.78 73.62 / 73.29
BERT-Large-CT 69.63 / 69.50 75.79 / 75.97 77.15 / 74.22 78.28 / 78.83 77.70 / 78.92 75.71 / 75.49
S-BERT-Distil-CT 69.39 / 68.38 74.83 / 75.15 78.04 / 75.94 78.98 / 80.06 74.91 / 77.57 75.23 / 75.42
S-BERT-Base-CT 68.58 / 68.80 73.61 / 74.58 78.15 / 76.62 78.60 / 79.72 75.01 / 77.14 74.79 / 75.37
S-BERT-Large-CT 71.70 / 69.80 73.95 / 75.45 78.10 / 76.47 80.39 / 81.34 75.93 / 78.11 76.01 / 76.23

Figure 2: Layer-Wise STS performance on the STS-b test set throughout training with CT. X-axis
depicts the layers of the model, Y-Axis depicts the Spearman correlation (x100) and the Z-Axis
depicts the progression of time. Color is a redundant indicator of the Spearman correlation.

5.1 UNSUPERVISEDSTS

Table 1 shows the results for CT when evaluated on the unsupervised English STS tasks of Agirre
et al. (2012; 2013; 2014; 2015; 2016). The non-�ne-tuned BERT models perform the worst out of
all considered models, with a decrease in performance as the size of the BERT models increase.
CT clearly improves the results for all BERT based models and outperforms previous methods.
When CT is applied to the supervised S-BERT models, it sets a new SOTA with a large margin
(3:03 Spearman Points). Applying CT to BERT-Distil and S-BERT-Distil produces models that
outperform S-BERT-Large while having81%fewer parameters.

To further investigate the training dynamic of CT, we record the layer-wise STS performance for
BERT and XLNet throughout the CT training process, by unsupervised evaluation on the STS-b
test set. Figure 2 depicts the observed progression trends, and although the STS performance of
the models' �nal layers differs greatly before �ne-tuning, with XLNet showing drastically worse
performance, both models clearly bene�t from the CT training task. For both models, CT mainly
affects the STS performance for the latter layers, as is to be expected from the low learning rate.

5.2 SUPERVISEDSTS

Reimers & Gurevych (2019) proposed an supervised STS regression task which directly targets
the cosine similarity between sentence embeddings, creating regression labels by linearly mapping
the human similarity scores to the range[0; 1]. However, as evaluation of STS related tasks uses the
Pearson and Spearman correlation the range to which the cosine similarity labels are linearly mapped
to is arbitrary. Hence, we propose to �rst investigate the spread within the models embedding space
to �nd a model speci�c linear mapping of the regression labels that imposes less change to the
current embedding space.
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We investigate the STS spread of a model's embedding space by dividing the STS-b training data
by their labels into20 buckets, and measuring the mean cosine similarity between the sentence
pairs within each respective bucket. As the STS-b data is labeled in the range[0; 5], each bucket
covers a range of5=20 = 0:25. Thus the lowest bucket contains all training samples with labels
between[0; 0:25]and the next bucket covers the range(0:25; 0:5]. The STS spread results for BERT
and S-BERT before and after CT is available in Figure 3. We �nd that BERT produces sentence
embeddings with high cosine similarity for all sentence pairs. Both CT and S-BERT improve the
STS performance by decreasing the mean similarity for non-similar sentence pairs, but S-BERT
does this with less precision.

After attaining prior knowledge about the model's sentence embedding space, we �ne-tune towards
the STS-b training data using the S-BERT regression setup, but with model speci�c regression labels.
The cosine similarity labels are linearly mapped to the range[M; 1], whereM is the mean cosine
similarity of the lowest bucket. For each model and label scheme we perform10 training runs for8
epochs. Table 2 shows the test results of the model that performed best on the validation set.

We see a clear increase in performance for all models when utilizing the model speci�c regression
labels. However, we �nd no signi�cant increase in the supervised results when applying either CT, S-
BERT, or a combination of the two prior to the supervised �ne-tuning. As discussed in Appendix A.4
we failed to reproduce the results of Reimers & Gurevych (2019), which reports a mean Spearman
correlation of S-BERT-Base:85:35and S-BERT-Large:86:10, after training for2 epochs.

Table 2: Pearson and Spearman correlation (x100) on the STS-b test set.

Not trained for STS Trained with STS-b data
Regression Labels [0, 1] [M, 1]

BERT-Base 47.91 / 47.29 BERT-Distil 84.07 / 84.23 85.02 / 85.54
InferSent-GloVe 65.30 / 63.21 BERT-Base 85.28 / 84.99 85.11 / 85.64
USE v4 78.73 / 77.09 BERT-Large 85.54 / 85.37 85.90 / 86.35
S-BERT-Distil 73.88 / 76.19 S-BERT-Distil 84.22 / 84.26 85.40 / 85.64
S-BERT-Base 74.15 / 76.98 S-BERT-Base 85.17 / 84.90 85.59 / 85.81
S-BERT-Large 76.16 / 79.19 S-BERT-Large 85.14 / 85.07 85.25 / 86.28
Our contributions
BERT-Distil-CT 79.00 / 78.56 BERT-Distil-CT 84.14 / 84.19 85.32 / 85.82
BERT-Base-CT 77.87 / 76.32 BERT-Base-CT 85.13 / 84.92 85.76 / 85.89
BERT-Large-CT 79.97 / 78.99 BERT-Large-CT 85.20 / 84.97 86.37/ 85.89
S-BERT-Base-CT 76.25 / 80.11 S-BERT-Distil-CT 80.09 / 84.27 85.61 / 85.80
S-BERT-Base-CT 78.83 / 81.24 S-BERT-Base-CT 85.26 / 85.20 85.72 / 85.95
S-BERT-Large-CT 80.99 / 82.14 S-BERT-Large-CT 85.36 / 85.16 86.09 /86.43

Figure 3: Predicted similarities for sentence pairs in the STS-b training set. Sentence pairs are
chunked into 20 buckets by their labels, each bucket covering a label range of0:25. Opaque line
denotes the mean and the transparent area denotes the standard deviation.

6



Published as a conference paper at ICLR 2021

5.3 MULTILINGUAL STS

Table 3: Pearson / Spearman correlation (x100) on the STS test sets of various languages.

Arabic English Russian Spanish Swedish
Native BERT 37.92 / 45.21 47.91 / 47.29 64.34 / 65.75 67.41 / 69.19 41.90 / 44.91
Multilingual BERT 48.93 / 50.56 56.98 / 55.97 67.70 / 68.59 63.35 / 66.96 47.02 / 47.49
XLMR 46.64 / 44.76 40.54 / 40.35 60.93 / 61.28 57.30 / 59.31 42.16 / 42.03
Our Contributions
Native BERT-CT 67.91 / 67.57 77.87 / 76.32 79.38 / 79.62 76.02 / 76.07 61.69 / 61.68
Multilingual BERT-CT 60.12 / 60.15 64.39 / 62.28 70.14 / 70.54 77.67 / 77.96 58.63 / 57.45
XLMR-CT 62.30 / 62.14 69.85 / 68.22 67.96 / 68.42 76.00 / 77.30 59.29 / 58.19

We investigate the performance of CT when applied to various languages and evaluated towards STS
data for Arabic, Spanish (Cer et al., 2017), Russian1, and Swedish (Isbister & Sahlgren, 2020). All
CT training is performed solely with data for the respective language towards which we evaluate it,
using text from a Wikipedia dump of that language (See Appendix C.2). We perform experiments
with three different types of pre-trained models, all of which have encountered the targeted evalu-
ation language during pre-training: Native BERT models pre-trained with text data speci�cally for
the targeted language, a multilingual BERT pre-trained for 104 languages and an XLM-R model
pre-trained on 100 languages (Conneau et al., 2020)

Results in table 3 show that CT clearly improves the performance of all models. Prior to training
with CT, we �nd that the multilingual BERT performs best, with the exception of Spanish where
the native BERT performs the best. XLM-R performs the worst on all languages before CT. After
training with CT the native BERT models outperform both the multilingual models, again with the
exception of Spanish, where a slight edge is seen for the Multilingual BERT. The big performance
increase seen on all models, on all languages, without requiring any labeled data, clearly demonstrate
the robustness and unsupervised applicability of CT.

5.4 CORPUSVARIETY

To investigate how CT is impacted by different types of text data we vary the corpus from which
training data is sampled. The corpora we consider are as follows: a dump of all English Wikipedia
pages, a large book corpus comprised of11; 038books (Zhu et al., 2015), resulting in text data with
a different tone and style compared to the text found on Wikipedia. Finally, we generate random
word sequences by �rst uniformly sampling a sentence length in the range[20; 75] and then �lling
that sequence with uniformly sampled tokens from the model's vocabulary.

For each corpus, we train5 models with CT, and report the mean unsupervised Pearson and Spear-
man correlation on the STS-b test set. The results found in table 4 show that CT applied with
different types corpus styles yields different STS results. All models attain their highest score with
the Wikipedia data, with a noticeable performance drop with the book corpus and large performance
drop using random data. Although the random corpus performs worst, it interestingly improves
the performance of the smaller models while drastically worsening the performance of the large
model. While the number of models used in this experiment is too small for conclusive evidence,
the performance drop between corpus types seems correlated with model size.

Table 4: Unsupervised Pearson / Spearman correlation (x100) on the STS-b test set when performing
CT with various corpora.

Before CT Wikipedia Books Random
Pear / Spear Pear / Spear Pear / Spear Pear / Spear

Bert-Distil 57.17 / 56.77 78.21 / 77.55 77.54 / 76.12 62.45 / 62.85
Bert-Base 47.91 / 47.29 75.30 / 73.75 73.30 / 70.95 52.95 / 52.42
Bert-Large 45.51 / 47.00 78.65 / 78.00 74.54 / 72.51 16.65 / 23.67

1https://github.com/deepmipt/deepPavlovEval
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6 DISCUSSION

The quality of a sentence representation depends on the generating model's ability to represent
contextual interactions between the individual parts (in most cases, wordpieces) of the sentence.
We refer to this ascompositionality, for the lack of a better term. We propose that the task-bias
of current Transformer language models can be seen as a form of compositionality-amnesia, where
the models progressively express less compositional information throughout the layers, in favor of
features speci�c to the pre-training objective. Sentence embedding methods attempt to correct for
this bias by applying a learning criterion that enforces compositionality in the �nal layers.

In the case of CT, the learning objective is simply to maximize the dot product for identical sen-
tences, and minimizing it for dissimilar ones. In the case of other techniques, the learning objective
takes the form of modeling adjacent sentences (Skip-thoughts, Quick-thoughts, and DeCLUTR),
or classifying entailment based on two given sentences (S-BERT), both of which have semantic
interpretations. We argue that the CT objective is more suitable for the purpose of enforcing com-
positionality, since it only targets the composition function; there is nosemanticsinvolved in dis-
tinguishing identical from dissimilar sentences (all the necessary semantics is already learned by
the language modeling objective).2 The �nding that CT works to some extent even with randomly
generated sentences further strengthens this interpretation.

It is our intuition that CT is non-constructive, or in a sense uninformative: It does not add new
information to the model, but rather forces the model to realign such that the compositional rep-
resentation discriminates between different sentences. Hence, we �nd little reason to believe that
the realignment enforced by CT to be bene�cial for �ne-tuning tasks where ample training data is
available e.g. tasks for which a pre-trained BERT model can be �ne-tuned with good performance.
This is in accordance with the results available in Appendix 10, where the CT models are evaluated
towards multiple supervised model tasks.

As can be seen in Figure 3, CT decreases the cosine-similarity for non-semantically similar sen-
tences, while the cosine-similarity for highly semantically similar sentences mainly remain the same.
We believe the reason for this desired behaviour to be that all representations are generated through a
common parameterized compositionality function (the Transformer model). We thus �nd it unlikely
that similar results could be attained by applying CT directly to individual representations so that the
manipulation of individual embeddings is performed independently (as algorithms like Word2Vec
does).

Our work demonstrates the potential to produce high-quality semantic sentence representations
given a pre-trained Transformer Language model, without requiring any labeled data. In accor-
dance with the multilingual results in Section 3, we would hence like to emphasize that this makes
CT well suited for low resource languages, as neither pre-training or �ne-tuning requires labeled
data. Additionally, we think that interesting future work might consider exploring the possibilities
of applying CT (or similar re-tuning objectives) during the pre-training of Transformer language
model, and/or applying it to different intermediate layers

Finally, it is noteworthy that our results are not to be considered �nal, as many of the chosen hyper-
parameters for the CT experiments are yet to be thoroughly investigated. It is therefore possible that
CT and similar methods can yield even better results, with either utilizing different language models
or tuning of certain hyperparameters. Especially considering that during the unsupervised tasks, due
to the emulation of having zero labeled data, we strictly performed a �xed number of iterations and
assumed the worst-case scenario by reporting results forthe worstperforming model of the two CT
models. A higher performance is therefore expected if the training is monitored with a validation
set or if one were to combine the output of both CT models.

2This can easily be demonstrated by applying CT to a randomly initialized Transformer, which will not be
able to learn anything useful; the semantics has to be already present in the model for CT to work.
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7 CONCLUSION

This paper contributed with a layer-wise survey of the unsupervised STS performance of pre-trained
Transformer language models. Results from this survey indicates that the �nal layer of most models
produce the worst performing representations. To overcome this we proposed the self-supervised
method Contrastive Tension (CT) that trains the model to output semantically distinguishable sen-
tence representations, without requiring any labeled data. In an unsupervised setting CT achieves
strong STS results when applied with various models, with varying corpora and across multiple
languages. Setting a new SOTA score for multiple well established unsupervised English STS tasks.

Additionally, this paper introduced an alteration to the supervised STS regression task proposed
by Reimers & Gurevych (2019), which improves the supervised STS scores for all tested models.
Using this altered regression task, regular BERT models achieve equally good as when �rst �ne-
tuned towards NLI, CT or both. Suggesting that the current Transformer pre-training objectives
themselves capture useful sentence level semantic knowledge.
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A A PPENDIX

A.1 V ISUAL EXAMPLE OF CONTRASTIVE TENSION

Figure 4: CT follows an architecture similar to a siamese network, but with independent models.
Both models are updated based on a contrastive loss on the unnormalized dot product

Figure 4 demonstrates how CT is applied whenK = 7 which yields1 positive sentence pair
(SA ; SA ) where the models are trained to maximize the dot product, and7 negative sentence pairs
(SA ; SB ); (SA ; SC ) ::: (SA ; SH ) where the models are trained to minimize the dot product. As all
sentence pairs are included into the same batch, the loss for allK + 1 sentence pairs are calculated
before updating the models parameters.

A.2 MODEL NAMING CONVENTION

Throughout the paper we sequentially apply different �ne-tuning objectives on pre-trained trans-
former models, i.e no pre-training is performed during �ne-tuning and no two �ne-tuning tasks are
applied in parallel. The terms”Distil” , ”Base” and”Large” are used as descriptors of the pre-
trained model's size and in the case of”Distil” also its pre-training objective.

The two main �ne-tuning tasks we consider is CT and the Siamese NLI task of InferSent and S-
BERT. When a model has been tuned towards the Siamese NLI task an additional”S-” is added as
a pre�x to the model base. When a model has been trained with the CT training objective”-CT” is
added as suf�x to the model name. It is strictly the case that when both these tasks are applied to a
model, the NLI task is applied before to the CT objective.

For example the model”S-BERT-Distil-CT”, is a distilled BERT model that has been �ne-tuned
towards the S-BERT NLI task, before �nally tuned with the CT training objective.

A.3 LEARNING RATE SCHEDULE

Hyperparameter search concluded that2e� 6 was a stable learning rate for applying CT to pre-trained
BERT models. However, we found it possible to speedup learning during the early training stages
by using a higher learning rate, leading us to the step-wise learning rate schedule seen in table 5. We
found no signi�cant difference in the end result when applying the learning rate schedule and when
training for a longer period with a smaller learning rate.

Table 5: Step-wise learning schedule applied for all training with Contrastive Tension.

N #Updates Learning Rate
N < 500 1e� 5
N < 1000 8e� 6
N < 1500 6e� 6
N < 2000 4e� 6
2000� N 2e� 6

14



Published as a conference paper at ICLR 2021

A.4 REPRODUCIBILITY OF PREVIOUS WORK

There exists a discrepancy regarding the reported STS scores between various previous works
(Reimers & Gurevych, 2019; Wang & Kuo, 2020). As mentioned, we perform all our STS eval-
uation with the SentEval framework of Conneau & Kiela (2018), the following are our observations
and experiences as we compare with reported results of Reimers & Gurevych (2019), and the follow
up work of Wang & Kuo (2020).

For the EnglishUnsupervised STStasks of SemEval 2012-2016 we found that:

1. Our results for BERT, S-BERT and S-BERT-WK are consistent with the work of Wang &
Kuo (2020). (Although they do not report results for S-BERT-Large-WK).

2. Reimers & Gurevych (2019) report the highest STS score for the S-BERT models but the
lowest for BERT. Which when compared gives an average Spearman difference of3:9 for
S-BERT-Base,3:4 for S-BERT-Large and� 1:45 for BERT.

3. No one agrees upon the scores of either InferSent or USE.

When evaluating towards theSupervised STStasks of STS-b test set we found that:

1. Our Spearman results for S-BERT-Base and S-BERT-Large, prior to �ne-tuning, are con-
sistent with the work of Reimers & Gurevych (2019). Differing with less than0:05points.

2. Using the of�cial S-BERT code to �ne-tune the released S-BERT-Large model, with the
described hyperparameters, yields worse results than reported by Reimers & Gurevych
(2019), both when evaluating with SentEval or the included evaluation script.

Finally, we note that the of�cial S-BERT implementation continuously evaluates towards the STS-
b validation set throughout the NLI training, saving the copy that performs best. This makes all
models trained with this setup invalid for the unsupervised STS tasks, as the STS-b validation set is
a collection of samples from these tests. This isnot to say that this is the setup that was used for
the results reported by Reimers & Gurevych (2019), but something that future researchers should be
aware of.

B

Additional Experiments and Results

B.1 ADDITIONAL UNSUPERVISEDSTS

In order to give further insights on the performance of CT we report unsupervised STS results from
10 CT training runs per considered pre-trained model. Since CT trains two models in parallel this
results in 10 CT model pairs i.e. 20 models per considered pre-trained model. Table 6 show the
worst/best performing model and the average performance of all 20 models, completely disregarding
which models were paired during training. Table 7 showcases how two paired CT models tend to
differ in regards to the mean unsupervised STS score, showing the min, max and average difference
over the 10 training runs.

It is apparent that out of the models whom have not been tuned towards the NLI task,BERT-Distil-
CT showcases the most stable performance, with very little variation between the worst and best
performing model compared to bothBERT-Base-CTandBERT-Large-CTwho show a lower worst
possible score. If this discrepancy in performance stability is due to model size or thatBERT-Distil
is trained via distillation is left for future work. Applying CT to a model who has been tuned towards
an NLI task seemingly produces both more stable and better results.
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Table 6: Pearson and Spearman correlation (x100) on various unsupervised semantic textual simi-
larity tasks.

STS12 STS13 STS14 STS15 STS16 Avg.
Worst Performing Model
BERT-Distil-CT 66.69 / 66.23 72.44 / 73.72 76.04 / 73.09 77.61 / 78.20 77.51 / 78.08 73.86 / 73.86
BERT-Base-CT 62.04 / 62.65 65.23 / 65.50 71.62 / 68.85 75.48 / 75.90 74.69 / 75.66 69.81 / 69.71
BERT-Large-CT 63.82 / 65.12 72.14 / 72.21 72.20 / 69.40 72.58 / 73.02 73.25 / 74.33 70.80 / 70.82
S-BERT-Distil-CT 68.96 / 67.51 72.02 / 72.74 77.30 / 75.44 78.31 / 79.73 74.80 / 77.54 74.28 / 74.59
S-BERT-Base-CT 68.09 / 67.69 72.54 / 73.35 77.25 / 75.80 77.93 / 78.99 74.59 / 76.61 74.08 / 74.49
S-BERT-Large-CT 70.37 / 68.94 74.70 / 74.90 78.36 / 76.36 79.22 / 80.29 74.66 / 77.23 75.46 / 75.54
Best Performing Model
BERT-Distil-CT 68.14 / 67.22 73.48 / 74.04 77.03 / 73.45 77.88 / 78.56 76.54 / 78.15 74.61 / 74.28
BERT-Base-CT 68.20 / 68.56 74.33 / 74.50 76.76 / 73.33 78.71 / 79.29 78.10 / 79.15 75.22 / 74.97
BERT-Large-CT 69.26 / 69.03 76.90 /77.19 77.71 / 74.50 79.08 / 79.58 79.16 / 80.07 76.42 / 76.07
S-BERT-Distil-CT 70.04 / 68.25 76.78 / 76.98 79.69 / 66.68 79.66 / 80.37 77.54 / 79.63 76.74 / 76.58
S-BERT-Base-CT 69.59 / 68.20 74.38 / 75.18 78.30 / 76.56 79.71 / 80.54 75.71 / 77.58 75.54 / 75.64
S-BERT-Large-CT 71.72 / 69.96 77.09/ 77.17 78.61 / 76.73 80.50 / 81.45 76.38 / 78.43 76.86 / 76.75
Mean Performance
BERT-Distil-CT 67.69 / 67.10 72.84 / 73.95 76.54 / 73.29 77.66 / 78.27 76.53 / 78.15 74.25 / 74.15
BERT-Base-CT 64.46 / 64.74 68.11 / 68.34 73.14 / 70.24 76.66 / 77.09 75.85 / 76.84 71.64 / 71.46
BERT-Large-CT 67.25 / 67.80 74.57 / 74.70 75.84 / 72.73 77.41 / 77.89 77.22 / 78.21 74.46 / 74.27
S-BERT-Distil-CT 69.75 / 68.14 74.58 / 75.05 77.98 / 76.19 78.63 / 79.77 75.82 / 78.23 75.35 / 75.48
S-BERT-Base-CT 69.10 / 68.38 73.61 / 74.36 77.90 / 76.27 78.88 / 79.88 75.06 / 77.11 74.91 / 75.20
S-BERT-Large-CT 71.37 / 69.70 75.56 / 75.80 78.60 / 77.02 79.99 / 80.98 75.96 / 78.06 76.30 / 76.31

Table 7: Min, max and mean difference between CT paired models in Pearson and Spearman corre-
lation (x100) in regards to the mean score of the unsupervised semantic textual similarity tasks.

MIN Difference MAX Difference MEAN Difference
BERT-Distil-CT 0.06 / 0.04 0.55 / 0.29 0.31 / 0.17
BERT-Base-CT 0.05 / 0.00 1.71 / 1.36 0.75 / 0.51
BERT-Large-CT 0.03 / 0.02 4.49 / 3.43 1.26 / 1.13
S-BERT-Distil-CT 0.31 / 0.11 1.52 / 1.25 0.88 / 0.76
S-BERT-Base-CT 0.23 / 0.09 1.03 / 0.90 0.58 / 0.33
S-BERT-Large-CT 0.00 / 0.04 0.81 / 0.92 0.38 / 0.33
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B.2 DOWNSTREAM & PROBING TASKS

To comply with previous work, we evaluate CT on the various set of downstream tasks supplied
by the SentEval package (Conneau & Kiela, 2018). As results in table 8 show, we �nd only minor
improvements when using the representations from the �ne-tuned models compared to BERT. S-
BERT produces a minor improvement for most non semantic related downstream tasks and CT
performs slightly better on the semantic related tasks SICK-R and STS-b. Interestingly, the results
from table 2 show that BERT-CT, S-BERT and S-BERT-CT all perform better on the STS-b test set
when not training an extra linear classi�er.

Additionally we evaluate towards the �ne grained analysis tasks supplied by SentEval. The results
in table 9 clearly show that S-BERT's NLI �ne-tuning objective decreases the score in all tests
compared to BERT. CT also clearly decreases the performance on all tests except the Bigram Shift
task, where this is done to a smaller degree.

Table 8: Results on the downstream tasks supplied with the SentEval package. For the semantic
related tasks SICK-R and STS-b, the Pearson correlation (x100) is reported.

CR MR MPQA SUBJ SST2 SST5 TREC MRPC SICK-E SICK-R STS-b AVG
BERT-Distil 85.96 79.98 88.42 95.14 85.39 45.93 90.60 74.14 81.69 83.74 69.53 80.05
BERT-Base 86.96 81.33 88.07 95.03 85.94 46.74 90.60 73.74 79.50 80.47 65.40 79.44
BERT-Large 88.74 84.33 86.64 95.27 79.29 50.32 91.40 71.65 75.28 77.09 66.22 78.75
BERT-Distil-NLI 88.37 80.83 95.50 82.54 86.99 47.47 85.60 76.12 83.15 84.72 75.90 80.11
BERT-Base-NLI 89.24 82.65 89.61 93.84 88.36 47.38 85.20 75.07 82.04 84.24 73.05 80.97
BERT-Large-NLI 90.52 84.36 90.30 94.32 90.72 50.05 86.80 76.52 83.05 84.94 75.02 82.42
Our Contributions
BERT-Distil-CT 84.00 78.51 88.62 93.83 83.47 45.34 87.60 74.61 81.96 85.06 74.45 79.77
BERT-Base-CT 84.00 79.84 88.06 94.10 82.43 45.25 89.20 73.80 80.80 84.30 73.69 79.59
BERT-Large-CT 86.81 82.38 88.31 94.34 87.75 46.56 88.00 73.10 81.49 84.93 76.50 80.92
BERT-Distil-NLI-CT 87.68 80.74 89.33 92.59 86.27 46.97 85.80 75.59 82.81 84.91 77.68 80.94
BERT-Base-NLI-CT 88.66 81.83 89.79 93.72 87.91 47.83 83.00 74.43 82.42 85.32 77.42 81.12
BERT-Large-NLI-CT 89.56 82.56 90.20 83.08 88.85 48.60 87.20 74.43 82.77 84.88 77.49 80.87

Table 9: Results on the �ne grained analysis tasks tasks supplied with the SentEval package.

Length WC Depth TopConst BShift Tense SubjNum ObjNum OddManOut CoordInv AVG
BERT-Distil 88.29 67.39 39.68 76.03 86.81 88.89 86.06 83.15 63.19 65.09 74.46
BERT-Base 81.99 61.20 36.19 77.63 88.76 88.23 84.98 82.11 66.69 69.94 73.77
BERT-Large 70.82 55.26 33.35 68.86 90.29 88.31 81.67 80.37 69.29 71.23 70.95
BERT-Distil-NLI 71.23 61.76 31.83 58.75 70.41 85.11 79.02 77.71 57.93 59.10 65.29
BERT-Base-NLI 72.12 58.65 31.14 60.50 76.02 86.81 78.38 77.08 62.97 63.78 66.29
BERT-Large-NLI 59.79 54.47 29.63 57.98 76.28 84.36 76.34 73.65 64.28 65.71 64.25
Our Contributions
BERT-Distil-CT 81.86 74.49 37.78 69.76 80.38 88.54 83.76 80.86 60.91 59.94 71.83
BERT-Base-CT 77.68 80.69 34.21 68.32 85.70 88.03 83.70 80.35 64.93 64.97 72.86
BERT-Large-CT 64.85 65.93 30.97 64.75 86.59 87.9 81.17 80.85 68.04 67.37 69.84
BERT-Distil-NLI-CT 72.55 67.84 33.29 62.61 72.49 86.20 82.01 78.84 58.40 59.61 67.38
BERT-Base-NLI-CT 71.44 66.42 32.19 61.45 77.61 87.87 80.10 78.45 63.21 63.83 68.26
BERT-Large-NLI-CT 59.26 64.85 29.11 58.54 75.79 83.05 76.98 74.17 62.88 63.63 64.83
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B.3 GLUE BENCHMARK

We evaluate our BERT-Base-CT model on the General Language Understanding Evaluation (GLUE)
benchmark (Wang et al., 2019), and compare with BERT-Base and S-BERT-Base. Following Devlin
et al. (2019), we chose the best performing model on the validation set for each combination of
learning rate (among 5e-5, 4e-5, 3e-5, 2e-5 for BERT-base and among 5e-5, 4e-5, 3e-5, 2e-5, 1e-5,
2e-6 for the other models), model and task. For all GLUE tasks, all models are �ne-tuned using a
batch size of 32 for three epochs.

The results presented in Table 10 demonstrates that BERT performs the best, with a slight margin,
on near all tasks. Exception being the STS-b task, where both S-BERT and BERT-CT see a slight
improvement over BERT. However, as depicted in Table 2 both S-BERT and BERT-CT attain higher
test scores with the embedding based approach, compared to feeding both sentences to the same
model as is done in the GLUE tasks.

Table 10: GLUE Test results, returned by the GLUE evaluation server (https://
gluebenchmark.com/leaderboard ). Following Devlin et al. (2019), the WNLI set has been
excluded from the computation of the average score. F1 score is reported for QQP and MRPC,
Spearman correlation (x100) for STS-b and accuracy is reported for the rest of the tasks.

MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-b MRPC RTE Average
BERT-Base 84.2/83.6 71.3 90.6 91.7 51.9 83.6 87.8 65.0 78.8
S-BERT-Base 83.9/83.1 71.3 90.5 90.9 47.0 84.7 85.3 61.6 77.6
BERT-Base-CT 82.3/81.9 70.1 89.7 91.3 48.8 84.0 84.4 61.1 77.0
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