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ABSTRACT

Vision-language pre-training and instruction tuning have demonstrated general-
purpose capabilities in 2D visual reasoning tasks by aligning visual encoders with
state-of-the-art large language models (LLM). In this paper, we introduce a sim-
ple, yet effective, multimodal framework built atop a frozen LLM; this framework
is capable of seamlessly integrating and managing an ad-hoc number of modal-
ities. To facilitate general-modality training, we collect high-quality instruction
tuning data in an automatic and scalable manner, composed of 31K QA samples
for audio and 250K QA samples for 3D. We further contribute a novel Discrimi-
native Cross-modal Reasoning (DisCRn) evaluation task, comprising 12K audio-
video QA samples and 28K image-3D QA samples. Leveraging instruction-aware
representations, our model consistently outperforms or matches the leading-edge
counterparts, setting state-of-the-art benchmarks in seven (7) zero-shot scenar-
ios across all investigated modalities. Notably, our approach demonstrates joint
reasoning abilities on par with models specifically trained on combined-modality
datasets, like video-audio. All associated resources, including codes, datasets, and
benchmarks, will be released.

1 INTRODUCTION

Humans inherently utilize multiple senses to interpret their surroundings and formulate decisions.
By equipping artificial agents with the capability for cross-modal reasoning,1 we can foster the de-
velopment of systems with a more comprehensive understanding of their environment, allowing
them to discern patterns and make inferences that are not apparent when analyzing modalities sepa-
rately. This aspiration has motivated the advent of Multimodal Language Models (MLMs) (Alayrac
et al., 2022; Huang et al., 2023; Gong et al., 2023; Li et al., 2023b; Koh et al., 2023; Dai et al.,
2023; Liu et al., 2023; Driess et al., 2023b), which transfer the remarkable abilities of Large Lan-
guage Models (LLMs) (Devlin et al., 2018; Brown et al., 2020; Raffel et al., 2020; Rae et al., 2021;
Chowdhery et al., 2022; Tay et al., 2022; Chung et al., 2022; Touvron et al., 2023; Chiang et al.,
2023; Taori et al., 2023) to the visual domain.

Recent advancements seek to extend the reasoning capabilities of models beyond static vision, by
incorporating audio and video, either by introducing pre-trained foundation models across multiple
modalities (Lu et al., 2022; Shukor et al., 2023; Xu et al., 2023a; Wang et al., 2023; Chen et al.,
2023a;b) or by training projection modules to align multimodalities to the representation space of
LLMs (Zhao et al., 2023; Wu et al., 2023). Although effective, the former necessitates task-specific
fine-tuning for successful multimodal task execution, and the latter refines models on joint-modality
data to carry out tasks involving combined modalities. Such data can be high-resource demand-
ing both in terms of collection and computational resources. Several studies (Su et al., 2023; Han
et al., 2023) have employed multimodal representation spaces (Girdhar et al., 2023) to extend vision-
centric MLMs to additional modalities, but such frameworks are constrained only to the modalities
facilitated by those representation spaces.

1 In the scope of this work, the term cross-modal reasoning encompasses the ability of a system to process
information from multiple modalities (excluding text) to perform tasks that require both integrating and dis-
criminating information across those modalities. This term is chosen to distinguish from “multimodal tasks,” a
term traditionally reserved for tasks that involve the dual modalities of vision and language.
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Figure 1: (a) X-InstructBLIP employs individually encoded modalities, each transformed to the
language domain via a uniquely trained, instruction-aware Q-Former. (b) The input to the LLM
is the Q-Former output representation, cued with a modality-specific prefix, "Modality-X" and
followed by the instruction. This approach results in competitive understanding within individual
modalities (c)) while revealing emergent capabilities for cross-modal comprehension ((d)).

In this study, we present X-InstructBLIP, a scalable and extendable framework, illustrated in
Figure 1, developed to enable learning with uni-modal data without the constraints imposed by
pre-trained universal cross-modal spaces or the computational resources and potential overfitting
risks associated with unfreezing the parameters of the LLMs. X-InstructBLIP is designed to
seamlessly incorporate a multitude of modalities, on an ad-hoc basis, eliminating the necessity for
joint modality datasets but preserving the capacity to execute cross-modality tasks. Utilizing the
Querying Transformer or Q-Former (Li et al., 2023b) module, we effectively map inputs from the
separate embedding spaces attributed to each modality into the domain of LLMs. Considering the
scarcity of instruction tuning data for a spectrum of modalities, we introduce a simplified yet potent
approach: a three-stage query data augmentation technique. This strategy leverages open-source
language models to extract instruction-tuning data from captioning datasets.

Our approach matches or surpasses the performance of existing models in unimodal reasoning
benchmarks, covering seven zero-shot tasks across four modalities. Our model also demonstrates
parallel competence in cross-modality reasoning compared to models trained with cross-modal data.
To demonstrate this, we introduce DisCRn, an automatically curated Discriminatory Cross-modal
Reasoning challenge dataset, which requires models to distinguish between diverse combinations
of modalities, such as audio-video and 3D-image. A compilation of illustrative results, highlighting
the versatile competencies of our framework across diverse scenarios, are depicted in Figure 2.

To summarize, our contributions are the following:
(i) We present a simple, yet effective, scalable cross-modal framework to empower LLMs to adeptly
handle a diverse range of tasks across a variety of modalities. Our results show that while each of the
modalities (images, video, audio, and 3D) undergoes individual alignment to LLMs, our instruction-
aware representations are generalizable for combined modality tasks, facilitating the seamless inte-
gration of more modalities as they emerge.
(ii) We introduce an approach for crafting instruction-tuning datasets from a variety of modalities,
leveraging only readily available captioning data and open-source language models. Illustratively,
we transform the established Cap3D (Luo et al., 2023) and AudioCaps (Kim et al., 2019) datasets
into expansive QA collections, resulting in 250,070 and 31,020 entries, respectively.
(iii) We construct DisCRn, the first instruction-based cross-modal discriminative crossmodal rea-
soning dataset for evaluation. Comprising 42k examples that span video, audio, 3D, and image
modalities, this dataset challenges models to distinguish between input modalities, thus establishing
a new benchmark in this intricate domain.
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2 RELATED WORK

Multimodal Language Models (MLMs): Recent years have seen a surge in the exploration of
models capable of executing a spectrum of vision-language tasks, leading to the development of
Multimodal Language Models (MLMs). These models align multimodal inputs and the LLM’s
latent space through various techniques, such as autoregressive unified pretraining of transformer-
based architectures with multimodal inputs (Cho et al., 2021; Yang et al., 2022; Wang et al., 2022; Li
et al., 2022a) or vision-to-language projection learning (Dai et al., 2023; Alayrac et al., 2022; Chen
et al., 2022a; Mañas et al., 2023; Tiong et al., 2023; Liu et al., 2023; Huang et al., 2023; Gong et al.,
2023; Li et al., 2023b; Koh et al., 2023; Driess et al., 2023b; Wu et al., 2023). Such approaches have
been expanded beyond images, for video (Zhang et al., 2023b; Li et al., 2023c), audio (Zhang et al.,
2023a), and 3D (Xu et al., 2023b). This work extends the multimodal instruction tuning framework
from (Dai et al., 2023) to encompass audio, 3D, and video modalities.

This research aligns with contemporary advancements focused on aligning multiple non-linguistic
modalities to LLMs, a concept we define in this paper as Cross-Modal Models. Strategies in this
domain have often emulated those deployed in MLMs, involving the conceptualization of unified
pretraining techniques (Wang et al., 2023; Chen et al., 2023b; Xu et al., 2023a; Shukor et al., 2023)
and, more pertinently to our work, the alignment of various modalities with pretrained LLMs. The
alignment to pretrained LLMs offers an economical advantage, optimizing the use of data and com-
putational resources. Among the prevailing methods for modality alignment to pretrained LLMs
is to leverage of a shared embedding space across different modalities, like ImageBind (Girdhar
et al., 2023). Here, the LLM’s projection is fine-tuned through a low-rank approach (Hu et al., 2021)
primarily using one modality (most often vision due to its abundant datasets) and subsequently gen-
eralizing it to others (Su et al., 2023; Han et al., 2023). In a vein more directly aligned with our
work, ChatBridge (Zhao et al., 2023) trains distinct projections for each modality while preserving
the LLM weights frozen. Although each projection’s preliminary alignment is executed indepen-
dently using noisy data, it subsequently undergoes instruction tuning on artificially crafted joint
modality data. This process can be resource-intensive, especially when leveraging API-based LLMs
such as GPT-4 (OpenAI, 2023). Similarly to ChatBridge, we preserve the merits of a frozen LLM.
However, we employ singular modality-to-text datasets for the individualized tuning of each pro-
jection and harness open-source LLMs to craft additional instruction-tuned data in a manner that is
both replicable and economically efficient.

Multimodal Multi-Input Language Tasks: The advancements in single input vision-language
tasks have paved the way for the development of tasks necessitating models to concurrently reason
about multiple non-linguistic inputs. These tasks may require models to engage in spatial reasoning
across multiple images (Bansal et al., 2020), deliberate over a series of slides (Tanaka et al., 2023),
respond to queries necessitating cross-modal reasoning across images and tables (Li et al., 2022c), or
execute a range of instruction-based tasks involving multiple image inputs (Li et al., 2022c). Despite
their complexity, these tasks predominantly operate within the realms of image-text modalities.

Some tasks necessitate reasoning over videos (Chen et al., 2023a; Alamri et al., 2018; Li et al.,
2022b), demanding models to congruently process both video and audio modalities. However, to
our best knowledge, there exists no task that requires contrastive reasoning across disparate modal-
ities in an open vocabulary text generation setting, such as 3D with images, or audio with video.
Addressing this gap, we introduce DisCRn the first dataset of its kind. This dataset mandates mod-
els to comprehend that the instructions entail a comparative analysis of the diverse modality inputs
and to subsequently generate a corresponding answer.

3 MODEL ARCHITECTURE

Figure 1 depicts an overview of the model’s architecture which extends the instruction-aware pro-
jection method introduced in (Dai et al., 2023) to an arbitrary number of modalities. For any given
modality M , we employ a pre-trained encoder EncM to embed the raw input from the modality’s
input space XM into an embedding space ZM . Formally, this encoding process can be represented
as zM = EncM (xM ), where xM ∈ XM is an instance from the raw input of modality M . The
encoder’s output zM ∈ ZM is subsequently fed into the Q-Former module, specifically to its
cross-attention layers. This Q-Former module also receives a set of K learnable query embed-
dings QM = {qM1 . . . qMK

} and the task instruction iM ∈ IMt , where IMt is the predefined space
of instruction templates for task t and modality M . For a full list of templates refer to Appendix H.
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[children laughing]

How likely is it to hear these sounds in the location 
depicted in the image?

It is very likely to hear these sounds in the 
location depicted in the image.

there are four yellow parrots si;ng on a branch in 
front of a mesh fence the birds are perched together 
and seem to be enjoying each other's company they 
are surrounded by green trees and foliage

Describe the image in detail:

Which locaBon would someone visit to have fun and why?

Movie theater because it is a place where 
people go to watch movies and have fun.

Which locaBon would someone visit if 
they are not feeling very well?

A doctor's office because they are not feeling well and 
need medical attention in the video, a man is walking 
down a long hallway carrying a suitcase, possibly to 
visit a doctor's office for medical attention.

[child reciting a poem]

which input is more likely to be taking place in a 
classroom? Choices: video, audio 

Audio.

Briefly describe the 
video. 

A 3d animaBon of a computer screen.

Music is playing.

What sound is playing in the audio?[music beats]

Given the audio describe the video.

This is a dj soLware screen shot of a dj soLware on a laptop.

Describe the 3d model in detail.

3d model of a t-rex dinosaur with long legs and a long tail.

Figure 2: Qualitative Examples: X-InstructBLIP demonstrates multifaceted capabilities across
the four examined modalities: image, video, audio, and 3D. It proficiently navigates tasks from im-
age and 3D captioning to sophisticated cross-modal reasoning. This encompasses both discrimina-
tive and joint reasoning scenarios, showcasing its versatile applicability and nuanced understanding
in diverse contexts.

Each Q-Former transforms the set of K query embeddings, QM , conditioned on both (zM , iM ),
into instruction-aware language representations of the input modality. The output query tokens
QM are linearly projected to the frozen LLM’s space through a learnable projection layer LPM

specific to each modality. This step is necessary since the Q-Former’s tokenization space differs
from that of the frozen pretrained LLM. For sequential data, such as video and audio, we extract
N×K query tokens; each frame is encoded and then processed separately by the Q-Former module.
The Q-Former module consists of two transformer submodules that share the same self-attention
layers: one submodule interacts with the output of the modality encoder ZM and the other is a
BERTbase text transformer that serves as both an encoder and decoder. We initialize each Q-Former
with the pre-trained weights from BLIP2 (Li et al., 2023b), without the cross-attention layers due
to a dimension mismatch between our encoder modalities and the image encoder in BLIP2. The
modality embedding zM interacts with the instruction text iM and learnable query tokens QM via
cross-attention layers inserted in every other transformer block.

Finally, the output query tokens QM are linearly transformed to the LLM’s space LPM (QM ). Let
TOK be the tokenizer associated with the LLM, EMB the LLM’s embedding layer, cM the modality
cue, x the example text input, and y the corresponding target phrase. The resulting input to the
frozen LLM is formed by EMB(TOK(cM )) ⊕ LPM (QM ) ⊕ EMB(TOK(iM )) ⊕ EMB(TOK(x))
where ⊕ denotes concatenation. The Q-Former is trained by minimizing the LLM cross-entropy
loss on the output tokens, where the target is TOK(y).

4 DATASETS

We now discuss the pre-existing data suite and automatically generated datasets for instruction tun-
ing, including our data augmentation technique to generate instruction tuning data for modalities
with scarce data (Section 4.1). Furthermore, we introduce the Discriminatory Cross-modal Reason-
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Figure 3: Instruction Tuning Datasets: This is the curated collection of publicly accessible datasets
used for X-InstructBLIP’s training and evaluation. Oval-enclosed datasets are training datasets,
while square cells signify zero-shot evaluation sets. Datasets with a dashed outline are derived
automatically from existing public datasets, using our multi-round prompting technique.

ing challenge dataset DisCRn used to evaluate the emergent capabilities of X-InstructBLIP (S 2

(Section 4.2).

4.1 FINETUNING DATASETS

Existing Datasets: Figure 3 illustrates the datasets utilized for both instruction finetuning and eval-
uation. A detailed breakdown of the dataset statistics and formats can be found in Appendix G. For
each dataset in DM , the collection of held-in datasets specific to modality M , we adopted the sam-
pling methodology described in (Dai et al., 2023), but extended to accommodate a broader range
of modalities. The sampling probability for any given dataset DMd

∈ DM is given by the equation√
|DMd

|∑
d∈[1...|DM |]

√
|DMd

|
. In the final 40, 000 iterations of the image Q-Former’s training, we adjusted

the sampling rate of MSCOCO to 3.0, while retaining the ratios for other datasets. We set the sam-
pling rate of MSRVTT to 1.0 for the video Q-Former while maintaining the other sampling rates
consistent with the formula. These adjustments guide the model to learn from a more refined but
diverse dataset.

Instruction Data Augmentation: Extracting instruction-aware representations necessitates di-
verse instruction-related tasks across all modalities. Notably, datasets for 3D and audio modali-
ties are largely caption-centric. To address this, we leverage the open-source large language model
google/flan-t5-xxl (Chung et al., 2022) from the huggingface-transformers platform to
automatically generate question-answer pairs for the 3D and audio modalities, based on their corre-
sponding captions. The process begins by prompting the model with captions to generate potential
answers. These answers are then used to prompt the model to generate candidate questions. If the
model’s response to a question, using the caption as context, aligns closely with the initial answer
(achieving a Levenshtein similarity score (Yujian & Bo, 2007) above 0.9), the example is added to
our dataset. This procedure yields 250,070 examples using 3D data from Cap3D (Luo et al., 2023) 3

and 31,020 examples for audio data from AudioCaps (Kim et al., 2019). See Appendix A.1 for a
detailed breakdown of the data generation process and the resulting distribution.

4.2 DISCRN: DISCRIMINATIVE CROSS-MODAL REASONING DATASET

X-InstructBLIP offers a distinct emergent capability: reasoning across different modalities,
even when each modality Q-Former is trained individually. This highlights the model’s versatility
and potential scalability across numerous modalities. To underscore this cross-modal reasoning
capability, we present a pioneering cross-modal discriminatory reasoning test dataset. As illustrated
in Figure 4, this dataset challenges the model to discern between the properties of two entities across
modalities by selecting which one satisfies a queried property. Undertaking this task mandates the

2 Discriminative reasoning is the ability to distinctly discern the relationships between pairs of inputs pro-
vided to the model. We adapt the definition from Xu et al. (2021), where it is applied it for single-modality text
pair paragraphs. In our context, the model is required to reason across disparate modalities, such as video-audio
and image-3D. We distinguish discriminative reasoning from joint reasoning which, in the context of this work,
denotes the ability of models to synthesize information from aligned cross-modal inputs to accomplish a task.

3 A subset consisting of 5k point clouds is deliberately held-out from Cap3D for the construction of
DisCRn, as introduced in Section 4.2. This exclusion is maintained both in the captioning and QA config-
urations.
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Q: Which entity has a roof ? 
A: second

Q: Which is moving?  
A: right

Q: Which entity is made of ceramic? 
A: left

[Plastic is tapped
on while someone 

speaks]

Q: Which entity is more likely to be in a 
city? A: 1st 

[a man speaks
and bees buzz

and birds chirp]

Figure 4: Sample examples from DisCRn. Given two distinct modality inputs, the model needs
to select the entity that matches the property queried. Audio is symbolized by waveforms and its
semantics are conveyed via annotated captions, 3D is illustrated through a point cloud visualization,
and videos are represented through the display of two random frames.

model to not only discriminate the inherent characteristics of the involved modalities but also to
consider their relative positioning in the input. This strategic imposition serves to diminish reliance
on simplistic text-matching heuristics or potential deceptive correlations between modalities, which
could allow basic captioning baselines to circumvent the task.

To generate the dataset, we employed the google/flan-t5-xxl model, previously utilized for
instruction data creation (refer to section 4.1). The process is initiated by prompting the language
model in a Chain-of-Thought (Wei et al., 2022) manner to generate a set of properties for each
dataset instance. Each instance is then paired with a random entity from the dataset to form a (ques-
tion, answer, explanation) triplet by prompting the language model with three in-context examples.
A pivotal step in this creation process is a round-trip-consistency check: an example is only inte-
grated into the final dataset when the model’s predictions on the generated question, given the cap-
tions, match the example answer, exhibiting a Levenshtein distance above 0.9. This refined dataset
encompasses 12,162 audio-video samples sourced from the AudioCaps validation set, and 29,072
image-point cloud instances derived from a reserved subset of 5k point clouds from Cap3D (Luo
et al., 2023). Each instance in the dataset is coupled with two representations corresponding to
the captions—audio-video from AudioCaps and point cloud-images from Cap3D. Given that the
arrangement of the data can be altered, this allows for maintaining a balanced set of answers. This
balance pertains not only to the position of the answers but also to the modality, Human raters
find the dataset exhibits a commendable quality, achieving a 90% accuracy rate across the different
modalities. See Appendix A.2 for a thorough discussion of the dataset’s creation and distribution.

5 EXPERIMENTS

Section 5.1 provides the implementation details for our experiments, followed by the results for
generation and classification tasks involving an individual modality alongside the text in section 5.2.
Section 5.3 explores X-InstructBLIP’s emergent ability to competently handle tasks involving
cross modality reasoning, even with modalities trained independently.

5.1 IMPLEMENTATION DETAILS

Our model is built on the LAVIS library’s framework (Li et al., 2023a). Each Q-Former possesses
188M trainable parameters, a hidden dimension of size 768, and K = 32 query tokens. For image
and video modalities, the chosen pre-trained encoder is eva clip g model (Fang et al., 2022). For
audio, we utilize beats (Chen et al., 2022b), and for 3D we opt for ulip2 with a pointBERT
backbone (Xue et al., 2023). Standardized preprocessing is applied for each of the modalities.
Images are resized to 224×224 pixels. Audio files undergo mono conversion and features extraction
from 5-second frames, resulting in 2 frames. Video frames are processed similarly to images, with
5 and 2 frames sampled uniformly per video for individual and crossmodal tasks respectively. For
3D point clouds, 8,192 points are uniformly sampled as in ULIP-2 Xue et al. (2023). We maintain
consistent generation templates for the evaluated tasks, with small modifications tailored to the
particular modalities. Table 14 (Appendix) has details on evaluation hyperparameters and prompts.
We report our experimental results atop of the Vicuna 7b and 13b models (Chiang et al., 2023).

In terms of optimization, we use AdamW (Loshchilov & Hutter, 2017) with parameters β1= 0.9
and β2= 0.999, and a weight decay of 0.05. The learning rate warms up linearly over the initial
1,000 steps from 10−8 to 10−5, followed by a cosine decay to a minimum of 0. The computational
experiments are performed on configurations with 8 A100 40GB GPUs. We select a single best
model for each modality Q-Former as delineated in Appendix E.
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5.2 RESULTS: INDIVIDUAL MODALITY UNDERSTANDING

We evaluate X-InstructBLIP’s performance across a range of single modality to text tasks, illus-
trating its versatility and efficacy across all four explored modalities. Tables 1, 2, and 3 summarize
the X-InstructBLIP’s performance across image, audio and video, and 3D modalities.

Image modality: X-InstructBLIP attains SoTA results in zero-shot VizWiz (Bigham et al.,
2010) while performing comparably to InstructBLIP across all tasks evaluated. We note a small drop
in performance compared to InstructBLIP despite the similar finetuning setup. We hypothesize that
this minor decrement in performance is attributed to the expanded template space which introduces
a trade-off of generalization and performance since InstructBLIP’s ability to generate more precise
representations from a compact set of templates but fails to handle a larger variation of templates that
were not seen in training. In table 16 (Appendix) we show that while X-InstructBLIP is more
robust to template variations than InstructBLIP, it still endures a noticeable drop in performance.

Video modality: X-InstructBLIP establishes new benchmarks for zero-shot performance in
MSVD Captioning (Chen & Dolan, 2011) and MSVD QA (Xu et al., 2017). Intriguingly, video
is the sole modality where the incorporation of modality cues during both training and inference
doesn’t invariably enhance performance. This discrepancy may stem from the relatively extensive
number of frames in video compared to other modalities, coupled with recognized biases in video-
language tasks (Buch et al., 2022). Such conditions might generate a spurious correlation, prompting
the model to primarily rely on initial frames for output -- a strategy potentially advantageous for
certain tasks but detrimental for others. A more in-depth exploration of this occurrence is reserved
for subsequent research, as the current paper’s focus is to demonstrate the universal efficacy of our
framework across modalities. The improvement over InstructBLIP and a more detailed ablation
study in Appendix C shows that there is performance benefit in training the Q-Former explicitly on
videos instead of relying only on the image alignment.

Audio modality: For audio tasks, it attains SoTA zero-shot performance on ClothoV2 (Drossos
et al., 2021). Remarkably, X-InstructBLIP surpasses ChatBridge in both audio and video zero-
shot domains. This is noteworthy as ChatBridge also utilizes Q-Formers to learn modality projec-
tions to LLMs but lacks instruction awareness, underscoring the crucial role of instruction-aware
representations in achieving robust modality-to-language alignments.

3D Modality: Our model displays comparable performance to its 3D encoder backbone in closed
vocabulary classification settings applied using the loss ranking method described in (Li et al., 2021).
It also sets new standards in zero-shot performance for open generation settings, validated by its
accuracy in identifying the correct ModelNet40 (Chang et al., 2015) class within object descrip-
tions when prompted with Describe the 3D model. Our model demonstrates substantial im-
provements over the InstructBLIP baseline, which processes a single view rendering of the point
cloud. Notably, our approach surpasses the PointLLM (Xu et al., 2023b)—which is constructed on
the Vicuna13b model and includes an RGB encoder—by a notable margin of 4.8/5.2 points with
X-InstructBLIP (7b) and (13b) respectively.

5.3 EMERGENT ABILITY: CROSS-MODAL UNDERSTANDING

5.3.1 VIDEO-AUDIO JOINT REASONING

Despite each modality projection being trained individually, X-InstructBLIP shows strong joint
and cross-modal reasoning abilities. Table 4 demonstrates X-InstructBLIP’s capability to rea-
son jointly over video (V) and audio (A), showcasing comparable performance with models fine-
tuned with integrated video-audio data. Notably, X-InstructBLIP (7b) excels in synergizing
inputs, displaying an improvement in performance compared to utilizing a single modality, a phe-
nomenon less accentuated in X-InstructBLIP (7b) ‘w/o cue’. Finally, X-InstructBLIP
performs comparatively to ChatBridge (Zhao et al., 2023), a Vicuna13b based cross-modal model
finetuned on joint video-audio data. In the Music AVQA (Li et al., 2022b) X-InstructBLIP

4 Models explicitly finetuned on COCO and report out-of-distribution captioning performance on NoCaps.
In contrast, X-InstructBLIP only partly samples COCO during the Q-Former alignment tuning.

5 The best value among all InstructBLIP variations is reported with the exception of SNLI-VE where only
the Vicuna-based InstructBLIP variations are considered, since FlanT5 models (Chung et al., 2022) have been
finetuned on a text-only version of SNLI-VE(Camburu et al., 2018).
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3D Flickr30k NoCaps VizWiz GQA SNLI-VE
test out-domain val all test-dev balanced test-dev test

Flamingo 9B(Alayrac et al., 2022) ✓ × ✓ × 61.5 - - 28.8 - -
Flamingo 80B ✓ × ✓ × 67.2 - - 31.6 - -
BLIP-2(T5xl)(Li et al., 2023b) ✓ × ✓ × 76.1 111.7 104.5 29.8 44.2 -
BLIP-2(T5xxl) ✓ × ✓ × 73.7 113.1 98.4 29.4 44.7 -
BLIP-2(7b) ✓ × ✓ × 74.9 - 107.5 25.3 38.6 -
BLIP-2(13b) ✓ × ✓ × 71.6 - 103.9 19.6 41.0 -
mPLUG(Li et al., 2022a) ✓ × ✓ × - 117.84 114.84 - - 89.3
KOSMOS-1(Huang et al., 2023) ✓ × × × 67.1 - - 29.2 - -
InstructBLIP5(Dai et al., 2023) ✓ × ✓ × 84.5 122.5 123.1 34.5 49.5 58.7
UnifiedIOXL(Lu et al., 2022) ✓ ✓ ✓ × - - 100.0 57.4 - -
UniVAL(Shukor et al., 2023) ✓ ✓ ✓ × - 95.34 - 20.2 78.2 -
ChatBridge(13b)(Zhao et al., 2023) ✓ ✓ ✓ × 82.5 - 115.7 - 41.8 -
PandaGPT(7b)(Su et al., 2023) ✓ ✓ ✓ ✓ - - - 29.7 41.6
ImageBindLLM(13b)(Girdhar et al.,
2023)

✓ ✓ ✓ ✓ - - 30.4 - 41.2

LLaVA(7b)(?) ✓ ✓ ✓ ✓ 27.7 - 33.1 - 41.3 57.8
X-InstructBLIP (7b) ✓ ✓ ✓ ✓ 82.1 115.5 117.5 34.9 48.1 57.6
X-InstructBLIP (7b) w/o cue ✓ ✓ ✓ ✓ 82.2(↑0.1) 113.7(↓1.8) 115.6(↓1.0) 33.9(↓1.6) 46.6(↓1.5) 57.0(↓0.6)

X-InstructBLIP (13b) ✓ ✓ ✓ ✓ 74.7 114.5 36.0 34.8 49.2 58.9

Table 1: Image Zero-Shot Quantitative Results: CIDEr score is reported for captioning tasks and
accuracy for all other tasks. Gray shaded rows correspond to current work. Gray rows represent
models from this study. Underlined, Bold, and Blue numbers denote fine-tuned evaluations, top,
and second-best zero-shot performances, respectively. (7b) and (13b) indicate the underlying Vicuna
model size. ‘w/o cue’ indicates that the model was trained and evaluated without specifying the type
of modality provided in the query output tokens. This notation is followed in all subsequent tables.

Video Audio
MSVD VATEX MSVD QA Clotho
test val test eval (v1) val (v2)

VALOR(Chen et al., 2023a) 15.6 95.8 60.0 8.0 -
VAST(Chen et al., 2023b) - 99.5 - 50.7 51.9
ChatBridge(13b)(Zhao et al., 2023) - - 45.3 - 26.2
UniVAL(Shukor et al., 2023) - - 27.5 - 38.0
mPLUG-2(Xu et al., 2023a) 148.2 - 55.3 - -
InstructBLIPDai et al. (2023)5 87.2 57.6 41.2 - -
X-InstructBLIP (7b) 116.1 59.2 51.7 29.3 27.4
X-InstructBLIP (7b) w/o cue 118.7 59.5 50.5 26.9 24.5
X-InstructBLIP (13b) 113.3 52.0 49.6 28.7 27.4

Table 2: Zero-Shot quantitative results for audio or video individual modality to language tasks.

outperforms ChatBridge by using Vicuna 7b and Vicuna13b respectively, while it lags behind in
AVSD (Alamri et al., 2018) and VALOR (Chen et al., 2023a) respectively.

5.3.2 DISCRN EVALUATION

We assess the ability of X-InstructBLIP in executing discriminatory reasoning across different
modalities using our newly introduced DisCRn benchmark, detailed in Section 4.2. We frame this
problem as a realistic open vocabulary generation task, allowing the model to independently formu-
late the output but steering the generation via a structured template: ‘‘question {question}?
options: first, second answer:’’. While the language model instruction includes the
answer options, these are not supplied as inputs to the modality Q-Formers. This strategy aims to
foster representations that are more attuned to the posed question, avoiding spurious associations
with positional information unavailable to individually trained Q-Formers.

Modelnet40 (test)
Classification Open Vocabulary Generation

ULIP2 (Xue et al., 2023) 66.7 Point LLM (+ RGB) (Xu et al., 2023b) (13b)† 44.8
InstructBLIP (7b) [Single View] (Dai et al., 2023) 31.4 InstructBLIP (7b) [Single View ] † 23.7
InstructBLIP (13b) [Single View] (Dai et al., 2023) 31.5 InstructBLIP (13b) [Single View] † 25.5
X-InstructBLIP (7b) 60.9 X-InstructBLIP (7b)† 49.6
X-InstructBLIP (7b) w/o cue 62.8 X-InstructBLIP (7b) w/o cue† 49.4
X-InstructBLIP (13b) 65.1 X-InstructBLIP (13b)† 50.0

Table 3: 3D Zero-Shot Quantitative Results: † indicates open-vocabulary generation, as opposed to
loss ranking classification (Li et al., 2021).
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Model A+V AVSD dstc7-test Music AVQA test VALOR test
FT A+V V A A+V V A A+V V A

ChatBridge(13b) ✓ 75.4 73.1 46.2 43.0 33.1 28.9 24.7 22.3 5.2
X-InstructBLIP (7b) × 46.8 41.5 34.2 28.1 27.2 13.4 20.1 19.7 7.5
X-InstructBLIP (7b) w/o cue × 43.5(↓3.3) 35.8(↓5.7) 26.5(↓9.9) 22.3(↓6.8) 27.3(↑.1) 8.9(↓4.5) 18.2(↓1.9) 19.2(↓0.5) 7.6(↑0.1)
X-InstructBLIP (13b) × 66.3 54.0 48.5 44.5 43.5 22.7 16.1 18.0 6.9

Table 4: Emergent joint video(V)-audio(A) reasoning. Despite individual modality training,
X-InstructBLIP achieves comparable performance with models trained on joint video-audio data.

DisCRn Image-3D Audio-Video

Caption Baseline (7b) 41.8 30.8
Linear Projection3D/Audio 19.7 22.3
X-InstructBLIP (7b)† 57.7 31.4
X-InstructBLIP (7b) 48.1 34.0

Table 5: DisCRN evaluation.
We conduct additional experiments where we provide a distinct instruction to the Q-Former from
that provided to the LLM. In particular, we condition the each modality Q-Former to the instruction
‘‘Describe the {modality}.’’ denoted by X-InstructBLIP∗. to prime the Q-Former to
output more descriptive query tokens. This is crucial since Q-Formers, not being trained on cross-
modal tasks, may not formulate representations that are adequately informative to address the task.

To benchmark our model’s capabilities, we incorporate a robust captioning baseline and prompt
the Vicuna model with captions corresponding to the modalities, substituting the query outputs
from X-InstructBLIP. For images, 3D, and video modalities, we elicit captions from Instruct-
BLIP (Dai et al., 2023). Specifically, for 3D inputs, a randomly rendered grayscale view of the
model serves as input to InstructBLIP, aligning with our 3D encoder ULIP2’s (Xue et al., 2023)
incapability to interpret color. Captions for videos are derived from five uniformly sampled frames,
and for audio, the WavCaps model (Mei et al., 2023) is employed. Since it is an open vocabulary
generation setup,the random output is 1

|V|
|l|, where l = 10 is the maximum output length allowed

by the model and |V| =32k is the vocabulary size6. The model employs Beam Search with a beam
size of 5 and a length penalty of -1, facilitating the generation of concise responses.

Table 5 provides a summary of the results from the discriminatory reasoning experiments. It is evi-
dent that X-InstructBLIP surpasses the captioning baseline in both Image-3D and Audio-Video
categories, despite the inherent challenges of the task both in terms of crossmodality and language
based positional reasoning. A noteworthy observation is the doubling of performance on the Image-
3D subset when description-based query outputs from the Q-Former are introduced, contrasted by
a decline in the performance of the audio-video category. This discrepancy is likely attributed to
the extensive training duration of the image Q-Former due to the large amount of data, allowing it
to fine-tune its responsiveness to instructions, while the sequential Q-Formers reach convergence
swiftly, subsequently experiencing a dip in performance and thus preserving more similar represen-
tation content across different instructions.

6 CONCLUSION

This study presents a scalable framework for independently aligning multiple modalities to a static
Large Language Model (LLM), achieving competitive performance, particularly in zero-shot set-
tings, and establishing new State-of-the-Art benchmarks. The framework exhibits emergent cross-
modal reasoning, evaluated through the introduced DisCRn dataset, emphasizing the universal ef-
fectiveness of instruction-aware representations across varied modalities. However, it also reveals
complexities and unanswered questions within each modality, paving the way for future exploration
into the formation of instruction-aware representations in distinct modalities.

6 For simplicity, we assume a random probablity distribution of the output tokens, ignoring the model
distribution to distinguish from a potential binary classification set up.
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7 REPRODUCIBILITY STATEMENT

In alignment with the principles of open science and to foster reproducibility, transparency, and
further research, we promise to provide open source access to all the resources associated with our
study, including: a complete, documented, and public codebase with all the scripts, models, prepro-
cessing, and evaluation code necessary to replicate the experiments. We will be further releasing the
pretrained model weights along side the exact evaluation configs that generated the results cited in
the paper. We show our commitment to reproducibility through an extensive Appendix that high-
lights details of training and evaluation. Furthermore, all experiments were completed with prespec-
ified random seeds that will also be made available in the experiment configuration files. Finally,
we will release all datasets collected for this study for public download, as well as the code used
to generate them. In addition to providing these resources, we pledge to maintain them and offer
requisite support for any queries or clarifications related to the provided resources, contributing to a
supportive and inclusive research environment.
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Oscar Mañas, Pau Rodriguez, Saba Ahmadi, Aida Nematzadeh, Yash Goyal, and Aishwarya
Agrawal. Mapl: Parameter-efficient adaptation of unimodal pre-trained models for vision-
language few-shot prompting, 2023.

Xinhao Mei, Chutong Meng, Haohe Liu, Qiuqiang Kong, Tom Ko, Chengqi Zhao, Mark D Plumb-
ley, Yuexian Zou, and Wenwu Wang. Wavcaps: A chatgpt-assisted weakly-labelled audio cap-
tioning dataset for audio-language multimodal research. arXiv preprint arXiv:2303.17395, 2023.

Anand Mishra, Shashank Shekhar, Ajeet Kumar Singh, and Anirban Chakraborty. Ocr-vqa: Visual
question answering by reading text in images. In ICDAR, 2019.

OpenAI. Gpt-4 technical report, 2023.

Vicente Ordonez, Girish Kulkarni, and Tamara Berg. Im2text: Describing images using 1 million
captioned photographs. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K.Q. Wein-
berger (eds.), Advances in Neural Information Processing Systems, volume 24. Curran Asso-
ciates, Inc., 2011. URL https://proceedings.neurips.cc/paper/2011/file/
5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf.

Bhargavi Paranjape, Matthew Lamm, and Ian Tenney. Retrieval-guided counterfactual generation
for qa. arXiv preprint arXiv:2110.07596, 2021.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susannah Young, et al. Scaling language models:
Methods, analysis & insights from training gopher. arXiv preprint arXiv:2112.11446, 2021.

13

https://aclanthology.org/2022.acl-long.290
https://proceedings.neurips.cc/paper/2011/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf


Under review as a conference paper at ICLR 2024

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research, 21(1):5485–5551, 2020.

Dustin Schwenk, Apoorv Khandelwal, Christopher Clark, Kenneth Marino, and Roozbeh Mottaghi.
A-okvqa: A benchmark for visual question answering using world knowledge. arXiv, 2022.

Mustafa Shukor, Corentin Dancette, Alexandre Rame, and Matthieu Cord. Unified model for image,
video, audio and language tasks. arXiv preprint arXiv:2307.16184, 2023.

Yixuan Su, Tian Lan, Huayang Li, Jialu Xu, Yan Wang, and Deng Cai. Pandagpt: One model to
instruction-follow them all. arXiv preprint arXiv:2305.16355, 2023.

Ryota Tanaka, Kyosuke Nishida, Kosuke Nishida, Taku Hasegawa, Itsumi Saito, and Kuniko Saito.
Slidevqa: A dataset for document visual question answering on multiple images. In AAAI, 2023.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Stanford alpaca: An instruction-following llama model, 2023.

Yi Tay, Mostafa Dehghani, Vinh Q Tran, Xavier Garcia, Dara Bahri, Tal Schuster, Huaixiu Steven
Zheng, Neil Houlsby, and Donald Metzler. Unifying language learning paradigms. arXiv preprint
arXiv:2205.05131, 2022.

Anthony Meng Huat Tiong, Junnan Li, Boyang Li, Silvio Savarese, and Steven C. H. Hoi. Plug-
and-play vqa: Zero-shot vqa by conjoining large pretrained models with zero training, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Roelof Van Zwol. Flickr: Who is looking? In IEEE/WIC/ACM International Conference on Web
Intelligence (WI’07), pp. 184–190. IEEE, 2007.

Peng Wang, An Yang, Rui Men, Junyang Lin, Shuai Bai, Zhikang Li, Jianxin Ma, Chang Zhou,
Jingren Zhou, and Hongxia Yang. Ofa: Unifying architectures, tasks, and modalities through
a simple sequence-to-sequence learning framework. In International Conference on Machine
Learning, pp. 23318–23340. PMLR, 2022.

Peng Wang, Shijie Wang, Junyang Lin, Shuai Bai, Xiaohuan Zhou, Jingren Zhou, Xinggang Wang,
and Chang Zhou. One-peace: Exploring one general representation model toward unlimited
modalities, 2023.

Xin Wang, Jiawei Wu, Junkun Chen, Lei Li, Yuan-Fang Wang, and William Yang Wang. Vatex: A
large-scale, high-quality multilingual dataset for video-and-language research, 2020.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–24837, 2022.

Shengqiong Wu, Hao Fei, Leigang Qu, Wei Ji, and Tat-Seng Chua. Next-gpt: Any-to-any multi-
modal llm. arXiv preprint arXiv:2309.05519, 2023.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong
Xiao. 3d shapenets: A deep representation for volumetric shapes. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 1912–1920, 2015.

Ning Xie, Farley Lai, Derek Doran, and Asim Kadav. Visual entailment task for visually-grounded
language learning. arXiv preprint arXiv:1811.10582, 2018.

Dejing Xu, Zhou Zhao, Jun Xiao, Fei Wu, Hanwang Zhang, Xiangnan He, and Yueting Zhuang.
Video question answering via gradually refined attention over appearance and motion. In Pro-
ceedings of the 25th ACM international conference on Multimedia, pp. 1645–1653, 2017.

14



Under review as a conference paper at ICLR 2024

Haiyang Xu, Qinghao Ye, Ming Yan, Yaya Shi, Jiabo Ye, Yuanhong Xu, Chenliang Li, Bin Bi,
Qi Qian, Wei Wang, Guohai Xu, Ji Zhang, Songfang Huang, Fei Huang, and Jingren Zhou.
mplug-2: A modularized multi-modal foundation model across text, image and video, 2023a.

Jun Xu, Tao Mei, Ting Yao, and Yong Rui. Msr-vtt: A large video description dataset for bridging
video and language. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 5288–5296, 2016.

Runsen Xu, Xiaolong Wang, Tai Wang, Yilun Chen, Jiangmiao Pang, and Dahua Lin. Pointllm:
Empowering large language models to understand point clouds. arXiv preprint arXiv:2308.16911,
2023b.

Wang Xu, Kehai Chen, and Tiejun Zhao. Discriminative reasoning for document-level relation
extraction. In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021,
pp. 1653–1663, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/
v1/2021.findings-acl.144. URL https://aclanthology.org/2021.findings-acl.
144.

Le Xue, Ning Yu, Shu Zhang, Junnan Li, Roberto Martı́n-Martı́n, Jiajun Wu, Caiming Xiong, Ran
Xu, Juan Carlos Niebles, and Silvio Savarese. Ulip-2: Towards scalable multimodal pre-training
for 3d understanding. arXiv preprint arXiv:2305.08275, 2023.

Zhengyuan Yang, Zhe Gan, Jianfeng Wang, Xiaowei Hu, Faisal Ahmed, Zicheng Liu, Yumao Lu,
and Lijuan Wang. Unitab: Unifying text and box outputs for grounded vision-language modeling,
2022.

Li Yujian and Liu Bo. A normalized levenshtein distance metric. IEEE transactions on pattern
analysis and machine intelligence, 29(6):1091–1095, 2007.

Dong Zhang, Shimin Li, Xin Zhang, Jun Zhan, Pengyu Wang, Yaqian Zhou, and Xipeng Qiu.
Speechgpt: Empowering large language models with intrinsic cross-modal conversational abil-
ities. arXiv preprint arXiv:2305.11000, 2023a.

Hang Zhang, Xin Li, and Lidong Bing. Video-llama: An instruction-tuned audio-visual language
model for video understanding. arXiv preprint arXiv:2306.02858, 2023b.

Zijia Zhao, Longteng Guo, Tongtian Yue, Sihan Chen, Shuai Shao, Xinxin Zhu, Zehuan Yuan, and
Jing Liu. Chatbridge: Bridging modalities with large language model as a language catalyst,
2023.

15

https://aclanthology.org/2021.findings-acl.144
https://aclanthology.org/2021.findings-acl.144


Under review as a conference paper at ICLR 2024

A DATA GENERATION

A.1 INSTRUCTION TUNING DATA AUGMENTATION

For the audio and 3D modalities, the available range of tasks for instruction tuning is relatively lim-
ited. To address this challenge we follow a common paradigm in the literature (Xu et al., 2017) and
extract question-answer pairs are derived from captioning datasets, specifically from captions con-
sisting of 10 words or more. Figure 5 delineates the procedure to automatically generate question
answering data from captioning datasets. The google/flan-t5-xxl model from huggingface-
transformers is employed, and is prompted to produce candidate single-word answers based on the
caption. Subsequently, the model is tasked with generating a relevant question using the answer
and context as inputs. The method of round-trip-consistency (Paranjape et al., 2021) is utilized to
sift through and retain only those question-answer pairs that align with the context. This alignment
is verified by ensuring that the Levenshtein partial similarity between the predicted and initial an-
swers is greater than 0.90, calculated using the Fuzzy Wuzzy Python package. Subsequently, we
apply a string matching post-processing to filter out instances that do not conform to the prescribed
format. As a result, 250,070/1,157 suitable training/validation examples are derived from an initial
661,576/5,000 3D-caption samples from the Cap3D (Luo et al., 2023) dataset, and 31,020/2,475
training/validation examples are derived from 49,838/2,475 original audio-caption samples from the
AudioCaps (Kim et al., 2019) dataset. Moreover, for 3D data, it is imperative to ensure that the
question-answer pairs do not allude to color. This is due to the fact that the 3D encoder does not
capture color characteristics. To achieve this, the language model is directed to reformulate the cap-
tions by omitting any references to color, prompted as: Rewrite the sentence {caption} by
eliminating any color mentions, prior to implementing the round-trip-consistency check.
A short human evaluation on 50 samples for each modality shows that 90% of the generated audio
and 82% of the 3D data is correct. Table 6 presents a random sample of the generated data and table
7 provides an overview of the datasets’s distribution statistics. It is worth noting that the error cases
are typically due to non-sensical questions, rather than wrong answers. For example the following
pairs were marked as non-sensical: What is the sewing machine running at? speed, What does
the steam whistle do? hisses, What is the 3D model of a brick wall with holes and stacked cubes,
resembling? elements, and What is the hat with? pattern.

Round 1

Input: Generate a potential answer word from the following text: {caption}

Language Model

Output: {answer}

Round 2

Input: Generate a question for the answer using the context. Context: {caption} 
Answer: {answer} Question:

Language Model

Output: {question}

Round 3

Input: Answer the question given the context.  Context: {caption} Question: {question}
Answer:

Language Model

Output: {prediction}

Figure 5: Round-Trip-Consistency Prompting for QA Datasets in 3D and Audio Modalities.
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Modality Caption Question Answer

Audio

A woman speaks while types a keyboard; What is the woman typ-
ing on?

Keyboard

A man are talking while multiple dogs are barking
around them;

What is the dog doing? Barking

A man speaks and a crowd applauds, he continues talk-
ing;

What does the crowd do
after the man speaks?

Applauds

A plane flies in the distance as a man speaks and metal
clinks.

What does the metal
do?

Clinks

3D
A 3D model of a wooden chair and stool with a chained
bucket on it

What is on the stool? Bucket

A 3D model of a moss-covered stone, resembling a leaf,
paper map, and rock

What is covering the
stone?

Moss

A balloon with a string attached, featuring a teddy bear
and a cat face on it

What is the object with
a string attached?

Balloon

A 3D model of various food items,including an oyster,
a piece of fruit, and different forms of eggs.

What is the food item
that is a shellfish?

oyster

Table 6: Automatically Generated QA examples from Captioning Data.

Dataset AudioCapsQA Cap3DQA
train val train val

Total Size 31,020 1,653 250,070 1,157

Number of Distinct Questions 12,174 1,003 67,001 953

Number of Distinct Answers 1,837 423 4,555 451

Average Question Length 6.0 words 6.1 words 6.8 words 7.0 words

Question Vocabulary Size 3,260 words 808 words 12,771 words 1,022

Table 7: QA Generated Dataset Statistics

A.2 CROSS-MODAL DISCRIMINATIVE REASONING DATA GENERATION

To assess the cross-modal reasoning capabilities of X-InstructBLIP, we devised a unique task
that repurposes existing captioning datasets, specifically focusing on data representable in multiple
modalities. We chose the AudioCaps (Kim et al., 2019) validation dataset and reserved a subset of
5k examples from Cap3D (Luo et al., 2023) as our validation dataset, ensuring that the 3D Q-Former
is not exposed to this subset during the training phase in either captioning or 3DQA settings.

The audio data from AudioCaps originates from Youtube videos, allowing us to download the corre-
sponding video files using their YouTube IDs. For Cap3D, we employed the associated point clouds
and randomly selected one rendered image from the available eight view angles within the dataset.

A depiction of the data generation procedure, also outlined in the main text, is provided in Figure 6.
During the evaluation, we maintain a balance, ensuring each option (A or B) serves as the ground
truth 50% of the time. Given that this problem is structured as an open vocabulary generation task,
we expanded the ground truth answer space to include synonyms and equivalent expressions, such
as [{answer modality}, left, 1st, 1, first, input 1, entity 1, object 1,
input A, entity A, object A, A] and [{answer modality}, right, 2nd, second,
input 2, entity 2, object 2, input B, entity B, object B, B], corresponding to
whether the first or the second input is the ground truth. The human performance on a subsample of
100 examples of the dataset is 90%. Figure 4 in the main paper presents a sample of the generated
data and table 8 provides an overview of the datasets’s distribution statistics.

B Q-FORMER OUTPUT MODALITY CLUSTER FORMATION

We explore the effects on latent space distribution by fine-tuning the modality Q-Formers. Figure 7
shows a 2D visualization of the Q-Former query outputs for the same data points across two distinct
modalities using the prompt “Describe the input.”. Specifically, we initially apply a mean function
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Dataset Audio-Video Video-3D

Total Size 12,160 28,173

Number of Distinct Questions 1,510 3,100

Average Question Length 7.1 words 6.6 words

Question Vocabulary Size 820 words 1,272 words

Table 8: DisCRn: Discriminative Cross-modal Reasoning Dataset Statistics

Round 1. Chain of Thought

Input: What are three properties to describe an object with description: {caption} Properties list:

Language Model

Output: {properties}

Round 2. Few Shot Example
Input: Given entity A with caption {caption} and corresponding properties: {properties},and 

entity B with caption {caption} with properties {properties} you can generate a set of 
instruction answer pairs to compare and contrast the entities as follows:

Examples: Question. {} Answer: {} Explanation {} … (x3)
Generate three such Question, Answer, Explanation triplets for Entity A with caption {caption}
and properties {properties} and Entity B with caption {caption} and properties {properties}. 

Language Model

Output: {question}

Round 3: Round Trip Consistency

Input: Given entity A with caption {caption} and corresponding properties: {properties}, and 
entity B with caption {caption} with properties {properties} Answer the question {question}.

Answer:

Language Model

Output: {prediction}

Figure 6: Cross-modal Discriminative Reasoning Dataset Generation Framework: The open source
LLM is first prompted in a Chain-of-Thought manner to generate a set of properties matching the
properties for the entire captioning dataset. For every instance within this dataset, another random
entity is selected to generate a (question, answer, explanation) triple, by providing three in context
examples. Finally, a round-trip-consistency step is performed such that only those instances whose
predicted answers exhibit a Levenshtein distance exceeding 0.9 in comparison to the generated re-
sponse are assimilated into the QA dataset.

along the language embedding dimension for each query output to summarize individual tokens and
facilitate clustering. Subsequently, we employ T-SNE dimensionality reduction (Van der Maaten &
Hinton, 2008) using the scikit-learn implementation.

For the Video-Audio modality, we select 10 classes from the validation set of VGGSound (Chen
et al., 2020) and acquire the corresponding YouTube videos and audio clips. We sample 2 frames
for both modalities to match their latent dimensions and facilitate visualization. In the case of Image-
3D, we randomly sample 50 examples from each of 10 classes from ShapeNet (Chang et al., 2015),
along with their associated rendered images.

The finetuned outputs exhibit a noticeable reorganization of data points within the latent space.
Modalities form prominent clusters, and elements sharing identical labels tend to cluster together.
Although some overlap persists, particularly within the audio modality, X-InstructBLIP ap-
pears to effectively associate data with shared semantic information. Additionally, the distinct train-
ing of Q-Formers and the utilization of diverse encoders seem to contribute to the distinct separation
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Video-Audio 3D-Image
Intra Distance↓ Inter Distance↑ Intra Distance↓ Inter Distance↑

Random Initialization 1.1e-7 1.3e-8 7.4e-8 3.2e-9
X-InstructBLIP 5.2e-2 8.8e-3 2.2e-2 3.6e-3
X-InstructBLIP w/o cue 3.3e-2 6.6e-3 1.4e-2 3.6e-3

Table 9: Cluster Information

of modalities. Remarkably, the Image and 3D modalities, which share similar encoder architectures,
exhibit closer clustering.
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Figure 7: T-SNE Visualization: Q-Former Query Outputs at different configurations.

C VIDEO Q-FORMER FINE-TUNING VERSUS IMAGE INITIALIZATION

To explore the impact of further training the Image Q-Formers on video data, Table 10 presents
the results of evaluating video tasks using the weights from the Image Q-Formers. It is evident
that training on video data enhances performance. However, it’s worth noting that the Video Q-
Formers reach convergence at an earlier stage (15k and 4k iterations for Vicuna7b and Vicuna13b,
respectively). This is likely because the Q-Formers have already achieved semantic understanding
during the image alignment phase, requiring minimal additional training to capture the nuances of
sequential video projections. The higher drop in performance in MSVD (Chen & Dolan, 2011)
captioning compared to VATEX (Wang et al., 2020) is likely due to the closer similarity between
MSVD and MSRVTT (Xu et al., 2016) dataset distributions which is used for training.

D IN-DOMAIN EVALUATIONS

Table 11 presents in-domain performance for a sample of datasets seen in training across all four
modalities. It’s important to clarify that when we refer to ‘in-domain,’ we are specifically referring
to datasets that were sampled during the training process. However, it’s crucial to note that this does
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MSVD VATEX MSVD QA
test val test

X-InstructBLIP (7b) 103.7 58.5 50.2
X-InstructBLIP (7b) [image] 37.6(↓66.1) 28.4(↓30.1) 40.6(↓9.6)

X-InstructBLIP (7b) w/o cue 109.8 56.9 49.7
X-InstructBLIP (7b) w/o cue[image] 54.3(↓55.5) 51.1(↓5.8) 39.9(↓9.8)

X-InstructBLIP (13b) 113.3 52.0 49.6
X-InstructBLIP (13b) [image] 69.7(↓63.6) 52.0 36.7(↓12.9)

Table 10: Impact of Training Image Q-Formers on Video. Models labeled as [image] utilize the
Image Q-Former for video alignment.

not constitute explicit fine-tuning, as there is no guarantee that the Q-Former has encountered the
entirety of the dataset during its training.

Image 3D Video Audio
OKVQA COCO Cap3D MSRVTT MSRVTT QA AudioCaps
test val test val qa-val val test val test val test qa-val

Finetuned SOTA 66.1 - 155.1 - - - 80.3 - 49.6 - 80.6 -
(Driess et al., 2023a) (Li et al., 2022a) (Xu et al., 2023a) (He et al., 2023) (Labbé et al., 2023)

InstructBLIP (T5xl) 48.6 137.7 140.1 - - 43.3 44.7 25.0 22.1 - - -
InstructBLIP (T5xxl) 47.7 138.9 140.7 - - 40.6 41.3 25.6 22.3 - - -
InstructBLIP (7b) 57.2 141.2 142.0 - - 28.2 30.7 22.1 18.8 - - -
InstructBLIP (13b) 56.3 139.1 141.1 - - 38.1 37.8 24.8 20.2 - - -
X-InstructBLIP (7b) 52.5 137.1 137.9 145.6 57.8 59.4 55.5 42.4 42.1 71.5 68.0 40.9
X-InstructBLIP (7b) w/o cue 51.2 133.9 134.9 134.2 49.1 59.1 54.8 41.3 41.2 66.7 64.6 38.5
X-InstructBLIP (13b) 52.4 130.8 130.6 147.9 54.6 56.7 54.0 36.4 36.5 54.8 53.2 36.6

Table 11: In-Domain performance across modalities.

E TRAINING DETAILS

Table 12 compiles the training hyperparameters employed for each modality and model. The X-
InstructBLIP –prefix variant is trained similarly to X-InstructBLIP, with the notable distinction that
the modality type is not prepended to the modality’s query outputs, both during training and infer-
ence. Following (Dai et al., 2023) that noted that sampling ratios play an important role in training
we perform some minor modifications in the sampling ratios that we show in tables 13 and ?? are
effective in improving performance. The decisions are discussed further below. It is worth not-
ing that due to the large amount of experiments consisting of all modalities, we did not exhaust all
possibilities, and there may be better training configurations. We leave this to future work to be
explored.

As each modality exhibits unique characteristics, we have customized the training approach for each
one. For instance, the 3D and Audio Q-Formers are trained for the maximum number of iterations
specified in Table 12.

The Vicuna7b Image Q-Former undergoes training for 735k iterations, utilizing normalized data
sampling. Additionally, an extra 40k iterations are performed with the sampling ratio of COCO
Captions (Changpinyo et al., 2021) set to 3.0 while keeping the other ratios consistent with the
original sampling. This adjustment leverages the clean annotations of COCO Captions, mitigating
noise introduced by larger image datasets. However, this upsampling technique is not applied to
the Vicuna13b Image Q-Former, since it appears to lower out of distribution performance in non-
captioning tasks as shown in table 13. It could be that due to the smaller batch size, Vicuna13b is less
sensitive to noisy data, since it effectively sees less of them. In both cases, the last checkpoint from
the iterations specified in Table 12 is chosen, with guidance from the COCO Captions validation
dataset.

The Vicuna7b video Q-Former is initialized from the best Vicuna7b image Q-Former and undergoes
validation every 5k iterations on the MSRVTT captioning (Xu et al., 2016) dataset. The selection
process involves choosing the checkpoint that precedes any drop in performance during the subse-
quent validation rounds even if there is a better performing checkpoint later on in training, to avoid
overfitting to the MSRVTT skeletal captions. Table ?? quantitatively shows our observations. Due
to the initialization of the video Q-Former with the well trained image Q-Former, the noisy captions
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of WebVid2M reduce the performance instead of improving it. However, this is corrected when the
training consists of cleaner data.

Similarly, the Vicuna13b video Q-Former is initialized from the best checkpoint of the Vicuna13b
Image Q-Former and validated every 2k iterations. While we let the Vicuna7b and 13b video Q-
Formers train for 15k and 25k respectively, we observe early convergence at 15k and 4k iterations
likely due to the pre-initialization with the Image Q-Former. During training, 5 frames are sam-
pled for the Vicuna7b Video Q-Former, while 4 frames are sampled for the Vicuna13b to reduce
computational demands.

The best training approach for each model was empirically identified, and it is beyond the scope of
the paper to rigorously analyze the reasons of the differences in training across modalities. We leave
this to future work.

Modality Model Iterations Batch Size

Image 7b 775k 64
13b 880k 16

Audio 7b 65k 64
13b 300k 16

3D 7b 65k 128
13b 300k 32

Video∗ 7b 5k 32
13b 25k 8

Table 12: Training hyperparameters. ∗ Video Q-Former is initialized from Image Q-Former.

Zero-Shot In-Domain
Flickr30k NoCaps VizWiz GQA SNLI-VE OKVQA COCO
test out-domain val-all test-dev balanced test-dev test test val test

X-InstructBLIP (7b) 82.6 115.5 117.5 35.5 48.1 57.6 52.5 137.1 137.9
X-InstructBLIP (7b)-coco 80.5(↓2.1) 115.6(↑0.1) 116.5(↓1.0) 34.6(↓0.9) 48.2(↑0.1) 57.4(↓0.2) 52.3(↓0.2) 133.0(↓4.1) 133.9(↓4.0)

X-InstructBLIP (13b) 77.4 114.7 115.5 34.8 49.2 58.9 52.4 130.8 130.6
X-InstructBLIP (13b)+coco 83.6(↑6.2) 117.2(↑2.5) 119.3 (↑3.8) 32.4(↓2.4) 47.2(↓2.0) 58.8(↓0.1) 47.1(↓5.3) 138.8(↑8.0) 139.1(↑9.1)

Table 13: Effect of COCO upsampling.

F EVALUATION HYPERPARAMETERS

During the evaluation of X-InstructBLIP, we adhere to a consistent set of hyperparameters,
with minor variations to accommodate the distinct needs of each task. A comprehensive list of these
configurations is presented in Table 14. In every experiment, we utilize Beam Search for generation,
setting the beam size to 5, repetition penalty and temperature equal to 1.5 and 1 respectively. For
tasks involving video-audio modalities, a balanced representation and computational efficiency are
achieved by querying two frames from both video and audio. The length penalty is typically con-
figured to 1 for long caption tasks, -1 for Visual Question Answering (VQA) tasks requiring short
answers, and 0 for short caption tasks. The minimum and maximum length constraints are adapted
based on the task: for captions, we maintain a range of 10 to 80; for short-answer VQA tasks, the
range is set from 1 to 10; for variable-length captions, the range is between 1 and 80. In the case of
the InstructBLIP baseline for video datasets, we borrow the recommended inference setup of sam-
pling 4 frames for the captioning baselines of MSVD and VATEX with the prompt “A video that
shows” and the same generation hyperparameters as X-InstructBLIP.

G INSTRUCTION TUNING SUITE

Table 15 presents a comprehensive list of datasets employed in the instruction tuning process for
X-InstructBLIP, accompanied by their corresponding dataset sizes. Datasets labeled with ∗∗

have been generated automatically through the round-trip-consistency procedure detailed in Section
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Modality Dataset Split Prompt Len.
Penalty

Min
Len.

Max
Len.

Image

Flickr30k (Van Zwol,
2007)

test: 1,000 images A short description 1. 10 80

NoCaps (Agrawal
et al., 2019)

val: 4,500 images
out-domain: 1,413 images A short description 1. 10 80

COCO
∗(Changpinyo
et al., 2021)

train: 566,747 image-caption pairs
val: 5,000 images
test: 5,000 images

A short description. 1. 10 80

VizWiz (Bigham
et al., 2010)

test-dev: 8,000 image-question pairs based on the given image re-
spond to {question}

-1. 1 10

OKVQA (Marino
et al., 2019)

test: 5,046 examples based on the given image re-
spond to {question} answer

-1. 1 10

GQA (Hudson &
Manning, 2019)

balanced test-dev: 12,578 image-question pairs based on the given image re-
spond to {question}

-1. 1 10

SNLI-VE (Xie
et al., 2018)

val: 17,858 image-hypothesis pairs
test: 17,901 image-hypothesis pairs based on the given the image

is {hypothesis} true?
-1. 1 10

3D Modelnet40 (Wu
et al., 2015) test: 2,468 point clouds Describe the 3d model. A 3d

model of
-1. 1 3

Modelnet40† Describe the 3d model. 0. 1 80

Audio Clotho (Drossos
et al., 2021)

eval (v1): 1,045 audios
val (v2): 1,045 audios A short description. 0. 10 80

AudioCaps∗ (Kim
et al., 2019)

train: 49,838 audio-caption pairs
val: 380 audios A short description 0. 1 80

Video

MSVD (Chen &
Dolan, 2011)

test: 670 images7 A short description 1. 10 80

VATEX(Wang
et al., 2020)

val: 3,000 images A short description 1. 10 80

MSRVTT ∗(Xu
et al., 2016)

train: 130,260 video-caption pairs
val: 497 videos
test: 2,990 videos

A short description 1. 10 80

MSVD QA (Xu
et al., 2017)

test: 13,157 video-question pairs based on the given video re-
spond to {question}

-1. 1 10

Audio AVSD (Alamri
et al., 2018)

dstc7 test: 6,745 dialogues {dialog history} {question} 0. 10 80

+ MusicAVQA (Li
et al., 2022b)

test: 7,402 video-question pairs Question: {question} An-
swer:

-1. 1 10

Video VALOR (Chen
et al., 2023a)

val: 2,969 videos A short description 1. 10 80

DisCRn Question: {question} Op-
tions: first, second Answer:

-1. 1 10

Table 14: Hyperparameters used on each of the evaluation datasets. Underlined datasets are in-
domain evaluations. ∗ datasets are used for best checkpoint selection. Blue text is provided as input
to the LLM but not the Q-Former.

4.1 of the main paper, with further information provided in Appendix A. Datasets marked with •

indicate instances of data loss resulting from file corruption or expired links.

8 Video with id f9 bP219ehQ 63 70 is corrupt and could not be retrieved.
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Modality Task Dataset Training Size

Image

Caption

CapFilt14M (Li et al., 2023b) 13,873,136 image-caption pairs

Conceptual Captions 12M (Changpinyo et al., 2021) 6,029,862 image-caption pairs•

MS COCO Dataset (Lin et al., 2015) 566,747 image-caption pairs

SBU Captions (Ordonez et al., 2011) 859,739 image-caption pairs

Visual Genome Captions (Krishna et al., 2017) 821,774 image-caption pairs

QA

AOK VQA (Schwenk et al., 2022) 17,056 question-answer pairs

OK VQA (Marino et al., 2019) 9,009 question-answer pairs

OCR VQA (Mishra et al., 2019) 1,002,146 question-answer pairs

Visual Genome QA (Krishna et al., 2017) 1,440,069 question-answer pairs

VQAV2 (Goyal et al., 2017) 658,104 question-answer pairs

Dialogue LLaVA150k (Liu et al., 2023) 394,276 image-instruction pairs

Audio
Caption AudioCaps (Kim et al., 2019) 38,701 audio-caption pairs•

WAVCaps (Mei et al., 2023) 297,341 audio-caption pairs•

QA AudioCaps QA∗∗ 24,158 question-answer pairs

Classification AudioSet balanced train (Gemmeke et al., 2017) 14,141 labeled audios•

3D Caption Cap3D (Luo et al., 2023) 651,576 point cloud-caption pairs

QA Cap3D QA∗∗ 250,070 question-answer pairs

Video
Caption MSRVTT (Xu et al., 2016) 130,260 video-caption pairs

WebVid2M (Bain et al., 2021) 2M video-caption pairs

QA MSRVTT QA (Xu et al., 2017) 149,075 question-answer

Table 15: Datasets for Instruction Tuning: This table presents datasets used for instruction tuning,
along with their associated task types and sizes. •Missing data results from expired links and cor-
rupted files. ∗∗ Datasets marked with double asterisks are generated automatically within this study.

H PROMPT TEMPLATES

X-InstructBLIP has undergone fine-tuning using a diverse array of instruction templates, tai-
lored to cover a wide spectrum of tasks and modalities. For reference, the specific templates corre-
sponding to each modality can be found in the following tables: Table 17 for images, Table 18 for
audio, Table 19 for 3D, and Table 20 for videos. Compared to InstructBLIP (Dai et al., 2023) caption
templates have increased from 13 to 32, while question-answering templates have grown from 10
to 21. These enhancements have been strategically incorporated to foster greater adaptability of the
model to a wide range of user instructions.

Table 16 presents a performance comparison between InstructBLIP (7b) and X-InstructBLIP
(7b) on the NoCaps Agrawal et al. (2019) validation set, using prompts not encountered during
training. While X-InstructBLIP exhibits some performance variability, it maintains a standard
deviation that is more than half that of InstructBLIP. This variance can be attributed to the expanded
vocabulary in our templates, allowing the Q-Former to better associate an instruction with a specific
task. For example, in the case of prompt P2: Provide a recap of what is happening in the picture”,
InstructBLIP maintains high performance as it closely resembles a prompt seen during training,
namely, Use a few words to illustrate what is happening in the picture”. It is worth noting that the
performance drop in InstructBLIP can be attributed to the language model resorting to generating
longer descriptions when the Q-Former outputs have not captured the task, resulting in hallucinations
in later stages of generation—a phenomenon also observed in Gunjal et al. (2023).

23



Under review as a conference paper at ICLR 2024

InstructBLIP (7b) X-InstructBLIP (7b)

P1 1.0 88.0
P2 121.9 109.7
P3 0.9 54.9
P4 5.4 112.7
P5 0.8 111.5
Avg 26.3 83.0
Std. 43.8 20.8

P1 In a few words describe the basic features of this image.
P2 Provide a recap of what is happening in the picture.
P3 I’d like to hear your interpretation of this image. What do you see?
P4 Provide a verbal snapshot of what’s happening in this image.
P5 Please articulate the elements and context of this image

Table 16: Robustness to unseen prompts on NoCaps (vall all) (Agrawal et al., 2019).
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Image Instruction Templates

QA

“{question}”
“Q: {question} A:”
“Answer the following question: {question}”
“Question: {question} Answer:”
“How would you answer {question}?”
“What is the answer to the question {question}?”
“Answer the question based on the image. Question: {question} Answer: ”
“Instruction: Answer the following question by reference to the input image. Question: {question} Answer:”
“Given the photo, what is the answer to the question {question}?”
“What’s your response to the query {question}?”
“Please provide an answer to {question}”
“Respond to the query {question}”
“Based on the given image, respond to {question}”
“Question: {question} What’s your response?”
“Consider the following query: {question}”
“Could you help answer the question {question}?”
“Referencing the provided image, can you answer the question {question}?”
“With respect to the image shown, please answer {question}”
“What’s your answer to {question} in the context of the provided image?”
“Question (refer to the image for context): {question} Answer:”
“In response to the question {question}, what would your answer be?”

Caption

“A short caption:”
“A short description:”
“A photo of”
“A photo that shows”
“A picture of”
“A picture that shows”
“An image of”
“A image that shows”
“Write a short description.”
“Write a description for the image.”
“Provide a description of what is presented in the image.”
“Briefly describe the content of the image.”
“Can you briefly explain what you see in the image?”
“Could you use a few words to describe what you perceive in the image?”
“Please provide a short description of the image.”
“Using language, provide a short account of the image.”
“Use a few words to illustrate what is happening in the photo.” “Write a description for the photo.”
“Provide a description of what is presented in the photo.”
“Briefly describe the content of the photo.”
“Can you briefly explain what you see in the photo?”
“Could you use a few words to describe what you perceive in the photo?”
“Please provide a short description of the picture.”
“Using language, provide a short account of the picture.”
“Use a few words to illustrate what is happening in the picture.”
“Write a description for the picture.”
“Provide a description of what is presented in the picture.”
“Briefly describe the content of the picture.”
“Can you briefly explain what you see in the picture?”
“Could you use a few words to describe what you perceive in the picture?”
“Please provide a short description of the picture.”
“Using language, provide a short account of the picture.”
“Use a few words to illustrate what is happening in the picture.”

Table 17: Instruction-tuning templates for image tasks
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Audio Instruction Templates

QA

“{question}
“Question: {question} Answer:”
“Q: {question} A:”
“Based on the audio, {question}”
“Answer the following question based on the audio: {question}”
“Question: {question} Provide an answer based on the audio.”
“How would you answer {question} based on the audio?”
“What is the answer to the question {question} using the audio as a reference?”
“Answer the question using the audio. Question: {question} Answer: ”
“Instruction: Answer the following question by referencing the audio. Question: {question} Answer:”
“Given the audio, what is the answer to the question {question}?”
“What’s your response to the query {question} considering the audio?”
“Please provide an answer to {question} using the audio as context.”
“Respond to the query {question} based on the audio content.”
“Based on the provided audio, respond to {question}”
“Question: {question} What’s your response using the audio for context?”
“Consider the following query and the audio: {question}”
“Could you help answer the question {question} using the audio as reference?”
“Referencing the provided audio, can you answer the question {question}?”
“With respect to the audio provided, please answer {question}”
“What’s your answer to {question} in the context of the provided audio?”
“Question (refer to the audio for context): {question} Answer:”
“In response to the question {question}, what would your answer be based on the audio?”
“Given the audio, how would you respond to {question}?”
“Taking the audio into consideration, what is your response to {question}?”
“Based on the audio, how would you answer {question}?”

”

Classification

“Classify the following audio:”
“What is the category of this audio clip?”
“Identify the content of the following audio:”
“Provide a classification for the audio.”
“Analyze and categorize the following audio.”
“Describe the category of the given audio.”
“Determine the type of this audio clip.”
“Can you classify what you hear in the audio?”
“What type of audio is this?”
“How would you classify this audio clip?”
“Please identify the category of the following audio:”
“What category does the following audio fall into?”
“Classify the sounds in this audio clip.”

”

Caption

“A short caption:”
“A short description:”
“An audio of”
“An audio that shows”
“Write a short description.”
“Write a description for the audio.”
“Provide a description of what is presented in the audio.”
“Briefly describe the content of the audio.”
“Can you briefly explain what you hear in the audio?”
“Could you use a few words to describe what you perceive in the audio?”
“Please provide a short description of the audio.”
“Using language, provide a short account of the audio.”
“Use a few words to illustrate what is happening in the audio.”
“Describe briefly the contents of the audio.”
“Please provide a brief summary of the audio.”
“What does the audio contain?”
“What can you hear in the audio?”
“What sounds are present in the audio?”
“Summarize the audio in a few words.”
“Write a brief summary of the audio content.”
“Could you provide a concise explanation of the audio’s contents?”
“Describe what the audio represents.”
“What is the audio depicting?”
“In a few words, describe what you hear in the audio.”

”

Table 18: Instruction-tuning templates for audio tasks
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3D Instruction Templates

QA

“{question}”
“Question: {question} Answer:”
“Q: {question} A:”
“Based on the 3D model, {question}”
“Answer the following question based on the 3D model: {question}”
“Question: {question} Provide an answer based on the 3D model.”
“How would you answer {question} based on the 3D model?”
“What is the answer to the question {question} using the 3D model as a reference?”
“Answer the question using the 3D model. Question: {question} Answer: ”
“Instruction: Answer the following question by referencing the 3D model. Question: {question} Answer:”
“Given the 3D model, what is the answer to the question {question}?”
“What’s your response to the query {question} considering the 3D model?”
“Please provide an answer to {question} using the 3D model as context.”
“Respond to the query {question} based on the 3D model content.”
“Based on the provided 3D model, respond to {question}”
“Question: {question} What’s your response using the 3D model for context?”
“Consider the following query and the 3D model: {question}”
“Could you help answer the question {question} using the 3D model as reference?”
“Referencing the provided 3D model, can you answer the question {question}?”
“With respect to the 3D model provided, please answer {question}”
“What’s your answer to {question} in the context of the provided 3D model?”
“Question (refer to the 3D model for context): {question} Answer:”
“In response to the question {question}, what would your answer be based on the 3D model?”
“Given the 3D model, how would you respond to {question}?”
“Taking the 3D model into consideration, what is your response to {question}?”
“Based on the 3D model, how would you answer {question}?”

Caption

“A short caption:”
“A short description:”
“A 3D model of”
“A 3D model that shows”
“Write a short description.”
“Write a description for the 3D model.”
“Provide a description of what is presented in the 3D model.”
“Briefly describe the content of the 3D model.”
“Can you briefly explain what you see in the 3D model?”
“Could you use a few words to describe what you perceive in the 3D model?”
“Please provide a short description of the 3D model.”
“Using language, provide a short account of the 3D model.”
“Use a few words to illustrate what is happening in the 3D model.”
“Describe briefly the contents of the 3D model.”
“Please provide a brief summary of the 3D model.”
“What does the 3D model contain?”
“What can you identify in the 3D model?”
“What structures are present in the 3D model?”
“Summarize the 3D model in a few words.”
“Write a brief summary of the 3D model content.”
“Could you provide a concise explanation of the 3D model’s contents?”
“Describe what the 3D model represents.”
“What is the 3D model depicting?”
“In a few words, describe what you see in the 3D model.”

Table 19: Instruction-tuning templates for 3D tasks
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Video Instruction Templates

QA

“Given the video, {question}”
“Q: {question} A:”
“Answer the following question based on the video: {question}”
“Question: {question} Answer:”
“How would you answer {question} after watching the video?”
“What is the answer to the question {question} after viewing the video?”
“Answer the question based on the video. Question: {question} Answer: ”
“Instruction: Answer the following question by reference to the input video. Question: {question} Answer:”
“Given the video, what is the answer to the question {question}?”
“What’s your response to the query {question} after watching the video?”
“Please provide an answer to {question} after watching the video”
“Respond to the query {question} based on the video”
“Based on the given video, respond to {question}”
“Question: {question} What’s your response after watching the video?”
“Consider the following query: {question}”
“Could you help answer the question {question}?”
“Referencing the provided video, can you answer the question {question}?”
“With respect to the video shown, please answer {question}”
“What’s your answer to {question} in the context of the provided video?”
“Question (refer to the video for context): {question} Answer:”
“In response to the question {question}, what would your answer be after viewing the video?”

Caption

“A short caption for the video:”
“A short description of the video:”
“A video of”
“A video that shows”
“Describe the video briefly.”
“Write a description for the video.”
“Provide a description of what is presented in the video.”
“Briefly describe the content of the video.”
“Can you briefly explain what you see in the video?”
“Could you use a few words to describe what you perceive in the video?”
“Please provide a short description of the video.”
“Using language, provide a short account of the video.”
“Use a few words to illustrate what is happening in the video.”

Table 20: Instruction-tuning templates for audio tasks
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