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Abstract

Masked Autoencoder (MAE) has shown promise as a self-supervised learning method in
natural images. However, its application in medical imaging is limited by data scarcity. To
alleviate this challenge, we propose SDDA-MAE, a method for direct pre-training and
fine-tuning on targeted datasets without the requirement of self-supervised pre-training on
an extra large dataset. The Dual Attention Transformer (DAT) serves as the backbone
for enhanced spatial and channel-wise image representation. During the pre-training stage,
we employ Self-distillation (SD) to transfer knowledge from the decoder, containing global
information, to the encoder, which holds local information, improving weight initialization
for downstream tasks. Experimental results demonstrate our method outperforms numerous
self-supervised and supervised state-of-the-art (SOTA) methods in tasks like medical image
segmentation and classification, even without pre-training on larger upstream datasets.
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1. Introduction

Recently, Masked Autoencoder (MAE) has shown promising performance in self-supervised
representation learning for natural image processing. However, its advancement in medical
image analysis is hindered by the absence of large-scale datasets.
To make MAE adapt to small-scale medical image datasets, we introduce SDDA-MAE, a
Self-Distillation enhanced Maksed AutoEncoder featuring a Dual Attention Transformer
backbone, as illustrated in Figure 1. The differences between SDDA-MAE and MAE (He
et al., 2022) mainly lie in two aspects. Firstly, our model utilizes a redesigned backbone called
Dual Attention Transformer (DAT), based on the architecture of DAE-Former (Azad et al.,
2023), which efficiently processes the entire spatial dimension of input features and captures
channel context more effectively compared to ViT (Dosovitskiy et al., 2020). Secondly, we
incorporate Self-distillation (SD) (Zhang et al., 2019) during the pre-training stage, where
the encoder acts as the student network and the decoder as the teacher network. This process
minimizes the discrepancy between the output distributions of the two networks, encouraging
the encoder to replicate the global features observed by the decoder. By integrating these
two enhancements, our pre-training procedure enhances the feature representation learning
capability, reducing the need for extensive pre-training datasets. Taking advantage of the
consistent model architecture during both the pre-training and fine-tuning stages, we transfer
the weights of both the encoder and decoder modules for downstream tasks, rather than
solely transferring the encoder module weights. This approach is expected to yield a more
optimal initial parameter space for downstream tasks, consequently enhancing performance.
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Figure 1: The workflow of proposed SDDA-MAE for small-scale medical image datasets.

2. Methods

The workflow of our proposed SDDA-MAE (as shown in Figure 1) proceeds as follows: in
the pre-training stage, we retain the mask tokens but replace them with a shared learnable
vector as the input of the encoder. These tokens are then processed through successive DAT
blocks and patch merging blocks for feature extraction. It is worth noting that we utilize
a masking strategy inspired by Swin-MAE (Dai et al., 2023) to prevent the model from
learning shortcut solutions. Subsequently, the resulting feature representations undergo
further processing via successive DAT blocks and patch expanding blocks to reconstruct the
image in the decoder. In addition, we derive Vencoder and Vdecoder by passing the outputs of
the encoder and decoder through a single-layer MLP, followed by employing cross-entropy
loss to minimize the difference between the distributions of the two vectors. The overall loss
function Lunsup for the pre-training stage is expressed as below:

Lunsup = LMSE(Ypred, Y ) + LCE(Vencoder, Vdecoder),

where Ypred refers to the prediction of the masked patch, Y refers to the ground truth,
Vencoder and Vdecoder refers to the output of the corresponding MLP layer respectively. During
the fine-tuning stage, we transfer the weights of the encoder and decoder obtained in the
pre-training stage and fine-tune the weights based on the following supervised loss Lsup:

Lsup = 0.5× (LDice(Spred, S) + LCE(Spred, S)) + 0.5× (LCE(Cpred, C) + LFL(Cpred, C)),

where Spred and Cpred refer to the prediction of segmentation and classification task respec-
tively, and LFL refers to the focal loss (Lin et al., 2017). Different from the pre-training
stage, to enhance the segmentation performance of the model, we introduce full-scale skip
connection operations between the encoder and decoder of SDDA-MAE.

3. Experiments and Conclusion

Dataset. Two datasets are used for evaluating our proposed model. The SIIM-ACR
Pneumothorax Segmentation dataset (Anna Zawacki, 2019) comprises 12,089 annotated
chest X-ray images, following the official data split as provided. Meanwhile, the BUSI Breast
Cancer Segmentation dataset (Al-Dhabyani et al., 2020) contains 780 ultrasound images,
with 80% of the data allocated to a training set and the remaining 20% designated for
testing. Moreover, 10% of the two training sets are used for validation.
Setting. All images in both datasets are resized to 512× 512 and employ random flip and
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crop for data augmentation. During the pre-training stage, the initial learning rate is set to
2e−4, with a weight decay of 0.05, and a cosine schedule with warm-ups is employed. The
number of pre-training epochs for SIIM-ACR and BUSI are 400 and 200, respectively, with
batch sizes of 24 and 12. During the fine-tuning stage, their learning rates are set to 1.5e−3

and 0.01. The number of epochs is 100 and 50 with batch sizes of 24 and 12, respectively.
Results. We reported the detailed performances of SDDA-MAE and other self-supervised
and supervised algorithms on two multi-task medical image datasets. As demonstrated in
Tables 1, 2, 3 and 4, our model significantly outperformed other state-of-the-art (SOTA)
self-supervised learning methods on both tasks. In addition, we compared our model with
two SOTA supervised learning methods based on ImageNet pre-training. The results indicate
that despite employing a significantly smaller pre-training dataset in comparison to ImageNet,
our method marginally outperforms other supervised learning methods. Furthermore, as
shown in Figures 2 and 3, we explored the impact of different masking ratios on downstream
task performance, with a masking ratio of 60% yielding the best results.

Table 1: Segmentation performances on SIIM-ACR.

Method Dice(%) ↑ Jaccard(%) ↑ HD95↓ ASD↓

Self-supervised methods
MAE(He et al., 2022) 82.76 73.94 14.98 4.88
MoCov3(Chen et al., 2021) 81.98 73.12 15.32 5.21

Supervised methods
UNet++(Zhou et al., 2019) 84.12 78.32 13.23 4.02
Swin-UNet(Cao et al., 2022) 84.49 78.91 12.92 4.13

Ablation studies
Only Encoder (DAT) 83.07 74.23 14.67 4.54
Only Encoder (DAT & SD) 83.55 74.80 14.18 4.32
Encoder & Decoder (DAT) 83.41 74.39 14.58 4.41
Encoder & Decoder (DAT & SD)Encoder & Decoder (DAT & SD)Encoder & Decoder (DAT & SD) 85.7585.7585.75 80.3180.3180.31 10.8710.8710.87 3.023.023.02

Table 2: Classification performances on SIIM-ACR.

Method ACC(%) ↑ PRE(%) ↑ REC(%) ↑

Self-supervised methods
MAE(He et al., 2022) 90.21 79.04 88.51
MoCov3(Chen et al., 2021) 89.04 77.83 87.84

Supervised methods
ViT-B/16(Dosovitskiy et al., 2020) 93.23 81.52 92.12
ResNet50(He et al., 2016) 92.81 80.32 90.90

Ablation studies
Only Encoder (DAT) 90.75 80.73 90.01
Only Encoder (DAT & SD) 92.96 81.13 91.58
Encoder & Decoder (DAT) 91.64 80.01 90.42
Encoder & Decoder (DAT & SD)Encoder & Decoder (DAT & SD)Encoder & Decoder (DAT & SD) 94.6494.6494.64 84.2184.2184.21 92.4292.4292.42

Table 3: Segmentation performances on BUSI.

Method Dice(%) ↑ Jaccard(%) ↑ HD95↓ ASD↓

Self-supervised methods
MAE(He et al., 2022) 79.91 73.06 15.98 4.93
MoCov3(Chen et al., 2021) 78.45 73.00 16.23 4.99

Supervised methods
UNet++(Zhou et al., 2019) 82.15 75.57 14.96 4.35
Swin-UNet(Cao et al., 2022) 83.49 77.39 14.48 4.02

Ablation studies
Only Encoder (DAT) 81.78 74.88 15.23 4.54
Only Encoder (DAT & SD) 82.45 76.03 14.98 4.20
Encoder & Decoder (DAT) 82.03 75.22 15.09 4.41
Encoder & Decoder (DAT & SD)Encoder & Decoder (DAT & SD)Encoder & Decoder (DAT & SD) 84.1284.1284.12 77.8377.8377.83 14.3214.3214.32 3.933.933.93

Table 4: Classification performances on BUSI.

Method ACC(%) ↑ PRE(%) ↑ REC(%) ↑

Self-supervised methods
MAE(He et al., 2022) 89.31 89.12 88.90
MoCov3(Chen et al., 2021) 88.96 89.10 88.67

Supervised methods
ViT-B/16(Dosovitskiy et al., 2020) 90.29 90.45 90.34
ResNet50(He et al., 2016) 91.23 91.33 91.37

Ablation studies
Only Encoder (DAT) 90.03 90.41 90.34
Only Encoder (DAT & SD) 90.67 90.88 89.70
Encoder & Decoder (DAT) 90.34 90.60 89.48
Encoder & Decoder (DAT & SD)Encoder & Decoder (DAT & SD)Encoder & Decoder (DAT & SD) 92.5392.5392.53 92.3292.3292.32 92.3992.3992.39
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Figure 2: Segmentation performances using different masking ratios. (Our Best Model)(Our Best Model)(Our Best Model)
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Figure 3: Classification performances using different masking ratios. (Our Best Model)(Our Best Model)(Our Best Model)

Conclusion. In this study, we introduce SDDA-MAE, a two-stage self-supervised frame-
work aimed at fully extracting meaningful semantics from small-scale medical image datasets
to enhance downstream task performance. Through comprehensive experiments along with
ablation studies, we demonstrate the effectiveness and applicability of our proposed model.
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