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ABSTRACT

Deterministic policies are often preferred over stochastic ones when implemented
on physical systems. They can prevent erratic and harmful behaviors while be-
ing easier to implement and interpret. However, in practice, exploration is largely
performed by stochastic policies. First-order Bayesian Optimization (BO) meth-
ods offer a principled way of performing exploration using deterministic poli-
cies. This is done through a learned probabilistic model of the objective function
and its gradient. Nonetheless, such approaches treat policy search as a black-
box problem, and thus, neglect the reinforcement learning nature of the problem.
In this work, we leverage the performance difference lemma to introduce a novel
mean function for the probabilistic model. This results in augmenting BO methods
with the action-value function. Hence, we call our method Augmented Bayesian
Search (ABS). Interestingly, this new mean function enhances the posterior gradi-
ent with the deterministic policy gradient, effectively bridging the gap between BO
and policy gradient methods. The resulting algorithm combines the convenience
of the direct policy search with the scalability of reinforcement learning. We vali-
date ABS on high-dimensional locomotion problems and demonstrate competitive
performance compared to existing direct policy search schemes.

1 INTRODUCTION

The majority of policy gradient literature in Reinforcement Learning (RL), from traditional meth-
ods (Sutton & Barto, 2018) to contemporary actor-critic strategies (Schulman et al., 2017; 2015;
Haarnoja et al., 2018), employs stochastic policies for experience gathering. This is typically
achieved either by modeling policies as probability distributions or by injecting noise into the ac-
tions of deterministic policies (Lillicrap et al., 2015; Fujimoto et al., 2018). Having an algorithm
that explores effectively using only deterministic policies is preferable when these policies are de-
ployed on physical systems like robotics. Indeed, deterministic policies can prevent the erratic and
potentially damaging behavior of stochastic policies while being easier to implement and interpret.

To this end, Bayesian Optimization (BO) methods (Garnett, 2023) perform search directly in the
parameter space. BO has emerged as a powerful tool for the global optimization of black-box func-
tions, demonstrating its effectiveness across diverse landscapes and practical applications, such as
parameter tuning for machine learning algorithms (Turner et al., 2021; Cowen-Rivers et al., 2022),
robotics (Calandra et al., 2016; Muratore et al., 2021), and RL (Bruno et al., 2013). The strength
of BO lies in its two core components: (i) a probabilistic model of the objective function, which
usually takes the form of a Gaussian Process (GP) prior, and (ii) a sampling procedure that ex-
ploits this model to identify informative samples. However BO methods often struggle as the task
dimensionality increases since they require a prohibitive number of samples to build a global model.

Local Bayesian Optimization provides an intriguing solution to this challenge (Akrour et al., 2017;
Eriksson et al., 2019; Wang et al., 2020; Müller et al., 2021; Nguyen et al., 2022). By focusing on
specific regions within the search space, local BO improves the handling of the high-dimensional
spaces by promoting more targeted exploration and exploitation, thus reducing the number of eval-
uations needed to pinpoint optimal solutions. Consequently, there has been a recent upswing in
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efforts to scale BO to high-dimensional problems through the design of local schemes. However,
when applied to high-dimensional RL problems, these schemes fall short as they treat the policy
search problem as a black-box problem, and thus, use only the information of the policy return.
By doing so, they overlook the sequential nature of MDPs and discard potentially useful experience.

In this paper, we introduce a principled solution to this problem by building a novel RL-aware mean
function to enhance local BO methods. We leverage the performance difference lemma to inject
an action-value function into the GP prior of the objective function, thus, effectively incorporating
knowledge of past trajectories into our belief about the return of untested policies. We provide
a further theoretical ground for our approach by deriving a new bound on the impact of altering
deterministic policies on expected returns for Lipschitz MDPs. Then, we show that the posterior
gradient yielded by using our new mean function, corresponds to the deterministic policy gradient.
Thus, it bridges the gap between BO approaches and policy gradient methods.

The primary contribution of this work is a novel mean function that enhances GPs with the action-
value function. Additionally, we propose a fitness-aware adaptive scheme for aggregating multiple
Q-function approximators. Integrating these components into the Maximum Probability of De-
scent (MPD) framework (Nguyen et al., 2022) leads to the development of the Augmented Bayesian
Search (ABS) algorithm. ABS effectively unifies policy gradient and BO methods, capitalizing on
the scalability and sample-efficiency of RL, while also leveraging the principled exploration and
practicality offered by BO methods. We provide empirical evidence on the effectiveness of our
novel mean function, demonstrating that ABS surpasses previous BO schemes in high-dimensional
MuJoCO locomotion problems (Todorov et al., 2012).

2 PRELIMINARIES

2.1 REINFORCEMENT LEARNING

We consider Markov Decision Processes (MDPs) (Sutton & Barto, 2018) with a continuous bounded
state space S ⊂ Rm, a continuous action space A ⊆ Rd, stationary transition dynamics with
conditional density p(st+1|st, at) satisfying the Markov property, an initial state distribution ι, a
reward function r : S ×A → R and a discount factor γ. We denote by π : S → A a deterministic
policy mapping states into actions. Throughout this manuscript, we use only deterministic policies.

At each discrete time step t, from a given state st ∈ S, the agent takes an action at = π(st), receiv-
ing a reward r(st, at) and the new state of the environment s′ according to the dynamics p(.|st, at).
We denote by P (s → s′, t, π) the probability of being at state s′ after t transitions following pol-
icy π starting from s. We also denote ρπs (s

′) ≜
∑∞

t=0 γ
tP (s → s′, t, π) the improper discounted

state visitation density of s′ starting from s. By integrating over the initial state distribution ι, we
can deduce the improper discounted visitation measure dπ(s′) ≜

∫
S ρπs (s

′)ι(s)ds.

The action-value function Qπ describes the expected return after taking action a in the state s and
thereafter following policy π, i.e., Qπ(s, a) ≜ Es′∼ρπ

s ,a
′=π(s′) [r(s

′, a′)|a0 = a]. Given the action-
value function, we can derive the advantage function as Aπ(s, a) ≜ Qπ(s, a) − Qπ(s, π(s)). The
goal of RL is to optimize a policy πθ, parameterized by θ, with the goal of maximizing the expected
discounted policy return J(πθ) ≜ Es∼dπθ ,a=πθ(s) [r(s, a)] = Es∼ι [Q

πθ (s, π(s))].

To this end, a popular class of RL methods, known as actor-critic, leverages an additional parametric
approximation of the action-value function Qπθ

ϕ (Schulman et al., 2015; Haarnoja et al., 2018).
When restricting actor-critic methods to deterministic policies, a policy πθ can be updated using the
deterministic policy gradient, which changes its actions to maximize Qπθ (Silver et al., 2014):

∇θJ(πθ) = Es∼dπθ

[
∇aQ

πθ (s, a)
∣∣∣
a=πθ(s)

∇θπθ(s)

]
. (1)

2.2 INFORMATION MAXIMIZING BAYESIAN OPTIMIZATION

Bayesian Optimization (BO) is a sequential method for global optimization of black-box functions
when sample-efficiency is paramount. It builds a probabilistic model of the objective function,
often a Gaussian Process (GP), which is used by an acquisition function that guides the parameter
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space exploration. However, BO struggles with high-dimensional spaces as it requires a prohibitive
amount of data to build a global model of the objective function. To address these issues, local
BO methods have been developed (Nguyen et al., 2022; Müller et al., 2021; Eriksson et al., 2019;
Fröhlich et al., 2021). These methods constrain the search to a subspace of interest, circumventing
difficulty of modeling and finding promising candidates in high dimensional problems.

A recent development in the local BO methods is the introduction of Information Maximizing BO.
First introduced by Müller et al. (2021), and subsequently refined by Nguyen et al. (2022), these
methods rely on an acquisition function that seeks to maximize a local measure of information. By
considering a GP belief about the objective function J ∼ GP(m(x),K(x, x′)) with a differentiable
mean function m and a twice-differentiable covariance function K, we have that the joint distribu-
tion between the GP and its derivative is still a GP (Rasmussen, 2003). Hence, by conditioning on
a dataset of observations (X,Y ), the posterior distribution of the derivative at a point of interest θ
takes the form of a Gaussian distribution p

(
∇J(θ) | θ,X, Y

)
= N (µθ,Σθ), where

µθ ≜ ∇θm(θ) +∇θK(θ,X)K(X,X)−1
(
Y −m(X)

)
, (2)

Σθ ≜ ∇θK(θ, θ)−∇θK(θ,X)K(X,X)−1∇θK(X, θ). (3)

In Nguyen et al. (2022), the measure of information is taken to be the probability of descent at a
central point θ. Subsequently, an acquisition function α(z|θ,X, Y ) is developed to guide the explo-
ration towards an acquisition point z, such that adding (z, yz) to our observation dataset maximizes
the probability of descent at θ. The resulting BO algorithm, named MPD (Nguyen et al., 2022),
alternates between two steps. Starting from a central point θ, it uses the acquisition function α to
sequentially query multiple acquisition points z and observe their values yz until obtaining satisfy-
ing information about θ. Then, MPD uses the better-estimated gradient µθ to move along the most
probable descent direction νθ ≜ Σ−1

θ µθ to a new point θ′, and repeats this loop.

3 REINFORCEMENT LEARNING-AWARE BAYESIAN OPTIMIZATION

The mean function of a GP determines the expected value at a given point. In interpolating regions,
the posterior mean is largely influenced by observed data points due to significant correlation. Con-
versely, in extrapolating regions, the data’s influence is minimal, causing the posterior mean to revert
to the mean function. Despite its importance, this function has received little attention in BO liter-
ature, especially in RL applications where uninformative priors like constant functions are favored.
In this section, we leverage the MDP properties of the problem to build a better mean function.

3.1 ON THE SMOOTHNESS OF DETERMINISTIC POLICY RETURNS

First, we develop a new bound on the impact of altering deterministic policies on expected returns in
the particular case of Lipschitz MDPs (Pirotta et al., 2015). We assume that the implementation of
a policy πθ gives access to J(πθ), dπθ , and Qπθ . Given an alternative policy πx, our objective is to
accurately estimate its return J(πx)

1. The performance difference lemma (Kakade & Langford,
2002) can establish the relation between deterministic policies returns and the advantage function :

J(πx)− J(πθ) = Es∼dπx [Aπθ (s, πx(s))] = ⟨dπx(.), Aπθ (., πx(.))⟩. (4)

Direct application of this lemma to infer J(πx) is not feasible due to the need for dπx . However, by
reordering terms, we can express policy return as an estimable term plus an unknown residual.

J(πx) = J(πθ) + ⟨dπθ (.), Aπθ (., πx(.))⟩︸ ︷︷ ︸
Estimate

+ ⟨(dπx − dπθ )(.), Aπθ (., πx(.))︸ ︷︷ ︸
Residual

⟩. (5)

The following assumptions allow us to bind the residual term while using deterministic policies.
Assumption 3.1. An MDP is (Lr, Lp)-Lipschitz if for all s, s′ ∈ S and a, a′ ∈ A:

• |r(s, a)− r(s′, a′)| ≤ Lr(dS(s, s
′) + dA(a, a

′)),

• W (p(.|s, a), p(.|s′, a′)) ≤ Lp(dS(s, s
′) + dA(a, a

′)).
1The findings of this section are relevant to both parametric and non-parametric policies. Parametric nota-

tions are used for consistency throughout the paper.
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Assumption 3.2. A policy πx is Lπ-Lipschitz if for all s, s′ ∈ S :

• W (πx(s), πx(s
′)) ≤ Lπ(dS(s, s

′)).

Here, we denote by dS , dA the distances in S andA respectively. In this work, we take this distance
to be the Euclidean distance ∥.∥ and W to be the Wassertstein-2 distance on the space of measures.
Theorem 3.3. For an (Lr, Lp)-Lipschitz MDP operating with deterministic Lπ-Lipschitz policies,
and γLp(1 + Lπ) < 1, we bound the residual term for any policies πx and πθ as

|⟨dπx−dπθ , Aπθ (.|πx(.))⟩| ≤ C×sup
s
∥πx(s)−πθ(s)∥, where C ≜

2γLπLr (1 + Lπ)

(1− γLp(1 + Lπ))2
. (6)

The bound describes the worst-case value of the residual term. Theorem 3.3 extends the existing
bounds on the residual term (Kakade & Langford, 2002; Schulman et al., 2015) to our setting,
where both the policy and the dynamics are deterministic. Similarly, we extend this bound to the
case of linear policies and bounded state spaces as

|⟨dπx − dπθ , Aπθ (.|πx(.))⟩| ≤ C × sup
s
∥s∥∥x− θ∥. (7)

3.2 ADVANTAGE MEAN FUNCTION

Now, we construct a GP that models the policy return J over the space of parameters of deterministic
linear policies. To solve the policy search problem, we can query an oracle to obtain a noisy evalu-
ation Ĵ(πx) = J(πx) + ω of any point x, an empirical estimate of its discounted state distribution
d̂πx ≃ dπx , and the transitions of the corresponding trajectory. In order to construct such a model,
first, we roll out a central point θ and obtain estimates Ĵ(πθ) and d̂πθ . Then, we train a deep neural
network parameterized by ϕ to estimate the action-value function Q̂πθ

ϕ ≃ Qπθ . For any policy πx

parameterized by x, if sups ∥x − θ∥ is small enough, Theorem 3.3 and Equation (7) indicate that a
good prior on its return J(πx) is an estimate of the first term in Equation (5), i.e.

m̂ϕ(x) ≜ Ĵ(πθ) + Es∼d̂πθ

[
Âπθ (s, πx(s))

]
. (8)

Therefore, we advocate using m̂ϕ as a mean function for our GP, which we call Advantage Mean
Function. We emphasize that the advantage mean function m̂ϕ(x) for the policy return J(πx) de-
pends on the current central point θ. By using m̂ϕ, we leave the GP to model the residual term from
Equation (5), which can be viewed as a second-order term (Saleh et al., 2022), and the errors due to
empirical estimates and approximations. This is in contrast to the typical constant mean function,
which forces the GP to fit all the variations of the objective function. By plugging in the advantage
mean function in the posterior of the derivative µθ (Equation (2)), we unravel an interesting property.
Corollary 3.3.1. Given the mean function m̂ϕ(·), the mean of the gradient posterior at θ is

µθ = Es∼d̂πθ

[
∇aQ̂

πθ

ϕ (s, a)
∣∣∣
a=π(s)

∇θπθ(s)

]
+∇θK(θ,X)K(X,X)−1(Ĵ(X)− m̂ϕ(X)), (9)

where X ≜ {z1, z2, . . . , . . .} ∪ {θ1, θ2, . . .} denotes the set of policy parameters of the past ob-
servations, Ĵ(X) = {Ĵ(πx1

), Ĵ(πx2
), . . . } denotes the set of their noisy policy evaluations, and

m̂ϕ(X) = {m̂ϕ(x1), m̂ϕ(x2), . . . } denotes the mean function estimate of their policy return.

The mean of the gradient posterior, µθ, takes the form of the Deterministic Policy Gradient (Silver
et al., 2014), corrected by a factor that is proportional to the alignment of the advantage mean
function with the observed data points. Given that our objective function is the policy return, the
mean of the gradient posterior aims to get a closer correspondence with the actual deterministic
policy gradient, as compared to the estimate obtained by using only the estimator Q̂πθ

ϕ .

In Figure 1, we demonstrate the behavior of the acquisition function of MPD (Nguyen et al., 2022).
We observe its tendency to keep the acquisition points z in the immediate vicinity of the central
point θ effectively controlling ∥z − θ∥ and therefore the residual term of Equation (5). In conclu-
sion, the proposed mean function m̂ϕ integrates both zero-order (returns) and first-order (gradient)
observations into the BO framework, as hypothesized in (Müller et al., 2021), thereby seamlessly
bridging the gap between policy gradient and Bayesian Optimization methods.
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(a) t = 0: Observed only θ (star) (b) t = 1: Observed θ, z1 (white) (c) t = 2: Observed θ, z1, z2 (white)

Figure 1: Behavior of the acquisition function of MPD (Nguyen et al., 2022) augmented with the
advantage mean function (Equation (8)). The maximum of the acquisition function (blue dot) lies in
the direction of the mean of the gradient posterior at θ (star), i.e. µθ (violet line). The posterior cor-
rects the mean gradient∇θm̂ϕ (pink line) when the mean function m̂ϕ does not fit the observations.

4 ENHANCING Q-FUNCTION ESTIMATORS: EVALUATION & AGGREGATION

The mean function, depicted in Figure 1, steers the acquisition function in its search for points that
maximize the ascent probability at the central point θ. Equation (2) indicates that the same function
influences the computation of the descent direction. Consequently, the quality of the approximator
Q̂πθ

ϕ , embedded in the advantage mean function, is crucial for both exploration and exploitation.

Therefore, it is desirable for Q̂πθ

ϕ to generalize beyond observed trajectories. In this section, we
propose a criterion for estimating the quality of such approximators. Utilizing this criterion, we
further develop an adaptive strategy for aggregating the predictions of an ensemble of approximators.

4.1 EVALUATING Q-FUNCTION ESTIMATORS

In the existing literature (Fujimoto et al., 2018; Van Hasselt et al., 2016), the quality of a parametric
approximator Q̂πθ

ϕ is assessed by comparing its predictions to those obtained by an empirical esti-

mate Q̂πθ generated by rolling out the policy πθ. The weakness of this scheme is that it only uses
the trajectories collected by πθ, which cover only a subset of the state-action space.

To tackle this limitation, we leverage the performance difference lemma (Equation (4)). This prop-
erty indicates that given an action-value function Qπθ and the corresponding policy return J(πθ),
we can perfectly recover the policy return J(πx) of any actor πx, if dπx is also known.

In our setting, we roll out the policy corresponding to the central point θ to have access to an
empirical estimate Ĵ(πθ) and an approximator Q̂πθ

ϕ . Similarly, we roll out the policy corresponding

to any point x to get access to the sample estimates of Ĵ(πx) and d̂πx . Thanks to the performance
difference lemma (Equation (4)), we can use the error induced by Q̂πθ

ϕ as a measure of its quality :(
Ĵ(πθ) + Es∼d̂πx

[
Âπθ

ϕ (s, πx(s))
]
− Ĵ(πx)

)2
≜
(
m̃ϕ(x)− Ĵ(πx)

)2
. (10)

We emphasize that m̂ϕ relies on d̂πθ , while m̃ϕ leverages d̂πx to estimate the policy return J(πx).
This method evaluates Q̂πθ

ϕ on trajectories from policies other than πθ, allowing all available tra-
jectory data to be used for our approximator’s evaluation. This provides a more comprehensive
validation criterion, addressing the existing assessment scheme’s limitations.

4.2 ADAPTIVE AGGREGATION OF Q-FUNCTION ESTIMATORS

In our setting, we have access to the dataset D = {X, Ĵ(X), d̂π(X)} collected during the previous
iterations of the algorithm. It consists of the observation points X , their sample policy returns Ĵ(X),
and empirical discounted state occupation measures d̂π(X) ≜ {dπx1 , dπx2 , . . .}. Assuming a good
approximator Q̂πθ

ϕ , Equation (10) suggests m̃ϕ should serve as an effective predictor of J(πx).
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Algorithm 1 Rollout for one point
Require: Policy parameters x, observation dataset D = {}, replay buffer B = {}

1: if x is central then
2: Reset the optimizers of all critics
3: Reset the weights of least performing critic
4: end if
5: Collect Ĵ(πx) = J(πx) + ϵ, d̂πx , T̂ (πx) ≜ {st, at, rt, st+1}{t=1,...,H}

6: Update training data D ← D ∪ (x, Ĵ(πx), d̂
πx) replay buffer B ← B ∪ T̂ (πx)

7: Update the parameters of critics Q̂πθ

ϕ={ϕ1,...,ϕn} on B
8: Compute the weights of every critic according to Equation (12) using D
9: Fit the GP parameters on D and m̂Φ.

Therefore, to evaluate the quality of Q̂πθ

ϕ , we use the coefficient of determination of m̃ϕ on the
dataset D. This metric measures the percentage of variance in the data explained by our predictor :

R̃2(ϕ|θ,D) ≜ 1−

∑
x∈X

(
m̃ϕ(x)− Ĵ(πx)

)2
∑

x∈X

(
J̄(X)− Ĵ(πx)

)2 where J̄(X) ≜

∑
x∈X Ĵ(πx)

|X|
. (11)

Estimating Qπθ (s, a) requires rolling out trajectories τ(s, a;πθ) ≜ {s, a, s′, πθ(s
′), s′′, πθ(s

′′), . . .}.
These trajectories play the role of the training data to learn a good approximation Qπθ

ϕ (s, a). Hence,

we refer to R̃2(ϕ|θ,D) as the validation score since the trajectories τ(s, πx(s);πθ) for s ∼ dπx

used by m̃ϕ are not present in our training dataset. Similarly, we can define R̂2(ϕ|θ,D) for the
predictor m̂ϕ. The trajectories τ(s, πx(s);πθ) for s ∼ dπθ used by m̂ϕ are different from the
validation trajectories. Since m̂ϕ is used during inference, we refer to R̂2(ϕ|θ,D) as the test score.
We note that while a perfect Qπθ estimator can have a perfect validation score, it might not achieve
a perfect test score due to the residual term in Equation (5).

In our context, we deploy an ensemble of critics Q̂πθ

{ϕ1,...,ϕn}. We adopt the Follow The Regularised

Leader (FTRL) algorithm (Cesa-Bianchi & Lugosi, 2006) to construct an aggregated critic, Q̂πθ

Φ , via
softmax weighting of the predictions of each critic using its respective R̃2 score:

Q̂πθ

Φ (s, a) =

n∑
i=1

wiQ̂
πθ

ϕi
(s, a) where wi ≜

exp R̃2(ϕi|θ,D)∑n
j=1 exp R̃

2(ϕj |θ,D)
. (12)

We denote by m̂Φ the advantage mean function that uses the aggregate estimate Q̂πθ

Φ . Additionally,
we reset the optimizer of every critic when changing the central point θ because we are learning
the Q-function of a new policy. We also reset the weights of the worst-performing critic in order to
improve the general performance by avoiding the primacy bias (Nikishin et al., 2022). This resetting
also helps in decorrelating the predictions of each critic, and thus, reducing the variance of the
predictions. We illustrate this step in Algorithm 1 and describe the full BO scheme in Algorithm 2.2

Algorithm 2 Augmented Bayesian Search (ABS)
Require: central point θ, number of iterations N , number of acquisition points M , stepsize δ,

observation dataset D = {}, replay buffer B = {}
1: for i = 0, . . . , N do
2: Rollout the central point θ using Algorithm 1.
3: for j = 0, . . . ,M do
4: Query for an acquisition point z = argmaxz α(z|θ,D)
5: Rollout the acquisition point z using Algorithm 1.
6: end for
7: end for
8: Move in the direction of the most probable descent θ ← θ + δ × Σ−1

θ µθ

2The main BO loop of ABS can be seen as a simplified version of that of MPD. The only difference being
that MPD performs multiple descent steps and uses a constant mean, whereas our method uses the advantage
mean m̂ϕ, which depends on the current central point θ limiting us to one descent step.
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5 EXPERIMENTAL ANALYSIS

In this experimental analysis, we aim to answer the following questions: (I) Is our advantage mean
function a good prior on the policy return? (II) Does our advantage mean function improve the
efficiency of BO methods? (III) What role does our adaptive aggregation play?

5.1 IMPLEMENTATION DETAILS

For our Q-function estimator, we leverage the state-of-the-art ensemble method of DroQ networks
(Hiraoka et al., 2021) with default parameters. For our ensemble of critics we use 5 distinct
DroQ networks. After querying for an acquisition point z, we perform 5000 gradient steps to
the Q-function. For our covariance function we choose a squared exponential kernel SE(x, x′) =

σ2
f exp

∑
i≤d

∥x−x′∥2
2

σi
2 + σ2

nδx=x′ , where σf , σn, σi∈{1,...,d} are the signal variance, the observation
noise, and lengthscales for dimension i, respectively. We model the policy return as a GP over the
parameters of deterministic linear policies J(x) ∼ GP (mϕ(x), SE(x, x′)).

BO requires prior knowledge about the tasks in order to fix the hyperpriors for parameters, such as
the signal variance σf and the observation noise σn, adding more hyperparameters to the problem.
For our implementation of MPD and ABS, we rely on a heuristic to derive dynamic hyperpriors for
σf , σn from the observation data. This leaves us only to set the lengthscale hyperprior alleviating
the burden of tuning these parameters. We refer the reader to the Appendix A for further details.

We validate our contributions using MuJoCo locomotion tasks (Todorov et al., 2012). We use a
discount factor γ = 0.99 for all tasks, apart from Swimmer where it is γ = 0.995. For our
experiments, we use the state normalization scheme employed in (Mania et al., 2018; Nguyen
et al., 2022) where the states are normalized to a normal distribution using online estimates of
the mean and the variance. We have implemented ABS using Python 3.10 and Jax 0.4.20, we
run all of our experiments on a cluster of NVIDIA A100 40 GB GPU. Our code is available at
https://github.com/kallel-mahdi/abs.

5.2 RESULTS AND ANALYSIS

Goodness of Fit of the Advantage Mean Function. In Figure 2, we show the evolution of the
validation metric of the best critic in the ensemble R̃2, taking all the samples collected in the last 3
outer loop steps of Algorithm 2. We superpose to it the test metric R̂2 of the ensemble Q̂πθ

Φ over the
acquisition points sampled during the same step. This is done for 3 high-dimensional tasks of Mu-
JoCo (Todorov et al., 2012). We observe that the validation metric R̃2 remains consistently positive
with the validation predictor m̃Φ explaining on average approximately 50% of the variance observed
data. The test metric R̂2 manages also to be positive quite frequently, while being sometimes nega-
tive, meaning that our mean function m̂ϕ fails sometimes to explain the variance of policy return for
the acquisition points. However, this is not a big concern as we only need the mean function to be
able to identify one good direction of descent at a time and not be a perfect predictor for every point.
Similar to a validation and test error, we observe a positive correlation between both metrics and
that the validation error acts like an upper bound to its test counterpart as in the supervised setting.
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Figure 2: Evolution of the validation and test scores on some of the MuJoCo tasks. We plot the
results of a seed to facilitate the interpretation of our results. We provide the histogram and correla-
tions of these distributions in the Appendix.
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Figure 3: Evolution of the maximum discounted policy return on the MuJoCo-v4 tasks. We use 5
random seeds for every algorithm. We report the undiscounted returns in Figure 6 in the Appendix.

Performance of ABS in terms of Policy Return. We evaluate ABS against two baselines, namely,
MPD which is the current state-of-art of local BO methods (Nguyen et al., 2022) and Augmented
Random Search (ARS) (Mania et al., 2018), an evolutionary algorithm that estimates the gradient
of the noisy objective using random perturbations of the policy. In Figure 3, we see that ABS is
competitive with MPD and ARS in low-dimensional tasks. Notably, ABS consistently outperforms
the MPD demonstrating that the advantage mean function is helpful for local BO schemes. The rela-
tive performance of ABS improves in high-dimensional tasks, such as Walker2d and Ant, where the
curse of dimensionality makes it harder for ARS and MPD to identify promising descent directions,
whereas our mean function can focus the search on more promising regions of the parameter space.

Effectiveness of the Aggregation Scheme. We perform an ablation study to confirm the effective-
ness of our adaptive scheme for aggregating critics in Figure 4. First, we observe that an ensemble of
critics outperforms a single critic. We also notice that our strategy of adaptive aggregation (Equation
12) outperforms average ensembling. This is especially in the initial phases when transition data is
scarce and it is easy to have a poorly performing critic. Resetting the least performing critic im-
proves the performance of the ensemble, and its effect is more pronounced when it is combined with
our adaptive aggregation method. We explain this performance by the capability of our validation
metric to detect when the recently reset critic performs poorly and ignore its predictions.

To summarize, ABS, which can be viewed as MPD augmented with the advantage mean function
and the adaptive aggregation scheme consistently outperfoms the original MPD that uses the unin-
formative constant mean function. The advantage mean function can explain a fair portion of the
policy return of the observation points and hence represents a good prior. Our validation metric and
the consequent aggregation scheme are effective in dynamically selecting good critics.
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Figure 4: Ablation study: Effect of the adaptive aggregation on the performance of ABS. Combining
adaptive aggregation and resetting the worst critic outperforms all baselines.
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6 RELATED WORK

Several prior works applied a Bayesian view to reinforcement learning and policy gradient meth-
ods (Ghavamzadeh et al., 2016). However, in Bayesian Optimization, the majority of works treat
reinforcement learning as a black-box problem (Martinez-Cantin et al., 2007; Englert & Toussaint,
2016; Martinez-Cantin, 2018; Eriksson et al., 2019; Nguyen et al., 2022) and are oblivious to the
MDP properties. As an exception, Wilson et al. (2014) propose a GP mean function leveraging a
dynamics-model estimate as a prior for the policy return and develop a kernel function measuring
similarity between policies using trajectory data. In the black-box setting, Akrour et al. (2017)
use a sampling-based approach where the parameters of a normal distribution are updated using
information-theoretic constraints leading to optima. Fröhlich et al. (2021) introduce a confidence
region BO scheme to constrain the search space to points with less uncertainty. Eriksson et al.
(2019) introduce a trust region BO scheme that uses a collection of simultaneous local optimization
runs using independent probabilistic models. Müller et al. (2021) propose the Gradient Information
BO algorithm (GIBO) that utilizes a probabilistic model of the objective function and its gradient
to maximize information about the gradient posterior. Finally, Nguyen et al. (2022) improve on the
information criterion of GIBO by querying for points that maximizes the probability of descent, and
then moves in the direction of most probable descent. In contrast, our work exploits the sequential
nature of the task which provides large practical gains, especially on higher dimensional tasks.

In the direct policy search literature, one alternative to BO is the use Particle Swarms (Hein et al.,
2016; Hein, 2019). Closer to our work are Evolutionary Strategies (ES). They are gradient-free
methods deploying a random process to iteratively generate candidate solutions. Then, they eval-
uate these solutions and bias the search in the direction of the best-scoring ones (Hansen, 2006;
Salimans et al., 2017; Mania et al., 2018). (Salimans et al., 2017) propose a variant of ES for op-
timizing the policy parameters. They estimate a gradient via Gaussian smoothing of the objective
function. (Mania et al., 2018) build on the work of (Salimans et al., 2017) and introduce a simple
random search algorithm that is competitive with the state of the art while using only linear policies.
Compared to BO, ES uses a less principled exploration strategy and, in comparison to our work,
does not include the structure of the MDP in its search.

The deterministic policy gradient (Silver et al., 2014) and its practical variants (Lillicrap et al.,
2015; Fujimoto et al., 2018) are also closely related to the context of our work. These methods apply
the deterministic actor-critic algorithm to learn deep neural network policies. Kakade & Langford
(2002); Schulman et al. (2015) develop algorithms for learning monotonously improving policies.
This class of algorithm relies on lower bounding the difference of return between the current and
the potential next policy and taking a step such that we are sure to improve our policy. Saleh et al.
(2022) are the first to derive such bounds for deterministic policies, but we specify these bounds
further for Lipschitz MDPs. We further leverage this result to design our advantage mean function.

7 CONCLUSION AND DISCUSSION

In this work, we have presented Augmented Bayesian policy Search (ABS), a method that lever-
ages a new mean function for the Gaussian Process (GP) prior which is tailored to Reinforcement
Learning (RL). We derive our method by resorting to the performance difference lemma, to inject an
action-value function of deterministic policies into the GP prior on the policy return. Our advantage
mean function acts like a first order taylor expansion of the policy return, bridging the gap between
BO and RL methods. We theoretically ground our approach by deriving a new bound on the impact
of altering deterministic policies on the expected returns for Lipschitz MDPs. Moreover, we propose
a novel adaptive scheme for aggregating multiple Q-function estimators. Empirically, we show that
ABS scales to high-dimensional problems and establishes state-of-the-art performance for Bayesian
Optimization (BO) methods in MuJoCo locomotion problems. ABS can explore using deterministic
policies and learn effectively in an episodic setting. It also allows trading-off compute for learning
speed, which is a highly desirable property in real-world applications.

For this work, we were limited to linear policies due to computational considerations. A promising
future direction is scaling BO methods to deep policies. To this end, viable solutions include random
projection methods (Ziomek & Ammar, 2023) and kernel functions for the GP that are tailored for
deterministic policies, close to works like Wilson et al. (2014); Ghavamzadeh et al. (2016).
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A IMPLEMENTATION DETAILS

Task name Learning rate Lengthscale prior

InvertedPendulum {0.0025, 0.005}∗ {U(0.00125, 0.025),U(0.0025, 0.05)}
Swimmer {0.0025, 0.005}∗ {U(0.00125, 0.025),U(0.0025, 0.05)}
Hopper {0.0025, 0.005}∗ {U(0.00125, 0.025),U(0.0025, 0.05)}
Halfcheetah {0.00125, 0.0025}∗ {U(0.000625, 0.0125),U(0.00125, 0.025)}
Walker2d {0.00125, 0.0025}∗ {U(0.000625, 0.0125),U(0.00125, 0.025)}
Ant {0.00125, 0.0025}∗ {U(0.000625, 0.0125),U(0.00125, 0.025)}

Table 1: Hyperparameters used for grid-search for MPD and ABS. (*) For MPD we use only a
learning rate of 0.01.

Task name Learning rate Lengthscale prior Nc Nacq Nmax

InvertedPendulum 0.005 U(0.0025, 0.05) 2 6 21
Swimmer 0.0025 U(0.0025, 0.05) 3 12 39
Hopper 0.0025 U(0.0025, 0.05) 3 16 51
Halfcheetah 0.0025 U(0.00125, 0.025) 4 20 63
Walker2d 0.0025 U(0.000625, 0.0125) 4 20 63
Ant 0.0025 U(0.000625, 0.0125) 5 24 75

Table 2: Hyperparameters used for ABS.

We use a DroQ critic with the original hyperparameters (Hiraoka et al., 2021) which consists of
two critics with layers of size (256, 256) with ReLU activations, and using LayerNormalization
and Dropout. For all our experiments, we use an ensemble of 5 critics. We leverage the fact that
the discounted policy returns are normalized and apply a tanh layer to bind the predictions of every
critic between [−1, 1]. We use 32 parallel optimizers to optimize both the parameters of the Gaussian
Process and the acquisition function. We follow Müller et al. (2021) and only train our GPs on the
last Nmax data points collected in the Bayesian Optimization loop. In all our experiments, we keep
track of the data generated by the last 3 outer loops of Algorithm 2, thus Nmax = 3 × (1 + Nacq)
where Nacq is the number of acquisition points sample at one outer loop. We also rollout the central
point θ Nc times in order to have a better advantage mean function estimate and to also alleviate the
need for signal prior as described below.

The selection of hyperpriors for the signal variance σf and the noise variance σn requires domain
knowledge about the task at hand and adds other hyperparameters to the BO problem. In the partic-
ular case of local BO, when we are at a fixed neighborhood it is fair to say that the observation noise
is roughly similar among all points. The same logic applies to the signal variance. With this intuition
in mind, we develop a heuristic to dynamically fix the hyperpriors for σf , σn. Using the fact that
we roll out the central point Nc times, we use a noise estimate σ̂2

n = V ar(Ĵ1(πθ), . . . , ĴNc(πθ))

where Ĵi is the noisy policy return estimate from the i-th rollout policy πθ. We then fix the hy-
perprior to be U [ 13 × σ̂n, 3 × σ̂n]. For the signal variance, we adopt a similar scheme by taking
σ̂2
f = V ar({m̂(x) − Ĵ(πx)}x∈X) and use as a signal variance prior U [ 13 × σ̂f , 3 × σ̂f ]. In the

case of the constant mean used in MPD, the variance corresponds to the observation variance. MPD
(Nguyen et al., 2022) has the merit of being less learning rate dependent than our method, being
able to use a small learning rate and perform multiple descent steps. ABS cannot perform the same
scheme as our advantage mean function depends on the central point θ. In our implementation of
MPD, we follow the code provided by the authors where we first normalize the gradient g = Σ−

θ 1µθ

to have an L2 norm of 1 and use the same learning rate of 0.01 for all environments. Hence, for
MPD we perform grid-search only for the lengthscale hyperprior. For ABS, we perform a search
over the learning rate and the lengthscale prior, and report the best-performing set of hyperparam-
eters (Table 1). For all the results obtained with MPD and ABS in this manuscript, we used these
best set of parameters (Table 2 and 3). For ARS, we use the original parameters reported in the
paper (Mania et al., 2018).
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Task name Learning rate Lengthscale prior Nc Nacq Nmax

InvertedPendulum 0.01 U(0.0025, 0.05) 2 6 21
Swimmer 0.01 U(0.0025, 0.05) 3 12 39
Hopper 0.01 U(0.0025, 0.025) 3 16 51
Halfcheetah 0.01 U(0.00125, 0.025) 4 20 63
Walker2d 0.01 U(0.000625, 0.0125) 4 20 63
Ant 0.01 U(0.000625, 0.0125) 5 24 75

Table 3: Hyperparameters used for MPD.

B EXPERIMENTAL SECTION

B.1 UNDISCOUNTED RETURNS

Here, we plot the evolution of the maximum undiscounted policy return as a function of the number
of episodes. ABS, which can be seen as MPD augmented with the advantage mean function and the
adaptive aggregation scheme consistently outperfoms MPD that uses the constant mean function.
Our algorithm outperforms substancially the ARS baseline for the Walker2d and Ant tasks.
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Figure 5: Evolution of the maximum undiscounted policy return on the MuJoCo-v4 tasks. We use 5
random seeds for every algorithm.

B.2 VALIDATION AND TEST SCORES

Here, we plot the histogram of the distribution of the validation score R̂2 and test score R̃2 used
in Figure 2 for better visualization. We observe that the validation metric R̃2 remains consistently
positive with the best critic explaining on average approximately 50% of the variance observed data.
The test metric R̂2 manages also to be positive quite frequently, while being sometimes negative
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Figure 6: Histogram and correlation of the validation and test scores for MuJoCo-v4 tasks for a run
of ABS. The dashed vertical lines represent the medians of their respective distributions. We clip
the scores to [-1,1] for easier visualization.

C PROOFS

C.1 PROOF OF THE POSTERIOR OF THE GRADIENT

Corollary C.0.1. Under the advantage mean function, the mean of the gradient posterior at θ is

µθ = Es∼d̂πθ

[
∇aQ̂

πθ

ϕ (s, a)|a=πθ(s)∇θπθ(s)
]
+∇θK(θ,X)K(X,X)−1(Ĵ(X)−m̂ϕ(X)). (13)

Proof.

∇θmϕ(θ) =
∂mϕ(x)

∂x

∣∣∣
x=θ

=
(i)

∂

∂x
[J(πθ) + Es∼dπθ [Aπθ (s, πx(s))]]

∣∣∣
x=θ

= Es∼dπθ

[
∂

∂x
Qπθ (s, πx(s))

∣∣∣
x=θ
− ∂

∂x
Qπθ (s, πθ(s))

∣∣∣
x=θ

]
=
(ii)

Es∼dπθ

[
∂

∂x
Qπθ (s, πx(s))

∣∣∣
x=θ
− ∂

∂x
Qπθ (s, πθ(s))

∣∣∣
x=θ

]
= Es∼dπθ

[
∂

∂x
Qπθ (s, πx(s))

∣∣∣
x=θ

]
= Es∼dπθ

[
∂

∂a
Qπθ (s, a)

∣∣∣
a=πθ(s)

× ∂πx(s)

∂x

∣∣∣
x=θ

]
Step (i) is due to independence of J(πθ) and x. Step (ii) is true because Qπθ (πθ(s), s) is independent
of x. We get the final result by injecting this equality into Equation 2.

C.2 LIPSCHITZ MDPS INDUCE DISTRIBUTIONALLY LIPSCHITZ MDPS

Assumption C.1 (Lipschitz MDP (Pirotta et al., 2015)). An MDP with a policy class Π is
(Lr, Lp, Lπ)-Lipschitz if for all s, s′ ∈ S and a, a′ ∈ A:

• Lipschitzness of reward: |r(s, a)− r(s′, a′)| ≤ Lr(dS(s, s
′) + dA(a, a

′))

• Lipschitzness of transition: W (p(.|s, a), p(.|s′, a′)) ≤ Lp(dS(s, s
′) + dA(a, a

′))

• Lipschitzness of policy: W (π(s1), π(s2)) ≤ LπdS(s1, s2) for all π ∈ Π.

Assumption C.2 (Distributionally Lipschitz MDP (Saleh et al., 2022)). For an MDP with a policy
class Π is (L1, L2)-Lipschitz if for all π1, π2 ∈ Π and µ1, µ2 ∈ P(S), the following holds true.

• Lipschitzness w.r.t. policy: W (P (µ, π1), P (µ, π2)) ≤ L1 sups∈S W (π1(s), π2(s))

• Lipschitzness w.r.t. state distribution: W (P (µ1, π), P (µ2, π)) ≤ L2W (µ1, µ2)
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Where P denotes the generalization of the transition dynamics to take as input probability distribu-
tions of actions or states.
Assumption C.3. The state space S ∈ Rd and is bounded.
Theorem C.4. Lipschitz MDPs (Assumptions C.1) induces Distributionally Lipschitz MDPs (As-
sumptions C.2) with Lipschitz rewards such that L1 = Lπ and L2 = Lp(1 + Lπ).

Proof. Now, we prove that Assumptions C.1 (without Lipschitzness of reward) implies Assumptions
C.2.

Part 1: Lipschitzness w.r.t. policy.

W (P (µ, π1), P (µ, π2)) = W

(∫
S
p(.|s, π1(s))dµ(s),

∫
S
p(.|s, π2(s))dµ(s)

)
≤
(a)

∫
W (a(s), b(s))dµ(s)

≤ sup
s∈S

W (a(s), b(s))

≤ Lπ sup
s∈S

W (π1(s), π2(s))

= LπW (π1, π2)

Step (a) is due to Theorem 4.8 (Villani et al., 2009).

This implies that L1 = Lπ .

Part 2: Lipschitzness w.r.t. state distribution.

W1(P (µ1, π), P (µ2, π)) = W

∫
S
p(.|s, π(s))︸ ︷︷ ︸

λ(.|s)

dµ1(s),

∫
S
p(.|s, π(s))dµ2(s)


= W

(∫
S
λ(.|s)dµ1(s),

∫
S
λ(.|s)dµ2(s)

)
=
(b)

sup
∥f∥L≤1

(∫
S
f(s′)

[∫
S
λ(s′|s)µ1(s)ds

]
ds′

−
∫
S
f(s′)

[∫
S
λ(s′|s)µ2(s)ds

]
ds′

)

= sup
∥f∥L≤1

∫
S
f(s′)

[∫
S
(µ2(s)− µ1(s))λ(s

′|s)ds
]
ds′

=
(c)

sup
∥f∥L≤1

∫
S
(µ2(s)− µ1(s))


∫
S
f(s′)λ(s′|s)ds′︸ ︷︷ ︸

g(s)

 ds

≤
(d)

Lp(1 + Lπ) sup
∥a∥L≤1

∫
S
(µ2(s)− µ1(s))a(s)ds

≤ Lp(1 + Lπ)W (µ2, µ1).

Step (b) is due to Remark 6.5 in Villani et al. (2009). Step (c) is obtained by applying Fubini-Tonelli
theorem, as S is bounded. Step (d) holds true as g is Lp(1 + Lπ)-Lipschitz (Lemma C.5) and f is
maximum 1-Lipschitz.

Thus, we conclude that L2 = Lp(1 + Lπ).

Lemma C.5. If we define g(s) ≜
∫
S f(s′)λ(s′|s)ds′, for a Lipschitz MDP (Assumption C.1) and f

s.t ∥f∥L ≤ 1 , then g is Lp(1 + Lπ)-Lipschitz.
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Proof.

|g(s1)− g(s2)| =
∣∣∣∣∫

S
f(s′)λ(s′|s1)ds′ −

∫
S
f(s′)λ(s′|s2)ds′

∣∣∣∣
≤
(e)

sup
∥h∥L≤1

∣∣∣∣∫
S
h(s′)λ(s′|s1)ds′ −

∫
S
h(s′)λ(s′|s2)ds′

∣∣∣∣
≤W (λ(.|s1), λ(.|s2))
= W (p(.|s1, π(s1)), p(.|s2, π(s2)))
≤ Lp(dS(s1, s2) + dA(π(s1), π(s2))

≤ Lp(dS(s1, s2) + LπdS(s1, s2))

≤ Lp(1 + Lπ)× dS(s1, s2)

≤ Lp(1 + Lπ)× dS(s1, s2)

Step (e) holds true because Lipschitz constant of f is less than or equal to 1, and we take supremum
over all such functions.

C.3 BOUND ON THE RESIDUAL TERM

Now, we use Theorem C.4 to bound the residual for Lipschitz MDPs.
Theorem C.6. For a Lipschitz MDP satisfying (Assumptions C.1) and γLP (1 + Lπ < 1, we have
that the residual term

⟨dπ2 − dπ1 , Aπ1(s, π2(s)⟩ ≤ C sup
s∈S
∥π2(s)− π1(s)∥, (14)

for C ≜ 2γLπLr (1+Lπ)
(1−γLP (1+Lπ))2

.

Proof. Step 1: First, we bound the residual using the Wasserstein distance between policies and L2

distance between the gradient of Q functions.

⟨dπ2 − dπ1 , Aπ1(s, π2(s)⟩ = ⟨dπ2 − dπ1 , Qπ1(s, π2(s))−Qπ1(s, π1(s))⟩
≤ W (dπ2 , dπ1)× sup

s
∥∇s [Q

π1(s, π2(s))−Qπ1(s, π1(s))]∥ (15)

We obtain the last inequality from the Kantorovich-Rubinstein inequality (Villani et al., 2009).

Step 2: Now, we bound the the change in gradient of Q-functions due to the change in policies.

∇s [Q
π1(s, π2(s))−Qπ1(s, π1(s))]

=
∂Qπ1

∂S

∣∣∣
s,π2(s)

+ ∇Sπ2(s)
∂Qπ1

∂a

∣∣∣
s,π2(s)

− ∂Qπ1

∂S

∣∣∣
s,π1(s)

−∇Sπ1(s)
∂Qπ1

∂a

∣∣∣
s,π1(s)

=
∂Qπ1

∂S

∣∣∣
s,π2(s)

− ∂Qπ1

∂S

∣∣∣
s,π1(s)︸ ︷︷ ︸

a

+ ∇Sπ2(s)
∂Qπ1

∂a

∣∣∣
s,π2(s)

−∇Sπ1(s)
∂Qπ1

∂a
|s,π1(s)︸ ︷︷ ︸

b

Step 3: Bounding Term a. Here, we leverage the property that if f is L-Lipschitz, ∥∇f∥ ≤ L.

Q function is LQ-Lipschitz for a Lipschitz MDP, such that LQ ≜ Lr

1−γLP (1+Lπ)
for γLP (1+Lπ) <

1 (Pirotta et al., 2015).

Thus, we conclude that
∥∥∥∥∂Qπ1

∂S

∣∣∣
s,a

∥∥∥∥ ≤ LQ. This bounds the Term a by 2LQ.

Step 4: Bounding Term b.∥∥∥∥∇sπ2(s)
∂Qπ1

∂a

∣∣∣
s,π2(s)

∥∥∥∥ ≤ ∥∇sπ2(s)∥ ×
∥∥∥∥∂Qπ1

∂a
|s,π2(s)

∥∥∥∥ ≤ LQLπ
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The first inequality is a consequence of Hölder’s inequality, while the second one is obtained from
Lipschitzness of Q and π. Thus, Term b is bounded by 2LQLπ .

Step 5: Putting it all together. Combining Equation (15) with the bounds on Term a and Term b
yields

⟨dπ2 − dπ1 , Aπ1(s, π2(s)⟩ ≤W (dπ2 , dπ1)× 2 LQ(1 + 2Lπ)

≤
(a)

γLπ

1− γLp(1 + Lπ)
sup
s∈S

W (π1(s), π2(s)) × 2 LQ(1 + Lπ)

=
2γLπLr (1 + Lπ)

(1− γLp(1 + Lπ))2
sup
s
∥π2(s)− π1(s)∥

Step (a) is derived by an application of Theorem B.4 in (Saleh et al., 2022), when γLp(1+Lπ) < 1.
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