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ABSTRACT

Data augmentation is often used to enlarge datasets with synthetic samples gen-
erated in accordance with the underlying data distribution. To enable a wider
range of augmentations, we explore negative data augmentation strategies (NDA)
that intentionally create out-of-distribution samples. We show that such negative
out-of-distribution samples provide information on the support of the data distri-
bution, and can be leveraged for generative modeling and representation learning.
We introduce a new GAN training objective where we use NDA as an additional
source of synthetic data for the discriminator. We prove that under suitable con-
ditions, optimizing the resulting objective still recovers the true data distribution
but can directly bias the generator towards avoiding samples that lack the desired
structure. Empirically, models trained with our method achieve improved con-
ditional/unconditional image generation along with improved anomaly detection
capabilities. Further, we incorporate the same negative data augmentation strategy
in a contrastive learning framework for self-supervised representation learning on
images and videos, achieving improved performance on downstream image clas-
sification, object detection, and action recognition tasks. These results suggest
that prior knowledge on what does not constitute valid data is an effective form of
weak supervision across a range of unsupervised learning tasks.

1 INTRODUCTION

Data augmentation strategies for synthesizing new data in a way that is consistent with an underlying
task are extremely effective in both supervised and unsupervised learning (Oord et al., 2018; Zhang
et al., 2016; Noroozi & Favaro, 2016; Asano et al., 2019). Because they operate at the level of
samples, they can be combined with most learning algorithms. They allow for the incorporation
of prior knowledge (inductive bias) about properties of typical samples from the underlying data
distribution (Jaiswal et al., 2018; Antoniou et al., 2017), e.g., by leveraging invariances to produce
additional “positive” examples of how a task should be solved.

To enable users to specify an even wider range of inductive biases, we propose to leverage an alter-
native and complementary source of prior knowledge that specifies how a task should not be solved.
We formalize this intuition by assuming access to a way of generating samples that are guaranteed
to be out-of-support for the data distribution, which we call a Negative Data Augmentation (NDA).
Intuitively, negative out-of-distribution (OOD) samples can be leveraged as a useful inductive bias
because they provide information about the support of the data distribution to be learned by the
model. For example, in a density estimation problem we can bias the model to avoid putting any
probability mass in regions which we know a-priori should have zero probability. This can be an
effective prior if the negative samples cover a sufficiently large area. The best NDA candidates are
ones that expose common pitfalls of existing models, such as prioritizing local structure over global
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structure (Geirhos et al., 2018); this motivates us to consider known transformations from the litera-
ture that intentionally destroy the spatial coherence of an image (Noroozi & Favaro, 2016; DeVries
& Taylor, 2017; Yun et al., 2019), such as Jigsaw transforms.

Building on this intuition, we introduce a new GAN training objective where we use NDA as an
additional source of fake data for the discriminator as shown in Fig. 1. Theoretically, we can show
that if the NDA assumption is valid, optimizing this objective will still recover the data distribution in
the limit of infinite data. However, in the finite data regime, there is a need to generalize beyond the
empirical distribution (Zhao et al., 2018). By explicitly providing the discriminator with samples we
want to avoid, we are able to bias the generator towards avoiding undesirable samples thus improving
generation quality.

Figure 1: Negative Data Aug-
mentation for GANs.

Furthermore, we propose a way of leveraging NDA for unsu-
pervised representation learning. We propose a new contrastive
predictive coding (He et al., 2019; Han et al., 2019) (CPC) ob-
jective that encourages the distribution of representations cor-
responding to in-support data to become disjoint from that of
NDA data. Empirically, we show that applying NDA with our
proposed transformations (e.g., forcing the representation of nor-
mal and jigsaw images to be disjoint) improves performance in
downstream tasks.

With appropriately chosen NDA strategies, we obtain superior
empirical performance on a variety of tasks, with almost no cost
in computation. For generative modeling, models trained with
NDA achieve better image generation, image translation and
anomaly detection performance compared with the same model
trained without NDA. Similar gains are observed on representa-
tion learning for images and videos over downstream tasks such
as image classification, object detection and action recognition.
These results suggest that NDA has much potential to improve a variety of self-supervised learning
techniques.

2 NEGATIVE DATA AUGMENTATION

The input to most learning algorithms is a dataset of samples from an underlying data distribution
pdata. While pdata is unknown, learning algorithms always rely on prior knowledge about its prop-
erties (inductive biases (Wolpert & Macready, 1997)), e.g., by using specific functional forms such
as neural networks. Similarly, data augmentation strategies exploit known invariances of pdata, such
as the conditional label distribution being invariant to semantic-preserving transformations.

While typical data augmentation strategies exploit prior knowledge about what is in support of pdata,
in this paper, we propose to exploit prior knowledge about what is not in the support of pdata. This
information is often available for common data modalities (e.g., natural images and videos) and
is under-exploited by existing approaches. Specifically, we assume: (1) there exists an alternative
distribution p such that its support is disjoint from that of pdata; and (2) access to a procedure to
efficiently sample from p. We emphasize p need not be explicitly defined (e.g., through an explicit
density) – it may be implicitly defined by a dataset or by a procedure that transforms samples from
pdata into ones from p by suitably altering their structure.

Figure 2: Negative augmentations produce out-of-distribution samples lacking the typical structure
of natural images; these negative samples can be used to inform a model on what it should not learn.
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Analogous to typical data augmentations, NDA strategies are by definition domain and task specific.
In this paper, we focus on natural images and videos, and leave the application to other domains
(such as natural language processing) as future work. How do we select a good NDA strategy? Ac-
cording to the manifold hypothesis (Fefferman et al., 2016), natural images lie on low-dimensional
manifolds: pdata is supported on a low-dimensional manifold of the ambient (pixel) space. This
suggests that many negative data augmentation strategies exist. Indeed, sampling random noise is
in most cases a valid NDA. However, while this prior is generic, it is not very informative, and this
NDA will likely be ineffective for most learning problems. Intuitively, NDA is informative if its
support is close (in a suitable metric) to that of pdata, while being disjoint. These negative samples
will provide information on the “boundary” of the support of pdata, which we will show is help-
ful in several learning problems. In most of our tasks, the images are processed by convolutional
neural networks (CNNs) that are good at processing local features but not necessarily global fea-
tures (Geirhos et al., 2018). Therefore, we may consider NDA examples to be ones that preserve
local features (“informative”) and break global features, so that it forces the CNNs to learn global
features (by realizing NDAs are different from real data).

Leveraging this intuition, we show several image transformations from the literature that can be
viewed as generic NDAs over natural images in Figure 2, that we will use for generative modeling
and representation learning in the following sections. Details about these transformations can be
found in Appendix B.

3 NDA FOR GENERATIVE ADVERSARIAL NETWORKS

Figure 3: Schematic overview of our NDA framework. Left: In the absence of NDA, the support
of a generative model Pθ (blue oval) learned from samples (green dots) may “over-generalize” and
include samples from P1 or P2. Right: With NDA, the learned distribution Pθ becomes disjoint
from NDA distributions P1 and P2, thus pushing Pθ closer to the true data distribution pdata (green
oval). As long as the prior is consistent, i.e. the supports of P1 and P2 are truly disjoint from pdata,
the best fit distribution in the infinite data regime does not change.

In GANs, we are interested in learning a generative model Gθ from samples drawn from some data
distribution pdata (Goodfellow et al., 2014). GANs use a binary classifier, the so-called discriminator
Dφ, to distinguish real data from generated (fake) samples. The generator Gθ is trained via the
following mini-max objective that performs variational Jensen-Shannon divergence minimization:

min
Gθ∈P(X )

max
Dφ

LJS(Gθ, Dφ) where (1)

LJS(Gθ, Dφ) = Ex∼pdata [log(Dφ(x))] + Ex∼Gθ [log(1−Dφ(x))] (2)

This is a special case to the more general variational f -divergence minimization objective (Nowozin
et al., 2016). The optimal Dφ for any Gθ is (pdata/Gθ)/(1 + pdata/Gθ), so the discriminator can
serve as a density ratio estimator between pdata and Gθ.

With sufficiently expressive models and infinite capacity, Gθ will match pdata. In practice, however,
we have access to finite datasets and limited model capacity. This means that the generator needs
to generalize beyond the empirical distribution, which is challenging because the number of possi-
ble discrete distributions scale doubly exponentially w.r.t. to the data dimension. Hence, as studied
in (Zhao et al., 2018), the role of the inductive bias is critical. For example, Zhao et al. (2018) report
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that when trained on images containing 2 objects only, GANs and other generative models can some-
times “generalize” by generating images with 1 or 3 objects (which were never seen in the training
set). The generalization behavior – which may or may not be desirable – is determined by factors
such as network architectures, hyperparameters, etc., and is difficult to characterize analytically.

Here we propose to bias the learning process by directly specifying what the generator should not
generate through NDA. We consider an adversarial game based on the following objective:

min
Gθ∈P(X )

max
Dφ

LJS(λGθ + (1− λ)P ,Dφ) (3)

where the negative samples are generated from a mixture of Gθ (the generator distribution) and P
(the NDA distribution); the mixture weights are controlled by the hyperparameter λ. Intuitively, this
can help addresses the above “over-generalization” issue, as we can directly provide supervision on
what should not be generated and thus guide the support of Gθ (see Figure 3) . For instance, in the
object count example above, we can empirically prevent the model from generating images with an
undesired number of objects (see Appendix Section A for experimental results on this task).

In addition, the introduction of NDA samples will not affect the solution of the original GAN ob-
jective in the limit. In the following theorem, we show that given infinite training data and infinite
capacity discriminators and generators, using NDA will not affect the optimal solution to the gener-
ator, i.e. the generator will still recover the true data distribution.
Theorem 1. Let P ∈ P(X ) be any distribution over X with disjoint support than pdata, i.e., such
that supp(pdata) ∩ supp(P ) = ∅. Let Dφ : X → R be the set of all discriminators over X ,
f : R≥0 → R be a convex, semi-continuous function such that f(1) = 0, f? be the convex conjugate
of f , f ′ its derivative, and Gθ be a distribution with sample space X . Then ∀λ ∈ (0, 1], we have:

arg min
Gθ∈P(X )

max
Dφ:X→R

Lf (Gθ, Dφ) = arg min
Gθ∈P(X )

max
Dφ:X→R

Lf (λGθ + (1− λ)P ,Dφ) = pdata (4)

where Lf (Q,Dφ) = Ex∼pdata
[Dφ(x)] − Ex∼Q[f?(Dφ(x))] is the objective for f -GAN (Nowozin

et al., 2016). However, the optimal discriminators are different for the two objectives:

arg max
Dφ:X→R

Lf (Gθ, Dφ) = f ′(pdata/Gθ) (5)

arg max
Dφ:X→R

Lf (λGθ + (1− λ)P ,Dφ) = f ′(pdata/(λGθ + (1− λ)P )) (6)

Proof. See Appendix C.

The above theorem shows that in the limit of infinite data and computation, adding NDA changes the
optimal discriminator solution but not the optimal generator. In practice, when dealing with finite
data, existing regularization techniques such as weight decay and spectral normalization (Miyato
et al., 2018) allow potentially many solutions that achieve the same objective value. The introduc-
tion of NDA samples allows us to filter out certain solutions by providing additional inductive bias
through OOD samples. In fact, the optimal discriminator will reflect the density ratio between pdata
and λGθ + (1− λ)P (see Eq.(6)), and its values will be higher for samples from pdata compared to
those from P . As we will show in Section 5, a discriminator trained with this objective and suitable
NDA performs better than relevant baselines for other downstream tasks such as anomaly detection.

4 NDA FOR CONSTRASTIVE REPRESENTATION LEARNING

Using a classifier to estimate a density ratio is useful not only for estimating f -divergences (as in
the previous section) but also for estimating mutual information between two random variables. In
representation learning, mutual information (MI) maximization is often employed to learn compact
yet useful representations of the data, allowing one to perform downstream tasks efficiently (Tishby
& Zaslavsky, 2015; Nguyen et al., 2008; Poole et al., 2019b; Oord et al., 2018). Here, we show that
NDA samples are also beneficial for representation learning.

In contrastive representation learning (such as CPC (Oord et al., 2018)), the goal is to learn a map-
ping hθ(x) : X → P(Z) that maps a datapoint x to some distribution over the representation space
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Z; once the network hθ is learned, representations are obtained by sampling from z ∼ hθ(x). CPC
maximizes the following objective:

ICPC(hθ, gφ) := Ex∼pdata(x),z∼hθ(x),ẑi∼pθ(z)

[
log

ngφ(x, z)

gφ(x, z) +
∑n−1
j=1 gφ(x, ẑj)

]
(7)

where pθ(z) =
∫
hθ(z|x)pdata(x)dx is the marginal distribution of the representations associated

with pdata. Intuitively, the CPC objective involves an n-class classification problem where gφ at-
tempts to identify a matching pair (i.e. (x, z)) sampled from the joint distribution from the (n− 1)
non-matching pairs (i.e. (x, ẑj)) sampled from the product of marginals distribution. Note that gφ
plays the role of a discriminator/critic, and is implicitly estimating a density ratio. As n → ∞,
the optimal gφ corresponds to an un-normalized density ratio between the joint distribution and the
product of marginals, and the CPC objective matches its upper bound which is the mutual informa-
tion between X and Z (Poole et al., 2019a; Song & Ermon, 2019). However, this objective is no
longer able to control the representations for data that are out of support of pdata, so there is a risk
that the representations are similar between pdata samples and out-of-distribution ones.

To mitigate this issue, we propose to use NDA in the CPC objective, where we additionally introduce
a batch of NDA samples, for each positive sample:

ICPC(hθ, gφ) := E

[
log

(n+m)gφ(x, z)

gφ(x, z) +
∑n−1
j=1 gφ(x, ẑj) +

∑m
k=1 gφ(x, zk)

]
(8)

where the expectation is taken over x ∼ pdata(x), z ∼ hθ(x), ẑi ∼ pθ(z), xk ∼ p (NDA dis-
tribution), zk ∼ hθ(xk) for all k ∈ [m]. Here, the behavior of hθ(x) when x is NDA is op-
timized explicitly, allowing us to impose additional constraints to the NDA representations. This
corresponds to a more challenging classification problem (compared to basic CPC) that encourages
learning more informative representations. In the following theorem, we show that the proposed ob-
jective encourages the representations for NDA samples to become disjoint from the representations
for pdata samples, i.e. NDA samples and pdata samples do not map to the same representation.
Theorem 2. (Informal) The optimal solution to hθ in the NDA-CPC objective maps the representa-
tions of data samples and NDA samples to disjoint regions.

Proof. See Appendix D for a detailed statement and proof.

5 NDA-GAN EXPERIMENTS

In this section we report experiments with different types of NDA for image generation. Additional
details about the network architectures and hyperparameters can be found in Appendix K.
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Figure 4: Histogram of differ-
ence in the discriminator out-
put for a real image and it’s
Jigsaw version.

Unconditional Image Generation. We conduct experiments on
various datasets using the BigGAN architecture (Brock et al., 2018)
for unconditional image generation1. We first explore various im-
age transformations from the literature to evaluate which ones are
effective as NDA. For each transformation, we evaluate its perfor-
mance as NDA (training as in Eq. 3) and as a traditional data aug-
mentation strategy, where we enlarge the training set by applying
the transformation to real images (denoted PDA for positive data
augmentation). Table 1 shows the FID scores for different types of
transformations as PDA/NDA. The results suggest that transforma-
tions that spatially corrupt the image are strong NDA candidates.
It can be seen that Random Horizontal Flip is not effective as an
NDA; this is because flipping does not spatially corrupt the image
but is rather a semantic preserving transformation, hence the NDA
distribution P is not disjoint from pdata. On the contrary, it is rea-
sonable to assume that if an image is likely under pdata, its flipped
variant should also be likely. This is confirmed by the effectiveness of this strategy as PDA.

1We feed a single label to all images to make the architecture suitable for unconditional generation.
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Table 1: FID scores over CIFAR-10 using different transformations as PDA and NDA in BigGAN.
The results indicate that some transformations yield better results when used as NDA. The common
feature of such transformations is they all spatially corrupt the images.

w/o Aug. Jigsaw Cutout Stitch Mixup Cutmix Random Crop Random Flip Gaussian
PDA NDA PDA NDA PDA NDA PDA NDA PDA NDA PDA NDA PDA NDA PDA NDA

18.64 98.09 12.61 79.72 14.69 108.69 13.97 70.64 17.29 90.81 15.01 20.02 15.05 16.65 124.32 44.41 18.72

Table 2: Comparison of FID scores of different types of NDA for unconditional image generation
on various datasets. The numbers in bracket represent the corresponding image resolution in pixels.
Jigsaw consistently achieves the best or second best result.

BigGAN Jigsaw Stitching Mixup Cutout Cutmix CR-BigGAN
CIFAR-10 (32) 18.64 12.61 13.97 17.29 14.69 15.01 14.56
CIFAR-100 (32) 22.19 19.72 20.99 22.21 22.08 20.78 –
CelebA (64) 38.14 37.24 37.17 37.51 37.39 37.46 –
STL10 (32) 26.80 23.94 26.08 24.45 24.91 25.34 –

We believe spatially corrupted negatives perform well as NDA in that they push the discriminator
to focus on global features instead of local ones (e.g., texture). We confirm this by plotting the
histogram of differences in the discriminator output for a real image and it’s Jigsaw version as
shown in Fig. 4. We show that the difference is (a) centered close to zero for normal BigGAN (so
without NDA training, the discriminator cannot distinguish real and Jigsaw samples well), and (b)
centered at a positive number (logit 10) for our method (NDA-BigGAN). Following our findings,
in our remaining experiments we use Jigsaw, Cutout, Stitch, Mixup and Cutmix as they achieve
significant improvements when used as NDA for unconditional image generation on CIFAR-10.

Table 2 shows the FID scores for BigGAN when trained with five types of negative data augmenta-
tion on four different benchmarks. Almost all the NDA augmentations improve the baseline across
datasets. For all the datasets except CIFAR-100, λ = 0.25, whereas for CIFAR-100 it is 0.5. We
show the effect of λ on CIFAR-10 performance in Appendix H. We additionally performed an exper-
iment using a mixture of augmentation policy. The results (FID 16.24) were better than the baseline
method (18.64) but not as good as using a single strategy.

Conditional Image Generation. We also investigate the benefits of NDA in conditional image
generation using BigGAN. The results are shown in Table 3. In this setting as well, NDA gives
a significant boost over the baseline model. We again use λ = 0.25 for CIFAR-10 and λ = 0.5
for CIFAR-100. For both unconditional and conditional setups we find the Jigsaw and Stitching
augmentations to achieve a better FID score than the other augmentations.

Table 3: FID scores for conditional image generation using different NDAs.2

BigGAN Jigsaw Stitching Mixup Cutout Cutmix CR-BigGAN
C-10 11.51 9.42 9.47 13.87 10.52 10.3 11.48
C-100 15.04 14.12 13.90 15.27 14.21 13.99 –

Image Translation. Next, we apply the NDA method to image translation. In particular, we use the
Pix2Pix model (Isola et al., 2017) that can perform image-to-image translation using GANs provided
paired training data. Here, the generator is conditioned on an image I, and the discriminator takes as
input the concatenation of generated/real image and I. We use Pix2Pix for semantic segmentation
on Cityscapes dataset (Cordts et al., 2016) (i.e. photos → labels). Table 4 shows the quantitative
gains obtained by using Jigsaw NDA3 while Figure 7 in Appendix F highlights the qualitative im-
provements. The NDA-Pix2Pix model avoids noisy segmentation on objects including buildings
and trees.

2We use a PyTorch code for BigGAN. The number reported in Brock et al. (2018) for C-10 is 14.73.
3We use the official PyTorch implementation and show the best results.
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Table 4: Results on CityScapes, using per
pixel accuracy (Pp.), per class accuracy (Pc.)
and mean Intersection over Union (mIOU). We
compare Pix2Pix and its NDA version.

Metric Pp. Pc. mIOU
Pix2Pix
(cGAN) 0.80 0.24 0.27

NDA
(cGAN) 0.84 0.34 0.28

Pix2Pix
(L1+cGAN) 0.72 0.23 0.18

NDA
(L1+cGAN) 0.75 0.28 0.22

Table 5: AUROC scores for different OOD
datasets. OOD-1 contains different datasets, while
OOD-2 contains the set of 19 different corruptions
in CIFAR-10-C (Hendrycks & Dietterich, 2018)
(the average score is reported).

BigGAN Jigsaw EBM

OOD-1

DTD 0.70 0.69 0.48
SVHN 0.75 0.61 0.63
Places-365 0.35 0.58 0.68
TinyImageNet 0.40 0.62 0.67
CIFAR-100 0.63 0.64 0.50

Average 0.57 0.63 0.59

OOD-2 CIFAR-10-C 0.56 0.63 0.60

Anomaly Detection. As another added benefit of NDA for GANs, we utilize the output scores of
the BigGAN discriminator for anomaly detection. We experiment with 2 different types of OOD
datasets. The first set consists of SVHN (Netzer et al., 2011), DTD (Cimpoi et al., 2014), Places-
365 (Zhou et al., 2017), TinyImageNet, and CIFAR-100 as the OOD datapoints following the pro-
tocol in (Du & Mordatch, 2019; Hendrycks et al., 2018). We train BigGAN w/ and w/o Jigsaw
NDA on the train set of CIFAR-10 and then use the output value of discriminator to classify the test
set of CIFAR-10 (not anomalous) and different OOD datapoints (anomalous) as anomalous or not.
We use the AUROC metric as proposed in (Hendrycks & Gimpel, 2016) to evaluate the anomaly
detection performance. Table 5 compares the performance of NDA with a likelihood based model
(Energy Based Models (EBM (Du & Mordatch, 2019)). Results show that Jigsaw NDA performs
much better than baseline BigGAN and other generative models. We did not include other NDAs as
Jigsaw achieved the best results.

We consider the extreme corruptions in CIFAR-10-C (Hendrycks & Dietterich, 2018) as the sec-
ond set of OOD datasets. It consists of 19 different corruptions, each having 5 different levels of
severity. We only consider the corruption of highest severity for our experiment, as these constitute
a significant shift from the true data distribution. Averaged over all the 19 different corruptions,
the AUROC score for the normal BigGAN is 0.56, whereas the BigGAN trained with Jigsaw NDA
achieves 0.63. The histogram of difference in discriminator’s output for clean and OOD samples are
shown in Figure 8 in the appendix. High difference values imply that the Jigsaw NDA is better at
distinguishing OOD samples than the normal BigGAN.

6 REPRESENTATION LEARNING USING CONTRASTIVE LOSS AND NDA

Unsupervised Learning on Images. In this section, we perform experiments on three benchmarks:
(a) CIFAR10 (C10), (b) CIFAR100 (C100), and (c) ImageNet-100 (Deng et al., 2009) to show the
benefits of NDA on representation learning with the contrastive loss function. In our experiments,
we use the momentum contrast method (He et al., 2019), MoCo-V2, as it is currently the state-of-the-
art model on unsupervised learning on ImageNet. For C10 and C100, we train the MoCo-V2 model
for unsupervised learning (w/ and w/o NDA) for 1000 epochs. On the other hand, for ImageNet-100,
we train the MoCo-V2 model (w/ and w/o NDA) for 200 epochs. Additional hyperparameter details
can be found in the appendix. To evaluate the representations, we train a linear classifier on the
representations on the same dataset with labels. Table 6 shows the top-1 accuracy of the classifier.
We find that across all the three datasets, different NDA approaches outperform MoCo-V2. While
Cutout NDA performs the best for C10, the best performing NDA for C100 and ImageNet-100
are Jigsaw and Mixup respectively. Figure 9 compares the cosine distance of the representations
learned w/ and w/o NDA (jigsaw) and shows that jigsaw and normal images are projected far apart
from each other when trained using NDA whereas with original MoCo-v2 they are projected close
to each other.

Transfer Learning for Object Detection. We transfer the network pre-trained over ImageNet-100
for the task of Pascal-VOC object detection using a Faster R-CNN detector (C4 backbone) Ren et al.
(2015). We fine-tune the network on Pascal VOC 2007+2012 trainval set and test it on the 2007 test
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Table 6: Top-1 accuracy results on image recognition w/ and w/o NDA on MoCo-V2.

MoCo-V2 Jigsaw Stitching Cutout Cutmix Mixup

CIFAR-10 91.20 91.66 91.59 92.26 91.51 91.36
CIFAR-100 69.63 70.17 69.21 69.81 69.83 69.99
ImageNet-100 69.41 69.95 69.54 69.77 69.61 70.01

set. The baseline MoCo achieves 38.47 AP, 65.99 AP50, 38.81 AP75 whereas the MoCo trained
with mixup NDA gets 38.72 AP, 66.23 AP50, 39.16 AP75 (an improvement of ≈ 0.3).

Unsupervised Learning on Videos. In this section, we investigate the benefits of NDA in self-
supervised learning of spatio-temporal embeddings from video, suitable for human action recogni-
tion. We apply NDA to Dense Predictive Coding (Han et al., 2019), which is a single stream (RGB
only) method for self-supervised representation learning on videos. For videos, we create NDA
samples by performing the same transformation on all frames of the video (e.g. the same jigsaw
permutation is applied to all the frames of a video). We evaluate the approach by first training the
DPC model with NDA on a large-scale dataset (UCF101), and then evaluate the representations by
training a supervised action classifier on UCF101 and HMDB51 datasets. As shown in Table 7,
Jigsaw and Cutmix NDA improve downstream task accuracy on UCF-101 and HMDB-51, achiev-
ing new state-of-the-art performance among single stream (RGB only) methods for self-supervised
representation learning (when pre-trained using UCF-101).

Table 7: Top-1 accuracy results on action recognition in videos w/ and w/o NDA in DPC.

DPC Jigsaw Stitching Cutout Cutmix Mixup

UCF-101 (Pre-trained on UCF-101) 61.35 64.54 66.07 64.52 63.52 63.65
HMDB51 (Pre-trained on UCF-101) 45.31 46.88 45.31 45.31 48.43 43.75

7 RELATED WORK

In several machine learning settings, negative samples are produced from a statistical generative
model. Sung et al. (2019) aim to generate negative data using GANs for semi-supervised learning
and novelty detection while we are concerned with efficiently creating negative data to improve
generative models and self-supervised representation learning. Hanneke et al. (2018) also propose
an alternative theoretical framework that relies on access to an oracle which classifies a sample
as valid or not, but do not provide any practical implementation. Bose et al. (2018) use adversarial
training to generate hard negatives that fool the discriminator for NLP tasks whereas we obtain NDA
data from positive data to improve image generation and representation learning. Hou et al. (2018)
use a GAN to learn the negative data distribution with the aim of classifying positive-unlabeled (PU)
data whereas we do not have access to a mixture data but rather generate negatives by transforming
the positive data.

In contrastive unsupervised learning, common negative examples are ones that are assumed to be
further than the positive samples semantically. Word2Vec (Mikolov et al., 2013) considers negative
samples to be ones from a different context and CPC-based methods (Oord et al., 2018) such as
momentum contrast (He et al., 2019), the negative samples are data augmentations from a different
image. Our work considers a new aspect of “negative samples” that are neither generated from some
model, nor samples from the data distribution. Instead, by applying negative data augmentation
(NDA) to existing samples, we are able to incorporate useful inductive biases that might be difficult
to capture otherwise (Zhao et al., 2018).

8 CONCLUSION

We proposed negative data augmentation as a method to incorporate prior knowledge through out-of-
distribution (OOD) samples. NDAs are complementary to traditional data augmentation strategies,

8
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which are typically focused on in-distribution samples. Using the NDA framework, we interpret
existing image transformations (e.g., jigsaw) as producing OOD samples and develop new learning
algorithms to leverage them. Owing to rigorous mathematical characterization of the NDA assump-
tion, we are able to theoretically analyze their properties. As an example, we bias the generator of a
GAN to avoid the support of negative samples, improving results on conditional/unconditional im-
age generation tasks. Finally, we leverage NDA for unsupervised representation learning in images
and videos. By integrating NDA into MoCo-v2 and DPC, we improve results on image and action
recognition on CIFAR10, CIFAR100, ImageNet-100, UCF-101, and HMDB-51 datasets. Future
work include exploring other augmentation strategies as well as NDAs for other modalities.
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A NUMEROSITY CONTAINMENT

Zhao et al. (2018) systematically investigate generalization in deep generative models using two
different datasets: (a) a toy dataset where there are k non-overlapping dots (with random color and
location) in the image (see Figure 5a), and (b) the CLEVR dataset where ther are k objects (with
random shape, color, location, and size) in the images (see Figure 5b). They train a GAN model
(WGAN-GP Gulrajani et al. (2017)) with (either) dataset and observe that the learned distribution
does not produce the same number of objects as in the dataset it was trained on. The distribution of
the numerosity in the generated images is centered at the numerosity from the dataset, with a slight-
bias towards over-estimation. For, example when trained on images with six dots, the generated
images contain anywhere from two to eight dots (see Figure 6a). The observation is similar when
trained on images with two CLEVR objects. The generated images contain anywhere from one to
three dots (see Figure 6b).

In order to remove samples with numerosity different from the train dataset, we use such samples
as negative data during training. For example, while training on images with six dots we use images
with four, five and seven dots as negative data for the GAN. The resulting distribution of the nu-
merosity in the generated images is constrained to six. We observe similar behaviour when training
a GAN with images containing two CLEVR objects as positive data and images with one or three
objects as negative data.

B IMAGE TRANSFORMATIONS

Given an image of size H × W , the different image transformations that we used are described
below.
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(a) Dots

(b) CLEVR

Figure 5: Toy Datasets used in Numerosity experiments.

(a) (b)

Figure 6: Left: Distribution over number of dots. The arrows are the number of dots the learning
algorithm is trained on, and the solid line is the distribution over the number of dots the model
generates. Right: Distribution over number of CLEVR objects the model generates. Generating
CLEVR is harder so we explore only one, but the behaviour with NDA is similar to dots.

Jigsaw-K (Noroozi & Favaro, 2016) We partition the image into a grid of K × K patches of
size (H/K) × (W/K), indexed by [1, . . . ,K × K]. Then we shuffle the image patches
according to a random permutation (different from the original order) to produce the NDA
image. Empirically, we find K = 2 to work the best for Jigsaw-K NDA.

Stitching We stitch two equal-sized patches of two different images, either horizontally (H/2×W )
or vertically (H ×W/2), chosen uniformly at random, to produce the NDA image.

Cutout / Cutmix We select a random patch in the image with its height and width lying between
one-third and one-half of the image height and width respectively. To construct NDA im-
ages, this patch is replaced with the mean pixel value of the patch (like cutout (DeVries &
Taylor, 2017) with the only difference that they use zero-masking), or the pixel values of
another image at the same location (cutmix (Yun et al., 2019)).

Mixup-α NDA image is constructed from a linear interpolation between two images x and
y (Zhang et al., 2017), γx + (1 − γ)y; γ ∼ Beta(α, α). α is chosen so that the dis-
tribution has high density at 0.5.

Other classes NDA images are sampled from other classes in the same dataset. See Appendix A.

C NDA FOR GANS

Theorem 1. Let P ∈ P(X ) be any distribution over X with disjoint support than pdata, i.e., such
that supp(pdata) ∩ supp(P ) = ∅. Let Dφ : X → R be the set of all discriminators over X ,

12
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f : R≥0 → R be a convex, semi-continuous function such that f(1) = 0, f? be the convex conjugate
of f , f ′ its derivative, and Gθ be a distribution with sample space X . Then ∀λ ∈ (0, 1], we have:

arg min
Gθ∈P(X )

max
Dφ:X→R

Lf (Gθ, Dφ) = arg min
Gθ∈P(X )

max
Dφ:X→R

Lf (λGθ + (1− λ)P ,Dφ) = pdata (4)

where Lf (Q,Dφ) = Ex∼pdata
[Dφ(x)] − Ex∼Q[f?(Dφ(x))] is the objective for f -GAN (Nowozin

et al., 2016). However, the optimal discriminators are different for the two objectives:

arg max
Dφ:X→R

Lf (Gθ, Dφ) = f ′(pdata/Gθ) (5)

arg max
Dφ:X→R

Lf (λGθ + (1− λ)P ,Dφ) = f ′(pdata/(λGθ + (1− λ)P )) (6)

Proof. Let us use p(x), p(x), q(x) to denote the density functions of pdata, P and Gθ respectively
(and P , P , Q for the respective distributions). First, from Lemma 1 in Nguyen et al. (2008), we
have that

max
Dφ:X→R

Lf (Gθ, Dφ) = Df (P‖Gθ) (9)

max
Dφ:X→R

Lf (λGθ + (1− λ)P ,Dφ) = Df (P‖λQ+ (1− λ)P ) (10)

where Df refers to the f -divergence. Then, we have

Df (P ||λQ+ (1− λ)P )

=

∫
X

(λq(x) + (1− λ)p(x)) f

(
p(x)

λq(x) + (1− λ)p(x)

)
=

∫
X
λq(x)f

(
p(x)

λq(x) + (1− λ)p(x)

)
+ (1− λ)f(0)

≥λf
(∫
X
q(x)

p(x)

λq(x) + (1− λ)p(x)

)
+ (1− λ)f(0) (11)

=λf

(
1

λ

∫
X
λq(x)

p(x)

λq(x) + (1− λ)p(x)

)
+ (1− λ)f(0)

=λf

(
1

λ

∫
X

(λq(x) + (1− λ)p(x)− (1− λ)p(x))
p(x)

λq(x) + (1− λ)p(x)

)
+ (1− λ)f(0)

=λf

(
1

λ
−
∫
X

((1− λ)p(x))
p(x)

λq(x) + (1− λ)p(x)

)
+ (1− λ)f(0)

=λf

(
1

λ

)
+ (1− λ)f(0) (12)

where we use the fact that f is convex with Jensen’s inequality in Eq.(11) and the fact that
p(x)p(x) = 0,∀x ∈ X in Eq.(12) since P and P has disjoint support.

We also have

Df (P ||λP + (1− λ)P ) =

∫
X

(λp(x) + (1− λ)p(x)) f

(
p(x)

λp(x) + (1− λ)p(x)

)
=

∫
X

(λp(x)) f

(
p(x)

λp(x) + (1− λ)p(x)

)
+ (1− λ)f(0)

=

∫
X

(λp(x)) f

(
p(x)

λp(x) + 0

)
+ (1− λ)f(0)

= λf

(
1

λ

)
+ (1− λ)f(0)

Therefore, in order for the inequality in Equation 11 to be an equality, we must have that q(x) =
p(x) for all x ∈ X . Therefore, the generator distribution recovers the data distribution at the
equlibrium posed by the NDA-GAN objective, which is also the case for the original GAN objective.
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Moreover, from Lemma 1 in Nguyen et al. (2008), we have that:

arg max
Dφ

Lf (Q,Dφ) = f ′(pdata/Q) (13)

Therefore, by replacing Q with Gθ and (λGθ + (1− λ)P ), we have:

arg max
Dφ:X→R

Lf (Gθ, Dφ) = f ′(pdata/Gθ) (14)

arg max
Dφ:X→R

Lf (λGθ + (1− λ)P ,Dφ) = f ′(pdata/(λGθ + (1− λ)P )) (15)

which shows that the optimal discriminators are indeed different for the two objectives.

D NDA FOR CONTRASTIVE REPRESENTATION LEARNING

We describe the detailed statement of Theorem 2 and proof as follows.

Theorem 3. For some distribution p over X such that supp(p) ∩ supp(pdata) = ∅, and for any
maximizer of the NDA-CPC objective

ĥ ∈ arg max
hθ

max
gφ

ICPC(hθ, gφ)

the representations of negative samples are disjoint from that of positive samples for ĥ; i.e., ∀x ∈
supp(pdata), x̄ ∈ supp(p),

supp(ĥ(x̄)) ∩ supp(ĥ(x)) = ∅

Proof. We use a contradiction argument to establish the proof. For any representation mapping that
maximizes the NDA-CPC objective,

ĥ ∈ arg max
hθ

max
gφ

ICPC(hθ, gφ)

suppose that the positive and NDA samples share some support, i.e., ∃x ∈ supp(pdata), x̄ ∈
supp(p),

supp(ĥ(x̄)) ∩ supp(ĥ(x)) 6= ∅

We can always construct ĥ′ that shares the same representation with ĥ for pdata but have disjoint rep-
resentations for NDA samples; i.e., ∀x ∈ supp(pdata), x̄ ∈ supp(p), the following two statements
are true:

1. ĥ(x) = ĥ′(x);

2. supp(ĥ′(x̄)) ∩ supp(ĥ′(x)) = ∅.

Our goal is to prove that:

max
gφ

ICPC(ĥ′, gφ) > max
gφ

ICPC(ĥ, gφ) (16)

which shows a contradiction.

For ease of exposition, let us allow zero values for the output of g, and define 0/0 = 0 (in this case, if
g assigns zero to positive values, then the CPC objective becomes −∞, so it cannot be a maximizer
to the objective).

Let ĝ ∈ arg max ICPC(ĥ, gφ) be an optimal critic to the representation model ĥθ . We then define a
following critic function:

ĝ′(x, z) =

{
ĝ(x, z) if ∃x ∈ supp(pdata) s.t. z ∈ supp(ĥ′(x))

0 otherwise
(17)
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In other words, the critic assigns the same value for data-representation pairs over the support of
pdata and zero otherwise. From the assumption over ĥ, ∃x ∈ supp(pdata), x̄ ∈ supp(p), and
z ∈ supp(ĥ(x̄)),

z ∈ supp(ĥ(x))

so (x, z) can be sampled as a positive pair and ĝ(x, z) > 0.

Therefore,

max
gφ

ICPC(ĥ′, gφ) ≥ ICPC(ĥ′, ĝ′) (18)

= E

[
log

(n+m)ĝ′(x, z)

ĝ′(x, z) +
∑n−1
j=1 ĝ

′(x, ẑj) +
∑m
k=1 ĝ

′(x, zk)︸ ︷︷ ︸
=0

]
(plug in definition for NDA-CPC)

≥ E

[
log

(n+m)ĝ(x, z)

ĝ(x, z) +
∑n−1
j=1 ĝ(x, ẑj) +

∑m
k=1 ĝ(x, zk)

]
(existence of someĝ(x, z) > 0 )

= max
gφ

ICPC(ĥ, gφ) (Assumption that ĝ is optimal critic)

which proves the theorem via contradiction.

E WHAT DOES THE THEORY OVER GANS ENTAIL?

Our goal is to show that NDA GAN objectives are principled in the sense that with infinite compu-
tation, data, and modeling capacity, NDA GAN will recover the same optimal generator as a regular
GAN. In other words, under these assumptions, NDA will not bias the solution in an undesirable
way. We note that the NDA GAN objective is as stable as regular GAN in practice since both meth-
ods estimate a lower bound to the divergence with the discriminator, and then minimize that lower
bound w.r.t. the generator. The estimated divergences are slightly different, but they have the same
minimizer (which is the ground truth data distribution). Intuitively, while GAN and NDA GAN will
give the same solution asymptotically, NDA GAN might get there faster (with less data) because it
leverages a stronger prior over what the support should (not) be.

F PIX2PIX

Figure 7 highlights the qualitative improvements when we apply the NDA method to Pix2Pix
model (Isola et al., 2017).

Figure 7: Qualitative results on Cityscapes.
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G ANOMALY DETECTION

Here, we show the histogram of difference in discriminator’s output for clean and OOD samples in
Figure 8. High difference values imply that the Jigsaw NDA is better at distinguishing OOD samples
than the normal BigGAN.

(a) Gaussian Noise (b) Speckle Noise (c) JPEG Compression

Figure 8: Histogram of D(clean) - D(corrupt) for 3 different corruptions.

H EFFECT OF HYPERPARAMETER ON UNCONDITIONAL IMAGE GENERATION

Here, we show the effect of λ for unconditional image generation on CIFAR-10 dataset.

Table 8: Effect of λ on the FID score for unconditional image generation on CIFAR-10 using Jigsaw
as NDA.

λ 1.0 0.75 0.5 0.25 0.15

FID 18.64 16.61 14.95 12.61 13.01

I UNSUPERVISED LEARNING ON IMAGES

0.65 0.45 0.45 0.38 0.57 0.43 0.41 0.36 0.54 0.41 0.50 0.37

Figure 9: Comparing the cosine distance of the representations learned with Jigsaw NDA and Moco-
V2 (shaded blue), and original Moco-V2 (white). With NDA, we project normal and its jigsaw
image representations further away from each other than the one without NDA.

J DATASET PREPARATION FOR FID EVALUATION

For dataset preparation, we follow the the following procedures: (a) CIFAR-10 contains 60K 32×32
images with 10 labels, out of which 50K are used for training and 10K are used for testing, (b)
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CIFAR-100 contains 60K 32 × 32 images with 100 labels, out of which 50K are used for training
and 10K are used for testing, (c) CelebA contains 162,770 train images and 19,962 test images (we
resize the images to 64×64px), (d) STL-10 contains 100K (unlabeled) train images and 8K (labeled)
test images (we resize the images to 32×32px). In our experiments the FID is calculated on the test
dataset. In particular, we use 10K generated images vs. 10K test images for CIFAR-10, 10K vs.
10K for CIFAR-100, 19,962 vs. 19,962 for CelebA, and 8K vs 8K for STL-10.

K HYPERPARAMETERS AND NETWORK ARCHITECTURE

Generative Modeling. We use the same network architecture in BigGAN Brock et al. (2018)
for our experiments. The code used for our experiments is based over the author’s PyTorch code.
For CIFAR-10, CIFAR-100, and CelebA we train for 500 epochs whereas for STL-10 we train for
300 epochs. For all the datasets we use the following hyperparameters: batch-size = 64, generator
learning rate = 2e-4, discriminator learning rate = 2e-4, discriminator update steps per generator
update step = 4. The best model was selected on the basis of FID scores on the test set (as explained
above).

Momentum Contrastive Learning. We use the official PyTorch implementation for our experi-
ments. For CIFAR-10 and CIFAR-100, we perform unsupervised pre-training for 1000 epochs and
supervised training (linear classifier) for 100 epochs. For Imagenet-100, we perform unsupervised
pre-training for 200 epochs and supervised training (linear classifier) for 100 epochs. For CIFAR-
10 and CIFAR-100, we use the following hyperparameters during pre-training: batch-size = 256,
learning-date = 0.3, temperature = 0.07, feature dimensionality = 2048. For ImageNet-100 pre-
training we have the following: batch-size = 128, learning-date = 0.015, temperature = 0.2, feature
dimensionality = 128. During linear classification we use a batch size of 256 for all the datasets and
learning rate of 10 for CIFAR-10, CIFAR-100, whereas for ImageNet-100 we use learning rate of
30.

Dense Predictive Coding. We use the same network architecture and hyper-parameters in DPC
Han et al. (2019) for our experiments and use the official PyTorch implementation. We perform
self-supervised training on UCF-101 for 200 epochs and supervised training (action classifier) for
200 epochs on both UCF-101 and HMDB51 datasets.

L CODE

The code to reproduce our experiments is given here.

M IMPLEMENTATION DETAILS

For our experiment over GAN, we augment the batch of real samples with a negative augmentation
of the same batch, and we treat the augmented images as fake images for the discriminator. Similarly,
for the contrastive learning experiments, we consider negative augmentation of the query image
batch as negatives for that batch.

For all our experiments we used existing open-source models. For experiments over GAN, we use
the open-source implementations of BigGAN and Pix2Pix models, and for contrastive learning, we
use the open-source implementation of the MoCo-v2 model and Dense Predictive Coding. Hence,
we did not explain in detail each of the models. Implementing NDA is quite simple as we only need
to generate NDA samples from the images in a mini-batch which only takes several lines of code.

N DOES THE GAIN OF NDA FOR REPRESENTATION LEARNING COME FROM
THE FACT THAT MORE NEGATIVE SAMPLES ARE USED?

We perform the experiments over MoCo-v2 which maintains a queue of negative samples. The
number of negatives is around 65,536. With our approach, we use the augmented versions of images
in the same batch as negative. We transform both the key and query images to create NDA samples.
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Thus, the number of negatives for our approach is 65,536 + 2 (one NDA sample created using query
image and other using key image), only 0.00003051664 times more than the original number of
negatives samples in MoCo-v2. Thus our experiments are comparable to the baseline MoCo-v2. In
terms of computation, we need an additional forward pass in each batch to get the representations of
the NDA samples. The normal MoCo-v2 requires 1.09 secs for entire forward computation, which
includes forward pass through the network, momentum update of the key encoder and dot product
between the positive and negative samples. With NDA, 1 forward computation requires 1.36 secs.

O WHAT HAPPENS WHEN NEGATIVE DATA AUGMENTATIONS ARE NOISY?

Regarding the performance of negative data augmentation, we perform 2 different experiments:

a) When the noise is low - When using jigsaw as our NDA strategy with a 2 x 2 grid, one out of
the 24 permutations will be the original image. We find that when this special permutation is not
removed, or there is 4% “noise”, the FID score is 12.61, but when it is removed the FID score is
12.59. So, we find that when the noise is low, the performance of our approach is not greatly affected
and is robust in such scenarios.

b) When the noise is large - We use random vertical flipping as our NDA strategy, where with 50%
probability the image is vertically flipped during NDA. In this case, the “noise” is large, as 50%
of the time, the negative sample is actually the original image. We contrast this with the “noise-
free” NDA strategy where the NDA image is always vertically flipped. We find that for the random
vertical flipping NDA, the FID score of BigGAN is 15.84, whereas, with vertical flipping NDA, the
FID score of BigGAN is 14.74. So performance degrades with larger amounts of noise.
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