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Abstract

Deep machine unlearning is the problem of ‘removing’ from a trained neural
network a subset of its training set. This problem is very timely and has many
applications, including the key tasks of removing biases (RB), resolving confusion
(RC) (caused by mislabelled data in trained models), as well as allowing users to
exercise their ‘right to be forgotten’ to protect User Privacy (UP). This paper is
the first, to our knowledge, to study unlearning for different applications (RB, RC,
UP), with the view that each has its own desiderata, definitions for ‘forgetting’ and
associated metrics for forget quality. For UP, we propose a novel adaptation of
a strong Membership Inference Attack for unlearning. We also propose SCRUB,
a novel unlearning algorithm, which is the only method that is consistently a top
performer for forget quality across the different application-dependent metrics for
RB, RC, and UP. At the same time, SCRUB is also consistently a top performer
on metrics that measure model utility (i.e. accuracy on retained data and gener-
alization), and is more efficient than previous work. The above are substantiated
through a comprehensive empirical evaluation against previous state-of-the-art.

1 Introduction

Can we make a deep learning model ‘forget’ a subset of its training data? Aside from being
scientifically interesting, achieving this goal of deep machine unlearning is increasingly important
and relevant from a practical perspective and this research direction is enjoying significant attention
recently [Triantafillou et al., 2023]. Regulations such as EU’s General Data Protection Regulation
[Mantelero, 2013] stipulate that individuals can request to have their data ‘deleted’ (the ‘right to be
forgotten’). Nowadays, given the ubiquity of deep learning systems in a wide range of applications,
including computer vision, natural language processing, speech recognition and healthcare, allowing
individuals to exercise this right necessitates new technology. Unlearning aims to fill this need.

However, unlearning has several additional important applications where privacy with respect to
a subset of individual training examples isn’t necessarily a consideration: removing out-of-date
examples, outliers, poisoned samples [Jagielski et al., 2018], noisy labels [Northcutt et al., 2021], or
data that may carry harmful biases [Fabbrizzi et al., 2022]. In fact, we are the first to argue that the
definition of ‘forgetting’ is application-dependent, and unlearning comes with different desiderata
and priorities in different scenarios. For instance, for a privacy application, ‘forgetting’ the data
of users who requested deletion is the primary objective and we may be willing to sacrifice model
performance to some degree, in exchange for reliably defending Membership Inference Attacks
(MIAs). In other cases, for instance, when deleting outdated data to keep a model current, maintaining
the model’s performance throughout such ‘cleanup’ operations may be the primary consideration,
and guaranteeing that no trace of the old data is left behind may be irrelevant. While previous work
does not establish such distinctions, we study three scenarios and propose a method that is the most
consistent top-performer across applications and metrics.
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Unfortunately, removing the influence of a subset of the training set from the weights of a trained
model is hard, since deep models memorize information about specific instances [Zhang et al., 2020,
2021, Arpit et al., 2017] and their highly non-convex nature makes it difficult to trace the effect of
each example on the model’s weights. Of course, we can apply the naive solution of retraining the
model from scratch without the cohort of data to be forgotten. This procedure indeed guarantees that
the weights of the resulting model aren’t influenced by the instances to forget (it performs ‘exact
unlearning’), but the obvious drawback is computational inefficiency: retraining a deep learning
model to accommodate each new forgetting request isn’t viable in practice. To mitigate that cost,
recent work turned to approximate unlearning [Izzo et al., 2021, Golatkar et al., 2020a,b] where the
goal is to modify the weights of the trained model to approximate those that would have been obtained
by exact unlearning. That is, they strive to achieve ‘indistinguishability’ between the approximate and
exact solutions, typically accompanied by theoretical guarantees for the quality of that approximation.
This goal is also mirrored in the metrics used by these works: the model’s error on the deleted data is
desired to be just as high as the error of the ‘exact’ retrained model (which truly never saw that data).
The argument is that an error higher than that reference point may cause susceptibility to membership
inference attacks: a noticeably poor performance on an example can reveal that it was unlearned.

In this work, we show empirically that such approximate unlearning methods often perform poorly in
practice (in one or more of RB, RC and UP). We hypothesize that this is due to potential violations of
assumptions made by these methods, e.g. that the ‘optimal’ solution of unlearning is close in weight
space to the original model [Golatkar et al., 2020a,b] (due to assumptions of stability of SGD and
‘small enough’ forget sets). Further, we find these previous methods scale poorly to the size of the
training set and the model, often making them impractical. To address these issues, we propose a new
unlearning model, SCalable Remembering and Unlearning unBound (SCRUB) that departs from that
methodology. SCRUB bears a novel teacher-student formulation, where the student model selectively
disobeys an all-knowing teacher, to inherit from it only knowledge that does not pertain to the data to
be deleted. This method is ‘unbound’ from limiting assumptions (e.g., to facilitate formal guarantees),
poor scalability limits, and is not tailored to a single unlearning application. We find that SCRUB
can yield a very high error on the deleted data, which is desired in some scenarios but may cause
susceptibility to membership inference attacks. To mitigate this when relevant, we extend SCRUB
with a novel ‘rewinding’ procedure that pinpoints the ‘checkpoint’ of the unlearning process to use
such that the error on the deleted data approximates the reference point of being ‘just high enough’.

We also propose the first, to our knowledge, adaptation of the state-of-the-art LiRA MIA [Carlini
et al., 2022] to the framework of unlearning, as a metric for UP. Overall, we perform a comprehensive
evaluation using different baselines, datasets, architectures and three application scenarios. We find
that SCRUB is by far the most consistent top performer out of all state-of-the-art methods considered.
SCRUB is able to ensure high forget quality, satisfying different forget-quality metrics for different
applications while also being a top performer with respect to model utility (accuracy on retained data,
and generalization). Our findings highlight the need to consider a broad spectrum of applications
when evaluating unlearning algorithms, to better understand their properties and trade-offs.

2 Problem Definition for Unlearning Unbound

Notation and preliminaries LetD = {xi, yi}Ni=1 denote a training dataset containingN examples,
where the i’th example is represented by a vector of input features xi and a corresponding class label
yi. Let f(·;w) denote a function parameterized by trainable weights w. In this work, we study the
case where f is represented by a deep neural network, trained in a supervised manner via empirical
risk minimization. Specifically, we define the loss function as L(w) = 1

N

∑N
i=1 l(f(xi;w), yi) where

l denotes the cross entropy loss.

Deep Machine Unlearning We now formalize the problem of deep machine unlearning. We
assume that we are given a model f(·;wo) that has been trained on D, where f denotes a neural
network and wo its trained parameters, obtained by minimizing the above loss function. We will refer
to this as the ‘original model’ (i.e. before any unlearning intervention is performed). We are also
given a ‘forget set’ Df = {xi, yi}

Nf

i=1 ⊂ D, comprised of Nf examples from D and a ‘retain set’ Dr

of Nr training examples that the model is still allowed to retain information for. For simplicity, we
consider the standard scenario where Dr is the complement of Df or, in other words, Df ∪ Dr = D.
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Given f(·;wo), Df and Dr, the goal of deep machine unlearning is to produce a new set of weights
wu such that the ‘unlearned model’ f(·;wu) has ‘forgotten’ Df without hurting the ‘utility’ of the
original model (its performance on the retained data Dr and generalization to data outside of D). We
argue that defining (and measuring) ‘forgetting’ is application-dependent. Our work is the first, to the
best of our knowledge, to perform a thorough empirical evaluation of unlearning algorithms on three
different application scenarios, each with its own definition of forgetting and associated metrics.

Defining and measuring ‘forgetting’ We consider three different application scenarios in this
work, each with their own definition of forgetting and associated metrics. 1) Removing biases. We
want maximal error on Df : the model should never predict the assigned labels of forget examples,
since they reflect unintended behaviour. 2) Resolving confusion. A model may be ‘confused’ due to
incorrect labels in its dataset. A successful unlearning algorithm resolves this if mislabeled examples
are placed in the forget set (see metrics in Section 5). 3) User privacy. Success from a privacy
perspective is associated with a forget error only as high as that of retraining-from-scratch; a higher
forget error could lead to vulnerability to Membership Inference Attacks (MIAs). In all of the above
cases, in addition to achieving forgetting, we seek unlearning algorithms that don’t damage model
utility, i.e. accuracy on retained data and generalization ability, and that unlearning is efficient enough
to be preferable over the simple and expensive solution of retraining the model.

Fundamental trade-offs A top-performing unlearning algorithm must simultaneously achieve
three feats: (i) obtain high ‘forget quality’, (ii) ensure continued high accuracy on retained and unseen
data, and (iii) efficiency / scalability. In practice, there are fundamental trade-offs in two different
dimensions. The first dimension involves trade-offs between (i), (ii) and (iii), for example achieving
good ‘forget quality’ at the expense of efficiency. Retraining from scratch is such an example, but,
as we will show later, some methods suffer from inefficiencies even worse than retraining. Another
common issue we will observe is achieving good ‘forget quality’ at the expense of utility. The
second dimension involves trade-offs within the context of achieving good ‘forget quality’ across
applications, since the metric for this quality is application-specific, and an algorithm may perform
strongly on one such metric but poorly on others. SCRUB is designed to handle these trade-offs and
is shown empirically to consistently outperform previous methods across the board.

3 SCalable Remembering and Unlearning unBound (SCRUB)

We present SCRUB, a new unlearning algorithm based on a novel casting of the unlearning problem
into a teacher-student framework. We design SCRUB to meet the desiderata of unlearning: efficiently
‘forgetting’ without hurting model utility. Because we argue that the definition of forgetting is
application-dependent, we propose a recipe that works across applications: We first design SCRUB
to strive for maximal forget error, which is desirable in some scenarios (e.g. RB and RC) but not
in others (e.g. UP). To address the latter case, we complement SCRUB with a novel ‘rewinding’
procedure that can reduce the forget set error appropriately when required. SCRUB is ‘unbound’
from limiting assumptions (e.g., to facilitate formal guarantees), poor scalability limits and is by far
the most consistent method in forgetting across applications while preserving model utility.

3.1 The SCRUB

We consider the original model wo as the ‘teacher’ and we formulate our goal as training a ‘student’
wu that selectively obeys that teacher. Intuitively, our goal for wu is twofold: forget Df while still
remembering Dr. To that effect, wo should be obeyed when teaching about Dr, but disobeyed when
teaching about Df . Our code is available for reproducibility 2.

En route to deriving our training objective, let us first define:

d(x;wu) = DKL(p(f(x;w
o))‖p(f(x;wu)))

In words, d(x;wu) is the KL-divergence between the student and teacher output distributions (softmax
probabilities) for the example x. We make the dependence of d on wu explicit, since we will optimize
the student weights wu while keeping the teacher weights frozen wo, treating them as a constant.

2https://github.com/Meghdad92/SCRUB
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Concretely, we begin by initializing the student wu to the weights of the teacher wo. Since the teacher
weights wo were trained on all of D, the teacher performs well on both constituents of D, namely
both of Dr and Df . Therefore, the student has good performance on Dr at initialization, already
fulfilling one of our desiderata. Can we then start from this solution and modify it to unlearn Df? In
principle, one could do this by optimizing:

min
wu
− 1

Nf

∑
xf∈Df

d(xf ;w
u) (1)

However, in practice, when performing this maximization of the distance between the student
and teacher on the forget set, we noticed that, while indeed the performance on Df degrades, as
desired, it unfortunately also results in degrading performance on Dr. To amend that, we propose
to simultaneously encourage the student to ‘stay close’ to the teacher on retain examples, while
encouraging it to ‘move away’ from the teacher on forget examples, adding a contrastive flavour.
Formally, the optimization objective becomes:

min
wu

1

Nr

∑
xr∈Dr

d(xr;w
u)− 1

Nf

∑
xf∈Df

d(xf ;w
u) (2)

Furthermore, SCRUB also simultaneously optimizes for the task loss on the retain set, to further
strengthen the incentive to perform well there. Our final training objective is then the following:

min
wu

α

Nr

∑
xr∈Dr

d(xr;w
u) +

γ

Nr

∑
(xr,yr)∈Dr

l(f(xr;w
u), yr)−

1

Nf

∑
xf∈Df

d(xf ;w
u) (3)

where l stands for the cross-entropy loss and the α and γ are scalars that we treat as hyperparameters.

In practice, we found that optimizing the objective in Equation 3 is challenging, due to oscillations in
the loss. Intuitively, this is due to trying to simultaneously satisfy two objectives, which may interfere
with each other, namely moving close to the teacher on some data points while moving away from it
on others. To address this, SCRUB provides a practical recipe for optimization, reminiscent of ‘tricks’
used in other min-max-like problems like Generative Adversarial Networks [Goodfellow et al., 2014]
where the discriminator is trained for several steps before each update to the generator.

Specifically, SCRUB iterates between performing an epoch of updates on the forget set (the max-
step) followed by an epoch of updates on the retain set (the min-step), in an alternating fashion.
Guarding against hurting retain performance due to this alteration of min-steps and max-steps,
SCRUB also performs a sequence of additional min-steps at the end of the sequence to restore the
retain performance in the event that it was harmed. SCRUB training stops when the forget error has
increased without harming the retain set error. We find in practice this point can be reached with a
small number of epochs. We provide pseudocode, training plots and ablations in the Appendix.

3.2 SCRUB and Rewind (SCRUB+R)

By construction, SCRUB encourages obtaining a high error on the forget set. This is desired for some
application scenarios. However, an uncharacteristially high error on deleted examples can make them
identifiable, causing vulnerability to membership inference attacks. SCRUB+R addresses this.

To this end, we are after a procedure for selecting the checkpoint of SCRUB where the forget set error
is ‘just high enough’. One could obtain a reference point for that by retraining from scratch without
the forget set and recording the error of that model on the forget set. However, that would defeat the
purpose of unlearning, as we want to avoid that computation. Therefore, we propose a different way
of establishing a reference point. First, we create a validation set of the same distribution as the forget
set. For instance, if the forget set has only examples of class 0, we keep only examples of class 0
in the validation set too. Next, we train SCRUB as usual, storing a model checkpoint every epoch.
At the end of its training, where the forget error is typically the highest, we measure the error on
the constructed validation set. This will serve as the reference point for the desired forget set error.
Finally, we ‘rewind’ to the checkpoint where the forget error is closest to that reference point.
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(a) CIFAR-10 class unlearning. (b) CIFAR-10 selective. (c) CIFAR-5 selective.

Figure 1: RB results: SCRUB is the only consistent top-performer in terms of forgetting and
preserving utility. It is also highly efficient: second only to Bad-T which, however, fails at
forgetting and damages utility. In all subfigures, each point represents the average across ResNet
and All-CNN variants. For large-scale results, we also compute the scale-up factor: the fraction of
the runtime of retraining from scratch over the runtime of the given unlearning algorithm (multiplied
by 5 here, for visualization purposes). We find that selective unlearning is harder for all methods,
especially for EU-k and Fisher (see Figure 1a vs 1b). CF-k and Finetuning perform similarly (they
perform poorly) in all cases, so their lines occlude one another. Complete tables are in the Appendix.

The intuition is that the last step of unlearning approximates ‘maximally forgetting’. Consequently,
the error on the identically-distributed validation set approximates the error of a model that never
learned about that distribution from the forget set: any correct predictions on the held-out examples
are due only to the generalization power of the model that was trained only on the retain set. Therefore,
we choose that validation set error to serve as the reference point for how high we would like the
forget set error to be for UP applications. We show empirically that this rewinding procedure greatly
increases the defense against membership inference attacks, making SCRUB a strong performer for
applications where privacy is a consideration.

4 Related Work

Unlearning definitions Despite prior work on unlearning, this research problem is still in its
infancy and we lack a well-established formal definition. The term ‘unlearning’ was coined in Cao
and Yang [2015], where, in the context of certain structured problems, unlearning is defined to be
successful if deleting an example yields the same outputs on a dataset as if that example had never
been inserted. Ginart et al. [2019] introduce a more relaxed probabilistic definition for machine
unlearning inspired by Differential Privacy [Dwork et al., 2014] that requires the unlearned model
to yield outputs that are similar to those that would have been produced by a model retrained from
scratch without the forget set. This led to the development of ‘approximate learning’ methods that
aren’t identical to retrain-from-scratch (‘exact unlearning’) but ‘similar’ [Guo et al., 2019, Golatkar
et al., 2020a]. Sekhari et al. [2021] and Neel et al. [2021] adopt similar DP-inspired definitions of
(approximate) unlearning based on the goal of indistinguishability from retrain-from-scratch.

However, there is a recent line of criticism against the idea of defining or measuring unlearning
success based on indistinguishability from retrain-from-scratch. Thudi et al. [2022b] theoretically
show that we can obtain arbitrarily similar model weights from training on two non-overlapping
datasets. This implies that reaching a particular point in parameters space isn’t a sufficient condition
for having unlearned. Furthermore, Goel et al. [2022] argue that it’s not a necessary condition
either: retraining from scratch may arrive at different model distributions due to changes in e.g.
hyperparameters [Yang and Shami, 2020]. Therefore, a unlearning method may be unnecessarily
penalized for not matching a particular retrained-from-scratch model. In our work, we take a practical
viewpoint and define unlearning as ‘forgetting’ in an efficient manner and without hurting model
utility, for three different application-specific metrics for forgetting that we discuss in the next section.

Unlearning methods Cao and Yang [2015] introduce unlearning and provide an exact forgetting
algorithm for statistical query learning. [Bourtoule et al., 2021] proposed a training framework by
sharding data and creating multiple models, enabling exact unlearning of certain data partitions.
Ginart et al. [2019] introduce a probabilistic definition for machine unlearning inspired by Differential
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Privacy [Dwork et al., 2014], and formed the origin of the idea of the model indistinguishability
goal. More recently, Guo et al. [2019], Izzo et al. [2021], Sekhari et al. [2021] built upon this
framework and introduced unlearning methods that can provide theoretical guarantees under certain
assumptions. Further, Huang and Canonne [2023] provide bounds for ‘deletion capacity’ in the
DP-based unlearning methods using the group property of DP. [Graves et al., 2021] proposed two
methods applicable to deep networks. The first randomly re-labels the forget set and retrains for a
small number of updates, while the second stores the index of examples that participated in each
batch and the per-batch parameter updates, and unlearns by ‘undoing’ the affected updates. This
requires a lot of storage and can also lead to a poor proxy of the model that would have been obtained
had those parameter updates not happened in the first place, especially for larger sequences. [Golatkar
et al., 2020a] proposed an information-theoretic procedure for removing information about Df from
the weights of a neural network and [Golatkar et al., 2020b, 2021] propose methods to approximate
the weights that would have been obtained by unlearning via a linearization inspired by NTK theory
[Jacot et al., 2018] in the first case, and based on Taylor expansions in the latter. However, [Golatkar
et al., 2020a,b] scale poorly with the size of the training dataset, as computing the forgetting step
scales quadratically with the number of training samples. [Golatkar et al., 2021] addresses this issue,
albeit under a different restrictive assumption: that a large dataset is available for pre-training that
will remain ‘static’, in that no forgetting operations will be applied on it; an assumption that is not
met in many important applications (e.g. healthcare, medical images). Some more recent works
propose modifications to the original model training, to make the resulting model more amenable to
unlearning. Thudi et al. [2022a] propose a regularizer to reduce the ‘verification error’, which is an
approximation to the distance between the unlearned model and a retrained-from-scratch model. The
goal is to make unlearning easier in the future. Additionally, they propose a single gradient update
that reverses the effect of Df . This regularizer, however, may have a negative effect on the model’s
performance, and the single gradient unlearning step only removes the effect that Df has had in the
first iteration of training. [Zhang et al., 2022] present a training process that quantizes gradients
and applies randomized smoothing. This process is designed to make unlearning unnecessary in the
future and comes with certifications under some conditions. However, a deletion request that causes
too large a change to the data distribution (e.g. if doing class unlearning), may exceed the ‘deletion
budget’ and invalidate their assumptions.

Related research areas Differential Privacy (DP) [Dwork et al., 2014] and Life-Long Learning
(LLL) [Parisi et al., 2019] have shared goals with unlearning. DP seeks to ensure that the trained
model doesn’t store information about any training instance; a strong goal that is difficult to achieve
for deep neural networks [Abadi et al., 2016]. In contrast, in unlearning we only desire to remove
the influence of the training instances in the forget set, which can be seen as a relaxation of the
same problem. LLL seeks to continuously update a model to solve new sets of tasks, without
‘catastrophically forgetting’ previously-learned tasks. The notion of forgetting a task, though, is
distinct from that of forgetting a training example: the performance on a task can degrade, without
having removed the influence of particular examples from the model weights.

Teacher-student and contrastive methods The teacher-student methodology has been used in a
different contexts, e.g. self-supervised [Grill et al., 2020, Chen and He, 2021] and semi-supervised
learning [Xie et al., 2020]. Knowledge Distillation [Hinton et al., 2015] can also be thought of as
a teacher-student approach with the additional desire for compression, where the student is chosen
to have a smaller architecture than the teacher. In addition, our training objective has a contrastive
flavour [Chen et al., 2020, He et al., 2020], due to both pulling the student close to the teacher, and
pushing it away from it, for different parts of the training set. For unlearning, [Kim and Woo, 2022,
Wu et al., 2022] propose methods with a two-stage pipeline: ‘neutralization’ / forgetting followed
by a ‘retraining’ / restoring, that restores performance that may be lost in the first phase. Both use
distillation only in the second phase on only the retain set. In contrast, SCRUB employs a single
phase where we carefully design a teacher-student formulation to both encourage forgetting the
requested data and retaining the other knowledge, simultaneously. Most similar to our work in that
regard is the method of [Chundawat et al., 2022] that employs a related but different teacher-student
objective that encourages moving close to a ‘Bad Teacher’ for the forget set (we thus refer to this as
‘Bad-T’). Moving close to a different, ‘bad’, teacher for forget examples is fundamentally different
from our goal of moving away from the (single) teacher as in SCRUB. We find that Bad-T forgets
poorly compared to SCRUB in all applications, and degrades model quality.
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ResNet All-CNN

Model IC test error (↓) IC retain error (↓) Fgt test error (↓) Fgt retain error (↓) IC test error (↓) IC retain error (↓) Fgt test error (↓) Fgt retain error (↓)
mean std mean std mean std mean std mean std mean std mean std mean std

Retrain 24.0 1.8 0.0 0.0 18.3 4.2 0.0 0.0 19.0 1.3 0.0 0.0 11.3 4.6 0.0 0.0

Original 56.0 3.0 0.0 0.0 92.0 7.9 0.0 0.0 49.0 4.8 6.0 10.39 80.7 12.6 6.0 10.4
Finetune 52.0 3.1 0.0 0.0 79.3 10.1 0.0 0.0 43.7 7.3 0.0 0.0 67.3 16.0 0.0 0.0

NegGrad+ 47.5 5.3 0.0 0.0 69.0 13.5 0.0 0.0 42.3 11.3 0.0 0.0 62.0 22.6 0.0 0.0
CF-k 54.8 2.0 0.0 0.0 85.3 7.0 0.0 0.0 47.8 5.8 0.0 0.0 76.3 14.4 0.0 0.0
EU-k 47.0 4.8 8.3 4.7 63.3 9.7 3.7 2.5 59.5 5.2 38.3 6.7 68.7 15.6 19.7 10.4
Fisher 51.5 7.5 26.3 9.5 79.0 3.6 20.0 7.9 56.8 8.7 31.7 14.0 78.3 15.5 17.7 11.5
NTK 37.5 4.0 0.0 0.0 52.0 10.6 0.0 0.0 36.7 4.1 3.0 5.2 54.3 9.0 3.0 5.2

Bad-T 47.3 9.7 6.0 6.2 27.0 8.7 0.3 0.6 39.3 8.2 3.0 1.0 25.7 5.0 1.0 1.0
SCRUB 19.0 3.9 0.0 0.0 19.7 7.5 0.0 0.0 26.0 4.4 0.0 0.0 18.0 11.1 0.0 0.0

Table 1: RC-application results: SCRUB is the strongest performer in terms of resolving class
confusion. These results are on CIFAR-5 with ResNet and All-CNN, where we confused 50 samples
of class 0 by mislabeling them as class 1, and 50 of class 1 by mislabeling them as class 0.

5 Experiments

5.1 Experimental setup

Overview of applications and metrics We consider three sets of forget-quality metrics, for dif-
ferent applications. First, we consider the scenario of Removing Biases (RB) where we desire the
highest possible forget set error (reflecting that we want the model to never predict the associated
labels of the forget set, since those capture an unintended behaviour / bias). Next, inspired by Goel
et al. [2022], we consider unlearning for Resolving Confusion (RC) between classes, caused by a
portion of the model’s original training set being mislabelled. Finally, we consider a scenario of
data deletion for User Privacy (UP). In this case, we use Membership Inference Attacks (MIAs) to
measure success (including the first, to our knowledge, adaptation of the state-of-the-art LiRA MIA
[Carlini et al., 2022] to unlearning), where unlearning succeeds if the attacker is unable to tell apart
forgotten examples from truly unseen ones. In all cases, aside from achieving the application-specific
forgetting goal, we also measure utility (performance on Dr and a test set Dt) as an additional metric.

(a) Small-scale. (b) Large-scale.

Figure 2: The number of times each method was a top
performer in forgetting in RB-application. A model is
a top-performer if its 95% confidence interval overlaps
with that of the best mean. Small-scale counts are over
{ResNet, All-CNN} x {CIFAR, Lacuna} (4 total), large-
scale additionally x {class, selective} (8 total). SCRUB
is the most consistent top-performer.

Experimental details We utilize the
same two datasets from previous work:
CIFAR-10 [Krizhevsky et al., 2009] and
Lacuna-10 [Golatkar et al., 2020a], which
is derived from VGG-Faces [Cao and Yang,
2015], and the same two architectures:
All-CNN [Springenberg et al., 2014] and
ResNet-18 [He et al., 2016]. For consis-
tency with previous work, we pre-train the
original model on CIFAR-100 / Lacuna-
100 for the CIFAR-10 / Lacuna-10 ex-
periments, respectively [Golatkar et al.,
2020a,b]. We run each experiment with
3 random seeds and report the mean and
standard deviation.

We consider two settings throughout the pa-
per: small-scale and large-scale. The for-
mer allows comparisons with NTK, which
doesn’t scale beyond it. For the small-scale, we exactly follow the setup in [Golatkar et al., 2020b]
that uses only 5 classes from each of CIFAR and Lacuna (‘CIFAR-5’ / ‘Lacuna-5’), with 100 train,
25 validation and 100 test examples per class. The forget set contains 25 examples from class 0 (5%).
For the large-scale, we exactly follow the setup in [Golatkar et al., 2020a] that uses all 10 classes of
each of CIFAR and Lacuna, and considers both a class unlearning scenario where the forget set is
the entire training set for class 5 (10%), as well as a selective unlearning one where 100 examples
of class 5 are forgotten (0.25% in CIFAR and 2% in Lacuna). We note that the Appendix contains
complete results for all scenarios (several are ommitted from the main paper due to space constraints)
and also contains the complete experimental details and hyperparameters.
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Unlearning algorithms We compare against state-of-the-art approaches as well as various base-
lines: Retrain: Retraining from scratch without the forget set. This is assumed to not be viable in
practice, but we include it as a reference. Original: The ‘original’ model trained on all of D without
any unlearning. Finetuning: Finetunes the original model on data from the retain setDr. NegGrad+:
Similar to Finetuning, starts from the original model and finetunes it both on data from the retain
and forget sets, negating the gradient for the latter. Previous work considered a weaker baseline that
only trains on the forget set, with a negative gradient (NegGrad). We tune the stronger NegGrad+ to
achieve a good balance between the two objectives in the same way as SCRUB. Fisher Forgetting
[Golatkar et al., 2020a]. NTK Forgetting [Golatkar et al., 2020b]. Catastrophic Forgetting-k (CF-k)
and Exact Unlearning-k (EU-k) [Goel et al., 2022]: they freeze the first k layers of the original model
and either finetune the remaining layers on Dr (CF-k) or train them from scratch on Dr (EU-k).
Bad-T: the concurrent teacher-student method of [Chundawat et al., 2022]. We utilize the public
code for the NTK and Fisher for correctness. We implement Bad-T ourselves (no code was available).

5.2 Unlearning for Removing Biases (RB)

In RB, we desire to achieve the highest possible error on Df , without hurting the error of Dr and Dt.
Some example scenarios are removing biases from trained models, outdated or incorrect information.
A maximal forget error on Df in this case is desirable as it reflects that we want the model to never
make the predictions that were deemed harmful or no longer valid or accurate.

We report the results for this scenario in Figures 1 and 2. We also report complete results in the
Appendix for all architectures, datasets and baselines. As shown in Figure 2, SCRUB is by far the
most consistent method in terms of achieving high forget quality (highest forget error), while it
doesn’t hurt retain and test errors.

5.3 Unlearning for Resolving Confusion (RC)

In this section, following Goel et al. [2022], we study unlearning for resolving confusion between
two classes that the original model suffers from due to a part of its training set being mislabelled.
Specifically, we place all and only the mislabeled training examples in the forget set. A successful
unlearning algorithm would thus entirely resolve the model’s confusion. In more detail, the setup is:
1) Mislabel some portion of the training dataset (we mislabeled examples between classes 0 and 1 of
each of CIFAR-5 and Lacuna-5), 2) Train the ‘original model’ on the (partly mislabeled) training
dataset, and 3) Unlearn with the confused examples as the forget set.

We consider the following metrics inspired from Goel et al. [2022] that are variants of the model’s
error on examples from the confused classes (lower is better for both). We outline them below and
define them formally in the Appendix.

• Interclass Confusion IC-ERR (e.g. IC test error, IC retain error). This counts mistakes
where an example from either of the two confused classes was incorrectly predicted to
belong to any other class.

• FGT-ERR (e.g. Fgt test error, Fgt retain error). This metric counts only misclassification
between the confused classes, i.e. an example of class 0 being predicted as belonging to
class 1, or vice versa.

We observe from Table 1 that, across the board, SCRUB is by far the most consistent method in terms
of eliminating class confusion without damaging the quality of the model (on retain and test sets).

5.4 Unlearning for User Privacy (UP)

Next, we consider a privacy-critical application: the deletion of the data of a user exercising their
right-to-be-forgotten. We use Membership Inference Attacks (MIAs) as the metric where the goal is
that, after applying unlearning, an attacker can’t tell apart examples that were unlearned from those
that were truly never seen, thus protecting the privacy of the user requesting deletion.

While previous unlearning papers have reported MIA results [Golatkar et al., 2020a], those MIAs
are simple and far from state-of-the-art MIAs used in privacy and security papers. Indeed, it’s not
trivial to adapt such MIAs to the unlearning protocol. To initiate bridging this gap, we report results
on two MIAs: 1) a simple one that is closer to the typical MIAs used in the unlearning literature, and
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(a) Forget 100 examples. (b) Forget 150 examples. (c) Forget 175 examples. (d) Forget 200 examples.

Figure 3: MIA results for different sizes of forget set on CIFAR-10 with ResNet. Error bars show
95% confidence intervals. Rewinding is most useful for smaller forget sizes (see the discussion in
Section 5.4). SCRUB+R successfully defends MIAs, comparably to the Retrain oracle.

2) the first, to our knowledge, adaptation of the state-of-the-art LiRA attack [Carlini et al., 2022] to
the unlearning protocol. We describe both at a high-level here and in detail in the Appendix.

Basic attack We train a binary classifier (the ‘attacker’) on the unlearned model’s losses on forget
and test examples for the objective of classifying ‘in’ (forget) versus ‘out’ (test). The attacker then
makes predictions for held-out losses (losses the attacker wasn’t trained on) that are balanced between
forget and test losses. For a perfect defense, the attacker’s accuracy is 50%, indicating that it is unable
to separate the two sets, marking a success for the unlearning method.

ResNet All-CNN

Model Class Selective Class Selective
mean std mean std mean std mean std

Retrain 49.33 1.67 54.00 1.63 55.00 4.00 48.73 0.24
Original 71.10 0.67 65.33 0.47 66.50 0.50 71.40 0.70
Finetune 75.57 0.69 64.00 0.82 68.00 1.00 74.97 1.27

NegGrad+ 69.57 1.19 66.67 1.70 72.00 0.00 70.03 1.92
CF-k 75.73 0.34 65.00 0.00 69.00 2.00 72.93 1.06
EU-k 54.20 2.27 53.00 3.27 66.50 3.50 51.60 1.22
Bad-T 54.00 1.10 59.67 4.19 63.4 1.2 77.67 4.11

SCRUB 52.20 1.71 78.00 2.45 52.00 0.00 54.30 2.24
SCRUB+R 52.20 1.71 58.67 1.89 52.00 0.00 54.30 2.24

Table 2: Basic MIA results (for UP): SCRUB
successfully defends MIA. Note the rewinding
procedure of SCRUB+R was triggered only once;
see discussion in Section 5.4 and Figure 3. In the
Appendix, we also show that the forget error of
SCRUB(+R) is close to that of Retrain, as desired.

We present Basic MIA results in Table 2 for
CIFAR-10. We observe that SCRUB+R is
a strong performer. EU-k can also perform
strongly in this metric, though not as consis-
tently. We also observe that rewinding was only
triggered once, for selective unlearning. Recall
that, in both selective and class unlearning, the
forget set contains examples coming from a sin-
gle class, but in the former, it doesn’t contain
all examples of that class; the rest are in the re-
tain set. Thus, we indeed expect that rewinding
would be more useful for selective unlearning:
the smaller the portion of a class in the forget
set, the larger the remainder of that class in the
retain set and consequently, the better we expect
the model to generalize on held-out examples of
that class (lower error), making it in turn more
likely to need to rewind, in order to also lower
the forget set error commensurately. In Figure 3 we plot results for different variants of selective
unlearning, with different number of examples in the forget set (from the same class) and indeed find
that for smaller numbers, rewinding is triggered. Our take-away is that, when needed, rewinding can
substantially improve SCRUB’s MIA results.

LiRA-for-unlearning attack In the standard privacy setting, the LiRA attacker trains a large
number of ‘shadow models’ [Carlini et al., 2022], for which it controls which examples are in the
training set each time (by construction). To then predict the membership status of a ‘target example’,
it estimates two Gaussian distributions: the distribution of confidences of that example under shadow
models that trained on it, and the distribution of its confidences under shadow models that didn’t. It
predicts that the target example is ‘in’ if the likelihood of the former is larger than that of the latter.

We propose the first, to our knowledge, adaptation of LiRA for unlearning. This is a strong attack
where we allow the attacker knowledge of the unlearning algorithm. Concretely, for each shadow
model, the attacker also produces a ‘shadow unlearned’ model by applying the given unlearning
algorithm several times, using a large number of forget sets (similar to Chen et al. [2021]). Now,
for each ‘target example’, this setup allows the attacker to estimate a different pair of Gaussians:
the distribution of (confidences of) that target example under models where it was forgotten, and as
before, under models where it was not seen. The attacker predicts the example was forgotten if its
likelihood under the former is larger than under the latter. We present all details and findings in the
Appendix and observe that SCRUB+R outperforms the other methods in defending this attack.
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5.5 Overview of results and take-aways

Finetuning is a poor method: it may retain model utility but fails to forget. The previous state-the-
art NTK and Fisher models aren’t among the top-performers either. The former performs poorly
across the board in terms of forgetting and doesn’t scale beyond small datasets. The latter sometimes
performs well in RB in terms of forgetting, though not always and it is very slow (Figure 1), exceeding
the runtime of Retrain; as also observed in [Goel et al., 2022]. NegGrad+, our proposed enhancement
over the NegGrad baseline, is a strong baseline in terms of achieving a balance between forgetting
and utility (it performs well in several settings in terms of RB, albeit not as consistently as SCRUB)
and we encourage future work to report this baseline, though SCRUB outperforms it, especially for
RC. CF-k inherits the performance profile of Finetune: it maintains utility but forgets poorly. On the
other hand, EU-k more reliably forgets (performs strongly in UP, and often in RB), which is expected
relative to CF-k due to retraining part of the network, but SCRUB outperforms it significantly in
terms of RC and is more consistently a top performer in RB. A notable failure case that we discovered
for EU-k in RB is selective unlearning (notice the contrast between EU-k’s forget error between e.g.
Figures 1a and 1b). This finding may speak to where class vs instance information is stored in neural
networks and warrants further investigation. Bad-T is very efficient, but performs poorly in terms of
forgetting, across all applications and also damages model utility. Overall, SCRUB is by far the most
consistent in successfully forgetting under different metrics without hurting utility and being efficient.

In the Appendix, we discuss limitations of our work, broader impact, future work and present full
experimental results and all details including hyperparameters and pseudocode.

6 Discussion and Conclusion

Despite substantial recent attention [Triantafillou et al., 2023], unlearning is a young area of research.

In this work, we propose SCRUB, an unlearning method that is unbound from limiting assumptions
and poor scalability limits. SCRUB(+R) is found empirically to perform very strongly: it is by far
the most consistent method in achieving good forgetting quality with respect to different application-
dependent metrics, while incurring only minimal utility degradation. As such, we believe that SCRUB
fills the important need for scalable unlearning methods that perform well in practice on several
metrics of interest. However, important questions remain open for future work.

Crucially, despite progress in this direction, a well-established formal definition of the problem of
unlearning remains elusive, and consequently we also lack well-established metrics for measuring
(theoretically or empirically) the quality of unlearning algorithms. In this work, we focus on empirical
evaluation with respect to different application-dependent metrics for forgetting quality that we believe
are relevant in real-world applications. However, as the unlearning community matures, we hope that
success criteria for (different applications of) unlearning will be formalized and standardized.

Further, an important limitation of SCRUB is the absence of theoretical guarantees, making it perhaps
ill-suited for certain application scenarios. While methods that come with guarantees exist, they
either aren’t applicable to deep neural networks, or we find through our empirical analysis that they
perform poorly and don’t scale beyond small datasets. Therefore, future work that theoretically
studies scalable methods like SCRUB would be very valuable. In absence of that, continuing to study
and better understand the trade-offs offered by different methods is an important direction.

On the practical side, we hope that future work continues to push the limits of scalability and studies
unlearning in larger models, different architectures, different training objectives like self-supervised
learning and different domains and modalities, including foundation language models.

Broader Impact While recent advances in deep learning represent exciting opportunities for our
community, they also come with great responsibility. As researchers, we are responsible for under-
standing and mitigating the issues associated with the widespread use of deep learning technology.
Machine learning models may carry harmful biases, unintended behaviours, or compromise user
privacy. Our work is intended to take a step in addressing these issues via a post-processing ‘unlearn-
ing’ phase that makes progress over previous solutions in practice, as we show through an extensive
empirical investigation. However, SCRUB does not come with theoretical guarantees and we can not
prove that applying SCRUB perfectly mitigates those issues, so caution must be taken in practice and
proper auditing of machine learning models is critical.
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7 Appendix

This Appendix contains the following sections:

• Section 8: Limitations and Future Work
• Section 9: Experimental Details and Pseudocode
• Section 10: Formal Description of Metrics
• Section 11: Membership Inference Attacks: Description and Additional Findings
• Section 12: Ablations and Sensitivity Analysis
• Section 13: Larger-scale settings
• Section 14: Additional Results for Removing Biases (RB)
• Section 15: Additional Results for Resolving Confusion (RC)
• Section 16: Additional Results for User Privacy (UP)

8 Limitations and Future Work

SCRUB has shown impressive results in terms of being consistently a top-performer in terms of
unlearning, with a minimal drop in performance compared to previous works. However, SCRUB has
limitations that we hope future work will address.

A significant step for future work is to develop theoretical guarantees for the gains provided by
our methods. We opted to focus on an empirical approach for the following reasons: First, while
theoretical guarantees abound for linear models, deep networks pose additional significant challenges.
Second, methods accompanied with theoretical guarantees suffer from practical limitations with
respect to accuracy and/or scalability. For these reasons we opted to approach the problem from
a practical standpoint, pushing the envelope by developing unlearning algorithms which are top
performers across many important different application scenarios, different evaluation metrics,
different architectures and datasets. We look forward to future work that strives to strike a compromise
between effective unlearning, good performance, scalability, and theoretical insights.

Another limitation of SCRUB is the difficulty and instability associated with tuning the min-max
objective, as shown in the literature e.g. for GANs. For instance, this can lead to oscillating behaviour,
as we show in Figure 6. We remedy this to a large extent in practice by providing a practical
algorithm that works well, showing consistently improved results over prior work, but there is room
for improvement on this front for future work.

SCRUB’s rewinding procedure also has limitations. We find in practice throughout all of our
experiments that it can help to substantially increase the success of SCRUB’s defense on MIA in
scenarios where the forget error obtained by SCRUB at the end of unlearning is ‘too high’. However,
a different failure case which can also appear is that SCRUB’s forget error at the end of training is
‘too low’. This can happen due to the way in which we tune hyperparameters, which is designed to not
harm the retain and validation performance too much, and thus can in some cases lead to ‘premature
stopping’ before the forget error reaches the same level as a reference point for how high it would be
if the model had truly never seen those examples. We highlight that addressing all possible issues
that can arise in all scenarios and provide an unlearning algorithm that performs strongly across the
board is extremely challenging. The fact that we have observed failure cases for each algorithm, be it
SCRUB or other baselines, is indicative of the extensiveness of the experimentation we conducted.
Our work has made important strides in designing consistently strong-performing unlearning methods
and we look forward to future contributions in this direction.

We hope that future work also continues to push the limits of scalability. We believe that our work
constitutes an important step in this direction. However, the datasets and models we consider aren’t
too large, in order to allow comparisons to previous works that would not be feasible to run for larger
scale experiments. An interesting topic of future work is investigating the interplay between SCRUB
and other scalable algorithms like NegGrad+ with increasing amounts of scale.

Another really interesting future work direction is to investigate how different unlearning algorithms
interact with different architectures, like Transformers, and loss functions, like self-supervised
learning.
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9 Experimental Details and Pseudocode

Algorithm 1 SCRUB

Require: Teacher weights wo

Require: Total max steps MAX-STEPS
Require: Total steps STEPS
Require: Learning rate ε
wu ← wo

i← 0
repeat

if i < MAX-STEPS then
wu ← DO-MAX-EPOCH(wu)

end if
wu ← DO-MIN-EPOCH(wu)

until i < STEPS

Datasets. We have used CIFAR-10 and Lacuna-
10 datasets for evaluation purposes. CIFAR-10
consists of 10 classes with 60000 color images
of size 32 x 32. In our experiments, the train,
test, and validation sizes are 40000, 10000, and
10000 respectively. Lacuna-10 is a dataset de-
rived from VGG-Faces [Cao and Yang, 2015].
We have followed the same procedure described
in [Golatkar et al., 2020a] to build Lacuna. We
randomly select 10 celebrities (classes) with at
least 500 samples. We use 100 samples of each
class to form the test-set, and the rest make the
train-set. All the images are resized to 32 x 32.
We also use CIFAR-100 and Lacuna-100 to pre-
train the models. Lacuna-100 is built in a similar
way as Lacuna-10, and there is no overlap be-
tween the two datasets. We have not applied any
data augmentation throughout the experiments.

Small-Scale datasets. We followed the same procedure as decribed in [Golatkar et al., 2020b] to
create the small versions of CIFAR-10 and Lacuna-10, namely CIFAR-5 and Lacuna-5. To this end,
we take the first 5 classes of each dataset and randomly sample 100 images for each class. We make
the train and test sets by sampling from the respective train and test sets of CIFAR-10 and Lacuna-10.
We also make 25 samples from each class from the train set to create the validation sets.

Algorithm 2 DO-MAX-EPOCH

Require: Student weights wu

Require: Learning rate ε
Require: Batch size B
Require: Forget set Df

Require: Procedure NEXT-BATCH
b← NEXT-BATCH(Df ,B)
repeat
wu ← wu + ε∇wu

1

|b|
∑
xf∈b

d(xf ;w
u)

b← NEXT-BATCH(Df ,B)
until b

Models. We use the same models with the same
architectural modifications in [Golatkar et al.,
2020a,b]. For All-CNN, the number of layers is
reduced and batch normalization is added before
each non-linearity. For Resnet, ResNet-18 ar-
chitecture is used. For small scale experiments,
the number of filters is reduced by 60% in each
block. For the large-scale experiments, the exact
architecture has been used.

Pretraining. Following the previous work for
consistency, we apply pretraining. Specifically,
for CIFAR datasets, we have pretrained the mod-
els on CIFAR-100. For Lacuna, we have pre-
trained the models on Lacuna-100. We pretrain
the models for 30 epochs using SGD with a fixed
learning rate of 0.1, Cross-Entropy loss function,
weight decay 0.0005, momentum 0.9, and batch

size 128.

Baselines. ‘Original’ is the model trained on the entire dataset D. For ‘Retrain’, we train the same
architecture on Dr, with the same hyperparameters used during training of the original model. For
‘Finetune’, we fine-tune the ‘original’ model on Dr for 10 epochs, with a fixed learning rate of 0.01
and weight-decay 0.0005. For ‘NegGrad+’, we fine-tune the ‘original’ model using the following
loss:

L(w) = β × 1

|Dr|

|Dr|∑
i=1

l(f(xi;w), yi)− (1− β)× 1

|Df |

|Df |∑
j=1

l(f(xj ;w), yj) (4)

Where β ∈ [0, 1]. We have tuned β to get a high forget-error while not destroying retain-error and
validation-error. For small-scale experiments, β = 0.95 and we have trained for 10 epochs, with
SGD, 0.01 lr and 0.1 weight-decay. For large-scale experiments β = 0.9999 and we have trained for
5 epochs, with SGD, 0.01 lr, and 0.0005 weight-deay. Please note that small β result in explosion
quickly. For ‘CF-k’, we freeze the first k layers of the network and finetune the rest layers with
Dr. We use the same setting as ‘Finetune’ baseline. For ‘EU-k’ we freeze the first k layers, and
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model dataset unlearning-type forget-set bs retain-set bs max steps min steps

ResNet

CIFAR-10 class 512 128 2 3
CIFAR-10 selective 16 64 5 5
Lacuna-10 class 128 128 5 5
Lacuna-10 selective 32 32 4 4
CIFAR-5 selective 32 32 10 10
Lacuna-5 selective 32 32 5 10

All-CNN

CIFAR-10 class 512 256 3 4
CIFAR-10 selective 16 64 5 5
Lacuna-10 class 32 32 4 4
Lacuna-10 selective 8 32 2 4
CIFAR-5 selective 16 32 5 10
Lacuna-5 selective 32 32 5 10

Table 3: SCRUB’s hyperparameters for each experiment

re-initialize the weights of the remaining layers and retrain them with Dr. As all the models are
pretrained on larger datasets, for re-initializing we use the weights of the pretrained models. For
‘EU-k’ we use the same settings as the ‘Retrain’ baseline. In both ‘EU-k’ and ‘CF-k’ baselines, for
both ResNet and All-CNN we freeze all the layers except for the last block of the network. For
Resnet the last block is block4 and for All-CNN, the last block of layers is the 9th sequential block.
For Bad-T, we follow the specifications given in Chundawat et al. [2022] with possible tuning of
the parameters in different settings to get the highest forget-error without damaging retain-error.
More specifically, for all models we perform one epoch of unlearning using Adam optimizer, and a
temperature scalar of 4. Also, we use the whole retain-set compared to 30% reported in their paper as
we empirically observed that using only 30% of retain-set for Bad-T yields high test errors.

Algorithm 3 DO-MIN-EPOCH

Require: Student weights wu

Require: Learning rate ε
Require: Batch size B
Require: Retain set Dr

Require: Procedure NEXT-BATCH
b← NEXT-BATCH(Dr,B)
repeat
wu ← wu− ε∇wu

1

|b|
∑

(xr,yr)∈b

αd(xr;w
u)+

γl(f(xr;w
u), yr)

b← NEXT-BATCH(Dr,B)
until b

SCRUB pseudocode and parameters. We
train SCRUB using Algorithm 1. Throughout
the experiments, we tune the parameters to get a
high forget-error while retaining the retain and
validation error of the original model. We use
the same optimizer for both min and max steps.
We observed that for small-scale settings ‘Adam’
optimizer works better, while in large-scale set-
tings both ‘Adam’ and ‘SGD’ could be used. For
all experiments, we initialize the learning rate at
0.0005 and decay it by 0.1 after a number of min
and max steps. Decaying the learning rate is cru-
cial to control the oscillating behaviour of our
min and max optimization. We apply a weight
decay of 0.1 for small-scale setting and 0.0005
for large scale experiments, with a momentum
of 0.9. Finally, we use different batch sizes for
the forget-set and the retain-set to control the

number of iteration in each direction, i.e the max and the min respectively. We report these in Table 3.

System specification. For scale-up experiments, the code is executed in Python 3.8, on an Ubuntu
20 machine with 40 CPU cores, a Nvidia GTX 2080 GPU and 256GB memory.

10 Formal Description of Metrics

In this section, we give more details and mathematical definitions of the metrics that we use throughout
the paper. We first mathematically define the forget, retain and test errors, and then other application-
dependent metrics, for Resolving Confusion (RC) and User Privacy (UP).
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Forget, retain and test errors Here, we define the retain error, forget error and test error. Let Dr,
Df and Dt denote the retain and forget portions of the training dataset, and a test dataset of heldout
examples, respectively. We define error (Err) as follows:

Err(D) = 1− 1

|D|
∑

(xi,yi)∈D

1[argmax(f(xi;w)) == yi] (5)

where f , parameterized by w is the neural network model (comprised of a feature extractor followed
by a softmax classifier layer), argmax(f(xi;w)) is the label that the model thinks is most likely for
example xi, and 1[x] is the indicator function that returns 1 if x is True and 0 otherwise.

Based on the above, the retain error, forget error and test error are computed as Err(Dr), Err(Df )
and Err(Dt), respectively.

Metrics for Unlearning for Resolving Confusion (RC) We now define the class confusion metrics
inspired by Goel et al. [2022]. Specifically, we explore a scenario where the forget set has confused
labels (e.g. for two classes A and B, examples of A are labelled as B, and vice versa). The idea
here is that, because mislabelled examples are only present in the forget set, successful unlearning
(removing the influence of the forget set) would lead to a model that is not at all confused between
classes A and B.

In more detail, the setup we follow is: 1) We first mislabel some portion of the training dataset (we
mislabelled examples between classes 0 and 1 of each of CIFAR-5 and Lacuna-5 in our experiments),
2) train the ‘original model’ on the (partly mislabelled) training dataset (it has mislabelled examples
for classes 0 and 1 but correct labels for the remaining classes), 3) perform unlearning where the
forget set contains all and only the confused examples. Given this, the goal for the unlearning
algorithm is to resolve the confusion of the original model.

We consider the following metrics (using terminology consistent with Goel et al. [2022]). They are
presented in order of decreasing generality, and increasing focus on measuring degrees of confusion
between the two classes considered.

• Error (e.g. test error, retain error, forget error). This counts all mistakes, so anytime that an
example of some class is predicted to be in any other class, it will be counted. These are the
same metrics that we use for the rest of the paper (see Equation 5). For test and retain error,
lower is better, whereas for forget error, higher is better.

• Interclass Confusion IC-ERR (e.g. IC test error, IC retain error). This counts only
mistakes that involve examples from the confused classes A and B. Specifically, it counts
instances of any example of class A being predicted to be in any other class , and similarly
for class B. Compared to Error, this metric is more focused towards understanding the result
of the introduced confusion, since it only considers cases that relate to the confused classes.
A successful unlearning method would make no such errors, so lower is better for each of
IC test error and IC retain error.

• FGT-ERR (e.g. Fgt test error, Fgt retain error). This metric counts only misclassification
between the confused classes A and B. Here, a mistake of an example of class A (or B) being
predicted to be in class other than A or B will not be counted. Only mistakes of an example
of class A being predicted to be in class B, and vice versa, are counted. This is the most
focused metric that directly measures the amount of remaining confusion between the
two classes in question. A successful unlearning method would make no such errors, so
lower is better for each of Fgt test and Fgt retain.

More formally, Error is the same as defined in Equation 5. Let us now mathematically define IC-ERR
and FGT-ERR. We denote by Cw,D the confusion matrix for model parameterized by w on the dataset
D, and let DA denote the part of the dataset D that belongs to class A. So, for example DrA denotes
the part of the retain setDr that belongs to class A, and the entry Cw,D

A,B of the confusion matrix stores
the number of times that a sample belonging to class A was (mis)classified as belonging to class B in
the dataset D by the model parameterized by w. Then, we have:

IC-ERR(D, A,B;w) =

∑
k C

w,D
A,k +

∑
k′ C

w,D
B,k′

|DA|+ |DB |
(6)
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where k 6= A, k′ 6= B.

So, for example, the ‘IC test error’ column in our tables is computed via IC-ERR(Dt, 0, 1;w), where
Dt denotes the test set, and 0 and 1 are the two classes confused in our experiments. Analogously,
‘IC retain error’ is computed as IC-ERR(Dr, 0, 1;w)

Finally:
FGT-ERR(D, A,B;w) = Cw,D

A,B + Cw,D
B,A (7)

That is, FGT-ERR only measures the misclassification between the two confused classes A and B. So,
for example, the ‘Fgt test error’ in our tables is computed as FGT-ERR(Dt, 0, 1;w) and analogously
‘Fgt retain error’ is computed as FGT-ERR(Dr, 0, 1;w).

User Privacy (UP) Metrics Please see the next section for full details for each of the two Membership
Inference Attacks (MIAs) that we use and experimental results.

11 Membership Inference Attacks: Description and Additional Findings

As mentioned in our paper, we utilize two different MIAs: 1) a ‘Basic MIA’ that is similar to the ones
typically used in unlearning papers (but far from the state-of-the-art of MIAs used by privacy and
security colleagues), and 2) the first, to our knowledge, adaptation of the state-of-the-art LiRA attack
[Carlini et al., 2022] to the framework of unlearning (‘LiRA-for-unlearning’ MIA).

In this section, we use the term ‘target model’ to refer to the model that is being attacked and the
term ‘target example’ to refer to an example whose membership status (‘in’ or ‘out’) the attacker
tries to predict, based on the ‘behaviour’ (e.g loss value) of that example under the ‘target model’. In
both attacks that we consider, the target model is the unlearned model, and target examples are either
forget set (‘in’) or test set (‘out’) examples. The unlearning algorithm successfully defends an MIA if
the attacker can’t tell apart examples that were unlearned (forget set examples) from examples that
were truly never seen.

11.1 Basic MIA

Returning to our previous notation, let l(f(x;wu), y) denote the cross-entropy loss of the unlearned
model (a deep network f with weights wu) on example x with label y. We abbreviate this as l(x, y)
from now on; dropping the dependence on f and wu.

The attacker is a binary classifier that takes as input loss values, coming from either the forget set
Df or a held-out test set Dt, and predicts whether the example whose loss value was presented
was in the training set of the original model. We train this attacker via supervised learning on a
class-balanced labelled training set for this binary problem: Db

train = {(l(xi, yi), ybi )} where each xi
is an example coming either from Df or Dt, and its binary label ybi is defined as being 0, if xi ∈ Dt

and 1 if xi ∈ Df . Once the binary classifier attacker is trained, we use it to make predictions for a
held-out evaluation set of the binary problem: Db

eval = {(l(xi, yi), ybi )} that is also balanced between
examples coming from Df and Dt, but is disjoint from Db

train.

The attacker succeeds if it achieves high accuracy on Db
eval, meaning that it can tell apart examples

that were part of the original training set from those that weren’t, which marks a defeat for the
unlearning model in terms of this metric, since it has ‘left traces behind’ (in this case, in terms of
loss values) and leaks information about membership in the forget set. We consider that an optimal
defense against this MIA corresponds to a 50% attack accuracy; that is, no better than randomly
guessing whether an example had been trained on. In principle, the Retrain oracle should defend
optimally: it in fact did not train on the forget set, so the forget and test sets are simply two different
held-out sets for this model whose loss values should generally be indistinguishable from each other
if these sets are identically-distributed. We find in our experiments, presented in the main paper, that
SCRUB+R is able to defend this MIA comparably to Retrain, and outperforms the other baselines in
its ability to consistently do so.

Experimental details In practice, if the distribution of the forget set and the test set are very
different from each other, their loss values will be very distinguishable. This means that the binary
classifier can tell them apart easily, but without having truly learned to infer membership in the
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Figure 4: ROC curves for the strong LiRA-for-unlearning attack (Area Under the Curve (AUC) is
also reported in the legend, for each unlearning method). Different subplots correspond to different
target models (we trained the target unlearned model 5 times for each unlearning method, using
different random seeds, and different forget sets). Positives are examples in the forget set, and
negatives in the test set. A true positive means that the attacker correctly identified that an example
was forgotten, whereas a false positive means that it incorrectly predicted that a test example was
forgotten. We are primarily interested in the area of small False Positive Rate [Carlini et al., 2022]
and a good unlearning method is associated with a smaller True Positive Rate, i.e. fewer successes for
the attacker, especially in the region of interest. We observe that SCRUB(+R) defends the strong
LiRA-for-unlearning attack more successfully than the other baselines.

training dataset. This makes the attacker’s evaluation unreliable. To circumvent this problem, we
ought to pick the held-out test set from the same distribution. More specifically, if the forget set is
examples from the ‘cat’ class of CIFAR10 dataset, we use the same class for our held-out test set.

In our experiments, we clip the loss values to a range between [-400, +400] to remove anomalies.
Also, we use the default LogisticRegression() classifier of the Python’s scikit-learn library as our
attack model, and perform a cross-validation with 5 random splits. We report the average accuracy of
the evaluation part of each of the 5 folds as the MIA score. Ideally (for a perfect defense), this score
is closest to 50%, indicating that the attacker fails to tell apart the forget set from the test set.

We present additional results for the Basic MIA attack in Section 16.

11.2 LiRA-for-unlearning attack

In the standard privacy setting, the LiRA attacker [Carlini et al., 2022] trains a large number of
‘shadow models’ [Shokri et al., 2017], for which it controls which examples are in the training set
each time (by construction). To then predict the membership status of a ‘target example’, it estimates
two Gaussian distributions, using the shadow models: the distribution of confidences of that example
under shadow models that trained on it, and the distribution of its confidences under shadow models
that didn’t. Then, it computes the confidence of the target example under the target model and it
predicts that the target example was ‘in’ if the likelihood of the target confidence under the former
Gaussian is larger than that under the latter Gaussian.

Adapting LiRA to the framework of unlearning is not trivial, and we are not aware of this done in any
previous work. We propose the first, to our knowledge, adaptation of LiRA for unlearning. This
is a strong attack where we allow the attacker knowledge of the unlearning algorithm. Concretely, for
each shadow model, the attacker also produces a ‘shadow unlearned’ model by applying the given
unlearning algorithm several times, using a large number of forget sets (similar to Chen et al. [2021]).
Now, for each ‘target example’, this setup allows the attacker to estimate a different pair of Gaussians:
the distribution of (confidences of) that target example under models where it was forgotten, and as
before, under models where it was not seen. The attacker then computes the confidence of the target
example under the target model, and predicts the example was forgotten if its likelihood under the
former is larger than under the latter.
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Figure 5: Sensitivity of SCRUB to γ and α. To
create this plot, we ran SCRUB many times for dif-
ferent values of γ ([0.1, 0.5, 1, 2, 3]) and α ([0.1,
0.5, 1, 2, 3]). The x-axis is represents combinations
of these values. t-error, f-error and r-error refer to
test, forget and retain error, respectively. We find
that SCRUB is not very sensitive to these hyper-
parameters: the retain error remains low across
values, and there are several different settings to
these hyperparameters for which we can obtain the
desired results for test and forget errors too.

Experimental setup: overview We run our
LiRA-for-unlearning attack on selective unlearn-
ing on CIFAR-10, for the scenario where the
forget set has size 200 and comes from class 5.

Attacker: For the attacker, we first train 256
‘shadow original’ models on random splits of
half of the CIFAR-10 training set. Let D de-
note the original dataset. To train each shadow
model, we split D in half, and use one half to
as the ‘training set’ and the other half as the
‘test set’ of that particular shadow model. Then,
for each of these ‘shadow original’ models, we
run unlearning on 10K different forget sets (for
each unlearning method). Specifically, the for-
get set is a random subset of 200 examples of
class 5, sampled from the training set of the cor-
responding ‘shadow original’ model. After this
procedure, for every example in class 5, we se-
lect 256 associated shadow models when it was
not included in training, and 256 shadow models
when it was unlearned (i.e. it was in the forget
set). After this, the LiRA attack proceeds as
normal, where we take each in / out distribution
and apply a likelihood ratio test on an unknown
example to infer membership.

Defender: We next train the target model that
LiRA-for-unlearning will attack. For this, we
begin by training the ‘original’ model, on (a
random split of) half of D. Then, we apply the given unlearning algorithm on a randomly-sampled
forget set, which is a subset of the original model’s training set of size 200, coming from class 5, in
the same way as was done by the shadow models.

Implementation note We run this attack at a much larger scale than the remaining experiments of
the paper (we run 10K unlearning runs, on different forget sets, for each of the 256 ‘shadow original’
models). We do this because the strength of the attacker is heavily dependent on the number of
shadow original/unlearned models, and we wanted to benchmark our baselines against a very strong
attacker. Therefore, to allow better scaling, instead of implementing SCRUB+R as rewinding, we
implement it through filtering runs of SCRUB that don’t satisfy the condition of SCRUB+R that the
forget set error should be close to the validation error (where, as explained in the main paper, this
refers to the validation set that is constructed to have the same distribution as the forget set; containing
examples of only the same class as the one in the forget set). We used 0.1 as our threshold.

Computing the ‘confidence’ Consistent with [Carlini et al., 2022], the confidence of an example
(x, y) (where y denotes the ground-truth class label) is defined as softmax(f(x))[y]. In words, the
confidence is the softmax probability of the correct class. Following Carlini et al. [2022], we apply
logit-scaling to each confidence, to make their distributions Gaussian.

Conclusions and findings Figure 4 plots the ROC curve, showing the False Positive Rate and
True Positive Rate of the attacker, in log-log scale. Different subplots correspond to different target
unlearned models, each of which was trained with a different random seed, and different retain/forget
set split. A successful defense is associated with a smaller Area Under the Curve (AUC); meaning
fewer True Positives for the attacker. Carlini et al. [2022] however advocate that the AUC is not a
good indicator of the attacker’s strength and, instead, they argue that we should primarily consider the
region of the ROC curve associated with very small False Positive Rates. We observe that, especially
in that region, SCRUB(+R) is the strongest method in terms of defending our LiRA-for-unlearning
attack (and also we observe that SCRUB(+R) has the best AUC too). The improved NegGrad+
baseline that we also proposed in this paper is also a strong model in terms of defending this attack.

20



(a) Only max steps (Equation 1). (b) SCRUB with insufficient max steps.

(c) SCRUB with too many max steps. (d) SCRUB.

Figure 6: Illustration of training dynamics of SCRUB variants, on CIFAR-5 with a ResNet model.
Performing the right interleaving of min-steps and max-steps is important for achieving a good
balance between high forget error and low retain and validation errors.

We found that CF-k is not able to improve the privacy of the original model in most cases, while
EU-k can sometimes improve but only slightly, and not reliably.

Limitations To stay consistent with previous work on unlearning, as mentioned previously, we
turn off data augmentations. Consequently, the ‘original model’ (before unlearning is applied) has
overfitted more than a state-of-the-art CIFAR model would. Indeed, as can be seen from Figure 4,
the ‘Original’ model has poor privacy (the attacker has a high True Positive Rate). We note that this
is the first, to our knowledge, investigation of privacy of unlearning algorithms using strong MIAs,
and we hope that future work continues to investigate increasingly more realistic scenarios with
models closer to the state-of-the-art, and considers unlearning on original models of varying degrees
of privacy and generalization ability.

12 Ablations and Sensitivity Analysis

In this section, we illustrate the training dynamics of SCRUB and the importance of different design
choices. As a reminder, the student is initialized from the teacher and subsequently undergoes an
alternating sequence of max-steps and min-steps; the former encouraging the student to move far
from the teacher on the forget set, and the latter encouraging it to stay close to the teacher on the
retain set. We also found it useful to perform a sequence of additional min-steps after the alternating
sequence. We now explore the effect of these decisions.

First, we show that performing only max-steps, by optimizing Equation 1, is not a good solution.
Simply pushing the student away from the teacher on the forget set achieves forgetting but unfortu-
nately also hurts the retain and validation set performance (Figure 6a). Therefore, alternating between
max-steps and min-steps is necessary. However, it is important to find the right balance. For instance,
as seen in Figure 6b, performing too few max-steps leads to the unwanted consequence of the forget
error dropping. On the other hand, removing the final sequence of only min-steps is also harmful,
as shown in Figure 6c that trains for a larger number of epochs of an equal number of (alternating)
max-steps and min-steps without achieving a good balance at any point throughout the trajectory.
On the other hand, SCRUB (Figure 6d) achieves a good balance of high forget error and low retain
and validation error simultaneously. We also ablate the cross-entropy term in Equation 3, which
provides a small but consistent added protection against degrading performance in Figure 10. We
show additional examples of training dynamics (Figures 7, 8, 9).
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(a) Performing only max steps (Equation 1). (b) SCRUB with insufficient max steps.

(c) SCRUB with too many max steps. (d) SCRUB.

Figure 7: Illustration of training dynamics of SCRUB variants, on CIFAR-5 with All-CNN. Per-
forming the right interleaving of min-steps and max-steps is important for achieving a good balance
between high forget error and low retain and validation errors.

Table 4: Results for class-unlearning. Class-0 (400 examples) of Cifar-100 (40k examples). The
numbers are averaged over 3 runs.

Model Test error (↓) Retain error (↓) Forget error (↑) Basic MIA
mean std mean std mean std mean std

Original 35.84 0.76 0.07 0.02 0.00 0.00 61.67 16.20
Retrain 36.92 1.02 0.09 0.06 100.00 0.00 55.67 34.09

NegGrad+ 43.16 3.13 6.86 5.16 49.50 12.79 64.67 18.07
Bad-T@epoch1 44.14 1.84 8.78 2.08 63.83 24.64 61.67 20.57

Bad-T@epoch10 43.33 1.27 7.74 3.21 85.33 4.18 63.33 28.15
SCRUB+R 37.60 1.18 0.12 0.10 100.00 0.00 57.33 28.99

SCRUB 38.27 3.08 0.78 2.47 100.00 0.00 48.33 12.25

Finally, we also investigate the sensitivity of SCRUB’s results on the γ and α hyperparameters, in
Figure 5. We find that SCRUB is not very sensitive to these hyperparameters: the retain error remains
low across values, and there are several different settings to these hyperparameters for which we can
obtain the desired results for test and forget errors too.

13 Larger-scale Settings

In this section, we scale up to an even larger setting, by choosing a larger model and performing a
larger classification task. The experiments here are conducted on VGG16+BN with almost 138M
parameters, and CIFAR-100, with varying forget set sizes. The results are reported in Table 4 and
Table 5. Furthermore, for these experiments we train Bad-T for different number of iterations (recall
that Bad-T originally proposes 1 epoch of unlearning) to study if its performance would improve with
longer iterations. The results suggest that, again, SCRUB is consistently among the top performers
across all the metrics. Furthermore, the results show that longer iterations does not improve Bad-T in
any of the metrics.
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(a) Performing only max steps (Equation 1). (b) SCRUB with insufficient max steps.

(c) SCRUB with too many max steps. (d) SCRUB.

Figure 8: Illustration of training dynamics of SCRUB variants, on Lacuna-5 with ResNet. Performing
the right interleaving of min-steps and max-steps is important for achieving a good balance between
high forget error and low retain and validation errors.

(a) Performing only max steps (Equation 1). (b) SCRUB with insufficient max steps.

(c) SCRUB with too many max steps. (d) SCRUB.

Figure 9: Illustration of training dynamics of SCRUB variants, on Lacuna-5 with All-CNN. Per-
forming the right interleaving of min-steps and max-steps is important for achieving a good balance
between high forget error and low retain and validation errors.
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(a) CIFAR-5 with ResNet. (b) CIFAR-5 with All-CNN.

(c) Lacuna-5 with ResNet. (d) Lacuna-5 with All-CNN.

Figure 10: Effect of adding the cross-entropy loss in Equation 3. Dashed lines omit cross-entropy
while solid lines use it. We find that the addition of cross-entropy offers an additional protection to
maintaining the model’s performance during the unlearning procedure. This sometimes comes at
the cost of smaller forget set error, compared to the forget set error that would have been achieved if
cross-entropy was omitted from the loss.

Table 5: Results for selective unlearning. 10 examples from class-0 of Cifar-100 dataset.The numbers
are averaged over 10 runs.

Forget Size Model Test error (↓) Retain error (↓) Forget error (↑) Basic MIA
mean std mean std mean std mean std

10

Original 37.46 4.99 0.54 1.74 0.00 0.00 58.00 9.10
Retrain 37.54 5.24 0.57 1.84 19.00 15.81 45.00 19.04

NegGrad+ 45.98 6.79 11.64 12.02 44.00 11.15 55.00 23.88
Bad-T@epoch1 47.23 5.76 13.79 10.28 66.00 18.22 62.00 30.20

Bad-T@epoch10 47.09 5.65 13.80 9.79 96.00 8.07 77.00 17.25
SCRUB+R 38.40 4.70 0.69 2.07 40.00 13.33 61.00 17.59

SCRUB 38.18 4.78 0.48 1.44 45.00 13.60 56.00 19.76

20

Original 37.46 4.99 0.54 1.74 0.00 0.00 63.00 10.96
Retrain 37.74 5.31 0.56 1.77 19.50 12.00 49.00 11.47

NegGrad+ 45.56 7.00 11.14 12.57 47.00 9.89 67.50 13.94
Bad-T@epoch1 46.46 6.28 12.95 11.71 55.50 16.20 55.00 21.59

Bad-T@epoch10 45.88 5.70 12.03 9.44 92.00 10.25 70.00 10.87
SCRUB+R 38.39 4.63 0.68 2.00 23.00 8.70 49.50 11.68

SCRUB 38.29 4.61 0.49 1.42 29.00 16.28 54.50 18.54
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CIFAR-10 Lacuna-10

Model ResNet All-CNN ResNet All-CNN
class selective class selective class selective class selective

Finetune 3.8 3.09 3.33 3.03 1.7 2.03 2.16 2.00
Fisher 0.08 0.07 0.16 0.14 0.08 0.07 0.16 0.15

NegGrad+ 3.4 2.96 2.30 2.97 1.66 1.5 2.41 2.27
CF-k 3.55 3.17 3.37 2.91 3.42 3.20 3.27 3.11
EU-k 1.41 1.26 1.34 1.20 1.39 1.28 1.32 1.26
Bad-T 19.07 20.44 17.91 17.03 20.05 20.27. 16.32 16.02

SCRUB 7.84 7.41 6.36 5.33 2.17 1.95 2.81 2.48

Table 6: Scale-up factor: the fraction of the runtime of retrain from scratch over the runtime of each
given unlearning algorithm. That is, a scale-up value of X for an unlearning algorithm means that
that algorithm runs X times faster than retrain from scratch.

CIFAR-5 Lacuna-5

Model Test error (↓) Retain error (↓) Forget error (↑) Test error (↓) Retain error (↓) Forget error (↑)
mean std mean std mean std mean std mean std mean std

Retrain 24.9 2.5 0.0 0.0 28.8 5.9 5.8 0.4 0.0 0.0 4.8 3.4

Original 24.2 2.6 0.0 0.0 0.0 0.0 5.7 0.4 0.0 0.0 0.0 0.0
Finetune 24.3 2.4 0.0 0.0 0.0 0.0 5.6 0.3 0.0 0.0 0.0 0.0
Fisher 31.6 3.4 14.0 6.0 4.8 5.2 14.0 3.6 6.7 3.3 6.4 8.3
NTK 24.4 2.6 0.0 0.0 22.4 9.2 5.6 0.5 0.0 0.0 0.0 0.0

NegGrad+ 25.5 1.1 0.0 0.0 41.3 6.1 6.1 0.7 0.0 0.0 1.3 2.3
CF-k 22.6 1.9 0.0 0.0 0.0 0.0 5.8 0.4 0.0 0.0 0.0 0.0
EU-k 23.5 1.1 0.0 0.0 10.7 2.3 5.9 0.6 0.0 0.0 0.0 0.0
Bad-T 27.73 1.89 5.12 1.56 8.00 8.64 5.00 0.33 0.14 0.10 0.00 0.00

SCRUB 24.2 1.6 0.0 0.0 40.8 1.8 6.2 0.73 0.0 0.0 24.8 5.2

Table 7: Small-scale results with ResNet for the Removing Biases (RB) application. SCRUB is the
top-performer in terms of forgetting with minimal performance degradation.

14 Additional Results for Removing Biases (RB)

In this section, we provide the results for all scenarios we studied for the Removing Biases (RB)
application for ResNet and All-CNN, on both CIFAR and Lacuna, for both small-scale and large-scale,
for completeness, in Tables 7, 8, 9, 10, 11, 12.

CIFAR-5 Lacuna-5

Model Test error (↓) Retain error (↓) Forget error (↑) Test error (↓) Retain error (↓) Forget error (↑)
mean std mean std mean std mean std mean std mean std

Retrain 24.36 1.61 0.13 0.28 28.8 9.12 4.6 0.38 0.0 0.0 4.67 6.41

Original 24.08 1.86 0.17 0.38 0.0 0.0 4.53 0.47 0.0 0.0 0.0 0.0
Finetune 23.48 1.91 0.04 0.09 0.0 0.0 9.77 10.76 6.63 13.22 19.33 40.03
Fisher 42.64 6.56 31.83 10.47 15.2 16.83 52.53 13.87 51.09 14.54 39.33 40.43
NTK 24.16 1.77 0.17 0.38 13.6 8.29 4.47 0.47 0.0 0.0 3.33 4.68

NegGrad+ 26.07 1.21 0.56 0.49 36.00 10.58 5.27 0.76 0.14 0.12 12.00 13.86
CF-k 22.67 1.55 0.00 0.00 0.00 0.00 4.67 0.70 0.00 0.00 0.00 0.00
EU-k 25.87 0.64 3.23 1.69 8.00 6.93 5.20 0.20 0.00 0.00 0.00 0.00
Bad-T 25.87 1.80 9.68 0.45 10.67 4.99 8.87 0.66 2.32 0.79 0.00 0.00

SCRUB 23.88 1.78 0.08 0.12 40.8 8.2 3.87 0.72 0.0 0.0 25.33 4.13

Table 8: Small-scale results with All-CNN for the Removing Biases (RB) application. SCRUB is
the top-performer in terms of forgetting with minimal performance degradation.
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CIFAR-10 Lacuna-10

Model Test error (↓) Retain error (↓) Forget error (↑) Test error (↓) Retain error (↓) Forget error (↑)
mean std mean std mean std mean std mean std mean std

Retrain 14.72 0.16 0.0 0.0 100.0 0.0 2.87 0.34 0.0 0.0 99.75 0.56

Original 16.56 0.1 0.0 0.0 0.0 0.0 3.07 0.26 0.0 0.0 0.0 0.0
Finetune 16.41 0.09 0.0 0.0 0.0 0.0 3.02 0.37 0.0 0.0 0.0 0.0
Fisher 26.42 1.41 2.45 0.84 100.0 0.0 3.33 0.54 0.0 0.0 100.0 0.0

NegGrad+ 17.84 1.46 1.74 2.55 91.26 7.73 3.41 0.17 0.00 0.00 14.90 1.78
CF-k 15.31 0.12 0.00 0.00 0.03 0.01 2.89 0.22 0.00 0.00 0.00 0.00
EU-k 18.73 0.42 0.00 0.00 98.79 0.18 3.19 0.17 0.01 0.02 4.06 0.83
Bad-T 19.56 1.44 11.34 1.82 94.67 6.12 3.37 0.50 1.06 0.47 67.60 24.26

SCRUB 15.73 0.17 0.51 0.02 100.0 0.0 3.69 0.36 0.28 0.23 100.0 0.0

Table 9: Large-scale, class unlearning results with ResNet for the Removing Biases (RB) applica-
tion. SCRUB and EU-k are the top-performers in this setting in terms of forgetting with minimal
performance degradation. Note, however, that EU-k doesn’t perform strongly across the board and in
particular performs very poorly in selective unlearning (notice the contrast between EU-k’s forget
error between Figures 1a and 1b Fisher is also a top-performer in terms of forget error in this setting
too, but on CIFAR causes a large degradation in test error, as is often observed for this method.

CIFAR-10 Lacuna-10

Model Test error (↓) Retain error (↓) Forget error (↑) Test error (↓) Retain error (↓) Forget error (↑)
mean std mean std mean std mean std mean std mean std

Retrain 13.97 0.19 0.0 0.0 100.0 0.0 1.59 0.36 0.0 0.0 100.0 0.0

Original 15.56 0.25 0.0 0.0 0.0 0.0 1.56 0.33 0.0 0.0 0.0 0.0
Finetune 15.39 0.22 0.0 0.0 0.0 0.0 1.67 0.44 0.0 0.0 0.0 0.0
Fisher 27.4 2.28 3.66 1.03 99.0 0.0 1.78 0.29 0.0 0.0 89.0 0.0

NegGrad+ 17.87 0.31 0.58 0.13 87.22 1.67 1.63 0.17 0.00 0.00 6.56 1.13
CF-k 14.99 0.23 0.00 0.00 0.00 0.00 1.48 0.36 0.00 0.00 0.00 0.00
EU-k 15.30 0.69 0.13 0.14 100.00 0.00 1.74 0.45 0.00 0.00 77.19 39.51
Bad-T 16.98 0.40 5.84 0.43 81.93 3.50 2.56 0.09 0.37 0.18 38.65 36.80

SCRUB 15.06 0.14 0.12 0.03 100.0 0.0 2.0 0.4 0.0 0.0 100.0 0.0

Table 10: Large-scale, class unlearning results with All-CNN for the Removing Biases (RB) ap-
plication. SCRUB is the top-performer in terms of forgetting with minimal performance degradation.

CIFAR-10 Lacuna-10

Model Test error (↓) Retain error (↓) Forget error (↑) Test error (↓) Retain error (↓) Forget error (↑)
mean std mean std mean std mean std mean std mean std

Retrain 17.4 0.14 0.0 0.0 29.67 3.21 2.7 0.2 0.0 0.0 1.0 1.0

Original 17.36 0.14 0.0 0.0 0.0 0.0 2.73 0.15 0.0 0.0 0.0 0.0
Finetune 17.37 0.11 0.0 0.0 0.0 0.0 2.63 0.12 0.0 0.0 0.0 0.0
Fisher 21.23 0.27 2.88 0.54 3.0 2.65 3.1 0.35 0.0 0.0 0.0 0.0

NegGrad+ 22.7 0.6 4.1 0.5 53.7 6.8 4.7 0.2 0.9 0.1 13.0 1.0
CF-k 17.4 0.1 0.0 0.0 0.0 0.0 2.7 0.2 0.0 0.0 0.0 0.0
EU-k 21.8 0.2 0.4 0.6 23.7 3.5 2.9 0.1 0.0 0.0 0.0 0.0
Bad-T 23.47 1.57 14.53 1.65 34.67 1.70 7.30 2.20 3.26 1.83 0.33 0.47

SCRUB 18.04 0.2 0.0 0.0 70.33 4.16 3.0 0.0 0.0 0.0 4.67 3.06

Table 11: Large-scale, selective unlearning results with ResNet for the Removing Biases (RB)
application. SCRUB and NegGrad+ are the top-performers in terms of forgetting, though NegGrad+
has worse test performance than SCRUB in both cases. Note also that NegGrad+ isn’t as consistent
at forgetting across settings as SCRUB.
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CIFAR-10 Lacuna-10

Model Test error (↓) Retain error (↓) Forget error (↑) Test error (↓) Retain error (↓) Forget error (↑)
mean std mean std mean std mean std mean std mean std

Retrain 16.47 0.21 0.0 0.0 25.67 2.31 1.6 0.44 0.0 0.0 0.67 0.58

Original 16.43 0.08 0.0 0.0 0.0 0.0 1.53 0.31 0.0 0.0 0.0 0.0
Finetune 16.5 0.18 0.0 0.0 0.0 0.0 1.43 0.21 0.0 0.0 0.0 0.0
Fisher 21.39 1.22 4.0 1.44 13.0 11.27 1.87 0.21 0.01 0.02 0.0 0.0

NegGrad+ 21.36 0.34 3.23 0.37 45.33 2.89 2.77 0.25 0.40 0.07 8.67 0.58
CF-k 16.29 0.07 0.00 0.00 0.00 0.00 1.53 0.31 0.00 0.00 0.00 0.00
EU-k 17.62 0.61 0.11 0.11 0.33 0.58 1.83 0.47 0.00 0.00 0.00 0.00
Bad-T 22.43 0.37 10.13 0.15 1.67 1.25 4.90 2.10 1.34 1.20 0.67 0.94

SCRUB 16.55 0.11 0.0 0.0 29.33 3.21 2.07 0.31 0.0 0.0 1.67 0.58

Table 12: Large-scale, selective unlearning results with All-CNN for the Removing Biases (RB)
application. SCRUB and NegGrad+ are the top-performers in terms of forgetting, though NegGrad+
has worse test performance than SCRUB in both cases. Note also that NegGrad+ isn’t as consistent
at forgetting across settings as SCRUB, as can be seen in Figure 2

model Test error (↓) Retain error (↓) Forget error (↑) IC test error (↓) IC retain error (↓) Fgt test error (↓) Fgt retain error (↓)
mean std mean std mean std mean std mean std mean std mean std

Retrain 26.67 2.87 0.0 0.0 90.33 1.53 24.0 1.8 0.0 0.0 18.33 4.16 0.0 0.0

Original 41.0 2.09 0.0 0.0 0.0 0.0 56.0 3.04 0.0 0.0 92.0 7.94 0.0 0.0
Finetune 38.13 1.42 0.0 0.0 0.0 0.0 52.0 3.12 0.0 0.0 79.33 10.07 0.0 0.0

NegGrad+ 36.27 0.42 0.0 0.0 12.67 21.94 47.5 5.27 0.0 0.0 69.0 13.53 0.0 0.0
CF-k 39.6 1.64 0.0 0.0 0.0 0.0 54.83 2.02 0.0 0.0 85.33 7.02 0.0 0.0
EU-k 37.47 1.62 7.33 1.26 43.67 2.08 47.0 4.77 8.33 4.73 63.33 9.71 3.67 2.52
Fisher 44.8 2.36 21.33 3.45 32.0 11.53 51.5 7.47 26.33 9.5 79.0 3.61 20.0 7.94
NTK 32.6 2.51 0.0 0.0 60.33 0.58 37.5 4.0 0.0 0.0 52.0 10.58 0.0 0.0

SCRUB 25.93 3.13 1.08 0.52 96.0 1.73 19.0 3.91 0.0 0.0 19.67 7.51 0.0 0.0

Table 13: Results on CIFAR-5 with ResNet for the Resolving Confusion (RC) application. (Con-
fused class 0,1; 50-50 samples). SCRUB is the best-performer by far in terms of eliminating the
confusion via unlearning (see the IC error and Fgt error columns), while not hurting performance for
other classes (see e.g. the usual Error metrics in the first 3 groups of columns).

15 Additional Results for Resolving Confusion (RC)

We show the full results are in Tables 13, 14, 15, 16, 17, 18, 19, 20 for all settings. We observe that
across the board, SCRUB is a top-performer on this metric too (see the captions of the individual
tables for more details about performance profile).

16 Additional results for User Privacy (UP)

We present Basic MIA results for all settings in Tables 21, 22, 23, 24, 25, 26, 27, 28. We find that
SCRUB, especially equipped with its rewinding procedure, is able to consistently have a strong
defense against MIAs.

model Test error (↓) Retain error (↓) Forget error (↑) IC test error (↓) IC retain error (↓) Fgt test error (↓) Fgt retain error (↓)
mean std mean std mean std mean std mean std mean std mean std

Retrain 24.4 2.75 0.0 0.0 90.67 4.04 19.0 1.32 0.0 0.0 11.33 4.62 0.0 0.0

Original 37.07 4.67 1.5 2.6 5.67 9.81 49.0 4.77 6.0 10.39 80.67 12.58 6.0 10.39
Finetune 34.33 3.35 0.0 0.0 3.0 5.2 43.67 7.29 0.0 0.0 67.33 16.04 0.0 0.0

NegGrad+ 33.53 4.47 0.0 0.0 13.33 21.36 42.33 11.34 0.0 0.0 62.0 22.65 0.0 0.0
CF-k 36.13 4.21 0.0 0.0 0.33 0.58 47.83 5.8 0.0 0.0 76.33 14.43 0.0 0.0
EU-k 51.6 1.0 27.67 3.5 52.67 6.03 59.5 5.22 38.33 6.66 68.67 15.57 19.67 10.41
Fisher 51.93 2.95 35.17 3.92 31.0 11.53 56.83 8.69 31.67 14.01 78.33 15.53 17.67 11.5
NTK 32.2 2.84 0.75 1.3 43.33 14.15 36.67 4.07 3.0 5.2 54.33 9.02 3.0 5.2

SCRUB 25.0 3.14 0.0 0.0 93.33 2.52 26.0 4.44 0.0 0.0 18.0 11.14 0.0 0.0

Table 14: Results on CIFAR-5 with All-CNN for the Resolving Confusion (RC) application. (Con-
fused class 0,1; 50-50 samples). SCRUB is the best-performer by far in terms of eliminating the
confusion via unlearning (see the IC error and Fgt error columns), while not hurting performance for
other classes (see e.g. the usual Error metrics in the first 3 groups of columns).
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model Test error (↓) Retain error (↓) Forget error (↑) IC test error (↓) IC retain error (↓) Fgt test error (↓) Fgt retain error (↓)
mean std mean std mean std mean std mean std mean std mean std

Retrain 6.0 0.2 0.0 0.0 99.67 0.58 7.17 2.57 0.0 0.0 0.0 0.0 0.0 0.0

Original 27.07 3.33 1.67 0.88 4.33 1.53 57.5 6.26 6.67 3.51 108.0 14.18 6.67 3.51
Finetune 18.8 4.26 0.0 0.0 14.67 6.03 37.67 11.15 0.0 0.0 63.67 22.01 0.0 0.0

NegGrad+ 17.8 2.95 1.67 0.72 55.33 2.08 33.17 5.25 5.33 1.53 56.67 12.9 4.33 1.53
CF-k 22.27 4.31 0.08 0.14 10.67 5.03 46.33 10.97 0.33 0.58 81.67 23.01 0.33 0.58
EU-k 15.27 3.19 0.83 0.38 62.0 12.49 29.33 9.0 2.33 1.53 43.67 16.29 0.33 0.58
Fisher 35.87 3.33 17.75 3.78 27.33 3.79 60.0 5.27 31.0 7.94 109.0 14.53 30.0 7.0
NTK 14.53 5.22 0.0 0.0 51.67 23.18 27.17 11.3 0.0 0.0 43.33 25.32 0.0 0.0

SCRUB 8.47 1.17 0.33 0.14 96.0 1.0 11.33 3.82 1.33 0.58 9.33 1.53 1.33 0.58

Table 15: Results on Lacuna-5 with ResNet for the Resolving Confusion (RC) application. (Con-
fused class 0,1; 50-50 samples). SCRUB is the best-performer by far in terms of eliminating the
confusion via unlearning (see the IC error and Fgt error columns), while not hurting performance for
other classes (see e.g. the usual Error metrics in the first 3 groups of columns). NTK in some cases is
able to resolve confusion, but not consistently, and it also suffers from higher Test Error.

model Test error (↓) Retain error (↓) Forget error (↑) IC test error (↓) IC retain error (↓) Fgt test error (↓) Fgt retain error (↓)
mean std mean std mean std mean std mean std mean std mean std

Retrain 4.2 0.87 0.0 0.0 100.0 0.0 5.33 2.25 0.0 0.0 0.0 0.0 0.0 0.0

Original 25.47 2.32 5.75 5.63 20.33 25.74 56.17 4.93 23.0 22.54 105.67 8.08 23.0 22.54
Finetune 12.8 2.8 0.0 0.0 23.0 7.94 25.83 7.75 0.0 0.0 39.67 12.74 0.0 0.0

NegGrad+ 12.8 9.06 2.5 3.12 90.0 6.56 20.33 17.04 5.0 6.24 12.67 11.68 2.67 3.79
CF-k 21.27 1.63 0.58 0.8 9.33 0.58 47.0 4.58 2.33 3.21 82.67 10.12 2.33 3.21
EU-k 17.0 8.91 3.92 3.99 92.33 4.93 35.0 18.26 13.0 11.36 3.67 4.73 0.0 0.0
Fisher 49.6 4.73 39.25 7.45 40.0 9.54 57.67 10.79 42.33 11.59 88.67 11.68 29.67 16.86
NTK 12.87 6.63 2.83 4.91 72.33 12.06 25.5 17.88 11.33 19.63 35.67 24.03 10.0 17.32

SCRUB 3.87 0.7 0.0 0.0 100.0 0.0 4.33 1.26 0.0 0.0 0.0 0.0 0.0 0.0

Table 16: Results on Lacuna-5 with All-CNN for the Resolving Confusion (RC) application. (Con-
fused class 0,1; 50-50 samples). SCRUB is the best-performer by far in terms of eliminating the
confusion via unlearning (see the IC error and Fgt error columns), while not hurting performance for
other classes (see e.g. the usual Error metrics in the first 3 groups of columns).

model Test error (↓) Retain error (↓) Forget error (↑) IC test error (↓) IC retain error (↓) Fgt test error (↓) Fgt retain error (↓)
mean std mean std mean std mean std mean std mean std mean std

retrain 18.7 0.07 0.0 0.0 98.57 0.28 14.78 0.18 0.0 0.0 31.33 2.08 0.0 0.0

original 21.86 0.37 0.0 0.0 0.0 0.0 31.23 0.45 0.0 0.0 356.0 11.53 0.0 0.0
finetune 20.85 0.37 0.0 0.0 0.0 0.0 26.75 0.48 0.0 0.0 255.0 10.58 0.0 0.0

NegGrad+ 23.41 0.32 3.87 0.31 80.07 6.77 41.08 0.6 20.29 1.52 46.0 8.72 0.67 1.15
CF-k 20.93 0.38 0.0 0.0 0.0 0.0 27.27 0.76 0.0 0.0 267.33 16.17 0.0 0.0
EU-k 20.03 0.19 0.25 0.08 95.55 0.54 17.85 0.67 0.18 0.03 53.0 7.94 3.33 2.31

SCRUB 18.01 0.18 0.02 0.01 95.45 0.26 15.07 0.99 0.04 0.03 30.33 3.79 0.33 0.58

Table 17: Results on CIFAR-10 with ResNet for the Resolving Confusion (RC) application. (Con-
fused class 0,1; 2000-2000 samples).

model Test error (↓) Retain error (↓) Forget error (↑) IC test error (↓) IC retain error (↓) Fgt test error (↓) Fgt retain error (↓)
mean std mean std mean std mean std mean std mean std mean std

retrain 16.43 0.03 0.0 0.0 98.42 0.15 14.37 0.24 0.0 0.0 23.67 2.31 0.0 0.0

original 19.95 0.23 0.0 0.0 0.0 0.0 30.18 0.66 0.0 0.0 348.67 13.58 0.0 0.0
finetune 18.72 0.11 0.0 0.0 1.05 0.61 24.33 0.2 0.0 0.0 223.67 6.66 0.0 0.0

NegGrad+ 21.74 0.44 4.48 0.34 87.65 2.98 40.05 0.44 21.8 0.66 44.0 5.2 2.33 3.21
CF-k 19.31 0.23 0.0 0.0 0.0 0.0 27.45 0.61 0.0 0.0 294.0 4.36 0.0 0.0
EU-k 17.66 0.23 1.36 0.19 87.9 1.28 16.82 0.79 2.89 0.46 63.67 8.62 91.67 12.58

SCRUB 15.92 0.17 0.2 0.06 87.47 1.46 14.98 0.13 0.39 0.15 54.0 3.61 9.67 2.52

Table 18: Results on CIFAR-10 with All-CNN for the Resolving Confusion (RC) application.
(Confused class 0,1; 2000-2000 samples).
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model Test error (↓) Retain error (↓) Forget error (↑) IC test error (↓) IC retain error (↓) Fgt test error (↓) Fgt retain error (↓)
mean std mean std mean std mean std mean std mean std mean std

retrain 2.43 0.32 0.0 0.0 99.83 0.29 3.33 0.58 0.0 0.0 0.0 0.0 0.0 0.0

original 7.37 0.31 1.21 0.12 15.83 4.19 27.67 1.26 8.26 0.8 46.0 4.36 36.33 3.51
finetune 4.17 0.5 0.0 0.0 56.83 9.44 11.17 1.76 0.0 0.0 15.67 3.51 0.0 0.0

NegGrad+ 5.63 0.38 0.31 0.22 71.33 9.88 19.33 1.04 2.12 1.51 8.33 2.31 0.0 0.0
CF-k 5.4 0.4 0.07 0.06 33.83 3.33 17.33 1.76 0.45 0.39 27.67 3.51 2.0 1.73
EU-k 3.0 0.26 0.0 0.0 90.17 4.65 6.0 1.8 0.0 0.0 2.0 2.65 0.0 0.0

SCRUB 3.07 0.59 0.0 0.0 98.5 0.5 6.83 1.26 0.0 0.0 0.67 0.58 0.0 0.0

Table 19: Results on Lacuna-10 with ResNet for the Resolving Confusion (RC) application. (Con-
fused class 0,1; 200-200 samples).

model Test error (↓) Retain error (↓) Forget error (↑) IC test error (↓) IC retain error (↓) Fgt test error (↓) Fgt retain error (↓)
mean std mean std mean std mean std mean std mean std mean std

retrain 2.13 0.25 0.0 0.0 99.83 0.29 2.5 1.32 0.0 0.0 0.0 0.0 0.0 0.0

original 7.83 0.55 1.21 0.52 16.0 4.92 31.33 1.76 8.26 3.53 56.33 3.79 36.33 15.53
finetune 3.0 0.7 0.0 0.0 74.5 6.08 6.5 2.0 0.0 0.0 9.0 3.0 0.0 0.0

NegGrad+ 4.3 0.52 0.4 0.06 89.67 4.25 15.33 2.47 2.73 0.39 4.67 3.21 0.0 0.0
CF-k 5.27 0.47 0.11 0.07 33.33 1.61 18.5 2.29 0.76 0.47 31.33 3.51 3.33 2.08
EU-k 2.53 0.67 0.09 0.02 97.83 2.08 5.17 1.04 0.38 0.35 0.33 0.58 0.67 0.58

SCRUB 2.1 0.4 0.0 0.0 97.5 1.73 4.17 0.58 0.0 0.0 0.33 0.58 0.0 0.0

Table 20: Results on Lacuna-10 with All-CNN for the Resolving Confusion (RC) application.
(Confused class 0,1; 200-200 samples).

method Test error Forget error Retain error MIA
mean std mean std mean std mean std

Retrain 16.71 0.05 26.67 3.09 0.00 0.00 51.33 6.13

Original 16.71 0.07 0.00 0.00 0.00 0.00 68.67 3.09
Finetune 16.86 0.13 0.00 0.00 0.00 0.00 69.33 2.05

NegGrad+ 21.65 0.40 47.00 3.74 4.54 0.70 73.00 1.41
CF-k 16.82 0.03 0.00 0.00 0.00 0.00 69.67 1.89
EU-k 18.44 0.21 0.33 0.47 0.32 0.02 66.00 2.94
Bad-T 22.43 0.37 1.67 1.25 10.13 0.15 77.67 4.11

SCRUB 17.01 0.20 33.00 5.89 0.00 0.00 51.00 1.41
SCRUB+R 16.88 0.19 26.33 4.50 0.00 0.00 49.33 2.49

Table 21: Basic MIA for All-CNN architecture on CIFAR-10 for selective unlearning, for the User
Privacy (UP) application.

method Test error Forget error Retain error MIA
mean std mean std mean std mean std

Retrain 13.98 0.07 100.00 0.00 0.00 0.00 48.73 0.24

Original 15.70 0.09 0.00 0.00 0.00 0.00 71.40 0.70
Finetune 14.53 0.13 1.31 0.54 0.00 0.00 74.97 1.27

NegGrad+ 17.04 0.11 59.91 1.53 0.43 0.09 70.03 1.92
CF-k 15.72 0.06 0.00 0.00 0.00 0.00 72.93 1.06
EU-k 15.76 0.28 100.00 0.00 0.24 0.02 51.60 1.22
Bad-T 16.98 0.40 81.93 3.50 5.84 0.43 58.07 1.76

SCRUB 14.93 0.17 100.00 0.00 0.09 0.02 54.30 2.24
SCRUB+R 14.93 0.17 100.00 0.00 0.09 0.02 54.30 2.24

Table 22: Basic MIA for All-CNN architecture on CIFAR-10 for class unlearning, for the User
Privacy (UP) application.
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method Test error Forget error Retain error MIA
mean std mean std mean std mean std

Retrain 17.38 0.15 29.33 2.49 0.00 0.00 54.00 1.63

Original 17.41 0.15 0.00 0.00 0.00 0.00 65.33 0.47
Finetune 17.48 0.16 0.00 0.00 0.00 0.00 64.00 0.82

NegGrad+ 21.69 0.07 45.33 2.62 3.94 0.43 66.67 1.70
CF-k 17.53 0.19 0.00 0.00 0.00 0.00 65.00 0.00
EU-k 19.77 0.04 13.67 0.47 0.06 0.01 53.00 3.27
Bad-T 23.47 1.57 34.67 1.70 14.53 1.65 59.67 4.19

SCRUB 17.01 0.03 71.67 0.94 0.01 0.01 78.00 2.45
SCRUB+R 17.54 0.28 19.33 14.64 0.01 0.01 58.67 1.89

Table 23: Basic MIA for ResNet architecture on CIFAR-10 for selective unlearning, for the User
Privacy (UP) application.

method Test error Forget error Retain error MIA
mean std mean std mean std mean std

Retrain 14.69 0.10 100.00 0.00 0.00 0.00 49.33 1.67

Original 16.33 0.14 0.00 0.00 0.00 0.00 71.10 0.67
Finetune 15.10 0.16 0.33 0.17 0.00 0.00 75.57 0.69

NegGrad+ 17.41 0.09 61.00 1.14 0.44 0.05 69.57 1.19
CF-k 15.29 0.02 0.04 0.04 0.00 0.00 75.73 0.34
EU-k 17.05 0.07 97.48 0.28 0.05 0.01 54.20 2.27
Bad-T 19.56 1.44 11.34 1.82 94.67 6.12 54.33 0.31

SCRUB 15.33 0.06 100.00 0.00 0.08 0.01 52.20 1.71
SCRUB+R 15.33 0.06 100.00 0.00 0.08 0.01 52.20 1.71

Table 24: Basic MIA for ResNet architecture on CIFAR-10 for class unlearning, for the User Privacy
(UP) application.

method Test error Forget error Retain error MIA
mean std mean std mean std mean std

Retrain 1.50 0.08 0.33 0.47 0.00 0.00 52.00 2.16

Original 1.57 0.24 0.00 0.00 0.00 0.00 59.00 2.16
Finetune 1.40 0.16 0.00 0.00 0.00 0.00 57.33 3.30

NegGrad+ 3.60 0.14 14.33 1.25 0.87 0.07 51.00 1.63
CF-k 1.57 0.12 0.00 0.00 0.00 0.00 58.33 2.49
EU-k 3.90 1.47 0.00 0.00 0.76 0.63 52.00 3.56
Bad-T 4.90 2.10 1.34 1.20 0.67 0.94 67.67 6.94

SCRUB 1.67 0.19 0.00 0.00 0.00 0.00 57.67 0.94
SCRUB+R 1.67 0.19 0.00 0.00 0.00 0.00 57.67 0.94

Table 25: Basic MIA for All-CNN architecture on Lacuna-10 for selective unlearning, for the User
Privacy (UP) application.

30



method Test error Forget error Retain error MIA
mean std mean std mean std mean std

Retrain 1.67 0.09 100.00 0.00 0.00 0.00 55.67 2.62

Original 1.70 0.21 0.00 0.00 0.00 0.00 58.00 1.63
Finetune 1.67 0.27 0.00 0.00 0.00 0.00 56.33 1.25

NegGrad+ 2.00 0.00 14.27 0.74 0.00 0.00 54.33 2.05
CF-k 2.07 0.14 0.00 0.00 0.00 0.00 52.33 2.05
EU-k 4.15 1.22 62.08 44.26 0.81 0.53 52.67 3.68
Bad-T 2.56 0.09 38.65 36.80 0.37 0.18 63.33 2.49

SCRUB 1.96 0.34 100.00 0.00 0.00 0.00 50.33 2.62
SCRUB+R 1.96 0.34 100.00 0.00 0.00 0.00 50.33 2.62

Table 26: Basic MIA for All-CNN architecture on Lacuna-10 for class unlearning, for the User
Privacy (UP) application.

method Test error Forget error Retain error MIA
mean std mean std mean std mean std

Retrain 2.50 0.24 1.67 0.94 0.00 0.00 49.67 3.09

Original 2.53 0.25 0.00 0.00 0.00 0.00 56.67 1.70
Finetune 2.67 0.05 0.00 0.00 0.00 0.00 53.67 0.94

NegGrad+ 4.30 0.43 12.67 3.30 0.95 0.08 54.00 2.16
CF-k 2.47 0.25 0.00 0.00 0.00 0.00 56.00 0.82
EU-k 2.60 0.00 0.00 0.00 0.03 0.00 56.00 2.83
Bad-T 7.30 2.20 3.26 1.83 0.33 0.47 67.33 3.40

SCRUB 2.97 0.25 6.00 3.27 0.00 0.00 50.67 4.03
SCRUB+R 2.97 0.25 6.00 3.27 0.00 0.00 50.67 4.03

Table 27: Basic MIA for ResNet architecture on Lacuna-10 for selective unlearning, for the User
Privacy (UP) application.

method Test error Forget error Retain error MIA
mean std mean std mean std mean std

Retrain 2.52 0.19 100.00 0.00 0.00 0.00 55.00 2.94

Original 2.81 0.28 0.00 0.00 0.00 0.00 56.00 2.45
Finetune 3.04 0.19 0.00 0.00 0.00 0.00 54.67 1.25

NegGrad+ 2.74 0.26 9.48 0.64 0.00 0.00 53.67 4.03
CF-k 2.81 0.28 0.00 0.00 0.00 0.00 56.00 2.45
EU-k 2.48 0.14 7.71 2.52 0.00 0.00 54.33 3.09
Bad-T 3.37 0.50 67.60 24.26 1.06 0.47 58.00 2.94

SCRUB 3.26 0.38 99.90 0.15 0.07 0.05 54.33 2.49
SCRUB+R 3.26 0.38 99.90 0.15 0.07 0.05 54.33 2.49

Table 28: Basic MIA for ResNet architecture on Lacuna-10 for class unlearning, for the User Privacy
(UP) application.
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