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ABSTRACT

Text spotting requires both accurate text recognition and precise spatial localiza-
tion. Current specialised spotters excel at predicting tight bounding boxes in nat-
ural scenes, but falter on complex or artistic text, whereas multimodal large lan-
guage models (MLLMs) possess strong recognition capabilities yet remain weak
at localisation. To equip the text spotter with general and powerful recognition
capabilities and to maximize its localization ability, we explore two MLLM-based
fine-tuning methods: Supervised Fine-Tuning (SFT) and reinforcement learning
fine-tuning based on Group Relative Policy Optimisation (GRPO). An interesting
finding is that SFT is less effective than GRPO at enhancing recognition, while
GRPO is less effective than SFT at enhancing detection. To compensate for each
other’s shortcomings, we introduce a joint training strategy, SupGRPO, which
simultaneously optimizes the model using both SFT and GRPO. SupGRPO em-
ploys the specially designed reward functions and develops a matching-based on-
line SFT applied solely to coordinate tokens. It both mitigates the reward sparsity
problem of GRPO and avoids the instance order dependency problem of SFT. To
evaluate particularly challenging cases, we curate ATS, a dataset for artistic text
spotting. Experiments demonstrate that SupGRPO improves both text recognition
and detection, validating the proposed approach. We will release ATS and our
code upon acceptance.

1 INTRODUCTION

Text spotting is a crucial task in computer vision that involves simultaneously detecting the loca-
tion and recognizing the content of text instances in images. Significant progress has been made
by specialized text spotting models on natural scene images, with diverse approaches including
segmentation-based methods like Mask TextSpotter (Lyu et al., 2018)), regression-based methods
utilizing techniques such as Bezier curves in ABCNet (Liu et al.,[2020;2021)), and transformer-based
models like TESTR (Zhang et al., |2022) and DeepSolo (Ye et al., 2023). However, these methods
often struggle substantially when faced with more intricate scenarios such as artistic text. These
scenarios frequently exhibit stylized fonts, unconventional layouts, intricate textures, and complex
visual integration, demanding advanced visual understanding and reasoning capabilities that often
exceed the capacity of models designed for normal scene text.

Concurrently, Multimodal Large Language Models (MLLMs) have demonstrated powerful visual
understanding abilities across a wide range of tasks, including advancements in OCR-related areas
such as document understanding and scene text analysis, exemplified by models like TextMon-
key (Liu et al., 2024), Vary (Wei et al.| 2024a), InternVL3.5 (Wang et al.l |2025) and Qwen2.5-
VL (Bai et al.,|2025b). These capabilities suggest that MLLMs hold great potential for addressing
the complexities inherent in challenging text scenarios like artistic text. Nevertheless, while these
MLLMs show promising performance in text recognition and understanding, their ability to pre-
cisely predict the fine-grained location coordinates required for robust text spotting remains notably
limited. The text spotting results from different types of models are shown in Fig. [T] (a).

To equip the text spotter with general and powerful recognition capabilities and to maximize its lo-
calization ability, we attempt to fine-tune the MLLM using SFT and GRPO separately. According
to the exploration in Sec. 4.4} an interesting finding is that SFT is less effective than GRPO at en-
hancing recognition, while GRPO is less effective than SFT at enhancing detection. First, we adopt
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(b) SupGRPO combines GRPO and SFT and avoids their respective problems

Figure 1: Comparison with other models and other training strategies.

the GRPO (Shao et al., 2024)) training paradigm and apply it for the first time to the text spotting
task. Within this adopted paradigm, we carefully craft rule-based reward functions tailored to guide
the model’s optimization for text spotting. Specifically, we utilize four rewards: a format reward for
structured output, a text content reward for accurate text recognition, an IoU precision reward and
an IoU recall reward for accurate text detection. Using GRPO-based reinforcement learning (Shao
et al.}|2024;|Guo et al., [ 2025)) enables the direct optimization of non-differentiable evaluation metrics
(IoU and F1-score) and encourages reasoning exploration in ambiguous artistic scenes. However,
the sparse reward signal provided by GRPO lacks the fine-grained, direct supervision that is essential
for achieving highly accurate position coordinate prediction.

On the other hand, SFT can provide the model with token-level, fine-grained supervision, which
is highly effective for the model to acquire accurate positional coordinates. However, for the text
spotting task, SFT presents the instance order dependency problem, which often imposes an arbitrary
and meaningless order among independent text instances. GRPO can effectively resolve this by
optimizing for the set of predictions via order-agnostic rewards. Thus, it is essential to integrate
SFT and GRPO within an end-to-end framework to achieve synergistic collaboration. Fig. [I] (b)
illustrates the inherent features of different training strategies.

To address the limitations of both GRPO’s reward sparsity for coordinates and standard SFT’s se-
quence dependency, we propose SupGRPO, building upon the GRPO framework. SupGRPO ap-
plies a more targeted, matching-based online SFT specifically to the coordinate tokens of the pre-
dicted text instances. Specifically, for each output sequence sampled during GRPO training, we
extract the coordinate tokens based on a regularized matching process. Then, each predicted text
box derived from these coordinate tokens is matched with a corresponding ground truth (GT) text
box. Finally, a per-token loss is calculated based on this matching, providing direct, token-level
supervision for localization accuracy. This approach effectively leverages the benefits of SFT for
precise coordinate learning while avoiding the drawbacks of standard SFT. Ultimately, we jointly
train an MLLM using GRPO and the matching-based online SFT.
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Existing scene text spotting datasets often do not adequately represent the artistic and complex sce-
narios that require strong visual understanding and reasoning, limiting the evaluation of models on
such challenging data. In view of this, we construct an artistic text spotting dataset named ATS with
6.5k training images and 2.5k testing images. Experiments show the superiority of SupGRPO in
both text detection and end-to-end recognition. Ablation study shows that while GRPO significantly
boosts recognition performance, SFT is more effective for improving detection accuracy, verifying
the need for a combined approach.

In summary, the main contributions are threefold:

(1) To the best of our knowledge, this work is the first to expand the capability boundaries of MLLMs
specifically for the text spotting task. Furthermore, it is the first academic study focused on the
challenging scenario of artistic text spotting, moving beyond standard scene text.

(2) We introduce an end-to-end training strategy SupGRPO. This design resolves the instance order
dependency of standard SFT and the reward sparsity of vanilla GRPO. We also achieve a synergy
where SFT enhances detection precision while GRPO boosts recognition reasoning.

(3) We construct a standardized dataset for artistic text spotting. We perform comprehensive evalu-
ations of both specialized models and MLLMs on this benchmark, establishing a critical reference
point for future research in this domain.

2 RELATED WORK

2.1 TEXT SPOTTING METHODS

Text spotting integrates text detection and recognition for simultaneous processing, exploiting their
complementarity. Early methods like SEE (Bartz et al., 2018) and those utilizing varying-size Rol
Pooling (Li et al., 2017} focused on horizontal or rotated text, often employing techniques like bilin-
ear sampling (Busta et al.|[2017)) or Rol-Rotate (Liu et al.| |2018)) for feature alignment but struggling
with curved or artistic text. This led to the development of arbitrarily-shaped text spotting, with sig-
nificant progress made by segmentation-based methods, such as Mask TextSpotter (Lyu et al., [2018)
and its improvements (Liao et al. 2021} [2020), which use mask branches for instance and character
segmentation, or methods like PGNet (Wang et al.,|2021) which are single-shot and avoid character-
level annotations. Concurrently, regression-based approaches achieved advanced performance by
focusing on more accurate shape representations and feature sampling. These methods include us-
ing differentiable RolSlide (Feng et al., |2019), parameterized Bezier curves with BezierAlign in
ABCNet (Liu et al., 2020; |2021)), and recent DETR (Carion et al.| 2020; [Zhu et al., |2020)-based
methods like TESTR (Zhang et al., [2022) and DeepSolo (Ye et al.l 2023)), or sequence-based meth-
ods like SPTS (Peng et al.,[2022) and UNITS (Kil et al., 2023). ESTextSpotter (Huang et al., [2023))
proposes to achieve explicit synergy between text detection and recognition. Bridge (Huang et al.,
2024) effectively connects the well-trained detector and recognizer. While these methods greatly
advanced the handling of arbitrarily-shaped text, they often struggle with more complex and chal-
lenging scenarios, such as artistic text.

2.2 TEXT SPOTTING DATASETS

For scene text spotting, there is a synthetic dataset SynthText150K (Liu et al., |2020; [202 1)) proposed
by Liu et al. to enrich the arbitrarily shaped scene text for training. Total-Text (Ch’ng et al., 2020)
contains 1,255 images for training and 300 images for testing. It is an arbitrarily-shaped scene
text benchmark with polygon annotation on the word level. SCUT-CTW1500 (Liu et al, [2019)
includes 1,000 training images and 500 testing images. It is also an arbitrarily-shaped scene text
benchmark but with text-line level annotation. It contains both English and Chinese text. ICDAR
2015 (Karatzas et al., |2015) provides images captured by Google Glass in the real world, so there
are many instances with small sizes, low resolution, or any orientation. It consists of 1,000 training
images and 500 testing images. However, these datasets cannot represent complex scenes that rely
on strong visual understanding and reasoning abilities.
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2.3 MULTIMODAL LARGE LANGUAGE MODELS FOR OCR

Recent advancements in multimodal large language models (MLLMs) have significantly enhanced
optical character recognition (OCR) capabilities, particularly in document understanding and scene
text analysis. Models such as TextMonkey (Liu et al., [2024) achieve promising performance on
text VQA and text spotting using shifted window attention and token resampling. TextHawk?2 (Yu
et al.| [2024) enables efficient fine-grained perception with high token compression. Vary (Wei et al.,
2024a)) expands the vision vocabulary for improved document parsing. Ocean-OCR (Chen et al.,
20235)) addresses variable resolution inputs, and UniDoc (Feng et al., [2023)) focuses on unified mul-
timodal instruction tuning for simultaneous text detection, recognition, spotting and understanding.
mPLUG-DocOwl 1.5 (Hu et al., [2024) introduces multi-grained text localization and a novel H-
Reducer module to enhance OCR-free document understanding across diverse domains. Some re-
cent general MLLMs such as InternVL3.5 (Wang et al.| 2025) and Qwen2.5-VL (Bai et al.| 2025b)
show better performance in complex document understanding and text detection. Although these
MLLMSs have shown leading performance in text recognition and document understanding, their
ability to accurately predict location coordinates is still very limited.

3 METHOD

3.1 PRELIMINARY

Group Relative Policy Optimization (GRPO) is an efficient reinforcement learning algorithm ini-
tially proposed in the DeepSeekMath model to enhance mathematical reasoning capabilities in large
language models (Shao et al.,[2024). Unlike standard Proximal Policy Optimization (PPO) (Schul-
man et al., 2017), GRPO does not estimate a value function. Instead, it directly computes the
advantage function based on relative rewards from multiple outputs sampled from the same input,
simplifying training and reducing computational overhead.

Specifically, GRPO trains the policy mg(y|x) to maximize an expected reward R(y). It operates
by sampling a group of G output sequences {y1, ...,y } for a given input 2 from the policy. The
objective function involves maximizing the expected relative advantage over these sampled outputs:
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token y; +. A core aspect of GRPO is the computation of A; ; based on the relative rewards within
the sampled group, avoiding a separate value function model. The advantage can be based on the
normalized reward 7; for the sequence y;:
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As presented in DeepSeekMath (Shao et al.| 2024), various training methods like SFT and GRPO can
be understood under a unified framework for training generative policies. They optimize the same
policy but differ in their objectives and how gradients are derived. The gradient can be expressed as:
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This highlights three components: 1) Data Source D; 2) Reward Signal Source; and 3) Gradient
Coefficient GC'. SFT uses ground truth data (D = Dggr) with GC = 1. GRPO samples from the
policy (D < mp) using a reward model and computes GC based on group relative advantages. This
framework provides a common lens to view distinct policy optimization strategies. Therefore, the
objective function of SFT is:
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3.2 REWARD FUNCTIONS FOR TEXT SPOTTING

To effectively guide the GRPO training towards generating accurate text spotting results, we design
four task-specific reward functions. These rewards evaluate different aspects of the model’s output,
providing a comprehensive signal for policy optimization. The total reward R(y) for a generated
output sequence y is a combination of these individual reward components.

Format Reward This reward ensures that the generated sequence y adheres to the expected struc-
tured format, which is a list of dictionaries, where each dictionary contains a “bbox” key with a
list of four numerical coordinates and a “text” key with the recognized text string. If the output se-
quence conforms to this predefined format, the model receives a reward of 1; otherwise, the reward
is 0. This encourages the model to generate outputs that can be parsed for subsequent evaluation.

1, if y follows the specified format
0. otherwise

Rformat(y) = { (5)

Text Reward This reward evaluates the accuracy of the recognized text content. We collect all
predicted text strings from the parsed output and all ground truth text strings from the annotation.
We then treat these as two sets of words and compute the word-level F1 score between them. Let
Pyorgs be the set of all words from the predicted text strings in y, and GTy.qs be the set of all
words from the ground truth text strings in G7'. The word-level F1 score is calculated based on the
intersection and union of these two collections of words:

2. |Pwords N GTwords|

Rtext(yaGT):Flword: |P d|+|GT d|7

(6)

where | Pyoras N GTworas| represents the count of words common to both sets, and | Pyords| + | G Twords|
represents the total count of words in both sets. Note that our implementation treats predicted and
ground truth words as Multisets (Bag of Words) to handle duplicate instances. Specifically, the in-
tersection count for a given word w is calculated as min(count(w, Pyords), count(w, GTyords))-
This mechanism ensures that valid duplicates (e.g., “Sale” appearing twice in the image) must be
predicted the correct number of times to achieve full recall. Conversely, if the model hallucinates
duplicates (e.g., predicting “Together” twice when it appears only once), the redundant prediction
contributes to the total prediction count | P,,.4s| but not the intersection, thereby correctly penaliz-
ing the precision score.

We use the word-level F1-score to strictly align with the standard evaluation protocols for text spot-
ting benchmarks, which typically rely on exact match criteria. Besides, a fundamental advantage
of reinforcement learning is its ability to directly optimize the non-differentiable evaluation metrics.
Using soft rewards like ANLS or Edit Distance introduces a misalignment: it encourages the model
to learn approximate spellings (e.g., “Applo” vs. “Apple”) to maximize partial rewards, whereas the
test protocol penalizes any character error as a complete failure.

IoU Precision Reward This reward assesses the overall precision of the detected bounding boxes.
We compute the detection precision based on an Intersection-over-Union (IoU) matching strategy
between predicted bounding boxes Ppypox and ground truth bounding boxes GTppox. Predicted boxes
are considered True Positives (1" Pyox) if they match a ground truth box with an IoU score exceeding
a predefined threshold 7 (typically 0.5). False Positives (F'F,ox) are predicted boxes that do not
match any ground truth box. The precision score is calculated as the ratio of True Positives to the
total number of predicted boxes.

TR TP
Riou Precision(y, GT) = TR, +b0;‘Pb _ ||Pbbb0x| )

(N
IoU Recall Reward This reward evaluates the model’s ability to detect all text instances in the
image. False Negatives (F'[Vpox) are ground truth boxes that are not matched by any predicted box.
The recall score is calculated as the ratio of True Positives to the total number of ground truth boxes.

TPbox |TPb0X‘
R GT — = .
ToU Recall (Y5 ) T Poox + F Nypox |G Thpox|
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Figure 2: The overall framework of SupGRPO.

3.3 GRPO WITH MATCHING-BASED ONLINE SFT

While GRPO effectively optimizes the policy g based on global reward signals, providing coarse-
grained guidance for text spotting, it inherently lacks the fine-grained, token-level supervision nec-
essary for precise coordinate prediction. Standard SFT, conversely, can provide this detailed super-
vision. However, applying standard SFT to the full output token sequence of text spotting results is
problematic, as it imposes an arbitrary linear order on typically independent text instances and in-
troduces irrelevant learning objectives related to sequence ordering rather than accurate spatial and
content prediction for each instance.

To overcome the limitations of both paradigms, we propose SupGRPO, a novel approach that in-
tegrates matching-based online SFT specifically targeting the coordinate tokens within the GRPO
framework. SupGRPO operates during the GRPO training process, performing an auxiliary super-
vised update based on sampled sequences. The overall framework of SupGRPO is shown in Fig.[2]

For each output sequence y sampled from the current policy 7y (|z) during the GRPO exploration
step, we parse the predicted text instances, extracting their predicted bounding box coordinates
{pb1,...,pbn} and associated text. We then establish correspondences by performing a matching
process between these predicted bounding boxes {pb,...,pb,,} and the ground truth bounding
boxes {gtby,...,gth,} for the input image x. The matching process is based on both text con-
tent and IoU. A match is considered successful only if the text content is identical and the IoU
between the predicted and GT boxes is greater than 0. This results in a set of matched pairs

M = {(pbs, gtb,)}.

For each predicted bounding box pb; that is successfully matched to a ground truth box gtb;, we
compute a supervised loss of Cross-Entropy on the predicted coordinate tokens. The total coordinate
SFT loss for a sampled sequence y and corresponding ground truth GT'(x) is the sum of negative
log-likelihoods for the ground truth coordinate tokens of the matched instances, conditioned on the
preceding generated tokens:

LSFTcoord(yaGT Z Z IOg uy; t|*T y<t( )) &)

M teGTJ coord

where GT) coora denotes the sequence of ground truth coordinate tokens for the j-th instance, and
y<1(t) represents the context from the sampled sequence y preceding token ¢.

The overall training objective in SupGRPO combines the GRPO objective Jgrpo(#) (Equ. [I),
which aims to maximize expected rewards, with minimizing the expected supervised coordinate
loss Lspr.coora- This is achieved by optimizing a combined objective function. Formulating this as
minimizing a loss Lsuycreo(8), the objective is:

Lsupcrro(0) = —T6rpo(0) + A - g Digpo,y~rmo (-2) [ LSFTcoord (¥, GT'(2))], (10)

where ) is a weighting hyperparameter balancing the two objectives and we set it as le-4 by de-
fault. This formulation ensures that the model is trained via policy gradients guided by task-specific
rewards while simultaneously receiving direct, token-level supervision for spatial accuracy based
on matching, effectively integrating the benefits of SFT for localization within the GRPO policy
learning framework and mitigating the issues associated with standard sequence-based SFT.
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Figure 3: Examples of different types for artistic text spotting from our ATS dataset

4 EXPERIMENTS

4.1 ARTISTIC TEXT SPOTTING DATASET

To benchmark the performance of different models on the artistic text spotting task, we construct
a dataset of artistic text named ATS. The samples in this dataset are derived from two existing text
segmentation datasets TextSeg and WAS [2024), from which we manu-
ally curated the artistic text samples, as well as corrected and re-annotated erroneous OCR labels. It
includes 6500 training images and 2500 testing images. We provide word-level quadrilateral bound-
ing box annotations and corresponding text transcriptions. The qualitative presentation of the ATS
dataset is shown in Fig.[3] The data statistics are presented in the appendix, Fig. ] Specifically,
there are some special challenges compared to scene text spotting: (1) Many greeting cards and
advertisements often have severe overlap between text instances, which poses great difficulties for
text detection and recognition. (2) The irregular arrangement of characters makes it difficult for
the model to judge which characters belong to the same word to get accurate detection results, and
variations in the reading order also affect the recognition performance. (3) An artistic text image
often perfectly combines multiple text instances and design patterns, which hardly exist in scene
text images. This phenomenon results in complex relationships between instances and is difficult to
distinguish from other elements. These challenges in complex scenarios require models with strong
visual understanding and reasoning capabilities to detect and recognize text.

4.2 IMPLEMENTATION DETAILS

To verify the scalability and generalizability, we apply our SupGRPO on different architectures and
scales. Specifically, we utilize the 3B and 7B variants of Qwen2.5-VL (Bai et al.| 2025b)), along with
Qwen3-VL-8B (Bai et al.|[20254), as base models for LoRA fine-tuning. We designate the fine-tuned
models as TS-VL (Text Spotting Vision-Language model). Our training is performed based on
the open-source framework Open-R1 and its multimodal application, VLM-R1
2025). We conduct LoRA fine-tuning for one epoch utilizing 4 NVIDIA A100 GPUs, with
a batch size of two samples per device. We configure the number of sampled output sequences for
GRPO to 8 and set the maximum output length to 1024 tokens. The initial learning rate is set to
le-6, and the ratio g for the KL divergence regularization term is set to 0.04. For the training data,
we combine the training sets of five datasets: our proposed ATS, Total-Text (Ch’ng et al., [2020),
ICDAR 2015 (Karatzas et al.,[2015), CTW 1500 2019), and ReCTS (Zhang et al., 2019).
To facilitate training, we reorganized the format of this data and added a task description to each
entry, resulting in a total of approximately 30,000 training samples.
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Table 1: Recognition results on scene text datasets of Total-Text, ICDAR 2015, SCUT-CTW 1500
and artistic text dataset ATS. The best results are shown in bold font.

Method Total-Text ICDAR 2015 CTWI1500 | ATS
None Full S w G | None Full | None
Mask TextSpotter v3 (Liao et al.,[2020) | 71.2 78.4 | 83.3 78.1 74.2 — - 56.9
ABCNet v2 (Liu et al.,[2021) 704 78.1 | 827 785 73.0| 575 772 | 534
GLASS (Ronen et al.,[2022) 799 86.2 | 84.7 80.1 76.3 — — —
TESTR (Zhang et al., 2022) 733 839852 794 73.6| 560 81.5]| 550
SwinTextSpotter (Huang et al., 2022) 743 841|773 705 — 51.8 770 | 554
SPTS (Peng et al., 2022) 742 824|775 702 658 | 63.6 838 | 653
TTS (Kittenplon et al.} 2022) 782 86.3|852 81.7 774 — — —
DeepSolo (Ye et al.;,[2023) 79.7 87.0|86.8 819 769 | 642 814 | 64.8
Bridge (Huang et al.,[2024) 83.3 883 |89.1 842 804 | 69.8° 839 | 67.2
Qwen2.5-VL-7B (Bai et al.,2025b) 78.1 87.01]89.0 83.5 792 | 73.2 804 | 72.7
InternVL3.5-8B (Wang et al., 2025) 81.7 86.7|87.8 847 81.5| 71.5 785 | 72.1
Gemini 1.5-Pro (Reid et al., |[2024) 783 875 |88.1 84.0 802 | 70.8 79.3| 70.0
TextMonkey (Liu et al.,[2024) 674 769|729 667 606 | 552 765 | 50.9
GOT-OCR (Wei et al., [2024Db) 703 792|789 732 69.8 | 59.5 80.2| 56.7
Ocean-OCR (Chen et al., [2025) 60.9 704|682 617 569 | 425 684 | 40.2
Qwen2.5-VL-7B (SFT) 82.6 864|868 83.6 814 | 79.2 85.6| 86.2
Qwen2.5-VL-7B (GRPO) 84.2 883|869 855 844 | 824 87.7]| 87.9
Two-Stage (SFT — GRPO) 84.5 862|871 859 825 | 83.0 857| 87.2
TS-VL-3B (Qwen2.5-VL-3B) 924 903 (932 876 847 | 81.8 882 | 844
TS-VL-7B (Qwen2.5-VL-7B) 88.2 923|944 899 86.7| 86.2 91.7| 89.6
TS-VL-8B (Qwen3-VL-8B) 91.0 934 (951 90.2 89.1| 899 925 | 924

4.3 RESULTS OF TEXT SPOTTING

We evaluate the performance of our proposed method on four text spotting benchmarks: Total-
Text (Ch’ng et al., 2020), ICDAR 2015 (Karatzas et al.l [2015), CTW1500 (Liu et al.l 2019), and
our newly constructed ATS dataset. We assess both end-to-end text recognition and text detection
performance. Comparisons are made against two main categories of models: specialized text spot-
ting methods and other MLLMs. All the specialized models we compared against are fine-tuned on
the ATS dataset. Besides, we independently fine-tuned the vanilla Qwen2.5-VL-7B using SFT and
GRPO, employing the identical training dataset used for TS-VL. Experimental results demonstrate
the effectiveness of our SupGRPO method (Tab. [T} Tab. 2]and Tab. [3).

For specialized text spotters, recognition is strictly coupled with detection (i.e., a detection failure
inherently results in a recognition failure). In contrast, for MLLM-based methods, text recogni-
tion does not inherently rely on the successful localization by a dedicated detection module within
the same framework. MLLMs can leverage global context to recognize text content even if the
specific localization (bounding box) is less precise. Therefore, for these MLLMs, we directly eval-
uate the text recognition performance using the F1 score based on the recognized text strings from
the full image. Following the common practice in previously published literature (Huang et al.,
2024; |Ye et al.|, 2023} [Peng et al.} [2022), which often compares methods with different evaluation
pipelines (SPTS (Peng et al., [2022), TTS (Kittenplon et al., 2022), CRAFTS (Baek et al., 2020),
Bridge (Huang et al.| [2024)) within the same table, we report the overall recognition results in
Tab. [T} For text detection evaluation, we strictly follow existing standard evaluation protocols. The
results for text detection are presented in Tab. [2[and Tab. [3] respectively. Note that GOT-OCR (Wei
et al.l [2024b) and Ocean-OCR (Chen et al.| 2025) lack inherent text detection capabilities, and
TextMonkey (Liu et al.,[2024) possesses only preliminary detection abilities.

The results of our TS-VL with SupGRPO significantly outperform those achieved by using SFT
or GRPO alone. Notably, for complex scenes such as those in our ATS dataset, the performance
improvement is particularly significant. Using a two-stage training approach (SFT followed by
GRPO) is also inferior to our end-to-end joint training. It causes the model to optimize specific
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capabilities in isolation rather than achieving mutual promotion, and it fails to resolve the instance
order dependency faced by SFT and the reward sparsity issue associated with GRPO. The two-stage
process inevitably increases training pipeline complexity and time overhead.

Regarding text detection, our method shows a substantial improvement compared to the baseline
generic MLLMs (as evidenced in Tab. [2|and Tab. . However, most MLLMs still exhibit a perfor-
mance gap compared to specialized models explicitly optimized for detection accuracy. To further
enhance detection performance, we fine-tuned an advanced MLLM, Qwen3-VL-8B, and the results
are comparable to those of specialized models.

Table 2: Detection performance on ATS. Table 3: Detection performance on scene text

Method | Detection datasets of Total-Text and ICDAR 2015.
Method | Total | IC15
ABCNet v2 87.5
ABINet++ 88.2 TextPerceptron 85.2 | 87.1
TESTR 86.4 PGNet 86.1 | 88.2
SwinTextSpotter 85.9 ABCNet v2 87.0 | 88.1
DeepSolo 86.7 DeepSolo 87.3 | 90.0
Qwen2.5-VL-7B 27.4 Qwen2.5-VL-7B 232 | 19.2
InternVL3.5-8B 21.2 InternVL3.5-8B 17.8 | 16.5
Gemini 1.5-Pro 26.8 Gemini 1.5-Pro 21.7 | 18.7
TextMonkey 17.5 TextMonkey 11.7 | 10.2
Qwen2.5-VL-7B (SFT) 72.5 Qwen2.5-VL-7B (SFT) 65.2 | 68.6
Qwen2.5-VL-7B (GRPO) 69.6 Qwen2.5-VL-7B (GRPO) 60.5 | 63.6
Two-Stage (SFT — GRPO) 70.6 Two-Stage (SFT — GRPO) | 66.1 | 67.3
TS-VL-3B 71.6 TS-VL-3B 684 | 71.6
TS-VL-7B 77.1 TS-VL-7B 70.1 | 73.8
TS-VL-8B 86.2 TS-VL-8B 84.0 | 86.4

4.4 ABLATION STUDY

In this section, we conduct ablation studies on the artistic text spotting dataset ATS to validate
the effectiveness of our proposed designs. For faster validation of the effectiveness of our various
designs, we chose Qwen2.5-VL-3B (Bai et al., 2025b) as the baseline for the ablation experiments.

ATS dataset. To specifically quantify the impact of incorporating the ATS dataset into the training
mix, Tab. ] compares the performance on various text spotting benchmarks with and without the
inclusion of ATS training data. This validates that the ATS dataset provides high-quality, diverse
training samples that enhance the model’s overall generalization capability.

Training strategy. We train the baseline independently using SFT and GRPO with the same dataset.
The results in Tab. [5|reveal that SFT yields more significant improvements in text detection perfor-
mance compared to GRPO, whereas GRPO provides a more substantial boost to text recognition
performance than SFT. This observation directly motivated our approach of jointly training with
both SFT and GRPO. Besides, we applied data augmentation for SFT. While it yields minor gains,
it still significantly underperforms SupGRPO.

Tokens for SFT. Furthermore, when jointly applying online SFT with GRPO, optimizing different
types of tokens for SFT significantly affects the detection and recognition results, as shown in Tab.[6]
Applying SFT to the entire sequence of all tokens yields some improvement in overall performance.
However, the fixed and unique order in which text instances are arranged within the GT creates an
order prior that interferes with word-level detection and recognition. Alternatively, applying a mask
to the token sequence to supervise only the text content tokens can improve text recognition per-
formance but weaken text detection performance. Conversely, supervising only the location tokens
and performing matching on them avoids the interference of word order, leading to comprehensive
improvements in both detection and recognition performance.

Matching mechanism. For text box matching, we explore three distinct approaches. The first is
an IoU-based method: for each predicted box, it is matched to the GT box with the largest IoU,
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Table 4: Ablation study on the effectiveness of introducing the ATS dataset during training.
Training Data Total (Det/Rec) IC15 (Det/Rec) ATS (Det/Rec) CTW (Rec)

Without ATS 65.8/83.9 67.2/82.8 65.3/75.7 77.9
With ATS (Ours) 68.4/86.0 71.6/84.7 71.6/84.4 81.8

provided that IoU is greater than 0.3. If a predicted box’s IoU with all GT boxes is less than 0.3,
its loss is not calculated. This method can easily miss many valid predicted boxes or incorrectly
match them to boxes of other text instances. The second is a text-based method, which matches
predicted boxes to their corresponding GT boxes solely based on identical text content. Leveraging
MLLM’s powerful text recognition capability, this text-based approach can achieve a high match rate
for predicted boxes. However, this method struggles to distinguish between multiple text instances
with the same content within a single image, potentially leading to incorrect GT box matches. Our
proposed method, in contrast, performs matching based on both text content and IoU. A match is
considered successful only if the text content is identical and the IoU between the predicted and GT
boxes is greater than 0. Tab.[7/|demonstrates the effectiveness of this approach.

Reward functions. Finally, we conduct ablation studies on the design of the rule-based reward
function for GRPO. Tab. [§] shows the results. Rewarding solely based on text recognition content
(Row 2) leads to a decrease in text detection performance against the combined reward settings
(Rows 3 and 4). While designing a single reward for detection that uses the harmonic mean (F1-
score) to combine precision and recall substantially increases the complexity of the reward function.
As a result, it led to poorer model convergence and lower sample efficiency. Therefore, treating
precision and recall as two independent rewards allows us to improve overall performance further.

Table 5: Ablation study on training strategy. Table 6: SupGRPO for different tokens.

| Detection | Recognition | Detection | Recognition
SFT 63.3 77.1 GRPO 62.0 80.0
SFT + Aug 65.1 77.4 + All Tokens SFT 64.0 81.2
GRPO 62.0 80.0 + Text Tokens SFT 60.8 84.1
SupGRPO 71.6 84.4 + Location Tokens SFT 71.6 84.4

Table 7: Different matching mechanism for Table 8: Ablation study on reward functions.
online SFT location tokens.

| Detection | Recognition

| Detection | Recognition

Baseline 26.3 70.2
All Tokens SFT 64.0 81.2 Text 61.1 83.2
ToU-based 66.5 81.7 Text & F 69.3 83.5
Text-based 68.6 82.8 Text & P & R 71.6 84.4

ToU & Text 71.6 84.4

5 CONCLUSION

This paper addressed the challenge of text spotting in complex artistic images, where existing
MLLMs often lack precise localization. We explored applying the GRPO training paradigm to text
spotting for the first time, designing specific rewards. To overcome GRPO’s lack of fine-grained co-
ordinate supervision and standard SFT’s sequence issues, we proposed SupGRPO, which combines
GRPO with a matching-based online SFT specifically targeting coordinate tokens. We also con-
tributed the ATS dataset for evaluating performance on artistic text. Our experiments demonstrated
SupGRPO’s superior performance in both text detection and end-to-end recognition, effectively in-
tegrating policy optimization and targeted coordinate learning to advance text spotting. Finally,
we believe that our joint training strategy may offer valuable new insights and a potential training
paradigm for the broader MLLM research community.

10



Under review as a conference paper at ICLR 2026

REFERENCES

Youngmin Baek, Seung Shin, Jeonghun Baek, Sungrae Park, Junyeop Lee, Dachyun Nam, and
Hwalsuk Lee. Character region attention for text spotting. In Computer Vision—-ECCV 2020:
16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part XXIX 16, pp.
504-521. Springer, 2020.

Shuai Bai, Yuxuan Cai, Ruizhe Chen, Keqin Chen, Xionghui Chen, Zesen Cheng, Lianghao
Deng, Wei Ding, Chang Gao, Chunjiang Ge, et al. Qwen3-vl technical report. arXiv preprint
arXiv:2511.21631, 2025a.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report. arXiv
preprint arXiv:2502.13923, 2025b.

Christian Bartz, Haojin Yang, and Christoph Meinel. See: towards semi-supervised end-to-end scene
text recognition. In Proceedings of the AAAI conference on artificial intelligence, volume 32,
2018.

Michal Busta, Lukas Neumann, and Jiri Matas. Deep textspotter: An end-to-end trainable scene text
localization and recognition framework. In Proceedings of the IEEE international conference on
computer vision, pp. 2204-2212, 2017.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In European conference on
computer vision, pp. 213-229. Springer, 2020.

Song Chen, Xinyu Guo, Yadong Li, Tao Zhang, Mingan Lin, Dongdong Kuang, Youwei Zhang,
Lingfeng Ming, Fengyu Zhang, Yuran Wang, et al. Ocean-ocr: Towards general ocr application
via a vision-language model. arXiv preprint arXiv:2501.15558, 2025.

Chee-Kheng Ch’ng, Chee Seng Chan, and Cheng-Lin Liu. Total-text: toward orientation robustness
in scene text detection. International Journal on Document Analysis and Recognition (IJDAR),
23(1):31-52, 2020.

Hugging Face. Open rl: A fully open reproduction of deepseek-rl, January 2025. URL https:
//github.com/huggingface/open—rl.

Hao Feng, Zijian Wang, Jingqun Tang, Jinghui Lu, Wengang Zhou, Hougqiang Li, and Can Huang.
Unidoc: A universal large multimodal model for simultaneous text detection, recognition, spotting
and understanding, 2023. URL https://arxiv.org/abs/2308.11592|

Wei Feng, Wenhao He, Fei Yin, Xu-Yao Zhang, and Cheng-Lin Liu. Textdragon: An end-to-end
framework for arbitrary shaped text spotting. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 9076-9085, 2019.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Anwen Hu, Haiyang Xu, Jiabo Ye, Ming Yan, Liang Zhang, Bo Zhang, Chen Li, Ji Zhang, Qin Jin,
Fei Huang, et al. mplug-docowl 1.5: Unified structure learning for ocr-free document understand-
ing. arXiv preprint arXiv:2403.12895, 2024.

Mingxin Huang, Yuliang Liu, Zhenghao Peng, Chongyu Liu, Dahua Lin, Shenggao Zhu, Nicholas
Yuan, Kai Ding, and Lianwen Jin. Swintextspotter: Scene text spotting via better synergy between
text detection and text recognition. In proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 4593-4603, 2022.

Mingxin Huang, Jiaxin Zhang, Dezhi Peng, Hao Lu, Can Huang, Yuliang Liu, Xiang Bai, and Lian-
wen Jin. Estextspotter: Towards better scene text spotting with explicit synergy in transformer. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 19495-19505,
2023.

11


https://github.com/huggingface/open-r1
https://github.com/huggingface/open-r1
https://arxiv.org/abs/2308.11592

Under review as a conference paper at ICLR 2026

Mingxin Huang, Hongliang Li, Yuliang Liu, Xiang Bai, and Lianwen Jin. Bridging the gap between
end-to-end and two-step text spotting. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 15608-15618, 2024.

Dimosthenis Karatzas, Lluis Gomez-Bigorda, Anguelos Nicolaou, Suman Ghosh, Andrew Bag-
danov, Masakazu Iwamura, Jiri Matas, Lukas Neumann, Vijay Ramaseshan Chandrasekhar, Shi-
jian Lu, et al. Icdar 2015 competition on robust reading. In 2015 13th international conference
on document analysis and recognition (ICDAR), pp. 1156-1160. IEEE, 2015.

Taeho Kil, Seonghyeon Kim, Sukmin Seo, Yoonsik Kim, and Daehee Kim. Towards unified scene
text spotting based on sequence generation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 15223-15232, 2023.

Yair Kittenplon, Inbal Lavi, Sharon Fogel, Yarin Bar, R Manmatha, and Pietro Perona. Towards
weakly-supervised text spotting using a multi-task transformer. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 4604-4613, 2022.

Hui Li, Peng Wang, and Chunhua Shen. Towards end-to-end text spotting with convolutional recur-
rent neural networks. In Proceedings of the IEEE international conference on computer vision,
pp. 5238-5246, 2017.

M Liao, P Lyu, M He, C Yao, W Wu, and X Bai. Mask textspotter: An end-to-end trainable
neural network for spotting text with arbitrary shapes. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 43(2):532-548, 2021.

Minghui Liao, Guan Pang, Jing Huang, Tal Hassner, and Xiang Bai. Mask textspotter v3: Segmen-
tation proposal network for robust scene text spotting. In Computer Vision—-ECCV 2020: 16th
European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part XI 16, pp. 706-722.
Springer, 2020.

Xuebo Liu, Ding Liang, Shi Yan, Dagui Chen, Yu Qiao, and Junjie Yan. Fots: Fast oriented text
spotting with a unified network. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 5676-5685, 2018.

Yuliang Liu, Lianwen Jin, Shuaitao Zhang, Canjie Luo, and Sheng Zhang. Curved scene text de-
tection via transverse and longitudinal sequence connection. Pattern Recognition, 90:337-345,
2019.

Yuliang Liu, Hao Chen, Chunhua Shen, Tong He, Lianwen Jin, and Liangwei Wang. Abcnet: Real-
time scene text spotting with adaptive bezier-curve network. In proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 9809-9818, 2020.

Yuliang Liu, Chunhua Shen, Lianwen Jin, Tong He, Peng Chen, Chongyu Liu, and Hao Chen. Abc-
net v2: Adaptive bezier-curve network for real-time end-to-end text spotting. [EEE Transactions
on Pattern Analysis and Machine Intelligence, 44(11):8048-8064, 2021.

Yuliang Liu, Biao Yang, Qiang Liu, Zhang Li, Zhiyin Ma, Shuo Zhang, and Xiang Bai.
Textmonkey: An ocr-free large multimodal model for understanding document. arXiv preprint
arXiv:2403.04473, 2024.

Pengyuan Lyu, Minghui Liao, Cong Yao, Wenhao Wu, and Xiang Bai. Mask textspotter: An end-
to-end trainable neural network for spotting text with arbitrary shapes. In Proceedings of the
European conference on computer vision (ECCV), pp. 67-83, 2018.

Dezhi Peng, Xinyu Wang, Yuliang Liu, Jiaxin Zhang, Mingxin Huang, Songxuan Lai, Jing Li,
Shenggao Zhu, Dahua Lin, Chunhua Shen, et al. Spts: single-point text spotting. In Proceedings
of the 30th ACM International Conference on Multimedia, pp. 4272-4281, 2022.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-
baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gem-
ini 1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

12



Under review as a conference paper at ICLR 2026

Roi Ronen, Shahar Tsiper, Oron Anschel, Inbal Lavi, Amir Markovitz, and R Manmatha. Glass:
Global to local attention for scene-text spotting. In European Conference on Computer Vision,
pp. 249-266. Springer, 2022.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Haozhan Shen, Peng Liu, Jingcheng Li, Chunxin Fang, Yibo Ma, Jiajia Liao, Qiaoli Shen, Zilun
Zhang, Kangjia Zhao, Qiangian Zhang, et al. VIm-rl: A stable and generalizable r1-style large
vision-language model. arXiv preprint arXiv:2504.07615, 2025.

Pengfei Wang, Chengquan Zhang, Fei Qi, Shanshan Liu, Xiaoqiang Zhang, Pengyuan Lyu, Junyu
Han, Jingtuo Liu, Errui Ding, and Guangming Shi. Pgnet: Real-time arbitrarily-shaped text
spotting with point gathering network. In Proceedings of the AAAI Conference on Artificial Intel-
ligence, volume 35, pp. 2782-2790, 2021.

Weiyun Wang, Zhangwei Gao, Lixin Gu, Hengjun Pu, Long Cui, Xingguang Wei, Zhaoyang Liu,
Linglin Jing, Shenglong Ye, Jie Shao, et al. InternvI3.5: Advancing open-source multimodal
models in versatility, reasoning, and efficiency. arXiv preprint arXiv:2508.18265, 2025.

Haoran Wei, Lingyu Kong, Jinyue Chen, Liang Zhao, Zheng Ge, Jinrong Yang, Jianjian Sun, Chun-
rui Han, and Xiangyu Zhang. Vary: Scaling up the vision vocabulary for large vision-language
model. In European Conference on Computer Vision, pp. 408—424. Springer, 2024a.

Haoran Wei, Chenglong Liu, Jinyue Chen, Jia Wang, Lingyu Kong, Yanming Xu, Zheng Ge, Liang
Zhao, Jianjian Sun, Yuang Peng, et al. General ocr theory: Towards ocr-2.0 via a unified end-to-
end model. arXiv preprint arXiv:2409.01704, 2024b.

Xudong Xie, Yuzhe Li, Yang Liu, Zhifei Zhang, Zhaowen Wang, Wei Xiong, and Xiang Bai. Was:
Dataset and methods for artistic text segmentation. In European Conference on Computer Vision,
pp. 237-254. Springer, 2024.

Xingqian Xu, Zhifei Zhang, Zhaowen Wang, Brian Price, Zhonghao Wang, and Humphrey Shi.
Rethinking text segmentation: A novel dataset and a text-specific refinement approach. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12045—
12055, 2021.

Maoyuan Ye, Jing Zhang, Shanshan Zhao, Juhua Liu, Tongliang Liu, Bo Du, and Dacheng Tao.
Deepsolo: Let transformer decoder with explicit points solo for text spotting. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19348-19357, 2023.

Ya-Qi Yu, Minghui Liao, Jiwen Zhang, and Jihao Wu. Texthawk2: A large vision-language model
excels in bilingual ocr and grounding with 16x fewer tokens. arXiv preprint arXiv:2410.05261,
2024.

Rui Zhang, Yongsheng Zhou, Qianyi Jiang, Qi Song, Nan Li, Kai Zhou, Lei Wang, Dong Wang,
Minghui Liao, Mingkun Yang, et al. Icdar 2019 robust reading challenge on reading chinese text
on signboard. In 2019 international conference on document analysis and recognition (ICDAR),
pp. 1577-1581. IEEE, 2019.

Xiang Zhang, Yongwen Su, Subarna Tripathi, and Zhuowen Tu. Text spotting transformers. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9519—
9528, 2022.

Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable detr:
Deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159, 2020.

13



Under review as a conference paper at ICLR 2026

0.175
0.20 0.150
v (%}
& &
9 20.125
Eo015 £
5 %S 0.100
s s
L2010 £o.075
o o
g g 0.050
a o
0.05 0.025
0.000
0.00 -
1 2 3 4 5 6 7 8 9 1011 12 13 14 1515+ 0.0 0.2 0.4 0.6 0.8 1.0
Number of text instances Text area / Image area
(a) Distribution of text counts per image (b) Distribution of text area ratio per image

Figure 4: Data statistics of the proposed artistic text spotting dataset ATS.

A APPENDIX: DISTRIBUTION STATISTICS OF THE ATS DATASET

To further demonstrate more features of our proposed ATS dataset, we counted the number of text
instances contained in each image, as shown in Fig. @ (a). Unlike scene text images, which contain a
large number of text instances, most artistic text images contain no more than 10 instances. Although
a small number of instances reduces the difficulty of detection to a certain extent, it is still difficult
for existing methods to achieve satisfactory recognition performance.

In addition, we statistically analyze the ratio of text regions to the overall area of each image, as
shown in Fig. [ (b). A significant portion of these images reveals that text content constitutes no
more than 20% of the total image space. The remaining areas are predominantly comprised of rich
artistic elements or other objects, thereby posing considerable challenges for artistic text spotting.
Nevertheless, we can harness the capabilities of MLLLMs to exploit the contextual information within
these non-textual regions to facilitate the recognition of textual content.

B APPENDIX: TRAINING CURVE COMPARISON

This appendix provides a comparative analysis of the vanilla GRPO and our proposed SupGRPO
methods during the training process. As can be clearly observed in Fig. 5] SupGRPO demonstrates
superior stability and efficiency throughout training. Specifically, for each of the individual reward
functions (Precision, Recall, Content, and Format Spotting Reward) as well as the Total Reward, the
curve for SupGRPO (red line) is consistently and stably higher than that of the vanilla GRPO (blue
line), indicating that it learns more effectively and achieves higher reward values. Furthermore, in
the Total Loss graph, the loss curve for SupGRPO not only converges to a lower value but also
exhibits significantly less fluctuation compared to the vanilla GRPO, which serves as evidence of a
more stable training process for our method. Collectively, these curves show that by incorporating
matching-based online SFT, SupGRPO effectively mitigates the issues present when using GRPO
alone, leading to more stable and efficient model optimization.

C APPENDIX: QUALITATIVE COMPARISON

Fig. [f] illustrates a qualitative comparison of our model with other specialized text spotting mod-
els and MLLMs across four datasets: our proposed ATS, Total-Text (Ch’ng et al., 2020), ICDAR
2015 (Karatzas et al.l [2015), and CTW1500 (Liu et al., 2019). Compared to existing MLLMs,
our model demonstrates significantly superior text detection performance, yielding more accurate
bounding boxes. Against specialized text spotting models, ours exhibits a better ability to perceive
and understand artistic text, thereby accurately capturing all text content. Furthermore, leverag-
ing the advantages of MLLMs, our model is capable of multi-language text spotting. Interestingly,
our model can automatically infer and complete occluded text content, a phenomenon frequently
observed in the ICDAR 2015 dataset.
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Figure 5: Training curve comparison between the vanilla GRPO and our SupGRPO.
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Figure 6: Qualitative comparison with other specialized text spotting models and MLLMs.
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D LIMITATION

Despite the significant advancements achieved by SupGRPO, two limitations remain. First, while
our optimized models (e.g., utilizing Qwen3-VL-8B) achieve detection performance comparable to
specialized text spotting models, they do not significantly surpass them in pure localization preci-
sion. Second, fine-tuning on domain-specific text spotting data inevitably leads to a slight degrada-
tion in performance on general multimodal benchmarks, a common phenomenon known as catas-
trophic forgetting. However, this issue is effectively mitigated by our adoption of LoRA, which
freezes the pre-trained backbone parameters to preserve general world knowledge while adapting to
the target task.
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