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ABSTRACT

Recent advances in diffusion models have enabled increasing capabilities for in-
verse materials design. The key capability is achieving tailored design towards
desired property profiles, with wide applications for climate change, semiconduc-
tor design, and catalysis. In this work, we present MatInvent, a reinforcement
learning (RL) framework tailored to optimize diffusion models for goal-directed
crystal generation. By formulating equivariant denoising as a multi-step decision-
making problem, MatInvent leverages policy optimization with reward-weighted
KL regularization, including experience replay and diversity filters to enhance
sample efficiency and diversity. Experimental results demonstrate that MatInvent
outperforms existing baselines, offering an effective strategy for crystal generation
with single or multiple property optimization.

1 INTRODUCTION

Accelerating the design and discovery of new functional materials is important to address press-
ing challenges such as climate change (Al-Rowaili et al., 2021) and semiconductor design (Zunger,
2018; Long et al., 2024). In recent years, the release of large open-source datasets (Stuke et al., 2020;
Gallarati et al., 2022; Blaskovits et al., 2024; Jain et al., 2013; Chanussot et al., 2021; Barroso-Luque
et al., 2024) have facilitated in silico materials design, particularly inverse design (Long et al., 2024)
using generative models. To date, there have been more examples of applying generative mod-
els for drug discovery (Du et al., 2024) and many existing works adapt such frameworks for the
design of organic materials (Marques et al., 2021; Staker et al., 2022; Han et al., 2024; Li & Ta-
bor, 2023; Ma et al., 2022; Matsuzawa et al., 2024; Westermayr et al., 2023; Yang et al., 2023;
Sharma et al., 2025). An important observation amongst these works is that learnings from gener-
ative drug design can directly benefit organic materials design, leading to several case studies that
have demonstrated experimental validation (Yang et al., 2023; Matsuzawa et al., 2024). However,
there have been less works for inorganic materials with existing approaches leveraging architectures
such as generative adversarial networks (GANs) (Goodfellow et al., 2014; Nouira et al., 2018a; Kim
et al., 2020a;b), variational auto-encoders (Kingma, 2013; Xie et al., 2022a; Luo et al., 2023), and
GFlowNets (Bengio et al., 2021; AI4Science et al., 2023). With the advancements in diffusion mod-
els (Sohl-Dickstein et al., 2015; Ho et al., 2020), more recent methods have proposed to model the
3D geometry of crystals, leading to capable models showing interpolation and generalization (Jiao
et al., 2023; Yang et al., 2024; Zeni et al., 2025). While these recent models have effectively lever-
aged large datasets for conditional pre-training (Chanussot et al., 2021; Barroso-Luque et al., 2024),
global coverage of all materials is generally infeasible. In response to this, works have investigated
algorithmic optimization such as using evolutionary algorithms (Allahyari & Oganov, 2020) and
reinforcement learning (RL) (Karpovich et al., 2024), but do not jointly consider information on the
3D geometry.

In this work, we combine the flexibility of RL with recent advances in diffusion models to tackle
inorganic materials design. Building on observations made from generative drug design, we adapt
and propose new optimization techniques to improve the sample efficiency of tailored generation
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while ensuring crystal diversity. Our contribution is as follows: (1) We demonstrate that RL
can tailor crystal diffusion generation for single/multiple property optimization. (2) We adapt and
implement algorithmic components that improve sample efficiency and diversity during generation.
(3) We show that our method can generate out-of-distribution of pre-training data, offering a flexible
and practical framework for potential discovery.
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Figure 1: The schematic overview of this study.

2 RELATED WORK

Diffusion models for de novo crystal generation. Generative models have revolutionized mate-
rial discovery by directly generating 3D structures of stable materials, circumventing costly brute-
force methods (Court et al., 2020; Nouira et al., 2018b). Traditional approaches relied on random
atomic substitutions of crystal structure templates and quantum chemical calculations (Wang et al.,
2021) or accelerated processes like genetic algorithms and energy prediction models (Glass et al.,
2006; Pickard & Needs, 2011). Recent advancements in generative techniques, such as diffusion
models Sohl-Dickstein et al. (2015); Ho et al. (2020), have proven effective. These models initially
paired with Variational Autoencoders (VAEs) (Kingma, 2013) for partial variable predictions (Xie
et al., 2022b; Luo et al., 2023) and later evolved to jointly diffuse atom types, atom coordinates, and
lattice parameters (Jiao et al., 2023; Yang et al., 2024; Zeni et al., 2025), incorporating space group
symmetries as inductive biases (Jiao et al., 2024; Lin et al., 2024; Cao et al., 2024). Other inno-
vations include Riemannian Flow Matching (Miller et al., 2024; Sriram et al., 2024), Normalizing
Flows (Wirnsberger et al., 2022), and standalone VAEs (Ren et al., 2022). Additionally, autoregres-
sive Large Language Models (LLMs) have emerged as a parallel approach, representing materials
as sequences of discretized tokens and leveraging powerful pretraining on natural language to em-
bed rich prior knowledge (Flam-Shepherd & Aspuru-Guzik, 2023; Xiao et al., 2023; Antunes et al.,
2024; Gruver et al., 2024). We note that there are other existing non-diffusion-based works that gen-
erate crystals by their composition (Pathak et al., 2020; Karpovich et al., 2024) and lattice parameters
(AI4Science et al., 2023), which foregoes explicit 3D generation.

Controllable generation and guidance. To enhance the controllability and quality of diffusion
models in tasks such as text-to-image generation, many strategies have been explored, including fine-
tuning based alignment (Ruiz et al., 2023), adapter-based conditional control (Zhang et al., 2023),
and inference-time techniques using classifier (Dhariwal & Nichol, 2021) or classifier-free guidance
(Ho & Salimans, 2022). In inverse material design, generative models aim to discover novel and
stable materials with desired properties. These property values can be obtained through methods
such as DFT calculations, prediction models, or wet-lab experiments. Jiao et al. (2023) trained a
time-dependent property predictor to guide the generation process of diffusion models for single
property optimization of crystals. Moreover, Zeni et al. (2025) employed a classifier-free guidance
method to fine-tune unconditional diffusion models with additional adapter modules of property
information, enabling material generation for single or multiple target properties. These conditional
generation methods all require sufficient and diverse labeled data for the target properties. However,
many material properties could be computationally expensive to obtain or lack labeled datasets.
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RL fine-tuning of diffusion models. Recently, some studies have explored using reinforcement
learning (RL) to optimize diffusion models for controllable generation aligned with downstream
objectives. Fan & Lee (2023) introduced a method to improve pre-trained diffusion models by
integrating policy gradient and GAN training. They used policy gradient with reward signals from
the discriminator to update the diffusion model and improve data distribution matching. Fan et al.
(2023) proposed DPOK method to better align text-to-image diffusion models to human preferences
using a policy gradient algorithm with Kullback–Leibler (KL) regularization. Similarly, Black et al.
(2023) designed a policy gradient-based RL approach named DDPO for fine-tuning text-to-image
diffusion models, which can generalize to unseen prompts and adapt to multiple reward functions.
In the context of inverse inorganic materials design, Karpovich et al. (2024) investigated policy- and
value-based RL methods to optimize for single and multiple property constraints. The formulations
tested were: (1) a stack recurrent neural network (RNN) based on Popova et al. (2018) where the
vocabulary consists of elements and their coefficients and (2) a conditional VAE model based on
Pathak et al. (2020) where materials are represented by concatenated one-hot vectors representing
the elements. Our work differs in several important ways: (1) We directly model the 3D geometry
of materials (by diffusing on the atom types, atom coordinates and lattice) which is important as
many properties are geometry-dependent. (2) We use policy-based RL and explicitly demonstrate
factors that improve sample efficiency which have been seldom discussed in existing works, and
the trade-off on diversity. (3) We re-formulate diversity filters (Blaschke et al., 2020) originally
proposed for generative drug design which penalizes repeated generation of scaffolds. By penalizing
crystal-intrinsic properties, e.g., elemental composition, we show that this is an effective approach
to generating diverse samples.

3 PRELIMINARIES

3.1 REPRESENTATION OF CRYSTAL STRUCTURES

The periodic structure of crystals arises from the repeating arrangement of atoms in 3D space, and
the simplest repeating unit is defined as the unit cell. A unit cell with N atoms can be described
by M = (A,X,L), where A = [a1,a2, . . . ,aN ] ∈ Rh×N represents the one-hot encoding
of atom types, X = [x1,x2, . . . ,xN ] ∈ R3×N symbolizes atoms’ Cartesian coordinates, and
L = [l1, l2, l3] ∈ R3×3 expresses the crystal lattice matrix. The volume of a unit cell V = |det(L)|
must be non-zero, meaning that L is invertible. Based on periodic boundary conditions, the atomic
positions within the unit cell can also be described using fractional coordinates F = L−1X =
[f1,f2, . . . ,fN ] ∈ [0, 1)3×N , which are widely used in crystallography and crystal generation.
Thus, the infinite crystal structure can be represented as{

(a′
i,f

′
i) | a′

i = ai,f
′
i = fi +Lk1N ,∀k ∈ Z3

}
(1)

where elements of k express integer translations of the lattice and 1 is a 1 × n matrix of ones to
emulate broadcasting.

3.2 EQUIVARIANT DIFFUSION MODELS

A function f is considered to be equivariant to the action of a group G if f(g · s) = g · f(s) for any
s ∈ S and g ∈ G, where · indicates group action in the relevant space. In this work, we consider
the E(3) equivariance containing translations, rotations and reflections. The equivariant diffusion
models of crystal generation involve two Markov chains, a forward noising process on atom types,
atom positions and lattice matrix, and a reverse denoising process learned by an equivariant graph
neural network.

Diffusion on lattice L The diffusion on the continuous variable L is based on Denoising Diffusion
Probabilistic Model (DDPM) (Ho et al., 2020). Specifically, in the forward process, Gaussian noises
are gradually added to L according to a variance schedule β1, . . . , βT :

q (L1:T | L0) =

T∏
t=1

q (Lt | Lt−1) ,

q (Lt | Lt−1) = N
(
Lt |

√
1− βtLt−1, βtI

)
,

(2)
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which can be expressed as the probability conditional on the initial state:

q (Lt | L0) = N
(
Lt |

√
ᾱtL0, (1− ᾱt) I

)
, (3)

using αt = 1− βt and ᾱt =
∏t

s=1 αs.

The reverse process is defined by:

pθ (L0:T ) =p (LT )

T∏
t=1

pθ (Lt−1 | Lt) ,

pθ (Lt−1 | Lt) =N
(
Lt−1 | µθ,L (Mt, t) , σ

2
t I

)
,

(4)

where µθ,L (Mt, t) = 1√
αt

(
Lt − βt√

1−ᾱt
ϵ̂θ,L (Mt, t)

)
and p (LT ) = N (0, I). The denois-

ing term ϵ̂θ,L (Mt, t) ∈ R3×3 is predicted by the equivariant graph neural network θ (Mt, t) =
θ (Lt,Ft,At, t).

For training the denoising model θ, let Lt =
√
ᾱtL0 +

√
1− ᾱtϵL and ϵL ∼ N (0, I) according to

Eq. (3). The training objective is denoted as the ℓ2 loss between ϵL and ϵ̂θ,L:

LL = Et∼U(1,T )

[
∥ϵL − ϵ̂θ,L (Mt, t)∥2

]
. (5)

Diffusion on atom types A The discrete atom types A can be simply considered as continuous
variables in real space Rh×N , facilitating the DDPM-based approach for diffusion on atom types, as
also shown in (Hoogeboom et al., 2022). Similar to diffusion on L (Eq. 2-5), the forward process
of A is denoted as

q (At | A0) = N
(
At |

√
ᾱtA0, (1− ᾱt) I

)
, (6)

the reverse process is expressed as

pθ (At−1 | At) = N
(
At−1 | µθ,A (Mt, t) , σ

2
t I

)
, (7)

and the training objective for diffusion on A is

LA = Et∼U(1,T )

[
∥ϵA − ϵ̂θ,A (Mt, t)∥2

]
. (8)

Diffusion on atom positions F As the domain of fractional coordinates [0, 1)3×N forms a quo-
tient space R3×N/Z3×N , the score matching method (Song et al., 2021) with wrapped normal dis-
tribution (Bortoli et al., 2022) is used to achieve diffusion on F (Jiao et al., 2023). The forward
process is implemented by wrapped normal distribution to maintain periodic translation invariance
according to:

q (Ft | F0) = NW

(
Ft | F0, σ

2
t I

)
, Ft = w (F0 + σtϵF ) , (9)

where ϵF ∼ N (0, I) and w(·) retains the fractional part of the input. The noise scale σt obeys the

exponential scheduler: σ0 = 0 and σt = σ1

(
σT

σ1

) t−1
T−1

, if t > 0.

For the reverse process, FT ∼ U(0, 1) and F0 are generated using a two-step predictor-corrector
sampler method (Song et al., 2021; Jiao et al., 2023) with the denoising term ϵ̂θ,F (Mt, t) ∈ R3×N :

pθ (Ft−1 | Mt) = pP

(
Ft− 1

2

∣∣∣ Lt,Ft,At

)
pC

(
Ft−1 | Lt−1,Ft− 1

2
,At−1

)
, (10)

where pP , pC are the transitions of the predictor and corrector, and more details are described in
Appendix ??.

The training objective from score matching of F is

LF = Et∼U(1,T )

[
λt ∥∇ log q (Ft | F0)− ϵ̂θ,F (Mt, t)∥2

]
(11)

where λt = E−1
Ft

[
∥∇ log q (Ft | F0)∥2

]
is calculated by Monte-Carlo sampling (Appendix ??).
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3.3 MARKOV DECISION PROCESSES AND REINFORCEMENT LEARNING

A Markov decision process (MDP) formalizes sequential decision-making problems. It can be char-
acterized by a tuple (S,A, ρ0, P,R), where S denotes the state space, A represents the action space,
ρ0 is the initial state distribution, P specifies the transition kernel, and R defines the reward function.
In every timestep t, the agent observes a state st ∈ S, selects an action at ∈ A, receives a reward
R(st, at), and transforms into a subsequent state st+1 ∼ P (st+1|st, at). The agent’s behavior is
determined by its policy π(a|s). As the agent interacts with the MDP, it generates trajectories of
states and actions τ = (s0, a0, s1, a1, . . . , sT , aT ). The goal of reinforcement learning (RL) is to
optimize the agent’s policy π to maximize the expected cumulative reward JRL(π) over sampled
trajectories:

JRL(π) = Eτ∼p(τ |π)

[
T∑

t=0

R (st, at)

]
(12)

4 REINFORCEMENT LEARNING FOR CRYSTAL DIFFUSION MODELS

This section describes our online on-policy RL algorithms to formulate the denoising process as a
MDP and optimize diffusion models for crystal generation with target properties.

Given a crystal diffusion model pθ(M0:T ), parameterized by θ and a reward function r(M0) involv-
ing single or multiple target crystal properties, the denoising process can be reframed as a T -step
MDP:

st = MT−t, at = MT−t−1,

ρ0 (s0) = (N (0, I),U(0, 1)), P (st+1 | st, at) = δat
,

π (at | st) = pθ (MT−t−1 | MT−t) ,

R (st, at) =

{
r (st+1) = r (M0) if t = T − 1,

0 otherwise

(13)

where δy is the Dirac delta distribution with nonzero density only at y. The initial state s0 of a
trajectory is sampled by LT ,AT ∼ N (0, I) and FT ∼ U(0, 1), similar to the first state MT of
the denoising generation. The cumulative reward of every trajectory is equal to r (M0), because
all intermediate rewards are 0, as only the final state M0 of the denoising process is meaningful
for computing crystal properties and rewards. Thus, a common goal in RL fine-tuning of diffusion
models is to maximize the expected reward of the generated crystals:

JRL(θ) = Epθ(M0) [r (M0)] (14)

Based on the likelihoods and likelihood gradients, the gradient of RL objective is

∇θJRL = Epθ(M0:T )

[
r (M0)

T∑
t=1

∇θ log pθ (Mt−1 | Mt)

]
(15)

The risk of fine-tuning solely based on rewards related to target properties is that the diffusion model
may overfit to the rewards and move too far away from the initial state (pre-trained model). To retain
the broad material knowledge that the diffusion model has learned from the pre-training dataset for
generating reasonable and valid crystal structures, we add the reward-weighted KL between the
pre-trained and current fine-tuned models as a regularizer to the objective function according to:

Epθ(M0:T )

[
(λ− r (M0))

T∑
t=1

KL (pθ (Mt−1 | Mt) ∥ppre (Mt−1 | Mt))

]
, (16)

where λ is a constant slightly larger than the maximum reward. The reward weight allows the cur-
rent diffusion model to appropriately move away from the initial state (pre-trained model), thereby
encouraging the model to shift its distribution to higher reward regions. And the final loss function
of RL fine-tuning is:

L(θ) = −αr (M0)

T∑
t=1

log pθ (Mt−1 | Mt)+β(λ−r (M0))

T∑
t=1

KL (pθ (Mt−1 | Mt) ∥ppre (Mt−1 | Mt))

(17)
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We also add experience replay (Lin, 1992) to MatInvent. Experience replay is a technique used in RL
to improve the stability and efficiency of learning by storing past high-reward crystals and reusing
them during training. It breaks the correlation between consecutive experiences by sampling from a
buffer of previous experiences (called the replay buffer) rather than relying only on the most recent
experience.

Diversity filter (DF) We reformulate DFs originally introduced by Blaschke et al. (2020). Here,
we linearly penalize non-unique crystal compositions based on the number of previous occurrences,
which acts as a more lenient version of the unique DF, i.e., directly truncate the reward to 0. The
score is transformed according to the number of previous occurrences (Occ) beyond an allowed
tolerance (Tol) until a hard threshold is reached, referred to as the buffer (Buff):

Filtered reward =


r (M0)× Occ− Tol

Buff − Tol if Tol < Occ < Buff
r (M0) if Occ ≤ Tol

0 if Occ ≥ Buff
(18)

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Our crystal diffusion model has been pre-trained on the MP-20 dataset (Jain et al., 2013) and used
as the prior model in all experiments. MP-20 dataset (Jain et al., 2013) extracts 45,231 stable in-
organic materials from the Materials Project (Jain et al., 2013), encompassing most experimentally
synthesized materials with up to 20 atoms per unit cell. In each task, the target properties of the
generated crystals are computed using the pre-trained ALIGNN prediction models (Choudhary &
DeCost, 2021) or PyMatGen package (Ong et al., 2013), and the final reward values are scaled to
the range of 0 to 1 for stable RL fine-tuning. The sampling size of each loop is set to 32 for all
experiments, and all results were obtained from 5 independent replicate experiments.

5.2 METRICS

Inspired by Guo & Schwaller (2024a), we define two metrics to evaluate sample efficiency and the
diversity of samples of RL methods for goal-directed crystal generation:

Burden In an RL task, c property calculations are spent to generate n unique and valid candidate
crystals above the reward threshold ξ. The metric is defined as:

Burden =
c

n
, n =

∑
M∈G

I[R(M) > ξ], (19)

where M ∈ G are the crystals in the generated set G, and I is the indicator function which returns
1 if the reward R(M) is above the threshold ξ. It directly reflects sample efficiency, as one is al-
ways interested in generating crystals with the desired properties. It becomes particularly important
when using costly calculations for crystal property assessment. In all experiments, we measure the
efficiency to generate 100 unique crystals satisfying the target property thresholds, i.e., n is set to
100.

Diversity ratio During RL fine-tuning, the generative model tends to produce crystals in specific
regions, leading to reduced sample diversity. This metric is defined as the ratio between the number
of unique and valid crystals generated (u) and the property calculation budget (b):

Div. Ratio =
u

b
, (20)

where b is set to 3000 in all experiments. To sustain the generation of diverse, high reward samples,
we use our implementation of diversity filters, inspired by Blaschke et al. (2020).
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5.3 BASELINES

Hill climbing Hill climbing is an iterative optimization algorithm used to find a local maximum
(or minimum) of a function. In goal-directed crystal generation, the current diffusion model (agent)
first samples a batch of crystals at each iteration, and then the diffusion model is fine-tuned using
only the top k crystals ranked by the final rewards from the batch. In this work, we use top ratio
k = 0.4 and four fine-tuning epochs in each iteration of all hill climbing experiments.

REINFORCE REINFORCE (Williams, 1992) is a Monte Carlo policy gradient method used in
RL. It’s a type of algorithm that directly learns the optimal policy by adjusting parameters based on
rewards. We implemented this method for goal-directed crystal generation.

Baseline The frozen pre-trained diffusion model continuously samples new crystals without fine-
tuning, and then uses property calculations to discover candidate crystals required for each task.

5.4 SINGLE PROPERTY OPTIMIZATION

Figure 2: The RL curves of our MatInvent method in SPO tasks.

We define six single-property optimization (SPO) tasks and set boundaries for identifying candidate
crystals to calculate reward thresholds and evaluation metrics:

• Band gap of 3± 0.25 eV;
• Formation energy (form e) below -2.5 eV/atom;
• Bulk modulus of 250± 20 GPa;
• Shear modulus of 80± 5 GPa;
• Density of 11± 0.5 g/cm3;
• Herfindahl–Hirschman index (HHI) score below 1250.

These tasks encompass the electronic, stability, mechanical, and physical properties of materials. As
shown in the Figure 2, our MatInvent method can iteratively optimize the crystal diffusion model
during the RL process and achieve goal-oriented generation in all SPO tasks. As shown in Table
1, our MatInvent method outperforms other approaches in sample efficiency and generates more
desirable crystals under the budget. In most tasks, the Burden metric of MatInvent is less than
10, indicating that fewer than 1,000 property evaluations are required to obtain 100 valid and unique
target crystals. As shown in Table 2, MatInvent demonstrates a high diversity ratio comparable to the
baseline across all tasks and significantly outperforms the hill climbing and REINFORCE methods,
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benefiting from KL regularization and diversity filters. This result shows that MatInvent can generate
high reward samples while maintaining diversity. It is worth noting that the hill climbing method
can occasionally exhibit excellent performance but is unstable (with large standard deviations). This
is not unexpected, as hill climbing is a greedy algorithm that can get stuck in local optima without
the ability to backtrack, leading to a continuous reduction in the diversity of the generated crystals
Guo & Schwaller (2024b). Moreover, in each iteration of hill climbing, the diffusion model is fine-
tuned on the generated crystal structure without DFT optimization, which could cause the diffusion
model to move too far away from the initial pre-trained distribution, resulting in the generation of
numerous invalid structures or even model collapse.

Table 1: Burden (↓) results of different methods on SPO tasks. Best results are bolded. MatInvent
consistently outperforms the baselines across all tasks.

Tasks Baseline Hill climbing REINFORCE MatInvent (Our)
Band gap 75.2 ± 10.6 48.7 ± 11.2 33.2 ± 5.6 14.4 ± 1.3
form e 15.7 ± 2.8 8.1 ± 3.4 11.3 ± 4.8 4.3 ± 2.1
Bulk modulus 168.5 ± 18.7 51.9 ± 31.0 36.7 ± 9.8 11.5 ± 1.5
Shear modulus 67.8 ± 9.8 12.9 ± 3.3 27.6 ± 4.2 9.4 ± 1.1
Density 39.1 ± 6.2 11.2 ± 2.4 13.6 ± 1.8 8.7 ± 0.9
HHI 38.4 ± 5.4 27.5 ± 5.7 18.1 ± 2.3 7.7 ± 0.8

Table 2: Diversity ratio (↑) results of different methods on SPO tasks.

Tasks Baseline Hill climbing REINFORCE MatInvent (Our)
Band gap 0.965 ± 0.002 0.767 ± 0.176 0.893 ± 0.076 0.970 ± 0.005
form e 0.964 ± 0.002 0.807 ± 0.159 0.871 ± 0.083 0.969 ± 0.009
Bulk modulus 0.966 ± 0.003 0.704 ± 0.280 0.856 ± 0.106 0.961 ± 0.015
Shear modulus 0.966 ± 0.004 0.749 ± 0.188 0.877 ± 0.086 0.965 ± 0.013
Density 0.963 ± 0.002 0.752 ± 0.303 0.821 ± 0.116 0.957 ± 0.015
HHI 0.961 ± 0.003 0.761 ± 0.233 0.884 ± 0.067 0.958 ± 0.008

5.5 MULTIPLE PROPERTY OPTIMIZATION

Figure 3: The RL curves of our MatInvent method in the T4 MPO task.

We define four multiple property optimization (MPO) tasks and set boundaries for identifying can-
didate crystals:

• (T1) band gap of 3± 0.25 eV and formation energy below -2.5 eV/atom;

• (T2) band gap of 3± 0.25 eV and bulk modulus of 250± 20 GPa;

• (T3) bulk modulus of 250± 20 GPa and HHI score below 1250;

• (T4) bulk modulus of 250± 20 GPa, formation energy below -2.5 eV/atom, and HHI score
below 1250.
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As shown in Figure 3, our MatInvent method can iteratively optimize the crystal diffusion model
and achieve simultaneous optimization of each property in the MPO task. As shown in Table 3,
the MPO task is more challenging than the SPO task and elicits a higher burden. It is difficult for
diffusion models pre-trained on the MP-20 dataset to generate crystals with multiple target proper-
ties, even with the expense of extensive property calculations. MatInvent shows lower burden and
higher sampling efficiency than other methods on all MPO tasks. Moreover, MatInvent maintains a
high diversity ratio comparable to the baseline, and outperforming other approaches (Table 4). All
results indicate that our MatInvent is a high-efficiency RL algorithm for crystal diffusion models in
single/multi-property optimization tasks, without the need for a large amount of pre-existing labeled
data on target properties.

Table 3: Burden (↓) results of different methods on MPO tasks. The best results are bolded.

Tasks Baseline Hill climbing REINFORCE MatInvent (Our)
T1 83.2 ± 11.1 41.6 ± 13.2 43.7 ± 8.7 15.8 ± 1.8
T2 > 1000 56.2 ± 23.4 83.0 ± 12.4 51.9 ± 6.1
T3 > 1000 48.9 ± 21.8 72.6 ± 15.8 44.1 ± 3.7
T4 > 1000 67.1 ± 39.7 88.4 ± 14.1 47.4 ± 4.2

Table 4: Diversity ratio (↑) results of different methods on MPO tasks.

Tasks Baseline Hill climbing REINFORCE MatInvent (Our)
T1 0.966 ± 0.002 0.836 ± 0.133 0.920 ± 0.056 0.959 ± 0.004
T2 0.965 ± 0.003 0.841 ± 0.089 0.889 ± 0.074 0.947 ± 0.006
T3 0.963 ± 0.003 0.811 ± 0.107 0.914 ± 0.064 0.966 ± 0.007
T4 0.964 ± 0.002 0.897 ± 0.096 0.908 ± 0.077 0.951 ± 0.009

6 CONCLUSION

In this work, we introduced MatInvent, a reinforcement learning framework for optimizing diffu-
sion models to generate crystals with desired properties. By reformulating equivariant denoising
as a multi-step decision process and incorporating policy optimization with reward-weighted KL
regularization, our approach enables efficient goal-directed crystal generation. The experimental re-
sults demonstrate that MatInvent significantly outperforms baseline methods across both single and
multiple property optimization tasks, achieving up to 10x improvement in sample efficiency while
maintaining high sample diversity. This improved performance can be attributed to the combination
of experience replay and diversity filters, which help balance exploration and exploitation during the
optimization process.

Our work bridges an important gap between recent advances in crystal diffusion models and the
practical needs of materials discovery. While existing diffusion models have shown promise in
generating stable crystal structures, they often struggle with targeted generation of materials having
specific desired properties. MatInvent addresses this limitation by providing a flexible framework
that can be applied to both single and multiple property optimization scenarios, even in cases where
labeled training data is scarce. The framework’s ability to generate out-of-distribution samples while
maintaining physical validity suggests its potential for discovering novel materials that lie beyond
the scope of the pre-training dataset.
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