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Abstract

Parameter-Efficient Fine-Tuning (PEFT) methods,
particularly Low-Rank Adaptation (LoRA), ef-
fectively reduce the number of trainable param-
eters in Large Language Models (LLMs). How-
ever, as model scales continue to grow, the de-
mand for computational resources remains a sig-
nificant challenge. Existing LoRA variants of-
ten struggle to strike an optimal balance between
adaptability (model performance and convergence
speed) and efficiency (computational overhead,
memory usage, and initialization time). This pa-
per introduces MiSS(Matrix Shard Sharing ), a
novel PEFT approach that addresses this trade-off
through a simple shard-sharing mechanism. MiSS
leverages the insight that a low-rank adaptation
can be achieved by decomposing the weight ma-
trix into multiple fragment matrices and utilizing a
shared, trainable common fragment. This method
constructs the low-rank update matrix through
the replication of these shared, partitioned shards.
We also propose a hardware-efficient and broadly
applicable implementation for MiSS. Extensive
experiments conducted on a range of tasks, along-
side a systematic analysis of computational per-
formance, demonstrate MiSS’s superiority. The
results show that MiSS significantly outperforms
standard LoRA and its prominent variants in both
model performance metrics and computational
efficiency, including initialization speed and train-
ing throughput. By effectively balancing expres-
sive power and resource utilization, MiSS offers a
compelling solution for efficiently adapting large-
scale models.
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1. Introduction
Fine-tuning Large Language Models (LLMs) (Radford et al.,
2019; Raffel et al., 2020; Yin et al., 2024) is a prevalent
methodology for adapting these models to specific down-
stream tasks. However, the comprehensive fine-tuning of all
parameters typically incurs substantial computational costs.
Consequently, numerous Parameter-Efficient Fine-Tuning
(PEFT) techniques (Xu et al., 2023) have been developed
to mitigate the training expenditure associated with these
large-scale models. Among such techniques, Low-Rank
Adaptation (LoRA) (Hu et al., 2021) has distinguished it-
self as one of the most prominent PEFT methods. LoRA
employs a low-rank approximation for the weight updates,
a strategy that offers a markedly reduced number of tun-
able parameters, notable efficacy when compared to full
fine-tuning, and the potential for zero inference overhead.
LoRA constructs this low-rank adaptation matrix through
an intuitive design, positing that the weight update ∆W
can be approximated by the product of two lower-rank ma-
trices, BA ≈ ∆W . Evidently, this specific factorization is
not necessarily the optimal low-rank approximation of the
original ∆W .

The improvements of LoRA are mimicked in two streams:
(1) Adaptability (Ding et al., 2023; Liu et al., 2024; Bider-
man et al., 2024): This refers to the celerity with which
the method converges to an optimal or near-optimal state.
The approximation must exhibit a representational capacity
comparable to that of the original, full ∆W . Extensive
experiments have shown that LoRA’s convergence is sig-
nificantly slower compared to full fine-tuning. To address
this issue, researchers have proposed several LoRA vari-
ants (Hayou et al., 2024; Meng et al., 2024; Wang et al.,
2024b). By adopting different initialization strategies to
influence the model’s training gradients, they have acceler-
ated LoRA’s convergence speed. Different initializations
of LoRA variants accelerate convergence essentially by in-
creasing the initial gradients during training or aligning
them with the full-scale training gradients. Certain solutions
may improve the performance of finetuning, but makes the
initialization process significantly more complex or increase
the training cost, leading to a worse complexity. (2) Effi-
ciency (Kopiczko et al., 2024; Wang et al., 2024a; 2025):
This encompasses expeditious initialization, modest mem-
ory consumption, and minimal computational overhead. Op-
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timizing LoRA from an efficiency perspective can lead to re-
duced VRAM consumption and an accelerated training pro-
cess. However, further simplification of the LoRA structure
may result in an additional loss in performance. However,
the critical balance between achieving highly expressive ar-
chitectures and maintaining algorithmic efficiency has often
received insufficient attention.

In this work, we systematically investigate the Pareto fron-
tier of the trade-off between Adaptability and Efficiency in
PEFT. We contend that an ideal PEFT method must adeptly
reconcile these two crucial aspects. To this end, we first
conduct a series of foundational experiments focusing on
these dimensions, encompassing a simulated pre-training
and fine-tuning pipeline, computational complexity analysis,
and initialization time tests. Our analysis reveals that while
LoRA-like methods leveraging shard sharing can achieve
excellent computational efficiency, their expressive power
may be constrained by such sharing, sometimes leading to
performance below the standard LoRA baseline. Conversely,
SVD-based modifications to the original LoRA often ex-
hibit strong adaptability, yet their practical efficiency can be
undermined by complex initialization procedures and more
intricate forward and update mechanisms.

Considering the aforementioned trade-off, our investigation
reveals that a surprisingly simple strategy—constructing a
low-rank matrix through the replication of a shared, par-
titioned shard—can achieve a compelling balance across
these criteria. This approach, which we introduce as MISS,
exhibits notable strengths. In terms of adaptability, MISS
demonstrates superior approximation fidelity compared to
LoRA and several of its variants. Its relatively substantial
gradient norm (as illustrated in Figure 4) promotes rapid
convergence, a key characteristic of its high adaptability.
Furthermore, concerning efficiency, MISS benefits from
rapid initialization; its hardware-friendly, repetition-based
initialization facilitates swift processing, particularly when
scaling to large models with substantial parameter counts.
The formulation of MISS can also be expressed in an ef-
ficient and mathematically equivalent form that exhibits
favorable time and space complexity.

We perform scaling experiments to verify our preliminary
conclusions. Our extensive evaluation shows that MISS
demonstrates excellent performance on understanding and
generation tasks, significantly surpassing other baseline
method. Moreover, we present the training dynamics i.e.,
loss curves, which MISS also showcase a significantly faster
convergence rate compared to other baselines. In genera-
tion tasks, MISS demonstrates superior performance, with
evaluation metrics surpassing even the strong LoRA vari-
ants across the board. This demonstrates the feasibility of
the framework. Furthermore, we validate the efficiency of
MISS which enables it to significantly outperform LoRA

and its variants in both computational efficiency and mem-
ory usage.

Our contributions can be summarized as threefolds:

1. In Section 3, we discuss the balancing Between Adapt-
ability and Efficiency in LoRA-like methods with
highly artificial controlled dataset to make the prelimi-
nary verification transparently and easy for replication.

2. In Section 4, we proposed MISS, an efficient and adapt-
able structure with shard sharing mechanism.

3. In Section 5, we scale the experiments across a wide
range of datasets and models, validated its effectiveness
through extensive experiments.

2. Preliminaries and Related Works
Low-Rank Adaptation (LoRA). Parameter-Efficient
Fine-Tuning (PEFT) refers to a family of techniques de-
signed to adapt large pre-trained models to downstream
tasks while minimizing the number of trainable parame-
ters, thereby reducing computational and memory overhead.
Among diverse methods, Low-Rank Adaptation (LoRA) has
gained significant prominence. It operates on the principle
that the change in weights during model adaptation often
possesses a low intrinsic rank. Instead of fine-tuning the
entire pre-trained weight matrix W 0 ∈ Rd×k, LoRA in-
troduces a low-rank decomposition to represent the update.
Consider a simple linear projection with input x ∈ Rd and
output y ∈ Rk, LoRA adapts the following forward pass:

y = (W 0 +∆W )x ≈ W 0x+BAx,

where B ∈ Rd×r, A ∈ Rr×k.

Here, A and B are low-rank matrices, with the rank r
being significantly smaller than the original dimensions i.e.,
r ≪ min(d, k). During the fine-tuning process, the original
weights W 0 are kept frozen, and only the parameters within
matrices A and B are trained. Specifically, LoRA initializes
A with Gaussian noise A ∼ N(0, σ2) with small σ and B
with zeros, ensuring that BA = 0 at the start, preserving
the pre-trained model’s output.

Improvements of LoRA. LoRA is the low rank adapta-
tion towards full-param finetuning, and intuitively it down-
performs than it. Several works propose diverse methods
towards a better convergence and adaptability of LoRA.
One compelling venue is to change the form of LoRA.
PiSSA (Meng et al., 2024) optimizes the compact parameter
space by representing the matrices in the model as the prod-
uct of two trainable matrices, augmented with a residual
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Table 1. A variety of LoRA variants are listed, each with its specific update formulation and initialization strategy for the low-rank
matrices. The differences between these methods are compared in a clear and intuitive manner. e denotes efficient form.

Method Forward Initialization

LoRA (Hu et al., 2021) y = W 0x+BAx A ∼ N(0, σ2)B ∼ 0

PiSSA y = W 0x+BAx A = U[:,:r]S
1/2

[:r,:r], B = S
1/2

[:r,:r]V
⊤
[:,:r]

AdaLoRA y = W (0)x+ PΛQx Λ ∼ 0, P ,Q ∼ N(0, σ2)

DoRA y = m( W 0x+BAx / ∥W 0 +BA∥c) A ∼ Rect.KaimingUnif, B ∼ 0

ProLoRA y = W 0x+ (Bu ⊕h . . . ) (Au ⊕v . . . )x Au ∼ KaimingUnif, Bu ∼ 0

MoS y = W 0x+BsAsx Apub/pri,Bpub/pri ∼ 0

MISS(Ours) y = W0x+ expand(D)x D ∼ 0

MISSe(Ours) y = W0x+D⊤S D ∼ 0

expand

MiSSLoRA

def init(in_feats: int, out_feats: int):
weight = nn.Parameter(

torch.empty((out_features, in_features)) )
D = nn.Parameter(torch.zeros(self.r, out_features))

def forward(self, x):
result = F.linear(x, self.weight) # x: [B, T, C]
y = result + torch.sum(x.reshape

(*x.shape[:-1], x.size(-1)//self.r, self.r)\\
, dim=-2) @ self.miss

return y

Figure 1. Left. Schematic diagram of the forward computation and initialization methods in LoRA and MISS. Right. PyTorch-style
pseudocode illustrating the implementation of MISS.

matrix for error correction. Using Singular Value Decompo-
sition (SVD), OLoRA (Büyükakyüz, 2024) leverages QR
decomposition to initialize the adaptation matrices during
the fine-tuning process, ensuring that these matrices are
orthogonal. This orthogonal initialization helps maintain
the stability of the parameter space during optimization.
LoRA-GA and PiSSA are similar in form, but they differ in
that LoRA-GA initializes A and B by computing the ini-
tial gradient, thereby closely approximating full fine-tuning.
LoRA+ extended this method by introducing independent
learning rates for matrices A and B with a fixed ratio, im-
proving the method’s efficiency. DoRA (Liu et al., 2024) de-
composes the weight matrix into two parts: magnitude and
direction, which are optimized separately. This approach al-
lows for more precise control over the learning rate, making
LoRA updates closer to the effect of full fine-tuning. The
improvements brought by these LoRA variants validate that
the updates to the weights exhibit a low intrinsic rank during
adaptation and hold greater potential. However, they also
introduce more complex initialization steps and increase
preprocessing time.

3. No Free Launch: Balancing Between
Adaptability and Efficiency

This section elucidates the fundamental trade-off inherent in
LoRA-style PEFT techniques: the delicate balance between
their adaptability and efficiency. Adaptability, in this con-

text, refers to the capacity of a given method to emulate the
performance benchmarks set by full-parameter fine-tuning.
Conversely, efficiency encompasses the method’s judicious
use of computational resources, specifically time and mem-
ory. We utilize highly artificial controlled dataset and model
with relatively small parameter count to make the verifica-
tion transparently and easy for replication.

We considered diverse methods 1: (1) Full-parameter fine-
tuning (Lv et al., 2024). (2) LoRA (Hu et al., 2021). (3)
Alternatives to LoRA w/ different architectures, including:
PiSSA (Meng et al., 2024), VeRA (Kopiczko et al., 2024),
DoRA (Liu et al., 2024) and MoRA (Jiang et al., 2024). (4)
Efficent LoRA Design that keeps the LoRA BA structure:
PROLORA (Wang et al., 2024a), MoS (Wang et al., 2025).
(1) An overview of their forward form, initialization method
can be found at Table 1.

1We have not included methods such as LoRA-GA (Wang
et al., 2024c) or LoRA+ (Hayou et al., 2024) in our current anal-
ysis. While these approaches aim to more closely approximate
the performance of full-parameter fine-tuning, we consider MISS
to be largely orthogonal to them. Consequently, the analytical
techniques employed in their study may still offer valuable insights
for MISS.
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3.1. Empirically Benchmarking the Adaptability of
LoRA Variants

Experimental Setup. Parameter-efficient adaptation
methods, particularly those leveraging low-rank principles,
typically constrain trainable parameters by applying low-
rank decompositions either to newly introduced adapter
matrices or to the updates of pre-existing model weights.
To rigorously evaluate such strategies, we selected a de-
liberately minimalistic base model: a single-layer MLP
designed to process a series of features and yield outputs.
This model is initially pre-trained to fit some sinusoidal
functions using a constrained set of data points. Following
this pre-training, the target function is subtly altered, and
an additional dataset sampled from this modified function
is employed for training to assess the adaptation perfor-
mance of various fine-tuning techniques. Comprehensive
details regarding the experimental settings are elaborated in
Appendix B.

Results. Figure 2 illustrates the comparative adaptabil-
ity of different methods. We utilize the minimum valida-
tion loss achieved by each approach as an indicator of its
expressive capacity when approximating the performance
of full-parameter fine-tuning. The results clearly demon-
strate that methods leveraging singular value decomposi-
tion (SVD), such as PiSSA, attain a relatively low loss.
Conversely, efficiency-focused techniques like MoS exhibit
higher losses. A plausible explanation for this discrepancy
is that such methods further decompose LoRA matrices into
shared components which may inherently constrain their
expressive power. Our method MISS reaches a relatively
advanced performance comparing to other variants.

3.2. Efficiency Analysis of LoRA Variants

Metrics. We evaluate the efficiency of LoRA-like vari-
ants from two primary perspectives: (1) Space and Time
Complexity in Training. Space and time complexity during
training are generally considered crucial criteria for evaluat-
ing PEFT methods. To benchmark these aspects, we employ
the model architecture detailed in Section 3.1. We also test
the real cost in our experiment section i.e., Section 5.5. (2)
Initialization. Initialization time is often overlooked in theo-
retical complexity analyses. This oversight typically stems
from the assumption that common initialization techniques
(e.g., Kaiming Initialization) are computationally inexpen-
sive and represent a one-time cost within the entire training
pipeline. However, several recent advancements in LoRA
and its variants incorporate matrix operations (e.g., Singu-
lar Value Decomposition - SVD) that are not inherently
hardware-friendly and can pose challenges for efficient op-
timization and computation. Consequently, we explicitly
include initialization time as a distinct evaluation metric in
our experimental framework. We then progressively scale

the trainable parameter count of various approaches to metic-
ulously measure their respective time and space costs.

Results. The efficacy (See Figure 2) of MISS is evi-
dent: its strategic combination of parameter sharing and
an efficient computational design culminates in rapid, scal-
able performance across both initialization and training
stages. In contrast, while techniques like PiSSA demon-
strate commendable adaptability, as shown in prior experi-
ments, their reliance on computationally intensive Singular
Value Decomposition for initialization significantly hampers
their overall speed. Other approaches, such as VeRA and
AdaLoRA, offer efficient initialization and computation;
however, as previously discussed, they often achieve this at
the cost of comparatively reduced adaptability.

4. MISS: Shard Sharing for the Performance
and Efficiency Tradeoff

4.1. Method Overview

In traditional low-rank adaptation methods e.g., LoRA, the
weight update ∆W is approximated as a low-rank matrix,
e.g., ∆W = ABT , where A ∈ Rd×r, B ∈ Rk×r, and the
rank r ≪ min(d, k). This approach achieves efficiency by
limiting the number of parameters. However, we observe
that a repeating matrix—where a small matrix is replicated
to form a larger one—can also be viewed as a low-rank
structure. For instance, if a matrix’s rows or shards are
constructed by repeating a limited set of independent ele-
ments, its effective rank is often much smaller than its full
dimensions.

Based on this insight, we propose MISS, which defines the
weight update ∆W as a large matrix generated from a small
trainable matrix D through an expansion operation. The
updating of W and the forward pass can be expressed as:

W = W0 +∆W = W0 + expand(D),

y = W0x+ expand(D)x.

Here, x ∈ Rb×l×k, y ∈ Rb×l×d, W0 ∈ Rd×k is the pre-
trained weight matrix, D ∈ Rr1×r2 is a small trainable
matrix with (r1, r2) ≪ min(d, k), and expand(D) is a
function that extends D to Rd×k. This structure inherently
exhibits low-rank properties. Since the rows within each
shard are identical, the rank of expand(D) is at most N .
When N ≪ d, ∆W is a low-rank matrix, reducing the
parameter count from d× k to N × k.

Regarding the expansion method, we partition the output
dimension d of W0 into N shards of sizes {s1, s2, . . . , sN},
where

∑N
i=1 si = d. Let D ∈ RN×k, where N is the

number of shards. For each shard i, its update is determined
by the i-th row of D, denoted Di ∈ R1×k, repeated si
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Figure 2. No Free Launch Experiment. Left. The training loss curves of all methods. Middle. Initialization time w/ parameters. Right.
Training time w/ parameters.

times to form the shard’s update matrix. Formally:

(expand(D))⊤ =
[
(1s1D1)

⊤ (1s2D2)
⊤ . . . (1sNDN )⊤

]
(1)

Here, 1si ∈ Rsi×1 is an all-ones vector, and 1siDi denotes
Di repeated si times vertically. The shards are vertically
concatenated to match the dimensions of W0.

4.2. Efficient Implementation of MISS

The above formulation is effective in the initialization pro-
cess, as it only needs to initialize a small D. However,
directly computing expand(D)x has a time complexity of
O(bldk) and memory complexity of O(dk) , which can be
computationally intensive. It is obvious that MISS can be
transformed into an efficient form that leverages the block
structure of the input to avoid explicitly forming the large
matrix, by redefining D ∈ Rr×d, where r is a tunable rank
parameter. Instead of partitioning the output dimension d,
we divide the input dimension k into r blocks, each of size
g = ⌊k/r⌋ (for simplicity, assume k is divisible by r). For
an input x ∈ Rb×l×k, partition it along the k-dimension,
and sum each block along the k-dimension:

x = [x(1),x(2), . . . ,x(r)], x(i) ∈ Rb×l×g, (2)

S =

 g∑
j=1

x(1)
[:,:,j],

g∑
j=1

x(2)
[:,:,j], . . . ,

g∑
j=1

x(r)
[:,:,j]


(3)

This enjoys the following updating term and forward pass:

∆Wx = D⊤S, y = W0x+D⊤S, where D⊤ ∈ Rd×r.
(4)

Here S ∈ Rb×l×r, and D⊤S ∈ Rb×l×d, matching the
dimensions of W0x.

This efficient form implicitly defines expand(D), such that

expand(D)x = DTS. Specifically, expand(D) ∈ Rd×k

has rows corresponding to rows of D, repeated across
blocks in the k-dimension. E.g., if k = 6, r = 3, and
g = 2, the i-th row of expand(D) takes values Dj,i in
block j = ⌈j′/g⌉, where j′ is the column index. This struc-
ture avoids storing the d×k matrix explicitly, requiring only
D ∈ Rr×d, significantly reducing memory usage.

The efficient implementation of MISS relies on an innova-
tive input aggregation mechanism, namely blockwise input
summation. We highlight its advantages through the fol-
lowing steps: (1) Input Partitioning and Aggregation: The
aggregation exploits local redundancy in the input, preserv-
ing critical information while reducing the computational
dimensionality. (2) Fast Computation: The cost of comput-
ing the efficient form is significantly lower than the original
complexity. (3) Resource Savings: Memory usage drops
comparing to original form. For example, with k = 1024
and r = 16, memory is reduced by about 64 times. An
overall analysis of space and time complexity is analyzed in
Table 5.

5. Experiments
In this section, we evaluate the performance of MISS on
various benchmark datasets. Initially, we assess Natural
Language Understanding (NLU) capabilities using a subset
of the GLUE dataset with the robert-base model. Subse-
quently, we evaluated the Natural Language Generation
(NLG2) capabilities by fine-tuning the LLM. To ensure fair
comparisons, we select methods officially included in the
PEFT repository to avoid discrepancies caused by inconsis-
tent tuning implementations.

2Evaluations were performed with the OpenCompass reposi-
tory, and the Math dataset was evaluated using a 5-shot prompt
configuration.
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(a) Loss-Token (b) Loss-Time

Figure 3. Left. MISS consumes less GPU memory and achieves higher throughput(# tokens per second). GPU memory usage refers to
the amount of memory occupied by an RTX 4090 card. Right. The results of fine-tuning LLaMA2-7B on MetaMathQA.

Table 2. The results of fine-tuning RoBERTa-base using MISS and various LoRA variants were compared on a subset of the GLUE
benchmark.

Method Trainable MNLI SST-2 CoLA QNLI MRPC

LoRA 0.236% 85.63±0.01 94.03±0.02 62.40±0.71 91.37±0.97 87.98±0.23

PiSSA 0.236% 85.72±0.40 93.64±0.13 67.28±0.59 91.40±0.54 88.11±0.24

MISS 0.236% 85.71±0.32 93.60±0.07 72.86±3.13 91.43±0.76 88.14±0.60

5.1. Experiments on Natural Language Understanding

We fine-tune the RoBERTa-base model on several datasets
from the GLUE benchmark, including MNLI, SST-2, CoLA,
QNLI, and MRPC. Performance is evaluated on the devel-
opment set using accuracy as the primary metric. The ex-
perimental hyperparameter settings were aligned with those
in the LoRA repository, but training was conducted using
a single 4090 GPU. Each experiment is conducted with
3 different random seeds, and the average performance is
reported. As shown in Table 2, MISS demonstrates out-
standing performance, particularly on the CoLA dataset,
where it exhibits significantly faster convergence and su-
perior data-fitting capabilities, far surpassing LoRA and
PiSSA.

5.2. Experiment on Natural Language Generation

Setup. To verify the generalizability of MISS, we con-
ducted more comprehensive experiments on LLM. we con-
ducted 3 more task finetuning experiments on LLM: math
and code. (1) Math: We trained our model on a 395k
subset of MetaMathQA (Yu et al., 2023), a dataset boot-
strapped from other math instruction tuning datasets like
GSM8K (Cobbe et al., 2021) and MATH (Yu et al., 2023),
with higher complexity and diversity. (2) Code: We train
our model on a 100k subset of CodeFeedback (Zheng et al.,
2024), a high-quality code instruction dataset, removing
explanations after code blocks. The model is tested on Hu-
manEval (Chen et al., 2021) and Mbpp (Austin et al., 2021).

The hyperparameter settings for this experiment were kept
equal, while the train steps were adjusted according to the
specific fine-tuning datasets used. It is worth noting that
the attention-based architectures employed by models such
as LLaMA, Qwen, and Mistral do not use fully symmet-
ric weight structures, which makes it impossible to achieve
exact alignment of trainable parameters when comparing
MISS with LoRA. To address this, we set the rank r of
LoRA to 36 and the rank r of MISS to 64, ensuring that
MISS uses fewer parameters than LoRA to demonstrate its
superiority. Each experiment is conducted with 2 different
random seeds, and the average performance is reported.

Results. As shown in Table 6, MISS consistently achieves
state-of-the-art performance across multiple models and
evaluation metrics. Specifically, on LLaMA2-7B, MISS
surpasses PiSSA on most metrics while using fewer train-
able parameters than both LoRA and DoRA, showcasing
its parameter efficiency and superior performance. On
RWKV6-7B, where all methods share the same number
of trainable parameters, MISS still achieves the best overall
performance, indicating its strong adaptation capability to
non-transformer architectures. Across all evaluated mod-
els, including Mistral-7B, LLaMA2-13B, and Qwen3-4B,
MISS maintains its leading position on key benchmarks,
often achieving the highest scores with significantly fewer
parameters—further highlighting its effectiveness and scala-
bility.
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Table 3. We conducted fine-tuning of large language models using MISS and multiple LoRA variants, evaluating their performance on
GSM8K, Math, HumanEval, and MBPP benchmarks. All reported results are averaged over three independent runs to ensure robustness.
The first-place entry should be highlighted in bold, and the second-place entry should be underlined.

Model Strategy Trainable GSM8K Math HumanEval Mbpp

Llama2-7B (Touvron et al., 2023)

LoRA 89.9M 40.75 5.22 17.74 35.15
DoRA 91.3M 42.93 6.51 21.95 36.53
PiSSA 89.9M 43.89 6.92 22.15 37.84
MISS 87.0M 48.16 8.58 23.63 36.81

RWKV 6-7B (Peng et al., 2024)
LoRA 88.1M 38.13 6.06 - -
PiSSA 88.1M 40.48 6.12 - -
MISS 88.1M 41.73 6.52 - -

Mistral-7B (Jiang et al., 2023)

LoRA 94.4M 62.85 15.82 35.71 46.11
DoRA 95.8M 63.68 13.60 38.41 48.73
PiSSA 94.4M 67.01 18.13 41.28 51.37
MISS 87.0M 68.92 18.85 42.07 61.33

Llama2-13B (Touvron et al., 2023)

LoRA 250M 56.18 12.60 31.79 37.82
DoRA 252M 61.56 13.60 33.50 39.25
PiSSA 250M 66.64 13.82 33.57 46.03
MISS 255M 68.64 15.74 38.15 47.91

Qwen3-4B (Yang et al., 2025)

LoRA 74.3M 84.38 15.20 73.27 78.32
DoRA 75.4M 85.11 21.73 74.20 78.77
PiSSA 74.3M 85.78 26.00 75.01 78.04
MISS 70.1M 85.52 34.82 74.48 78.05

5.3. Effect of Rank r

This subsection explores the upper limits of the MISS struc-
ture by varying the rank r in the MISS matrix. Comparative
experiments were conducted by fine-tuning LLaMA2-7B 3

on the MetaMathQA dataset and validating on GSM8K and
Math benchmarks. The test results, as shown in Table 4,
demonstrate that the fine-tuning performance improves as
the value of b increases. Notably, when r = 16, the MISS
structure, with only one-quarter of the trainable parameters
compared to PiSSA, surpasses PiSSA’s performance on the
GSM8k benchmark. However, its performance on the Math
benchmark is only 3.73. The GSM8K score surpasses that
of PiSSA, but the Math score is significantly lower, indicat-
ing The size of r impacts the model’s ability to understand
unseen data. Based on this observation, we hypothesize that
when the rank is too small, it significantly limits the model’s
generalization ability.

5.4. Gradient Norm Analysis

To further investigate the adaptive capabilities of MISS, we
analyzed its initial gradient norms in comparison to Full
Fine-tuning (FT), LoRA, and PiSSA. The magnitude of
initial gradient norms is often correlated with faster con-
vergence and the ability of a model to effectively adapt
during fine-tuning. Our comparative analysis, illustrated in

3We use LLaMA2-7B instead of LLaMA3-8B because we
found that the LLaMA3 series is over-optimized on math-related
tasks.

Figure 4 (Right), reveals distinct behaviors among the eval-
uated methods. Standard LoRA consistently exhibits the
lowest initial gradient norms across the tested ranks. While
PiSSA’s gradient norms increase with higher ranks, they
generally remain significantly lower than those achieved by
full fine-tuning. Notably, MISS demonstrates substantially
larger initial gradient norms compared to both LoRA and
PiSSA across various ranks. More importantly, the gradient
norm profile of MISS closely approximates that of Full
Fine-tuning. This proximity to FT’s gradient characteristics
suggests that MISS is capable of inducing more significant
initial updates, potentially leading to a training dynamic
more akin to full fine-tuning.

5.5. Resource and efficiency

Table 5 compares the training resources and token through-
put required for fine-tuning RWKV6 using LoRA and
MISSon a single 4090 GPU. The specific fine-tuning set-
tings are as follows: batch size = 1, context length (ctx len)
= 512. The results show that MISS has the highest computa-
tional efficiency, being nearly 10% faster than LoRA while
also being more memory-efficient. At the end of the table,
we provide the actual resource costs for fine-tuning RWKV6
on the MetaMathQA dataset using 4 NVIDIA 4090 GPUs,
with checkpoint techniques applied.
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Figure 4. Left. The loss curve for LLaMA2-7B fine-tuned on MetaMathQA shows MISS’s superior fitting ability across architectures and
parameter settings, with a notably rapid loss reduction in the first 100 steps, underscoring its effectiveness. Right. The initial gradient
norm of model training.

Table 4. Comparing different values of rank (r) on LLaMA2-7B
with MISS.

Model Rank Trainable GSM8K Math

Llama2-7B

16 21.7M 45.90 3.77
32 43.5M 46.18 7.43
64 87.0M 48.16 8.58

128 174.0M 53.49 10.08

Figure 5. Time and space complexity. e denotes efficient form.
Method Space Time

Full O(dk) O(bld(d+ k))
LoRA O(dr + rk) O(blr(d+ k))
MISS O(dr) O(bldk)
MISSe O(dr) O(blr(d+ k

r
))

Table 5. Resource and efficiency

Devices Strategy Trainable Memory throughput

GPU × 1 LoRA 55.1M 12074 MB 3.62 kt/s
MISS 55.1M 11052 MB 3.99 kt/s

GPU × 4 LoRA 55.1M 4×15328 MB 15.6 kt/s
MISS 55.1M 4×15304 MB 16.0 kt/s

6. Conclusion
In this work, we proposed the Foissl framework, which
divides pre-trained weights into multiple shards and up-
dates them using a shared trainable matrix. This approach
significantly reduces resource overhead and opens up new
directions for PEFT techniques. Furthermore, we present a
hardware-optimized version of MISS, achieving remarkable
gains in computational efficiency. Extensive experiments
demonstrated the superiority of MISS, which outperforms
LoRA and its variants in evaluation metrics, computational
efficiency, and resource usage.

Collectively, our framework redefines the design principles

of efficient adaptation: MISS provides theoretical ground-
ing for dimension-wise decomposition, MISS delivers prac-
tical efficiency parity with LoRA. This progression demon-
strates that parameter efficiency need not come at the cost
of expressivity, paving the way for adaptive fine-tuning in
resource-constrained environments.

7. Limitations and Future work
Due to hardware constraints, we were unable to conduct and
report results from the full-scale training that this method
ideally requires. Nonetheless, through extensive evalua-
tions and thorough comparisons with LoRA and its variants,
we have validated the effectiveness of MISS. The strong
performance achieved on large language models gives us
substantial confidence in the potential of this approach. We
believe that MISS can be readily applied to a wide range of
multimodal tasks.

As a pioneering approach, MISS still leaves several aspects
open for deeper exploration. We hope that future research
will conduct broader and more in-depth studies to further
refine PEFT techniques and identify the most effective strate-
gies for large language models.
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A. Appendix
A.1. RWKV7

Table 6. We fine-tuned LLMs using MISS and various LoRA variants, and evaluated performance on GSM8k, Math, HumanEval, and
MT-Bench.

Model Strategy Trainable GSM8K Math HumanEval MT-Bench

RWKV7-3B

Base 0M 44.35 - - -
LoRA 47.2M 55.64 - - -
PiSSA 47.2M 57.16 - -
MISS 47.2M 58.22 - - -

Table 7. Hyperparameter settings for fine-tuning llama2-7B,Mistral-7B,RWKV6-7B,Qwen3-4B on NLG tasks

Hyperparameters LoRA DoRA PiSSA MISS

Rank r 36 36 36 64
α 72 72 36 -

Dropout 0.0
Optimizer AdamW

LR 2e-5
LR Scheduler Cosine decay

Batch size 64
Warmup ratio 0.0

Epochs 1
Where Q,K,V,O,Up,Down,Gate

Table 8. Hyperparameter settings for fine-tuning llama2-13B on NLG tasks

Hyperparameters LoRA DoRA PiSSA MISS

Rank r 64 64 64 128
α 128 128 64 -

Dropout 0.0
Optimizer AdamW

LR 2e-5
LR Scheduler Cosine decay

Batch size 128
Warmup ratio 0.0

Epochs 1
Where Q,K,V,O,Up,Down,Gate

B. Settings of Experiments in No Free Lunch
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Table 9. Experimental Setup: Datasets and Hyperparameters
General Configuration

Parameter Value

Random Seed (SEED) 43
Device (DEVICE) CUDA (if available, else CPU)

Base Model Architecture (MLP)

Input Dimension 64
Hidden Dimension 64
Output Dimension 64

Synthetic Dataset Generation

Base Function sin(2πx)
Modified Function sin(2πx) + 0.3 cos(3πx)
Input x Range [−1, 1]
Training Samples (N TRAIN ) 50
Validation Samples (N V ALID) 100
Training Noise Std. Dev. (NOISE STD) 0.05
Validation Noise Std. Dev. 0.0

Training Parameters

Base Model LR (BASE LR) 0.001
Adaptation LR (ADAPT LR) 0.001
Base Model Epochs (BASE EPOCHS) 250
Adaptation Epochs (ADAPT EPOCHS) 100
Evaluation Interval (EVAL INTERVAL) 10

Adapter-Specific Ranks

LoRA Rank 2
VeRA Rank 64
MISSRank 4
PiSSA Rank 2
DoRA Rank 1
ProLoRA Rank 2
AdaLoRA Rank 2
MoS Rank 2

Note: Other adapter-specific hyperparameters (e.g., LoRA scale, VeRA d init val, DoRA lora alpha, ProLoRA un-
shared rank u, MoS shard dim ratio) primarily use their default values as defined in the respective adapter class implemen-
tations or are derived based on the rank within benchmark functions. Refer to the provided Python code for their specific
configurations during experiments.
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