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Abstract
This paper demonstrates how to recover causal
graphs from the score of the data distribution
in non-linear additive (Gaussian) noise models.
Using score matching algorithms as a building
block, we show how to design a new genera-
tion of scalable causal discovery methods. To
showcase our approach, we also propose a new
efficient method for approximating the score’s
Jacobian, enabling to recover the causal graph.
Empirically, we find that the new algorithm,
called SCORE, is competitive with state-of-the-
art causal discovery methods while being signif-
icantly faster.

1. Introduction
In this work, we focus on causal discovery from purely
observational data, i.e., finding a causal Directed Acyclic
Graph (DAG) underlying a given data set. This problem
is at the core of causality, since knowledge of the causal
graph support the prediction of the effect of interventions
(Peters et al., 2017; Schölkopf et al., 2021).

In general, the problem of causal discovery from obser-
vational data is ill-posed: there may be several generative
models with various causal structures that can produce the
same data distribution. Therefore, in order to make the
problem well-posed, we need to rely on extra assumptions
on the generative process. A popular solution is to assume
that the noise injected during the generation of each vari-
able is additive (see equation (1)). Under additional as-
sumptions on the link functions, it has been shown that such
model is identifiable from purely observational data (Peters
et al., 2014).

Many causal discovery algorithms maximize a suitable loss

1École Polytechnique Fédéral de Lausanne, Lausanne,
Switzerland 2Amazon, Tuebingen, Germany. Correspondence to:
Paul Rolland <paul.rolland@epfl.ch>, Francesco Locatello <lo-
catelf@amazon.com>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

function over the set of (DAGs). Unfortunately, solving
such problem using classical loss functions is known to be
NP-hard (Chickering, 1996). Therefore, recent methods
focused on heuristic approximations, e.g., by using a
greedy approach (PC, FCI (Spirtes et al., 2000; Zhang,
2008), GES (Chickering, 2002), CAM (Bühlmann et al.,
2014) and others (Teyssier & Koller, 2012; Larranaga
et al., 1996; Singh & Valtorta, 1993; Cooper & Herskovits,
1992; Bouckaert, 1992)), by expressing the problem as a
continuous non-convex optimization problem and applying
first-order optimization methods (GraNDAG (Lachapelle
et al., 2019), NOTEARS (Zheng et al., 2018)), or by using
Reinforcement Learning methods (RL-BIC (Zhu et al.,
2019), CORL (Wang et al., 2021)).

There are two distinct aspects that make the search over
DAGs difficult: the size of the set of DAGs, which grows
super-exponentially with the number of nodes, and the
acyclicity constraint. In order to reduce the impact of
these two difficulties, approaches called order-based meth-
ods (Teyssier & Koller, 2012) tackle the problem in two
phases. First, they find a certain topological ordering of
the nodes, such that a node in the ordering can be a parent
only of the nodes appearing after it in the same ordering.
Second, the graph is constructed respecting the topological
ordering and pruning spurious edges, e.g., using sparse
regression (Bühlmann et al., 2014). While the first step still
requires to solve a combinatorial problem, the set of per-
mutations is much smaller than the set of DAGs. Moreover,
once a topological order is fixed, the acyclicity constraint is
naturally enforced, making the pruning step easier to solve.

The method that we propose is an order-based one, where
the topological order is estimated based on an approxima-
tion of the score of the data distribution. The score of a
distribution with a differentiable probability density p(x)
is defined as the map∇ log p(x).1 We show that for a non-
linear additive Gaussian noise model, it is possible to iden-
tify leaves of the causal graph by analysing its entailed ob-
servational score. By sequentially identifying the leaves

1The term score has been used in the causality literature with
a different meaning. Classical works (Chickering, 2002) use this
term referring to the objective of an optimization problem yield-
ing the causal structure as solution. In this paper, the term score
means ∇ log p(x) as in the statistics literature (Wilks, 1962).
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of the causal graph, and removing the identified leaf vari-
ables, one can obtain a complete topological order with a
time complexity linear in the number of nodes. Classical
pruning techniques can then be used in order to obtain the
final graph. While the proposed algorithm is designed for
additive Gaussian noise models, we show that the main re-
quired ingredient for our method to work is the additive
structure of the model, rather than the noise type. Hence,
we expect similar methods to also be applicable to other
types of noise (i.e, non-Gaussian). Closest to our work is
LISTEN (Ghoshal & Honorio, 2018) which can be derived
as a special case of our framework in the linear setting as
described in the related work section.

In order to approximate the score of the data distribu-
tion from a sample, we exploit and extend recent work
on score matching and density gradient estimation (Li &
Turner, 2017). Score approximation methods from obser-
vational data have shown success in general machine learn-
ing tasks such as generative (Song & Ermon, 2019) and
discriminative models (Zimmermann et al., 2021), lead-
ing to increased interest in developing scalable and effi-
cient solutions. In particular, score-based generative mod-
els have shown state-of-the-art performance for image gen-
eration (Song & Ermon, 2019; Song et al., 2020b;a; Song &
Ermon, 2020). As much of the prior work on causal discov-
ery approaches has focused on leveraging machine/deep
learning (Lachapelle et al., 2019; Zheng et al., 2018; Zhu
et al., 2019; Wang et al., 2021) to provide a tractable ap-
proximation to an NP-hard problem, our work is especially
relevant to bridge the gap between provably identifying the
causal structure and leveraging advances in deep generative
models to scale to large sample sizes and high dimensions.

Hereafter, we summarize our contributions:

• We start by showing that, in the case of non-linear
additive Gaussian noise model, knowing the distribu-
tion’s score function is sufficient to recover the full
causal graph, and we provide a method for doing so.
Our approach enjoys a linear complexity in the num-
ber of nodes to identify the topological order and in-
troduces a new way of learning causal structure from
observational data. To the best of our knowledge, the
link between the score function and the causal graph
structure established in Lemmata 1 and 2 is not only
useful, but also novel.

• We propose a new method for estimating the score’s
Jacobian over a set of observations, exploiting and ex-
tending an existing method based on Stein’s identity,
which can be of independent interest. This method is
then used to design a practical algorithm for estimat-
ing the causal topological order.

• We finally evaluate our proposed algorithm on both

synthetic and real world data and show compet-
itive results compared to state-of-the-art methods,
while being significantly faster (10× faster than
CAM (Bühlmann et al., 2014) on 20 nodes graphs and
5× faster than GraN-DAG (Lachapelle et al., 2019) on
50 nodes). We also show that our method is robust to
noise misspecification and works well when the addi-
tive noise is non-Gaussian.

2. Related Work
Causal discovery for non-linear additive models Many
algorithms have been proposed in the past few years
for the specific problem studied in this work. GraN-
DAG (Lachapelle et al., 2019) aims to maximise the like-
lihood of the observed data under this model, and uses a
continous contraint for the acyclicity of the causal graph,
proposed in (Zheng et al., 2018), in order to use a contin-
uous optimization method to find a first order stationary
point of the problem. CAM (Bühlmann et al., 2014) fur-
ther assumes that the link functions fi in (1) also have an
additive structure. They first estimate a topological order
by greedily maximizing the data likelihood, and then prune
the DAG using sparse regression techniques.

In the scope of linear additive models, (Ghoshal & Hono-
rio, 2018) first proposed an approach to provably recover,
under some hypothesis on the noise variances, the causal
graph in polynomial time and sample complexity. Their ap-
proach can be seen as an order-based method, where the or-
dering is estimated by sequentially identifying leaves based
on an estimation of the precision matrix. In spirit, their
method is closely related to ours. For instance, if the link
functions fi in (1) are all linear, then the score of the joint
distribution of X is given by s(x) = −Θx, where Θ is
the precision matrix. Hence, the score’s Jacobian, which is
used in our algorithm to identify the causal graph, can be
seen as a non-linear generalization of the precision matrix,
which has shown success for identifying causal relations in
linear settings (Loh & Bühlmann, 2014).

While our work focuses on the identifiable non-linear ad-
ditive Gaussian noise model, other works target more gen-
eral non-parametric model, but must then rely on different
kinds of assumptions such as faithfulness, restricted faith-
fulness or sparsest Markov representation (Spirtes et al.,
2000; Raskutti & Uhler, 2018; Solus et al., 2021). These
works apply conditional independence tests, and learn a
graph that matches the identified conditional independence
relations (Spirtes et al., 2000; Zhang, 2008).

Score estimation In the scope of generative mod-
elling (Song & Ermon, 2019), the score function is learned
by fitting a neural network minimizing the empirical Fisher
divergence (Hyvärinen & Dayan, 2005). While performing
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well in practice, such method is quite computationally ex-
pensive and requires tuning of several training parameters.

For our purpose, we chose to instead minimize the ker-
nelized Stein discrepancy, since this approach provides a
close form solution, allowing fast estimation at all observa-
tions. In practice, such method performs similarly as score
matching while being much faster to compute. Asymptotic
consistency of the Stein gradient estimator, and its relation
to score matching were analyzed in (Barp et al., 2019).

3. Preliminaries
3.1. Causal discovery for non-linear additive Gaussian

noise models

Assume that a random variable X ∈ Rd is generated using
the following model:

Xi = fi(pai(X)) + εi, (1)

i = 1, . . . , d, where pai(X) selects the coordinates
of X which are parents of node i in some DAG. The
noise variables εi ∼ N (0, σ2

i ) are jointly indepen-
dent. The functions fj are assumed to be twice con-
tinuously differentiable and non-linear in every compo-
nent. That is, if we denote the parents paj(X) of Xj by
Xk1 , Xk2 , . . . , Xkl , then, for all a = 1, . . . , l, the function
fj(xk1 , . . . , xka−1 , ·, xka+1 , . . . , xkl) is assumed to be non-
linear for some xk1 , . . . , xka−1

, xka+1
, . . . , xkl ∈ Rl−1.

This model is known to be identifiable from observational
data (Peters et al., 2014), meaning that it is possible to re-
cover the DAG underlying the generative model (1) from
the knowledge of the joint probability distribution of X .
In the present work, we aim to identify the causal graph
from the score function ∇ log p(x), which has a one-to-
one correspondence with p(x). Hence, any model identi-
fiable from observational data will be identifiable from the
knowledge of the data score function.

3.2. Score matching

The goal of score matching is to learn the score function
s(x) ≡ ∇ log p(x) of a distribution with density p(x) given
an i.i.d. sample {xk}k=1,...,n. In this section, we present
a method developed in (Li & Turner, 2017) for estimating
the score at the sample points, i.e., approximating G ≡
(∇ log p(x1), . . . ,∇ log p(xn))T ∈ Rn×d.

This estimator is based on the well known Stein iden-
tity (Stein, 1972), which states that for any test function
h : Rd → Rd′ such that limx→∞ h(x)p(x) = 0, we have

Ep[h(x)∇ log p(x)T +∇h(x)] = 0, (2)

where ∇h(x) ≡ (∇h1(x), . . . ,∇hd′(x))T ∈ Rd′×d.

By approximating the expectation in (2) using Monte
Carlo, we obtain

− 1

n

n∑
k=1

h(xk)∇ log p(xk)T + err =
1

n

n∑
k=1

∇h(xk), (3)

where err is a random error term with mean zero, and which
vanishes as n → ∞ almost surely. By denoting H =
(h(x1), . . . ,h(xn)) ∈ Rd′×n and ∇h = 1

n

∑n
k=1∇h(xk),

equation (3) reads − 1
nHG + err = ∇h. Hence, by using

ridge regression, the Stein gradient estimator is defined as:

Ĝ
Stein
≡ arg min

Ĝ
‖∇h +

1

n
HĜ‖2F +

η

n2
‖Ĝ‖2F (4)

= −(K + ηI)−1〈∇,K〉, (5)

where K ≡ HTH, Kij = κ(xi, xj) ≡ h(xi)Th(xj),
〈∇,K〉 = nHT∇h, 〈∇,K〉ij =

∑n
k=1∇xkj κ(xi, xk) and

η ≥ 0 is a regularisation parameter. One can hence use
the kernel trick, and use the estimator (5) using any ker-
nel κ satisfying Stein’s identity, such as the RBF kernel as
shown in (Liu et al., 2016).

In the present work, we will exploit and extend this ap-
proach in order to obtain estimates of the score’s Jacobian
over the observations.

4. Causal Discovery via Score Matching
In this section, we will show how to recover the causal
graph from the score function ∇ log p(x) for a non-linear
additive model (1). We first design our proposed method
in the case where the additive noise is Gaussian, and then
discuss extensions to other types of noise.

4.1. Deduce the causal graph from the score of the data
distribution

Suppose that we have access to enough observational data
coming from an additive Gaussian noise model (1) so that
we can accurately approximate the score function of the
underlying data distribution. In order to extract information
about the graph structure from the score function, let us
write it in closed form for a model of the form (1). The
associated probability distribution is given by

p(x) =

d∏
i=1

p(xi|pai(x))

log p(x) =

d∑
i=1

log p(xi|pai(x))

= −1

2

d∑
i=1

(
xi − fi(pai(x))

σi

)2

− 1

2

d∑
i=1

log(2πσ2
i ).
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Thus, the score function s(x) ≡ ∇ log p(x) reads

sj(x) = −
xj − fj(paj(x))

σ2
j

+
∑

i∈children(j)

∂fi
∂xj

(pai(x))
xi − fi(pai(x))

σ2
i

.
(6)

An immediate observation from equation (6) is that, if j is
a leaf, then sj(x) = −xj−fj(paj(x))

σ2
j

. Since j /∈ paj(x),

we have that ∂sj(x)
∂xj

= − 1
σ2
j

, and hence, it holds that

Var
(
∂sj(x)
∂xj

)
= 0. The following Lemma shows that this

condition is also sufficient for j to be a leaf, providing a
way to provably identify a leaf of the graph from the knowl-
edge of the Jacobian of the score function.

Lemma 1. Let p be the probability density function of a
random variableX defined via a non-linear additive Gaus-
sian noise model (1), and let s(x) = ∇ log p(x) be the as-
sociated score function. Then, ∀j ∈ {1, . . . , d}, we have:

(i) j is a leaf⇔ ∀x, ∂sj(x)∂xj
= c, with c ∈ R independent

of x, i.e., VarX
[
∂sj(X)
∂xj

]
= 0.

(ii) If j is a leaf, i is a parent of j⇔ sj(x) depends on xi,

i.e., VarX
[
∂sj(X)
∂xi

]
6= 0.

Proof. (i) Equation (6) implies the ”⇒” direction as de-
scribed above.

We prove the other direction by contradiction. Suppose that
j is not a leaf and that ∂sj(x)∂xj

= c ∀x. We can thus write:

sj(x) = cxj + g(x−j),

where g(x−j) can depend on any variable but xj . By plug-
ging equation (6) in sj , we get

fj(paj(x))

σ2
j

+
∑

i∈children(j)

∂fi
∂xj

(pai(x))
xi − fi(pai(x))

σ2
i

=

(
c+

1

σ2
j

)
xj + g(x−j).

Let ic be a child of node j such that ∀i ∈ children(j),
ic /∈ pai. Such a node always exist since j is not a leaf,
and it suffices to pick a child of j appearing at last in some

topological order. We then have

∂fic
∂xj

(paic(x))
xic − fic(paic(x))

σ2
ic

− g(x−j)

=

(
c+

1

σ2
j

)
xj −

fj(paj(x))

σ2
j

−
∑

i∈children(j),i6=ic

∂fi
∂xj

(pai(x))
xi − fi(pai(x))

σ2
i

.

(7)

Now, due to the specific choice of ic, we have that the RHS
of (7) does not depend on xic (note that we are here speak-
ing about functional dependence on variables, not statisti-
cal dependence on a random variable). Hence, we have

∂

∂xic

(
∂fic
∂xj

(paic(x))
xic − fic(paic(x))

σ2
ic

− g(x−j)

)
= 0

⇒ ∂fic
∂xj

= σ2
ic

∂g(x−j)

∂xic
.

Since g does not depend on xj , this means that ∂fic∂xj
does

not depend on xj neither, implying that fic is linear in xj ,
contradicting the non-linearity assumption.

(ii) If j is a leaf, then, by equation (6), we have:

sj(x) = −
xj − fj(paj(x))

σ2
j

If i is not a parent of j, then ∂sj
∂xi
≡ 0, and hence we have

VarX
[
∂sj(x)
∂xi

]
= 0. On the other hand, if i is a parent of j,

then we have ∂sj
∂xi

(x) = 1
σ2
j

∂fj
∂xi

(paj(x)). Moreover, since

fj cannot be linear in xi,
∂fj
∂xi

(paj(x)) cannot be a constant,

and hence VarX
[
∂sj(X)
∂xi

]
6= 0.

Discussion: Lemma 1 shows that, for non-linear additive
Gaussian noise models, leaf nodes (and only leaf nodes)
have the property that the associated diagonal element in
the score’s Jacobian is a constant. This hence provides a
way to identify a leaf of the causal graph from the knowl-
edge of the variance of the score’s Jacobian diagonal el-
ements. By repeating this method and always removing
the identified leaves, we can estimate a full topological or-
der. This procedure is summarized in Algorithm 1. In the
following section, we present a new approach, exploiting
Stein identities, to compute estimates of the score’s Jaco-
bian over a set of samples.

Note that the use of empirical variance to identify identi-
cally 0 function ∂sj

∂xj
is not necessary. However, we did
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not find any empirical benefit when using other deviation
measures, such as the average distance to the median for
example.

DAG pruning. Once a topological order is estimated, the
DAG becomes constrained to be a sub-graph of a certain
fully connected DAG. However, it is necessary to prune
this fully connected DAG to remove spurious edges. In
theory, it would be possible to make use the learnt score
for this purpose, by using property (ii) of Lemma 1. How-
ever, more classical methods such as CAM appears to per-
form better in practice. The idea behind CAM is to assume
that the link functions fi in (1) have an additive structure.
We then perform sparse regression on each component and
use hypothesis testing for additive models (Marra & Wood,
2011) to decide upon existence of edges. For further details
about this pruning technique, please refer to the original pa-
per (Bühlmann et al., 2014).

Algorithm 1 SCORE-matching causal order search

Input: Data matrix X ∈ Rn×d.
Initialize π = [], nodes = {1, . . . , d}
for k = 1, . . . , d do

Estimate the score function snodes = ∇ log pnodes
(for example using Algorithm 1).
Estimate Vj = VarXnodes

[
∂sj(X)
∂xj

]
.

l← nodes[arg minj Vj ]
π ← [l, π]
nodes← nodes− {l}
Remove l-th column of X

end for
Get the final DAG by pruning the full DAG associated
with the topological order π.

4.2. Approximation of the score’s Jacobian

The Stein gradient estimator Ĝ
Stein

enables us to estimate
the score function point-wise at each of our sample points.
However, according to the previous section, what we need
for identifying the graph is an estimate of the Jacobian of
the score at all samples, in order to estimate its variance.
Since we do not have a functional approximation of the
score, we cannot use tricks such as auto-differentiation in
order to obtain higher order derivative approximations. In
this section, we extend the ideas of Stein based estimator to
obtain estimates for the score’s Jacobian.

For this purpose, we will use the second-order Stein iden-
tity (Diaconis et al., 2004; Zhu, 2021). Assuming that p
is twice differentiable, for any q : Rd → R such that
limx→∞ q(x)p(x) = 0 and such that E[∇2q(x)] exists, the
second-order Stein identity states that

E[q(x)p(x)−1∇2p(x)] = E[∇2q(x)], (8)

which can be rewritten as

E[q(x)∇2 log p(x)]

= E[∇2q(x)− q(x)∇ log p(x)∇ log p(x)T ].
(9)

Recall that, in order to identify a leaf of the causal graph,
we are only interested in estimating the diagonal elements
of the score’s Jacobian at the sample points, i.e., J ≡
(diag(∇2 log p(x1)), . . . , diag(∇2 log p(xn)))T ∈ Rn×d.
Using the diagonal part of the matrix equation (9) for vari-
ous test functions gathered in h : Rd → Rd′ , we can write

E[h(x)diag(∇2 log p(x))T ]

= E[∇2
diagh(x)− h(x)diag((∇ log p(x)∇ log p(x)T ))],

(10)

where (∇2
diagh(x))ij = ∂2hi(x)

∂x2
j

. By approximating the ex-
pectations by an empirical average, we obtain, similarly as
in (3),

1

n

n∑
k=1

h(xk)diag(∇2 log p(xk))T + err

=
1

n

n∑
k=1

(
∇2

diagh(xk)

−h(xk)diag
(
∇ log p(xk)∇ log p(xk)T

))
.

(11)

By denoting H = (h(x1), . . . ,h(xn)) ∈ Rd′×n and
∇2

diagh ≡ 1
n

∑n
k=1∇2

diagh(xk), equation (11) reads 1
nHJ +

err = ∇2
diagh− 1

nHdiag(GGT ). Hence, by using the Stein
gradient estimator for G, we define the Stein Hessian esti-
mator as the ridge regression solution of the previous equa-
tion, i.e.,

Ĵ
Stein
≡ (12)

arg min
Ĵ

∥∥∥∥ 1

n
HĴ +

1

n
Hdiag

(
Ĝ

Stein (
Ĝ

Stein)T)
−∇2

diagh
∥∥∥∥2
F

+
η

n2
‖Ĵ‖2F

= −diag
(

Ĝ
Stein (

Ĝ
Stein)T)

+ (K + ηI)−1〈∇2
diag,K〉,

(13)

where Kij = κ(xi, xj) ≡ h(xi)Th(xj), 〈∇2
diag,K〉 =

nHT∇2
diagh, 〈∇2

diag,K〉ij =
∑n
i=1

∂2κ(xi,xk)
∂xkj 2 and GStein is
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defined in (5). The regularisation parameter η lifts the
eigenvalues of the same matrix K as in the Stein gradient
estimator Ĝ

Stein
. We hence decide to use the same parame-

ter for both ridge regression problems.

Choice of kernel Estimating the score’s Jacobian with
the method above requires a choice of kernel κ. A widely

used kernel is the RBF kernel κs(x, y) = e−
‖x−y‖22

2s2 , which
has one parameter s called the bandwidth. This parameter
can be estimated from the data to be fitted, using the com-
monly used median heuristic, i.e., choosing s to be the me-
dian of the pairwise distances between vectors in X . This
estimation procedure even enjoys theoretical convergence
properties (Garreau et al., 2017). Note that, when using
Algorithm 2 for causal discovery in Algorithm 1, the ker-
nel lengthscale is re-computed each time a node is removed
from the data matrix X .

Algorithm 2 Estimating the Jacobian of the score

Input: Data matrix X ∈ Rn×d, regularisation parame-
ter η > 0.
s ← median({‖xi − xj‖2 : i, j = 1, . . . , n, xk =
X[k, :]}).

Compute Ĵ
Stein

using RBF kernel κs, regularisation pa-
rameter η and data matrix X based on (13).

Algorithm complexity Estimating the topological order
requires inverting d times an n×n kernel matrix, hence the
complexity is O(dn3) (and could be improved using, e.g.,
Strassen’s algorithm (Strassen, 1969)). Including the prun-
ing step, the final complexity is hence O(dn3 + dr(n, d))
where r(n, d) is the complexity of fitting a generalized ad-
ditive model using n data points in d dimensions. In com-
parison, the complexity of CAM isO(d2r(n, d)). The total
computational complexity of GraNDAG is not discussed
in (Lachapelle et al., 2019); it is difficult to specify it since
it depends on the number of iterations used in the Aug-
mented Lagrangian method, which may depend on the di-
mension and number of samples. However, GraNDAG is
particularly slow due the computation of the acyclicity con-
straint at each iteration, which requires computing the ex-
ponential of a d× d matrix, taking O(d3) operations.

In practice, in our method, the time for estimating the topo-
logical order is much smaller than the time for pruning it
(30% of the total time for (d, n) = (20, 1000) and 5%
of the total time for (d, n) = (50, 1000)). In compari-
son, CAM spends most of the time estimating the topolog-
ical order (more than 95% of the total time in all tested
scenarios). Hence, we expect the dominant term in our
method’s time complexity to be dr(n, d), thus improving
upon CAM’s complexity. Moreover, in the case where n

becomes very large, it is possible to use kernel approx-
imation methods to reduce the time complexity of our
method (Si et al., 2014).

4.3. Extension to non-Gaussian additive noise models

In the previous section, we exploited the structure of the
additive Gaussian noise model to deduce the causal graph
from the score function (1). Actually, the main ingredient
required in our analysis is the additive structure. Indeed, for
any additive noise model (including non-Gaussian noise),
the score function has a similar structure as in (6).

Lemma 2. Suppose that the random variable X is gen-
erated from (1) where the noise variables εi are i.i.d. with
smooth probability distribution function pε. Then, the score
function of X can be written as follows:

sj(x) =
d log pε

dx
(xj − fj(paj(x)))

−
∑

i∈children(j)

∂fi
∂xj

(pai(x))
d log pε

dx
(xi − fi(pai(x))).

(14)

The decomposition of the score’s components j into a com-
mon term d log pε

dx (xj − fj(paj(x))) and a term involving
only the parents of the node j is hence characteristic of
general additive noise models. Recall that our method
identifies leaves by identifying non-linearity in the com-
ponents of the score. When the common term is linear
in xj , as it is the case with Gaussian noise, the second
term is the only one carrying non-linearities, and the leaves
can hence be perfectly identified with this method (see
Lemma 1). However, intuitively speaking, even when the
noise is non-Gaussian, i.e., when the common term carries
non-linearities, the second term still carries non-linearities
proportionally to the number of parents of node j. Hence,
we may expect that the proposed algorithm can work in
the case of general additive models, even when the noise is
non-Gaussian. While this does not provide a formal iden-
tifiability statement, we will show in the experimental sec-
tion that our proposed method outperforms other state-of-
the-art algorithms on non-Gaussian additive models.

5. Numerical Experiments
We now apply Algorithm 1 with Algorithm 2 as score
estimator to synthetic and real-world datasets and com-
pare its performance to state-of-the-art methods, such as
CAM (Bühlmann et al., 2014), GraNDAG (Lachapelle
et al., 2019), SELF (Cai et al., 2018) and GES (Chick-
ering, 2002). Some other methods such as NOTEARS,
PC or FCI are omitted since they perform much worse
(Bühlmann et al., 2014; Lachapelle et al., 2019). Recent
work (Reisach et al., 2021) warned about the fact that sim-
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ulated data sometimes lead to scenari where a topologi-
cal order can simply be estimated by sorting the nodes
variances. In order to defend ourselves against this, we
randomly generate the noise variances in the generative
model, and show that the estimated order when sorting the
variance is much worse than the one estimated by Algo-
rithm 1. The code can be found in https://github.
com/paulrolland1307/SCORE/.

5.1. Synthetic data

We test our algorithm on synthetic data generated from a
non-linear additive Gaussian noise model (1). Mimick-
ing (Lachapelle et al., 2019; Zhu et al., 2019), we generate
the link functions fi by sampling Gaussian processes with
a unit bandwidth RBF kernel. The noise variances σ2

i are
independently sampled uniformly in [0.4, 0.8]. The causal
graph is generated using the Erdös-Rényi model (Erdös &
Rényi, 2011). For a fixed number of nodes d, we vary the
sparsity of the sampled graph by setting the average num-
ber of edges to be either d (ER1) or 4d (ER4). Moreover,
to test the robustness of the algorithm against noise type
misspecification, we also generate data with Laplace noise
instead of Gaussian noise. Additional experiments, using
Gumbel noise and scale free graphs (Barabási & Albert,
1999) can be found in Appendix A.

For each method, we compute the structural Hamming dis-
tance (SHD) between the output and the true causal graph,
which counts the number of missing, falsely detected or re-
versed edges, as well as the structural intervention distance
(SID) (Peters & Bühlmann, 2015) which counts the number
of interventional distribution which would be miscalculated
using the chosen causal graph.

For all order-based causal discovery methods, we always
apply the same pruning procedure, i.e., CAM with the same
cutoff parameter of 0.001. Moreover, we compute a quan-
tity measuring how well the topological order is estimated.
For an ordering π, and a target adjacency matrix A, we de-
fine the topological order divergence Dtop(π,A) as

Dtop(π,A) =

d∑
i=1

∑
j:πi>πj

Aij .

If π is a correct topological order forA, thenDtop(π,A) =
0. Otherwise, Dtop(π,A) counts the number of edges that
cannot be recovered due to the choice of topological order.
It hence provides a lower bound on the SHD of the final
algorithm (irrespective of the pruning method).

The results of the synthetic experiments are shown in Ta-
bles 1 to 6. The computed quantities are averages over
10 independent runs. We can see that, for sparser graphs
(ER1), our method performs similarly as the best method
CAM. However, for denser graphs (ER4), our method per-

forms better, and in particular seems to estimate a better
topological order, since the Dtop value is smaller. For 50
nodes graphs, the two best methods are CAM and ours,
which both perform similarly. Note that, in order to run it
within a reasonable time frame, we had to restrict the max-
imum number of neighbours, hence providing a sparsity
prior to the algorithm, which fits the correct graph in this
situation, since sparse Erdös-Renyi graphs usually do not
contain high degree nodes. Since we restricted the num-
ber of neighbours in the graph, the order finding part of
CAM does not yield a single topological order, hence we
could not compute Dtop in this setting. We also observe
that the topological ordering resulting from sorting the vari-
ances (VarSort) is much worse in general than with all other
methods, showing that finding a topological order for the
generated datasets is not a trivial task. Finally, we observe
that our method is quite robust to noise misspecification,
since the accuracy remains very similar for Laplace noise.

In terms of running time (Table 7), we see that our method
is significantly faster compared to the other competitive al-
gorithms CAM and GraN-DAG. Actually, most of the time
(95% for d = 50) is spent on pruning the final DAG using
CAM.

5.2. Real data

We now compare the algorithms on a popular real-world
dataset for causal discovery (Sachs et al., 2005) (11 nodes,
17 edges and 853 observations), as well as the pseudo-real
dataset sampled from SynTReN generator (Van den Bul-
cke et al., 2006) (Table 8). We can see that on Sachs, our
method matches the SHD of CAM while improving the
SID. On the SynTReN datasets, GraN-DAG seems to per-
form best, but the confidence intervals highly overlap.

6. Conclusion
In this work, we demonstrated a new connection between
score matching and causal discovery methods. We found
that, in the case of non-linear additive Gaussian noise
model, the causal graph can easily be recovered from the
score function. In addition to generative models, this pro-
vides a new promising application for score estimation
techniques. The proposed technique includes two modules:
one that evaluates the (Jacobian of the) score, and one that
prunes the final DAG given a topological order. Note that
any score matching or pruning method can be plugged in
to obtain a new practical algorithm.

Future work One focus of this work was to build a fast
algorithm for estimating a topological order, while avoid-
ing the combinatorial complexity of searching over per-
mutations, and the use of any heuristic optimization ap-
proaches. For this reason, we avoided using popular score

https://github.com/paulrolland1307/SCORE/
https://github.com/paulrolland1307/SCORE/
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Table 1: Synthetic experiment for d = 10 with Gaussian noise

ER1 ER4
SHD SID Dtop(π,A) SHD SID Dtop(π,A)

SCORE (ours) 1.1± 0.9 4.5± 5.3 0.4± 0.6 19.5± 2.9 35.0± 9.1 0.3± 0.3
CAM 1.7± 1.0 6.4± 4.2 0.4± 0.5 24.4± 3.1 45.2± 10.2 4.4± 3.2

GraN-DAG 1.5± 1.4 6.5± 7.2 − 22.2± 2.6 42.0± 6.2 −
SELF 8.4± 1.6 32.5± 7.6 − 37.2± 2.1 83.0± 5.2 −
GES 7.8± 2.7 32.5± 13.6 − 34.3± 3.0 78.9± 6.0 −

VarSort − − 1.9± 1.1 − − 9.7± 3.1

Table 2: Synthetic experiment for d = 20 with Gaussian noise

ER1 ER4
SHD SID Dtop(π,A) SHD SID Dtop(π,A)

SCORE (ours) 2.6± 1.9 9.9± 8.5 1.2± 1.7 47.5± 4.5 177.5± 11.6 3.1± 1.5
CAM 3.5± 1.6 14.3± 9.8 0.8± 1.0 54.2± 5.4 201.9± 29.0 13.6± 6.9

GraN-DAG 7.6± 4.2 31.6± 22.7 − 49.3± 4.5 211.4± 36.6 −
SELF 16.6± 2.1 89.9± 31.2 − 75.5± 1.6 336.8± 31.2 −
GES 17.7± 3.8 77.3± 30.5 − 67.4± 6.1 322.9± 21.7 −

VarSort − − 3.7± 1.6 − − 18.3± 6.7

Table 3: Synthetic experiment for d = 50 with Gaussian noise

ER1 ER4
SHD SID Dtop(π,A) SHD SID Dtop(π,A)

SCORE (ours) 10.4± 3.9 50.9± 32.9 3.9± 2.4 131.5± 7.5 1262± 110 16.3± 6.1
CAM 8.3± 2.9 53.7± 31.9 − 140.8± 5.5 1337± 94 −

GraN-DAG 20.2± 6.1 135.3± 45.9 − 140.8± 9.5 1432± 110 −
SELF 45.4± 3.5 326.6± 74.3 − 192.7± 3.2 2097± 103 −
GES 50.5± 4.2 233.5± 60.8 − 182.9± 7.3 2003± 105 −

VarSort − − 8.8± 3.0 − − 43.3± 9.7

Table 4: Synthetic experiment for d = 10 with Laplace noise

ER1 ER4
SHD SID Dtop(π,A) SHD SID Dtop(π,A)

SCORE (ours) 1.4± 0.8 4.5± 4.7 0.8± 0.7 19.6± 2.5 31.9± 7.9 0.2± 0.4
CAM 1.5± 1.3 6.1± 6.5 0.5± 0.5 24.4± 1.5 44.4± 8.1 1.5± 1.6

GraN-DAG 1.3± 1.4 4.4± 4.9 − 20.3± 2.7 39.3± 13.0 −
SELF 9.7± 2.5 33.4± 10.8 − 38.2± 1.8 86.9± 4.3 −
GES 8.9± 2.2 28.3± 12.0 − 33.7± 2.3 78.9± 7.4 −

VarSort − − 1.6± 1.3 − − 7.2± 2.3

Table 5: Synthetic experiment for d = 20 with Laplace noise

ER1 ER4
SHD SID Dtop(π,A) SHD SID Dtop(π,A)

SCORE (ours) 1.6± 1.2 6.8± 11.4 0.5± 0.9 48.0± 4.0 199.8± 21.4 4.9± 1.8
CAM 2.3± 1.4 10.0± 7.0 0.3± 0.5 52.4± 3.9 208.7± 17.5 11.6± 7.9

GraN-DAG 4.9± 2.1 27.5± 13.2 − 48.2± 3.8 198.3± 42.8 −
SELF 16.4± 3.6 87.5± 32.3 − 77.4± 2.2 349.5± 19.0 −
GES 17.7± 6.8 72.6± 25.5 − 69.7± 7.1 325.5± 28.3 −

VarSort − − 3.4± 2.0 − − 20.8± 4.5
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Table 6: Synthetic experiment for d = 50 with Laplace noise

ER1 ER4
SHD SID Dtop(π,A) SHD SID Dtop(π,A)

SCORE (ours) 11.0± 4.5 71.8± 50.2 4.0± 2.5 128.1± 7.9 1384± 131 19.8± 3.5
CAM 10.1± 3.4 66.1± 47.9 − 134.6± 7.2 1361± 136 −

GraN-DAG 21.9± 3.9 165.7± 46.2 − 138.3± 8.8 1603± 166 −
SELF 42.4± 2.9 361.4± 112.5 − 191.4± 2.9 2053± 110 −
GES 52.4± 7.7 292.2± 105.9 − 182.5± 7.2 2028± 120 −

VarSort − − 8.1± 4.2 − − 47.3± 8.7

Table 7: Run time (in seconds) comparison of the algo-
rithms on ER1. The first row corresponds to the time spent
for finding the topological order in our method. (∗) In order
to run CAM on 50 nodes within a reasonable time, we had
to use preliminary neighbour search while restricting the
maximum number of neighbours to 20 (Bühlmann et al.,
2014).

d = 10 d = 20 d = 50
SCORE order 3.3± 0.1 8.5± 0.8 31± 2.9

SCORE 6.3± 0.2 32.7± 6.7 257± 17
CAM 30.1± 3.7 313± 80 1143± 79(∗)

GraN-DAG 185± 26 357± 47 1410± 73

Table 8: Comparison of several algorithms on the real
world dataset Sachs and 10 datasets sampled from Syn-
TReN.

Sachs SynTReN
SHD SID SHD SID

SCORE 12 45 36.2± 4.7 193.4± 60.2
CAM 12 55 40.5± 6.8 152.3± 48.0

GraN-DAG 13 47 34.0± 8.5 161.7± 53.4

matching algorithms developed for score-based genera-
tive modelling in high-dimensions (Song & Ermon, 2020),
since re-training a neural network after each leaf removal
would be quite expensive in practice. Amortization (Löwe
et al., 2020) is a promising direction to alleviate this issue.

In addition, we would like to further study the application
of score matching causal discovery methods to generative
model other than additive (Gaussian) noise. Due to the one-
to-one correspondence between the score of a distribution
and its density function, it should be possible to recover
the graph from the score for any identifiable model. The
question is hence: How to read the graph from the score
function for a given model, and is there a universal way to
do it that encapsulates a large class of models?
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Loh, P.-L. and Bühlmann, P. High-dimensional learning
of linear causal networks via inverse covariance estima-
tion. The Journal of Machine Learning Research, 15(1):
3065–3105, 2014.
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A. Additional Experiments
We show here additional synthetic experiments. Tables 9, 10 and 11 show the result for additive noise model with Gumbel
noise on Erdös-Renyi graphs. Tables 12, 13 and 13 show the results for Gaussian noise with Scale-free graphs.

Table 9: Synthetic experiment for d = 10 with Gumbel noise

ER1 ER4
SHD SID Dtop(π,A) SHD SID Dtop(π,A)

SCORE (ours) 1.1± 1.2 4.5± 5.0 0.4± 0.5 21.7± 2.9 35.3± 7.4 0.3± 0.4
CAM 2.0± 1.5 6.1± 5.8 1.6± 0.8 27.2± 1.8 48.9± 9.0 3.8± 2.5

GraN-DAG 2.1± 1.9 9.7± 10.4 22.9± 3.2 43.2± 11.7
SELF 8.8± 2.7 37.0± 8.9 − 38.9± 1.2 85.9± 5.0 −
GES 7.6± 2.4 29.6± 11.5 − 34.9± 3.5 81.9± 5.3 −

VarSort 1.9± 0.8 8.2± 3.0

Table 10: Synthetic experiment for d = 20 with Gumbel noise

ER1 ER4
SHD SID Dtop(π,A) SHD SID Dtop(π,A)

SCORE (ours) 3.3± 2.6 12.0± 11.5 0.7± 0.9 52.9± 4.4 205.5± 35.5 5.1± 1.6
CAM 5.8± 1.5 24.6± 13.0 3.0± 2.0 57.1± 4.2 230.0± 39.3 10.7± 5.8

GraN-DAG 7.4± 2.5 29.2± 11.3 54.9± 4.3 239.5± 43.6
SELF 19.2± 2.1 96.2± 27.9 − 77.7± 1.4 342.9± 15.2 −
GES 19.0± 3.9 84.0± 32.7 − 72.7± 4.2 323.2± 28.5 −

VarSort 3.8± 1.7 20.8± 6.6

Table 11: Synthetic experiment for d = 50 with Gumbel noise

ER1 ER4
SHD SID Dtop(π,A) SHD SID Dtop(π,A)

SCORE (ours) 11.3± 4.6 68.2± 45.1 4.1± 2.5 132.6± 8.0 1390± 132 19.7± 3.4
CAM 11.0± 3.7 69.7± 48.8 − 141.1± 6.7 1350± 137 −

GraN-DAG 22.5± 4.2 167.1± 47.3 − 139.9± 7.0 1552± 143 −
SELF 46.3± 3.7 306.5± 41.1 − 193.3± 3.1 2100± 102 −
GES 51.0± 5.1 273.0± 57.9 − 182.1± 3.2 2012± 105 −

VarSort − − 8.8± 1.6 − − 45.5± 8.0

Table 12: Synthetic experiment for d = 10 with Gaussian noise on scale free graphs

SF1 SF4
SHD SID Dtop(π,A) SHD SID Dtop(π,A)

SCORE (ours) 0.3± 0.6 2.7± 5.8 0.1± 0.3 4.6± 1.7 21.5± 9.6 0.5± 0.9
CAM 0.4± 0.5 2.8± 3.6 0.3± 0.3 9.6± 2.0 40.4± 11.4 4.1± 1.6

GraN-DAG 1.4± 1.0 12.5± 9.7 − 4.7± 1.8 23.0± 7.3 −
SELF 10.4± 2.7 60.2± 16.2 − 26.8± 1.4 84.6± 3.6 −
GES 12.5± 3.3 57.2± 15.2 − 22.7± 4.1 76.6± 7.2 −

VarSort − − 2.8± 1.7 − − 7.0± 3.2
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Table 13: Synthetic experiment for d = 20 with Gaussian noise on scale free graphs

SF1 SF4
SHD SID Dtop(π,A) SHD SID Dtop(π,A)

SCORE (ours) 0.9± 0.9 13.8± 12.6 0.7± 0.6 17.5± 3.5 179.2± 23.8 3.6± 1.4
CAM 0.9± 0.9 12.9± 14.0 0.5± 0.4 26.4± 3.9 253.7± 28.8 4.6± 3.2

GraN-DAG 3.2± 1.9 25.5± 15.6 − 14.7± 4.0 168.0± 39.2 −
SELF 18.9± 2.9 245.7± 28.2 − 65.9± 2.6 369.2± 7.8 −
GES 23.6± 3.6 166.4± 47.6 − 60.0± 4.0 345.7± 11.4 −

VarSort − − 7.4± 2.5 − − 20.2± 7.2

Table 14: Synthetic experiment for d = 50 with Gaussian noise on scale free graphs

SF1 SF4
SHD SID Dtop(π,A) SHD SID Dtop(π,A)

SCORE (ours) 4.6± 2.4 132.6± 75.8 4.0± 1.0 68.3± 3.6 1724± 109 21.8± 5.0
CAM 3.6± 1.9 115.4± 72.6 − 85.3± 4.2 1935± 99 −

GraN-DAG 9.2± 3.3 281.8± 129.8 − 63.8± 9.7 1677± 118 −
SELF 57.6± 6.6 1780± 150 − 176.0± 4.0 2424± 16 −
GES 81.3± 8.8 1049± 174 − 167.6± 9.2 2289± 49 −

VarSort − − 21.0± 4.0 − − 73.0± 10.6


