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Abstract

Exploring whether Enriched Category Theory could provide the foundation of an alternative
approach to Machine Learning. This paper is the first to construct and motivate a Machine
Learning algorithm solely with Enriched Category Theory. In order to supplement evidence
that Category Theory can be used to motivate robust and explainable algorithms, it is
shown that a series of reasonable assumptions about a dataset lead to the construction of
the Nearest Neighbours Algorithm. In particular, as an extension of the original dataset
using profunctors in the category of Lawvere metric spaces. This leads to a definition of
an Enriched Nearest Neighbours Algorithm, which consequently also produces an enriched
form of the Voronoi diagram. This paper is intended to be accessible without any knowledge
of Category Theory.

1 Introduction

As Machine Learning (ML) becomes more popular, the use of black box approaches is beginning to hinder
the progression of the field. During engineering and development, the better ones understanding of a model
the easier it is to improve its performance, diagnose faults, and provide guarantees for its behaviour. Unfor-
tunately, necessary to the development of many algorithms, there are design decisions which are motivated
by intuition or trial and error. Potentially, part of the difficulty in understanding these algorithms comes
from a lack of clarity in how they are interacting with the data they are provided. How does the encoding
of input data effect the information that an algorithm actually understands. To approach this question, this
paper seeks to investigate the development of a first principles approach to the design of ML algorithms using
Enriched Category Theory. To provide evidence that this approach has potential, it is demonstrated that
basic assumptions about a dataset can lead to the natural construction of a pre-existing algorithm which is
popular for its predictable and robust behaviour: the Nearest Neighbours Algorithm (NNA).

The argument for the use of Enriched Category Theory in such a theory proceeds as follows. The process of
learning requires the ability to make comparisons. This may be comparisons between: entries of a training
dataset in order to identify patterns; training examples and new cases for the sake of inference; between
different models of the same dataset, for selection of the best one. Enriched Category Theory provides a
very general framework for defining and studying comparisons between objects. It demonstrates that the
entirety of the information associated with an object can be encoded in its comparisons to other objects.
Using Enriched Category Theory, the structure of data can be encoded explicitly in their mutual comparisons,
rather than implicitly, as is common with many ML algorithms. The benefit of this approach would be that
the design and mechanism of ML algorithms becomes more transparent. The assumptions about datasets
can be made more explicit. And the process of learning can be interpretted in its natural form as reasoning
about the comparison of observations.

2 Background

To the knowledge of the authors, the construction of the Nearest Neighbours Algorithm demonstrated in
this paper is one of the first examples of a machine learning algorithm motivated and constructed solely
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with Enriched Category Theory. There is one other example of an entirely categorical construction of an
ML algorithm, where previous work Shiebler (2022) shows that the single linkage clustering algorithm can
be found as a Kan-extension of a dataset of points. However, it is suggested that the steps shown for the
derivation of the NNA draw a tighter parallel between the intuition of how the dataset is represented, and
the derived algorithm.

There are also examples of algorithms whose structures have been encoded in the language of category theory,
such as Graph Neural Networks Dudzik & Veličković (2022). But they represent the structure of how the
algorithm computes information, and not necessarily the selection of the optimal model or representation of
the input dataset. In contrast, the NNA construction draws a direct line from the representation of the data
to the selection of the optimal classification.

Understanding the Enriched Category Theory construction of the Nearest Neighbours algorithm requires an
understanding of Lawvere metric spaces as Cost Enriched Categories, as well as a working knowledge of the
Nearest Neighbours Algorithm. It is beyond the scope of this paper to provide a complete introduction to
Enriched Category Theory 1, but thankfully many of its complexities can be avoided by focusing on the
specific case of Lawvere metric spaces. The following section provides the necessary components, as well as
a brief overview of the Nearest Neighbours Algorithm.

2.1 Nearest Neighbours Algorithm

The Nearest Neighbours Algorithm Fix & Hodges (1989) extends the classification of a dataset of points in
a metric space to the entire metric space. Consider a dataset of n pairs (x0, y0), ..., (xn, yn). The targets of
the dataset, yi, are elements of a set of class labels Y . The features of the dataset, xi, represent points in a
metric space X. This allows the distance between any two points to be measured, following the traditional
metric space axioms.

• d(a, a) = 0
• a ̸= b ⇔ d(a, b) > 0 Positivity
• d(a, b) = d(b, a) Symmetry
• d(a, b) + d(b, c) ≥ d(a, c) Triangle Inequality

To a point of the metric space not in the dataset, the Nearest Neighbors Algorithm assigns a class if the
closest point in the dataset has that class. An example of the classification regions produced can be seen
in Fig 1 which shows the NNA classification of a two class dataset of points sampled from two Gaussian
distributions.

To express this as a relation we can represent the dataset with two functions. The indexes of the dataset can
be expressed as the set of integers from 1 to n, N = {a ∈ Z | 1 ≤ a ≤ n}. The features of the dataset can
be encoded with the function F : N → X such that Fi = xi. The targets of the dataset can be expressed
similarly with a function T : N → Y , such that Ti = yi. Given a point x ∈ X and a class y ∈ Y , the relation
should return true if the closest data-point to x has the class y. 2

NNA(y, x) = ∃i ∈ N [ Ti = y and d(Fi, x) = inf
i′∈N

d(Fi′, x) ]

This relation can be presented in an alternate form that will be useful later, but it requires that the indexes
are partitioned based on their classes. We define the partition as follows. NT (y) = {i ∈ N | Ti = y}. This
allows the relation to be presented as:

NNA(y, x) ⇔ inf
i∈N

d(Fi, x) = inf
i∈NT (y)

d(Fi, x)

1A basic introduction can be found in "Seven Sketches in Compositionality" Fong & Spivak (2018) while a more technical
overview occurs in "Basic Concepts of Enriched Category Theory" Kelly (2005).

2inf in the following expression represents the infimum or least upper bound of a set of values. For finite cases it can be
replaced with minimum.
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Figure 1: An example of the classification regions produced by the nearest neighbour algorithm from data
points sampled from two Gaussian distributions, representing the distributions of the two classes.

2.2 Lawvere Metric Spaces

As mentioned in the introduction, Enriched Category Theory provides a method of encoding structure
through a rigorous language for talking about comparisons. In some sense, an Enriched Category is a
collection of objects which can be compared. Given a category C, two objects x ∈ C and y ∈ C can be
compared with the notation C(x, y). This is referred to as the hom-object of x and y. This hom-object
exists in its own category called the base of enrichment. To make the comparisons meaningful, ECT requires
that the base of enrichment have some way of combining hom-objects, called a monoidal product, and some
juxtaposition of these two hom-objects to a third. An example of how this structure works can be seen
in order relations. Consider a category called Fruits, which is a collection of fruits ordered by price. The
hom-object Fruits(Apple, Orange) would test to see if Apples were cheaper than Oranges. In this instance
this comparison could also be written as Apples ≤ Oranges. The outcome of this comparison is either true
or false so the base of enrichment would be a category containing an object representing true and an object
representing false. This base of enrichment can be called Bool for Boolean.

A sensible logical deduction to make with such a category would be to say that if I know fruit A is cheaper
than fruit B, and fruit B is cheaper than fruit C, then A must be cheaper than C. Notionally, this can be
written as:

(A ≤ B) and (B ≤ C) =⇒ (A ≤ C)

This process of logical inference gives the general motivating structure of an enriched category. In this
instance, each comparison of the ordered set returns a value in Bool. The monoidal product of Bool is the
logical "and", allowing its objects to be combined. Bool also has arrows of implication from False to False,
False to True, and True to True. But not from True to False, as True cannot logically imply False. By using
Bool as the base of enrichment, the general structure of the enriched category becomes the structure of a
pre-order relation.

A Lawvere metric space is an enriched category whose base of enrichment is chosen so that the categories
operate like metric spaces, allowing the enriched category to measure the distances between its objects. The
base of enrichment for Lawvere metric spaces is called the Cost category. Because it represents measurements
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of distance, its objects are the non-negative real numbers extended with infinity3. Given a Cost enriched
category X, and two objects x and y of X, the hom object X(x, y) can be interpretted as the distance
between x and y. The monoidal product of Cost is addition and the arrows of the Cost category point from
large numbers to smaller numbers. As in, there is an arrow from a ∈ Cost to b ∈ Cost if and only if a ≥ b.
This can also be interpretted as Cost(a, b) = a ≥ b. Looking at the previous example, we can replace the
and operation of Bool with addition, and the implication with ≥ to recover the following expression for Cost
categories.

X(x, y) + X(y, z) ≥ X(x, z)

This requirement of Cost categories is the triangle inequality, stating that taking a detour to a third object
cannot be quicker than travelling directly between two objects. By choosing the Cost category as the base of
enrichment, ECT naturally recovers some, but not all of the the metric space axioms (As detailed in section
2.1). This makes Lawvere metric spaces pseudo-metric spaces. In Lawvere metric spaces, one retains the
triangle inequality, and the requirement that the distance from an object to itself is zero (d(a, a) = 0), but
the metric spaces are not required to be symmetric (d(a, b) = d(b, a)) and two different objects can be zero
distance apart. This can be a controversial choice, but there are several arguments for this being a desirable
outcome. For example, in many cases an intuitive notion of distance is not symmetric, e.g. its easier to go
down stairs than up them. One might also say that distance is a measure of similarity not identity, and
the idea of two different objects being zero distance apart is sensible when considering systems at a certain
level of coarseness. In either case, if one wishes to operate with traditional metric spaces, they are all also
Lawvere metric spaces, and the necessary axioms can be asserted as convenient.

By sensibly considering how we wish to compare objects in our enriched categories, choosing objects, arrows,
and a monoidal product in the base of enrichment, we have recovered the structure of a metric space. Though
the Lawvere metric space is one of the simpler examples of an enriched category, it starts to reveal the power
of such a theory to construct complex structures for the representation of data.

2.3 Functors and Profunctors

An Enriched Category may be thought of as representing a particular datatype, with the structure of that
datatype being represented by the hom-objects of the category. In order to interact with this information,
there are many ways of comparing categories to each other. Between categories with the same base of
enrichment, there are two constructions which are relevant for this work: Functors and Profunctors.

In set theory, a mapping from one set to another is called a function. In ECT, there is a similar concept called
a functor. Functors between enriched categories are structure preserving maps. In the case of Cost-enriched
categories (Lawvere metric spaces), this reduces to the statement that functors are distance non-increasing
functions. Given a functor F : X → Y , from X to Y, this can be expressed as the statement that for any
two objects a, b ∈ X.

X(a, b) ≥ Y (Fa, Fb)

As well as Functors between categories being the ECT version of functions between sets, there is also an
ECT version of relations between categories. A set relation R between two sets X and Y is often described
as a subset of the Cartesian products of X and Y , i.e. R ⊆ X × Y . However, this relation can also
be thought of as a function which returns true if the relation is true, and false if the relation is false:
R : Y × X → {False, True}. In ECT, this notion is extended to a functor from the product of two
categories to the base of enrichment. Where the product of two categories Y op ⊗ X contains objects which
are pairs of objects in X and Y similar to how the Cartesian product of sets contains pairs of elements
of sets. R : Y op ⊗ X → Cost. Such a construction is called a profunctor. For notation, a profunctor
R : Y op ⊗ X → Cost, can be written as R : X ↛ Y .

With two set relations R : X ↛ Y and S : Y ↛ Z, a composite relation can be produced of the form
S ◦ R : A ↛ C. The composition of two relations R and S is true for two inputs x and z, if there exists an

3The objects of Cost being {x ∈ R | x ≥ 0} ∪ {∞}. The monoidal product is addition, with addition by infinity defined as
x + ∞ = ∞
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element y in Y such that R(y, x) is true, and S(z, y) is true. The logic of relation composition is described
by the following equation.

(S ◦ R)(z, x) := ∃y ∈ Y [R(y, x) and S(z, y)]

Similar to relations, profunctors can also be composed. Given Cost enriched profunctors R : X ↛ Y
and S : Y ↛ Z, the output of their composition bares a striking resemblance to the formula for relation
composition.

(S ◦ R)(z, x) := inf
y∈Y

(R(y, x) + S(z, y))

The similarity between relation composition and profunctor composition is more than just cosmetic. It
also emulates how Cost enriched categories treat logical propositions. In the Boolean logic setting, the
"and" operation outputs true only when both of its inputs are true, and false otherwise. In Cost enriched
categories, a distance of zero can be interpreted as true, and a distance greater than zero is false. With this
interpretation, the sum of two values a and b, where both are non-negative, can only be zero if both a and
b are zero. From the perspective of Cost category logic, a + b is the logical "and" operation. Furthermore,
within this version of logic the infimum operation is the Cost version of the existential quantifier. When X is
finite, The statement infx∈X Fx = 0 means there exists a value x such that Fx is zero. In the infinite case, it
suggests that there exists a value Fx which is arbitrarily close to zero. Applying this logic to the definition
of profunctors, it can be seen that profunctors produce truth values from pairs of objects, if the output of
zero is interpreted as true, and the output of non-zero is interpretted as false. Such an interpretation can be
represented by the functor (0 = x) : Cost → Bool.

With knowledge of Functors, Profunctors and their composition there is a final piece of information necessary
for the construction of the Nearest Neighbours Algorithm. Continuing with the intuition from functions and
relations of sets, it can be observed that functions are a special kind of relation, known as a functional
relation. A function F : N → X is said to produce an element Fi when given an element i ∈ N , but this
behaviour can be represented directly as a relation F∗ : N ↛ X which evaluates to a truth value under the
condition F∗(x, i) ⇔ (x = Fi). In fact, there is also a second relation of the opposite direction F ∗ : X ↛ N
which represents the logical evaluation of the function F ∗(i, x) ⇔ (Fi = x).

The interaction between functions and relations has a mirror in the interaction between functors and profunc-
tors. A functor F : N → X canonically generates two profunctors. One of the same direction F∗ : N ↛ X
and one of the opposite direction F ∗ : X ↛ N . They are defined with the aid of hom-objects, where
F∗(x, i) = X(x, F i) and F ∗(i, x) = X(Fi, x). In the case of Lawvere metric spaces, the profunctors of F
evaluated on objects x and i can be read as: "The distance between x and the image of i under F ". With
this final component, it is now possible to construct the Nearest Neighbours Algorithm.

3 Constructing The Nearest Neighbours Algorithm

This section explores the construction of the Nearest Neighbours Algorithm, given a dataset of points in a
metric space, and classification labels, using Enriched Category Theory. Starting with a dataset of n pairs
(x0, y0), ..., (xn, yn), the xi values are elements of a metric space X, and the yi values are class labels. Given
a new point x ∈ X, what is the correct class label to associate with it?

From the format of the dataset, the primary characteristic of the data points are the distances between them.
This would suggest that the natural choice for the enriched categories are Lawvere metric spaces, i.e. Cost
enriched categories. The first step is to find an appropriate representation of the data. An individual data
point, (xi, yi), has three components. An index value i, an associated point in the metric space xi, and the
classification label yi. The n index values can be stored in a Cost-enriched category N . The metric space X
can clearly also be represented as a Cost-enriched category X, but the class labels can also be represented in
a similar way, as the contents of the Cost-enriched category Y , which contains all of the possible class labels.
With these categories, the information of the dataset can be represented by two functors. F : N → X maps
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the index values to their associated position in the metric space xi. The functor T : N → Y , similarly, maps
data indexes to class labels.

Though it is now clear what objects the various enriched categories contain, it remains to determine what
the hom-objects of each category should be. In the case of the metric space X, it is clear that between any
points a, b ∈ X, the hom object X(a, b) should correspond directly with the distance metric on X. It is less
clear what the choice should be for the categories N and Y .

Proceeding with the intuition that the hom-objects, or in this case the distances, between objects should
encode meaningful information about the data, the objects of N , the indexes, possess no explicit relation to
each other. This would suggest that the distances between indexes should be as "un-constraining as possible".
In the context of enriched categories, the lack of constraint would suggest that the Functors from N to any
other Cost category, should correspond directly with maps from the objects of N to the other category. To
achieve this, the category N can be given the discrete metric, shown in the following equation.

N(i, j) =
{

0 i = j

∞ i ̸= j

Recalling that functors between Cost-Categories are distance non-increasing functions, the discrete metric
means that this condition is trivially satisfied, as the objects of N are as distant from each other as possible.
This models the lack of a relationship between the data indexes. The same logic can be applied to the objects
of Y . Class labels should also have no meaningful relation to each other, so the discrete metric can be applied
to Y as well. With the categories N , X, Y and the functors F , and T , the dataset can be represented by
the following diagram.

X

N Y
T

F

To find the classes of all the points in X would optimistically be to find a suitable candidate for the dotted
arrow from X to Y . However, there is an issue. It is expected that two classification regions in X may be
touching, producing a boundary between classification regions which can have a trivially small distance. If
we insist that classes are assigned by functors, then the functors must be distance non-increasing. This would
require that the classes in Y have a distance of zero from each other. It is tempting to think that one should
not assign Y the discrete metric, but this has an unfortunate consequence. Within the language of Enriched
Category Theory, the hom-objects are the only way to distinguish between objects of a category. Setting
all of the distances between objects in Y to zero would make all of the classes indistinguishable from each
other in any categorical construction. It was correct to assign Y the discrete metric, but not to expect the
classifications to be represented by a functor. The classifications can in fact be represented by a profunctor
NNA : X ↛ Y .

With the expectation that the correct classification is represented by a profunctor, we can attempt to
produce this profunctor directly by composition. The functors F and T both have two canonical profunctors
associated with them. By selecting these profunctors appropriately, we can compose them to produce a
profunctor from X to Y . This can be done with the profunctors F ∗ : X ↛ N and T∗ : N ↛ Y .

X

N Y

F ∗
p

T∗p

T∗◦F ∗

As previously discussed, the profunctor F ∗ : X ↛ N measures the distance between a point in X and the
image of a data point in N . The profunctor T∗ : N ↛ Y does something similar, but because it is produced
by a functor between discrete categories, its outputs are even easier to interpret. If a data index i has a class
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y, i.e. Ti = y, then T∗(y, i) will be 0. However, if i does not have class y then T∗(y, i) is infinity. Substituting
these profunctors into the profunctor composition formula produces the following equation.

(T∗ ◦ F ∗)(y, x) = inf
i∈N

(F ∗(i, x) + T∗(y, i))

The interpretation of this composition is relatively straight forward. If the class of i selected by the infimum
is not y, then T (y, i) will be infinity, making the entire sum as large or larger than any other possible
value. However, if the i selected was of class y, then the formula returns infi∈N F ∗(i, x). In other words the
composition (T∗ ◦ F ∗)(y, x) returns the distance from x to the closest data point which is of class y. This
could also be interpretted as evaluating the infimum of a partition of the indexes which have the class y 4.

(T∗ ◦ F ∗)(y, x) = inf
i∈NT (y)

d(Fi, x)

A useful outcome, but not quite the NNA. There is one additional step. In order to reproduce the NNA we
need to compare the output of the profunctor T∗ ◦ F ∗, to a similar composition with a profunctor that has
no knowledge of the classes, 1NY : N ↛ Y .

To model the notion that 1NY has no knowledge of the classes, it must respond true to any i ∈ N and y ∈ Y ,
i.e. 1NY (y, i) = 0 5. Composing this profunctor with F ∗ produces a composition with no knowledge of the
classes.

(1NY ◦ F ∗)(y, x) = inf
i∈N

(F ∗(i, x) + 1NY (y, i))

= inf
i∈N

F ∗(i, x)

Given a point x ∈ X and class y ∈ Y , the profunctor (1NY ◦ F ∗)(y, x) gives the distance to the closest
point in the dataset (i.e. in the image of F ). This composition has forgotten all class information. Finally,
to reconstruct the NNA classification it only remains to compare the outputs of both profunctors. As their
outputs are objects of the Cost category, the natural comparison is their hom-object in Cost.

NNA : X ↛ Y

NNA(y, x) := Cost((1NY ◦ F ∗)(y, x), (T∗ ◦ F ∗)(y, x))

Because the arrows in Cost encode the ordering information, this leads to the expression:

NNA(y, x) = (1NY ◦ F ∗)(y, x) ≥ (T∗ ◦ F ∗)(y, x)

A point x is taken to have class y when NNA(y, x) is true. Consider the situation that the closest data
point Fj to x has class y, then T (y, j) = 0. The left hand side of the inequality finds the smallest distance
from x to a data point with any class and the right hand side finds the smallest distance to a data point
with class y. When the closest data point to x has class y, the left hand side returns the same value as the
right hand side and the inequality is true.

4Note that the following expression re-uses the notation NT (y) introduced in section 2.1 to represent the partition subset
of N with classes y, NT (y) = {i ∈ N | T i = y}

5This also makes 1NY the terminal profunctor of the category of profunctors between N and Y , P rof(N, Y )
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NNA(y, x) ⇔ Cost( (1NY ◦ F ∗)(y, x), (T∗ ◦ F ∗)(y, x) )
⇔ (1NY ◦ F ∗)(y, x) ≥ (T∗ ◦ F ∗)(y, x)
⇔ inf

i∈N
F ∗(i, x) ≥ inf

i∈N
(F ∗(i, x) + T (y, i))

⇔ F ∗(j, x) ≥ F ∗(j, x) + T (y, j)
⇔ F ∗(j, x) ≥ F ∗(j, x)
⇔ True

Alternatively, in a situation where the nearest data point does not have class y, then (T∗ ◦ F ∗)(y, x) >
(1NY ◦ F ∗)(y, x) and the output will be false. From this interpretation, it is clear that the NNA profunctor
produces the same classification as the Nearest Neighbours Algorithm. In its purely categorical form, the
similarity between the profunctor construction and the relation introduced in Section 2.1 is obscured, but it
can be made clear through substitution.

NNA(y, x) ⇔ Cost( (1NY ◦ F ∗)(y, x) , (T∗ ◦ F ∗)(y, x) )
⇔ (1NY ◦ F ∗)(y, x) ≥ (T∗ ◦ F ∗)(y, x)
⇔ inf

i∈N
F ∗(i, x) ≥ inf

i∈N
(F ∗(i, x) + T (y, i))

⇔ inf
i∈N

F ∗(i, x) ≥ inf
i∈NT (y)

F ∗(i, x)

⇔ inf
i∈N

F ∗(i, x) = inf
i∈NT (y)

F ∗(i, x)

⇔ inf
i∈N

X(Fi, x) = inf
i∈NT (y)

X(Fi, x)

⇔ inf
i∈N

d(Fi, x) = inf
i∈NT (y)

d(Fi, x)

The last line is the same as the NNA relation shown in Section 2.1, demonstrating that this construction is
the same as the standard Nearest Neighbours Algorithm.

4 Future Work

Given the diversity of Machine Learning algorithms, and the natural generalising power of Enriched Category
Theory, there are numerous avenues to explore for future extensions of this work.

Firstly, the construction of the NNA in section 3 does not require any specific properties of Cost-enriched
categories to define. This leads very naturally to a candidate definition of the V-enriched Nearest Neighbours
Algorithm (V-NNA).

V-NNA : X ↛ Y

V-NNA(y, x) := V ((1NY ◦ F ∗)(y, x), (T∗ ◦ F ∗)(y, x))

This immediately begs the question of whether this definition has useful properties in other bases of en-
richment. Though the previous section interpretted the hom-object of the base of enrichment in its non
enriched form for the sake of clarity, future works would benefit from considering the self enriched form of
the hom-object. In the case of the Cost-NNA, interpreting the hom-object with truncated subtraction rather
than an inequality.
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Cost-NNA : X ↛ Y

Cost-NNA(y, x) = (T∗ ◦ F ∗)(y, x) −̇ (1NY ◦ F ∗)(y, x)

Researchers who aren’t interested in Machine Learning would possibly consider the Voronoi diagram as a
more interesting outcome of the V-NNA. By assigning each index its own separate class, the NNA partitions
the metric space dependent on each individual point rather than each individual class. In this instance, the
partitions generated in other bases of enrichment may prove interesting.

It is also interesting to ask what other algorithms can be presented in this language. An obvious generalisation
of the Nearest Neighbours Algorithm is the k Nearest Neighbours Algorithm, where classification of a point is
based on the majority classification of the k closest points to it. Beyond this, there are many ML algorithms
which depend purely on the distance metric of their dataset, so many may also be found as constructions of
Cost-enriched categories.

5 Conclusion

The nascent field of Category Theory for Machine Learning has been growing in recent years. As Category
Theory is predominantly concerned with mathematical structure, there is a hope that such techniques can
improve our understanding of how Machine Learning algorithms operate. Previous works have demonstrated
that there is value in this avenue of research, but there is currently not enough experience to indicate the
correct way to apply Category Theory to the understanding of Machine Learning algorithms. In particular,
there has not previously been an application of Enriched Category Theory in Machine Learning. With the
construction of the Nearest Neighbours Algorithm, using tools from Enriched Category Theory, there is
now a stronger indication that this area can provide valuable insight. Furthermore, the strategies used for
the representation of information and reasoning about the construction of machine learning algorithms in
this format suggests that the enriched structure offers a potentially more intuitive framework than other
categorical attempts.

The simplicity of constructing the Nearest Neighbours Algorithm in this framework does add credence to
the sense that the algorithm itself is an exceedingly natural approach to extending classifications. With
the formulation of the Extended Nearest Neighbours Algorithm, it becomes a tantalising area of future
work to ask if this algorithm continues to provide sensible classifications in other bases of enrichment. This
motivation is part of the underpinning interest mentioned in the introduction of this work. Is it the case
that machine learning requires fundamentally new algorithms to tackle stranger and stranger problems. Or
is it that when suitably abstracted, a handful of algorithms might prove to be sufficient for the majority of
case and that the engineering challenge comes in choosing the correct base of enrichment.

Another interesting outcome of this work is to indicate that Enriched Category Theory is a framework of
reasoning that should be of more interest to both Machine Learning Experts and Mathematicians. Often
derided as a more abstract formulation of the exceedingly abstract field of Category Theory, it can be seen
that certain basis of enrichment create enriched categories which are more practically useful than other
categorical notions. Furthermore, it indicates that an understanding of the interaction between hom-objects,
functors, and profunctors can provide useful insights into the structuring of information and the meaning
behind those structures. Even if one does not find the rigorous application of the theory useful, the intuition
may prove helpful.

References
Andrew Dudzik and Petar Veličković. Graph Neural Networks are Dynamic Programmers, October 2022.

URL http://arxiv.org/abs/2203.15544. arXiv:2203.15544 [cs, math, stat].

Evelyn Fix and J. L. Hodges. Discriminatory Analysis. Nonparametric Discrimination: Consistency Prop-
erties. International Statistical Review / Revue Internationale de Statistique, 57(3):238–247, 1989. ISSN

9

http://arxiv.org/abs/2203.15544


Under review as submission to TMLR

0306-7734. doi: 10.2307/1403797. URL https://www.jstor.org/stable/1403797. Publisher: [Wiley,
International Statistical Institute (ISI)].

Brendan Fong and David I. Spivak. Seven Sketches in Compositionality: An Invitation to Applied Cat-
egory Theory, October 2018. URL http://arxiv.org/abs/1803.05316. Number: arXiv:1803.05316
arXiv:1803.05316 [math].

G. M. Kelly. Basic concepts of enriched category theory. Repr. Theory Appl. Categ., (10):vi+137, 2005.
Reprint of the 1982 original [Cambridge Univ. Press, Cambridge; MR0651714].

Dan Shiebler. Kan Extensions in Data Science and Machine Learning, July 2022.

10

https://www.jstor.org/stable/1403797
http://arxiv.org/abs/1803.05316

	Introduction
	Background
	Nearest Neighbours Algorithm
	Lawvere Metric Spaces
	Functors and Profunctors

	Constructing The Nearest Neighbours Algorithm
	Future Work
	Conclusion

