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ABSTRACT

Integration of multimodal information from various sources has been shown to
boost the performance of machine learning models and thus has received increased
attention in recent years. Often such models use deep modality-specific networks
to obtain unimodal features, which are combined to obtain “late-fusion” represen-
tations. However, these designs run the risk of information loss in the respective
unimodal pipelines. On the other hand, “early-fusion” methodologies, which com-
bine features early, suffer from the problems associated with feature heterogeneity
and high sample complexity. In this work, we present an iterative representation
refinement approach called Progressive Fusion, a model-agnostic technique that
makes late stage fused representations available to early layers through backward
connections, improving the expressiveness of the representations. Progressive Fu-
sion avoids the information loss which occurs when late fusion is used while re-
taining the advantages of late fusion designs. We test Progressive Fusion on tasks
including affective sentiment detection, multimedia analysis, and time series fu-
sion with different models, demonstrating its versatility. We show that our ap-
proach consistently improves performance, for instance, attaining a 5% reduction
in MSE and 40% improvement in robustness on multimodal time series prediction.

1 INTRODUCTION

Traditionally, research in machine learning has focused on different sensory modalities in isolation,
though it is well-recognized that human perception relies on the integration of information from
multiple sensory modalities. Multimodal fusion research aims to fill this gap by integrating different
unimodal representations into a unified common representation (Turchet et al., 2018; Baltrušaitis
et al., 2018).

Typically, fusion techniques fall into two categories, early fusion and late fusion, depending on
where the information from each modality is integrated into the feature pipeline (Varshney, 1997;
Ramachandram and Taylor, 2017). While theoretically, early fusion models tend to be more expres-
sive, in practice, they are more commonly used for homogeneous or similar modalities (Ramachan-
dram and Taylor, 2017). On the other hand, late fusion models are more effective in combining
diverse modalities. This has generally been attributed to the challenges like feature shifts, cross-
modal distributional changes, differences in dimensionality, etc., when dealing with heterogeneities
across diverse modalities such as text and image (Mogadala et al., 2021; Yan et al., 2021).

In this work, we aim to bridge this divide by using backward connections which connect the late
fused representation ( à la late fusion) to unimodal feature generators, thus providing cross-modal
information to the early layers ( à la early fusion). This creates a model that learns to progressively
refine the fused multimodal representations.

We show that our proposed technique called progressive-fusion (Pro-Fusion) results in improve-
ments of different multimodal fusion architectures, including recent state of the art models such as
MAGXLNET (Rahman et al., 2020), MIM (Han et al., 2021) and MFAS (Pérez-Rúa et al., 2019).
Our experiments show that training with the Pro-Fusion design results in more accurate and robust
models than baseline state-of-the-art architectures.

Contributions: (1) We propose a framework to bridge the gap between early and late fusion via
backward connections. (2) We apply this model-agnostic approach to a broad range of state of the
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art models for a diverse set of tasks. (3) We show, through rigorous experiments, that models trained
with Pro-Fusion are not just consistently more accurate, but also considerably more robust than the
corresponding standard baseline models. We show up to 2% improvement in accuracy over state
of the art sentiment prediction models and up to 5% reduction in MSE and 40% improvement in
robustness on a challenging multimodal timeseries prediction task.

2 BACKGROUND AND RELATED WORK

2.1 MULTIMODAL FUSION

Multimodal learning is a specific type of supervised learning problem with different types of input
modalities. We are provided with a dataset of N observationsD = (Xj , Y j)Nj=1, where all Xj come
from a space X and Y j from Y , and a loss function L : Y × Y → R which is the task loss. Our
goal is to learn a parametric function F : X → Y such that the total loss L =

∑
j L(F(Xj), Y j)

is minimized. In multimodal fusion the space of inputs X naturally decomposes into K different
modalities X =

∏K
i=1 Xi. Correspondingly any observation Xj also decomposes into modality

specific components Xj
i i.e. Xj = (Xj

1 , X
j
2 , . . . X

j
K).

A natural way to learn such a function with a multimodal input is to have an embedding component
which fuses information into a high dimensional vector in Rd, where d is the size of the embedding,
and a predictive component P which maps the embedding vector from Rd to Y . Furthermore,
since different modalities are often of distinct nature and cannot be processed by similar networks
(e.g. text and image), the embedding generator is decomposed into (a) unimodal feature generators
Gi : Xi → Rdi which are specifically designed for each individual modality Xi and (b) a fusion
component F :

∏
i Rdi → Rd which fuses information from each individual unimodal vector. F is

provided with unimodal representations of the input Xj obtained through embedding networks Gi.
The unimodal feature generators Gi can have different kinds of layers including 2D convolution, 3D
convolution and fully connected layers. F is the layer where the embeddings obtained from different
modalities are fused. F is called the fusion or shared representation layer. F has to capture both
unimodal dependencies (i.e. relations between features that span only one modality) and multimodal
dependencies (i.e. relationships between features across multiple modalities).

2.2 PRIOR APPROACHES TO FUSION

(a) Early Fusion (b) Late Fusion (c) Pro-Fusion

Figure 1: Representative Multimodal Fusion Architectures of a) Early fusion , b) Late fusion and
c) Pro-Fusion. We have also indicated the components mentioned in Section 2.1 viz. the unimodal
feature generators G, fusion layer F and predictive network P in the figures. Generally models with
high capacity P/G are considered early/late fusion respectively. The key difference between a late
fusion architecture and pro-fusion architecture are the skip-back connections, indicated in red.

Many recent works including that of Vielzeuf et al. (2018), Sankaran et al. (2021), Pérez-Rúa et al.
(2019), Hazarika et al. (2020) design new deep architectures. Vielzeuf et al. (2018) proposed a
CentralNet design based on aggregative multi-task learning. Sankaran et al. (2021) design a Refiner
Fusion Network (Refnet) trained via cyclic losses. Pérez-Rúa et al. (2019) used neural architecture
search to find a good architecture for convolutional networks. Hsu and Glass (2018) and Khat-
tar et al. (2019) use multimodal autoencoders to learn better representations. Tsai et al. (2019b)

2



improved upon the factor model based approach of Hsu and Glass (2018). Nagrani et al. (2021)
modify the multimodal transformer (Tsai et al., 2019a) to incorporate bottlenecks.

Our proposed method, though technically an architecture change, is a single change that treats the
existing model as given. It is closer in spirit to a black-box change, compared to the aforemen-
tioned methods. Hence it is complementary to this line of work. We experiment with many of the
aforementioned models to show how our proposal consistently improves performance.

Fusion Techniques Other than basic fusion layers such as pooling and concatenation, other common
layers used include aggregation (Khan et al., 2012), tensor factorisation (Liu et al., 2018; Zadeh
et al., 2017), attention (Tsai et al., 2019a) and memory modules (Zadeh et al., 2018a). Rahman
et al. (2020) design a model using pre-trained transformer to achieve state of the art results on the
multimodal sentiment benchmarks. These works propose specific fusion techniques, they design
specific forms of the F function (see Figure 1). Our proposed technique is agnostic to the choice of
the fusion function F and is orthogonal to these ideas.

Model Agnostic Methods Model independent methods to improve fusion by using train-time ob-
jectives based on mutual information (Colombo et al., 2021; Bramon et al., 2011) or contrastive
estimation (Liu et al., 2021) have been widely explored. Our proposal is distinct from these methods
in that it adds backprojective connections. These model-agnostic proposals are generally orthogonal
to our approach, and potentially can be combined to achieve further improvements. For example, in
our experiments we will show that our method can increase performance on the model-agnostic GB
(Wang et al., 2020a) based approaches as well.

3 PROGRESSIVE FUSION (PRO-FUSION)

3.1 MOTIVATING EXAMPLE

Consider the task of determining the location of an entity from video and text. For instance, suppose
the system has to detect the coordinates, in a given image, of an object specified through a textual
command. For the image of the dog provided in Figure 2, the text might be ‘find the tennis ball’ or
‘find the blue bone’. The task is not solvable using a single modality, as the image only contains the
objects and their location, whereas the text only mentions the object of interest.

Figure 2: Motivating example. The target corresponds to
the location in the image of the object described in the
audio modality (dog, ball, bone etc). Also shown is the
generative model where Z is the latent vector that deter-
mines the outcome Y via h(Z). g(Z) is independent of
Y given Z. X1 is a combination of h(Z) and g(Z).

.

Consider what might happen with a late-
fusion scheme. A significant part of
the representation capacity of the image
features might be devoted to capturing
the dog, the bone, the carpet etc. Hence,
determining the red ball’s coordinates
will be more challenging unless the im-
age feature generator has access to the
textual information. More generally, if
the unimodal feature generators are bot-
tlenecked or not powerful enough, the
required information to predict the out-
put might be lost or compressed too
much to be recovered correctly. With
early fusion, the image feature genera-
tor knows which object to focus on and
can be directed toward the relevant in-
formation, namely the red ball.

Figure 2 also shows an abstract graphical model for this situation. X1 represents the entire input
image, while Z represents an abstract state of the environment (with objects and coordinates). The
output Y (e.g., coordinate target) is determined by the feature function h, so Y ← h(z) ( i.e.,
h(Z) contains sufficient statistics about the location of the object). The information about these
features is present in X1 (obtained by applying unknown function f to h(Z)); however, X1 has
nuisance variables (e.g., other objects) or a corrupted version of h(z). g(Z) represents descriptions
like colour, shape, etc. of the target object. The location h(Z) and visual characters g(Z) combined
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form (part of) the image. In this case, Y may not be identifiable purely via X1 . For the image
example, this is because X1 has not just the target but other objects, which means that without
characterizing the desired target, a specific location cannot be specified. But in the presence of input
X2 (in this case text), the target is identifiable even if X2 by itself is not informative about Y . 1

In such a scenario, with a late fusion based approach, if the encoder G1 (unimodal feature generator
for mode X1) is not sufficiently expressive, the overall networks may not be able to learn the perfect
function f even in the presence of modality X2. Such learning failure can happen during late fusion
when the network F1 has already pooled together h and g in a non-invertible manner. On the other
hand, if the features from X2 were made available to the feature encoder for X1, it can learn to
ignore or mask nuisance variation/corruption. Access to those X2 features requires the model to
perform some form of early fusion. However, the corresponding early integration is challenging if
the underlying modalities X2 and X1 are very different.

More generally, fusion at higher-level features runs into a “fuse it or lose it” situation where relevant
information – especially conditionally relevant information – that is not fused by the fusion layer is
at risk of being lost. From the motivating example, only in the presence of X2 (speech command)
could we process X1 (image) to get h(Z) (location). The problem becomes intractable if location
information in X1 is corrupted before the fusion layer. This is happening because the unimodal
feature generation is unaware of features coming from other modalities. Early fusion does not
face this problem but cannot handle heterogeneous modalities well, requiring many parameters.
This leads us to our basic problem: designing a generic approach combining late and early fusion
advantages. To this end, we propose a model-agnostic scheme that provides late-stage multi-modal
fusion features to the early stages of unimodal feature generators.

3.2 PRO-FUSION

We build a scheme based on backprojective connections which can be applied to any given base
architecture. Our scheme considers any given base design as a single step of an iterative process.
The base design is augmented to take an additional context vector as input, which serves to provide
information from ‘late’ fused representations. At each iteration, the current output representations
of the base model are provided via the context vector as an additional input for the next step. More
formally, given a base modelF with input x = (xi, x2, ..xk), we want to create an augmented model
F̂ : X × Rd → Y with additional input c ∈ Rd such that c = 0 =⇒ F̂(x, c) = F(x). Recall that
the function F mentioned in Section 2.1 is given by F(x) = P (F (G1(x1), G2(x2), ..GK(xK))).

We create the desired network F̂ by providing c to the unimodal feature generators Gj . We use the
output of the fusion layer F and project it back into the network as ct via the matrix/function Wi.
This creates an iterative network which we run for R steps. The final vector cR after R steps serves
as the output of fusion which is then provided to the predictor model P .

The ability to send information backward in the network addresses the problem raised earlier in
Section 3.1 3. The encoder G1 for X1 can now gain a handle on g(Z) via the fused output c1.
Specifically if the model can compute g(z) from W (c1), then in the second iteration step, one can
recover from X1 the real value of h(Z), which then directly determines the target Y . On the other
hand if X2 is not useful or if G1 cannot process the fused vector efficiently, then W (.) can be zeroed
out and the overall model is no worse than the baseline model. We also present in the Appendix E,
some mathematical analysis as to the representation power of our approach.

The importance of multimodal backward connections can also be interpreted from the perspective of
the graphical model in Figure 7. A standard message passing routine (Koller and Friedman, 2009)
on the aforementioned graph, will have the message from X2 effecting the belief of target Y via two
paths: a) one along X2, g(Z), Z, h(Z) and the other along X2, g(Z), X1, h(Z). Notice that along
this second path, message from the modality X2 is received at X1 before further processing. This
path makes features from modality X2 available to the feature generator of X1, which is exactly
what our backprojection layer accomplishes. A caveat is that unlike this example, in general we do
not know which way to route the messages (as the dependence graph maybe unknown). As such in
our proposal we treat all modalities symmetrically and re-cycle information through all of them.

1For an example in terms of equations refer to the Appendix B.1
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Figure 3: A standard message passing routine on the graph for the motivating example will have the
message from X2 affecting the belief of target Y via two paths. Late fusion is only guaranteed to
cover the path outlined in blue (left), which does not include X1, potentially resulting in information
loss. Progressive Fusion ensures that the path outlined in green (right) will also be covered, making
features from modality X2 available to the feature generator of X1, thus preventing information loss.

An astute reader might notice similarities with deep unfolding networks (Balatsoukas-Stimming
and Studer, 2019; Hershey et al., 2014). However, these are not designed for multimodal data, nor
adapted to it, to the best of our knowledge. In contrast, ProFusion was specifically designed to solve
a problem in multimodal data fusion: the “fuse it or lose it” situation. Deep unfolding/iterative
models that do not cycle cross-modal information still suffer from the “fuse it or lose it” problem.
This was confirmed by our experiments where we show that ProFusion provides additional improve-
ment over deep unrolling style iterative models. Secondly, unrolling is just one method to train the
backward connections. We refer the readers to Appendix A, for an expanded discussion on this.

4 EXPERIMENTS

Figure 4: Accuracy of late, early and
pro-fusion models over varying levels
of inner dimension. Each point corre-
sponds to the performance of the model
when the hidden dimension is set to the
values of d on the x axis.

In this section, we empirically show that Pro-Fusion im-
proves performance of multimodal deep learning SOTA
architectures on a variety of tasks. First we verify our
intuition for the advantage of backward connections in a
synthetic experiment. Next, we experiment with datasets
in sentiment prediction (Zadeh et al., 2018b), multime-
dia classification (Vielzeuf et al., 2018) and financial
timeseries prediction (Sardelich and Manandhar, 2018).
We also explore how our approach affects robustness for
noisy time series data. Finally we evaluate the impact of
varying the number of unrolling steps and analyze how
the model performance as well as unimodal representa-
tions evolve. For all the datasets we use SOTA and near-
SOTA models, while keeping a diversity of fusion tech-
niques and network designs. For each dataset and archi-
tecture combination, we either use established hyperpa-
rameters and/or choose the best hyperparameter from our
own experiments. Next, for the same architecture, we
add backward connections from the fusion layer output
and train with the exact same hyperparameters. We do
not perform any hyperparameter tuning for our modified

models, so the reported results are a lower bound the Pro-Fusion performance. We opt for this
process to isolate the effects of adding backward connections from those of tuning hyperparameters.

4.1 SYNTHETIC DATASET

To verify the intuition described in the ‘Motivating Example’ Section, we first create a synthetic
experiment. For this purpose we encode a smooth random function in modality X1 ⊂ RD. Specifi-
cally the dth component of X1 has the value of the function at the point d/D. Next, in modality X2,
we provide position embeddings of a randomly chosen lattice point l ∈ {0, 1/D, 2/D, ...1}. The
output label Y is the first non-zero digit of xl. This is conceptually a simple task as one can infer the
component from the modality X2 and simply read on the corresponding component from X1. How-
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ever if the model is late fusion, where the input modalities might go through a lower dimensional
representation; the specific values of each component in X1 is lost, and the model cannot correctly
predict the label. Note that in this case, each instance of X1 contains a different function; because a
fixed function might be directly learned by the network.

In Figure 4, we plot the accuracy of a 2 layer MLP trained on this task with different sizes for the
hidden layer. The argument from Section 3.1 suggests that early fusion is more effective than late
fusion when the hidden layers are smaller. It also suggests that the effect of progressive fusion is
larger when the feature layers input to late fusion is smaller. This is confirmed by the experiments,
where the gap between the pro-fusion model and late fusion model reduces as the size of the hidden
representation increases. Finally, for a large enough hidden representation, the performance of late
fusion matches that of early fusion. Additional analysis on synthetic data is shown in the Appendix.

4.2 MULTIMEDIA CLASSIFICATION

Accuracy ↑
Model Base Ours
LF 71.4 71.6
LFN 71.1 71.8*
MFM 71.4 72.2*
GB 68.9 69.3
Refnet 70.6 71.2*
MFAS 72.1 72.5*
MBT 70.3 70.3

Table 1: Results on digit classification
task with AVMNIST for various fusion
architectures. The performance met-
ric is Accuracy, and was measured on
five trials. Our method outperforms the
baseline in almost all instances. Scores
above 1 standard deviation of the base
models, indicating significance, have
been marked with a *.

Datasets. We first evaluate our proposed design changes
on AV-MNIST (Vielzeuf et al., 2018), a popular bench-
mark dataset used for multimodal fusion (Pérez-Rúa
et al., 2019; Joze et al., 2020). It is an audio-visual dataset
for a digit classification task. The data is prepared by
pairing human utterances of digits obtained from FSDD
dataset 2 with images of written digits from MNIST. This
dataset has 55K training, 5K validation, and 10K testing
examples. To prepare the dataset we use the process-
ing stack of Cassell (2019). The preprocessing involves
adding corruption to both modalities, so that no single
modality is sufficient (Vielzeuf et al., 2018).

Models. LF is the baseline late fusion architecture used
in Vielzeuf et al. (2018). MFAS is the architecture search
based model used by Pérez-Rúa et al. (2019). It is the
current SOTA on AV-MNIST. The exact architecture is
presented in the Appendix D.3. We use the model ob-
tained by search and add the backward connections. LFN
is the low rank tensor fusion approach (Zadeh et al., 2017)
adapted to this dataset, while MFM refers to the factor-
ization method of Tsai et al. (2019b) for learning mul-
timodal representation. GB and Refnet are the gradient
blending and refiner network based approaches of Wang et al. (2020a) and Sankaran et al. (2021)
respectively. MBT is the multimodal transformer model of Nagrani et al. (2021).

Our results are presented in Table 1. Amongst all the methods we evaluated, Pro-MFAS was the
best model and beats its standard counterpart by 0.4 accuracy points. We also observe similar im-
provements in using Pro-Fusion with the MFM design. In fact the Pro-fusion MFM model was
competitive with the current state of the art MFAS model. Meanwhile, the gradient blending (GB)
fusion approach seems to not generalize on this dataset and performs worse than even late fusio.

4.3 SENTIMENT PREDICTION

Datasets. We empirically evaluate our methods on two datasets CMU-MOSI (Wöllmer et al., 2013)
and CMU-MOSEI (Zadeh et al., 2018b). CMU-MOSI is sentiment prediction tasks on a set of short
youtube video clips. CMU-MOSEI is a similar dataset consisting of around 23k review videos taken
from YouTube. Both of these are used generally for multimodal sentiment analysis experiments.
Audio, video, and language modalities are available in each dataset.

Models. FLSTM is the early fusion type baseline LSTM architecture used by Zadeh et al. (2017),
while LFN is the low rank tensor representation of model of Zadeh et al. (2017). multimodal fea-
tures. (Hazarika et al., 2020). MAGBERT and MAGXLNET (Rahman et al., 2020) are BERT
(Devlin et al., 2018) based state of the art models on these datasets. These architectures use a gating

2https://www.tensorflow.org/datasets/catalog/spoken digit

6

https://www.tensorflow.org/datasets/catalog/spoken_digit


Acc7 ↑ Acc2 ↑
Model Base Ours Base Ours
FLSTM 31.2 31.8 75.9 76.8
LFN 31.2 32.1 76.6 77.2
MAGBERT 40.2 40.8 83.7 84.1
MAGXLNET 43.1 43.5 85.2 85.5
MIM 45.5 46.3 81.7 83.4

Table 2: Results on sentiment analysis on CMU-MOSI. Acc7 and Acc2 denote accuracy on 7 and 2
classes respectively. Boldface denotes statistical significance.

Acc7 ↑ Acc2 ↑
Model Base Ours Base Ours
FLSTM 44.1 44.8 75.1 75.8
LFN 44.9 46.1 75.3 76.4
MAGBERT 46.9 47.1 83.1 83.6
MAGXLNET 46.7 47.1 83.9 84.2
MIM 53.3 54.1 79.1 80.1

Table 3: Results on sentiment analysis on CMU-MOSEI. Acc7 and Acc2 denote accuracy on 7 and
2 classes respectively. Boldface denotes statistical significance.

mechanism (Wang et al., 2019) to augment a pretrained transformer. MIM (Han et al., 2021) is a
recent near-SOTA architecture. It combines BERT text embeddings with modality specific LSTMs.

We evaluate our change on the aforementioned five models on four metrics commonly used in the
literature (Zadeh et al., 2017; Han et al., 2021). The binary and 7-class accuracy results are reported
in Tables 2 and 3. We present the results of the remaining metrics (MAE and CORR) in Appendix
8. We observe consistent improvements in accuracy of non-transformer based models (FLSTM,
LFM, MIM) ranging from 0.5% to 1.5%, while transformer based models improve by 0.3%. The
comparatively smaller improvement in transformers could be due to the lack of additional informa-
tion from other modalities when using BERT on text. For example, on CMU-MOSI, simply using
BERT embeddings provides an accuracy of 78% which is higher than most non-BERT fusion mod-
els (Hazarika et al., 2020). Given the degree of sufficiency in the textual modality, performance is
determined by the text network not by the fusion design.

4.4 FINANCIAL DATA

Datasets. We evaluate our approach on a multimodal financial time series prediction task (Sardelich
and Manandhar, 2018). F&B, HEALTH, and TECH are prices and events related to publically
listed companies organized according to the primary business sector. Within each sector, historical
prices are used as time series inputs to predict the future price and volatility of a related stock. In
this setting the different stocks in the same sector correspond to different modalities. Due to the
significantly large number of available modalities, this task presents a different set of challenges
(Emerson et al., 2019; Sardelich and Manandhar, 2018) than other datasets. Moreover, due to the
inherently low signal-to-noise ratio in such time series, it presents a greater robustness challenge than
other datasets (Liang et al., 2021a). On the other hand, due to the similar nature of the modalities
this task is amenable to early fusion methods.

Models. We experiment with Transformers for time series (Sardelich and Manandhar, 2018) with
both early fusion EF transf and late fusion LF transf variants. The other models we test are the
multimodal fusion transformer MulT Tsai et al. (2019a), Gradient Blending GB approach from
(Wang et al., 2020a). Finally as LSTMs are strong baselines on this task (Narayanan et al., 2019),
we also use Early fusion EFLSTM and Late LFLSTM fusion LSTM models.

Because of the similar nature of the modalities, one might expect early fusion models to be effective.
This can be seen in our results, where early fusion LSTM outperforms late fusion models. However,
we note that, by using backward connections, the late fusion models, especially LFLSTM, become
competitive with early fusion models. The nature of the dataset- low dimension time series with
inherent noise- means we can also assess the models’ robustness against modality corruption. We
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Metric MSE ↓ Robustness ↑
Model Dataset Base Ours Base Ours

EFLSTM
F&B 0.73 0.70 0.87 1.0
HEALTH 0.308 0.306 0.54 0.83
TECH 0.742 0.738 0.92 0.93

LFLSTM
F&B 0.77 0.73 0.74 0.83
HEALTH 0.331 0.315 0.48 0.78
TECH 0.736 0.737 0.96 0.96

GB
F&B 0.690 0.688 0.98 0.98
HEALTH 0.318 0.305 0.67 1.0
TECH 0.740 0.728 0.99 1.0

LF Transf
F&B 0.838 0.788 0.24 0.38
HEALTH 0.337 0.331 0.34 0.46
TECH 0.757 0.751 0.92 0.93

MulT
F&B 0.814 0.765 0.33 0.48
HEALTH 0.333 0.329 0.0 0.08
TECH 0.763 0.757 0.85 0.86

EF Transf
F&B 0.836 0.827 0.0 0.05
HEALTH 0.335 0.326 0.45 0.63
TECH 0.755 0.750 0.0 0.0

Table 4: Results on stock prediction on the three sectoral datasets. The performance is evaluated on
the Mean Squared Error (MSE) metric evaluated on 10 trials. We also compute robustness metrics
by testing on data corrupted with various noise levels and present the relative robustness scores.
Scores which are outside the 1 standard deviation of the base model are highlighted.

add varying noise levels to the test data and see how the performance of the models changes with
increasing noise. Following (Taori et al., 2020; Shankar et al., 2017; Liang et al., 2021a), the ro-
bustness of the model is assessed by computing the area under the performance vs. noise curve.
Specifically, it is computed by discrete approximation of the following integral:

τ =

∫
MSE(f, σ)−MSE(b, σ)dσ

where MSE(., σ) is the MSE of the model on test-data with inputs corrupted with noise level σ.
f is the model the evaluated and b is a baseline model. We choose late fusion transformer as our
baseline, and scale the numbers between 0 and 1 3. From the results we can see that Pro-Fusion
provides greater improvements on late fusion compared to early fusion designs. This suggests that
the improvement is partly due to the backprojection acting as a bridge between early and late fusion.

4.5 ABLATION EXPERIMENTS

Accuracy ↑
Model Base Ours Iterative
LFN 71.1 71.8 71.5
MFM 71.4 72.2 69.9
GB 68.9 69.3 69.2
Refnet 70.6 71.2 70.7

Table 5: Results on digit classification
task with AVMNIST for various fusion
architectures. The performance metric
is Accuracy, measured on five trials.

To assess the impact of multimodal backprojecting con-
nections in the Pro-Fusion approach against vanilla itera-
tive models, we conduct experiments on AVMNIST. We
change the unimodal feature generators of the baseline
models into an iterative model. Effectively, these mod-
els are similar to the Pro-Fusion model except that we
connect the output features of the unimodal feature gen-
erators to their inputs instead of having multimodal con-
nections (See Figure 13 in the Appendix). This allows
us to distinguish between the effect of multimodal back-
projection from the effect of generic iterative processing.
We fixed the number of iterative steps to 2 (same as our
Pro-Fusion models) and ran 8 trials for these alternate models, with the results reported in Table 5.

The results indicate that, while iterative models do lead generally to some improvement over the
baseline models, Pro-Fusion is still better. Moreover in some cases (such as MFM) iterative models

3For the unscaled value of the numbers refer to Appendix C
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can be worse than the baseline. The key difference between a vanilla iterative model and Pro-Fusion
is that Pro-Fusion allows unimodal feature generators access to information from other modalities.
As such, unimodal feature generators can now produce features conditioned on the other modalities,
while in the alternate approach, the unimodal features are blind to the features from other modalities.

We also run experiments to evaluate the effect of the dimensionality of the backprojecting connec-
tions. We adjust the dimensionality of the backprojecting connection W , up to 512 and evaluate
multiple models on AVMNIST. One might expect that backprojections with very low dimensions
will be similar to baseline models with no backward connection. On the other hand, with a high
dimensionality in the backward connection, one runs into the same problem as early fusion of high
parametric complexity. This expectation matches the empirical results, shown in Figure 5. We plot
the accuracy (and standard error) of multiple models with varying backprojection sizes. Notice that,
for comparability across models, we have normalized all curves by their respective baseline results.

(a) Accuracy from audio representation (b) Accuracy from image representation

Figure 6: Behavior of classifiers trained on the unimodal embedding against number of unrolling
iterations. The lines plot the normalized accuracy of a linear model trained on input of fusion layer.
We observe increased accuracy with more unrolling.
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Figure 5: Relative accuracy of different models
over varying dimensions of backprojecting con-
nections. Each point corresponds to the nor-
malized performance of the corresponding model
when the hidden dimension is set to the values of
on the x axis.

Next, we analyze how the unimodal represen-
tations evolve over the unrolling steps. For
this purpose, we consider the activations of uni-
modal networks Ĝj (equivalently, the inputs for
the late fusion layer) as the unimodal represen-
tations. For these of experiments, we use LFN,
MFM and Refnet models on AVMNIST. We
train a linear classifier based on the unimodal
representations from the training data and find
its accuracy on the test data.

In Figure 6 we plot the relative test accuracy of
both the audio and image features against the
iteration number for all the models. We can see
gains in all models after one step of unrolling.
Since we know that the modalities are incom-
plete/noisy (especially audio), the increasing
accuracy can be attributed to additional infor-
mation being available. This suggests that the
unimodal modalities are integrating informa-
tion from each other with more iterations.

5 CONCLUSION

Our paper presents a model-agnostic approach to incorporate benefits of early fusion into late fusion
networks via backward connections. We argued for some sufficient conditions when our backward
connection based design to be more effective than usual fusion designs, supported by an artificial
data experiment. With real data experiments, we make a case for using multimodal backward con-
nections and show that Pro-fusion can improve even SOTA models.
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Ayache, S., Quénot, G., Gensel, J., and Satoh, S. (2006). Using topic concepts for semantic video
shots classification. In Proceedings of the 5th International Conference on Image and Video
Retrieval, CIVR’06. Springer-Verlag.

Balatsoukas-Stimming, A. and Studer, C. (2019). Deep unfolding for communications systems: A
survey and some new directions. In 2019 IEEE International Workshop on Signal Processing
Systems (SiPS), pages 266–271. IEEE.

Baltrušaitis, T., Ahuja, C., and Morency, L.-P. (2018). Multimodal machine learning: A survey and
taxonomy. IEEE transactions on pattern analysis and machine intelligence, 41(2):423–443.

Bramon, R., Boada, I., Bardera, A., Rodriguez, J., Feixas, M., Puig, J., and Sbert, M. (2011).
Multimodal data fusion based on mutual information. IEEE Transactions on Visualization and
Computer Graphics, 18(9):1574–1587.

Cabrera-Quiros, L., Tax, D. M., and Hung, H. (2019). Gestures in-the-wild: Detecting conversa-
tional hand gestures in crowded scenes using a multimodal fusion of bags of video trajectories
and body worn acceleration. IEEE Transactions on Multimedia, 22(1):138–147.

Cassell, S. (2019). Mfas. https://github.com/slyviacassell/ MFAS/.

Chair, Z. and Varshney, P. (1986). Optimal data fusion in multiple sensor detection systems. IEEE
Transactions on Aerospace and Electronic Systems, (1):98–101.

Chang, C., Chang, T., Xu, Y., and Wang, M. (2000). Structural damage detection using an iterative
neural network. Journal of intelligent material systems and structures, 11(1):32–42.

Chun, I. Y., Huang, Z., Lim, H., and Fessler, J. (2020). Momentum-net: Fast and convergent
iterative neural network for inverse problems. IEEE transactions on pattern analysis and machine
intelligence.

Colombo, P., Chapuis, E., Labeau, M., and Clavel, C. (2021). Improving multimodal fusion via
mutual dependency maximisation. arXiv preprint arXiv:2109.00922.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805.

Emerson, S., Kennedy, R., O’Shea, L., and O’Brien, J. (2019). Trends and applications of ma-
chine learning in quantitative finance. In 8th international conference on economics and finance
research (ICEFR 2019).

Ernoult, M., Grollier, J., Querlioz, D., Bengio, Y., and Scellier, B. (2020). Equilibrium propagation
with continual weight updates. arXiv preprint arXiv:2005.04168.

Gammulle, H., Denman, S., Sridharan, S., and Fookes, C. (2017). Twin memory lstm: deep fusion
framework for human action recognition.

Han, W., Chen, H., and Poria, S. (2021). Improving multimodal fusion with hierarchical mutual
information maximization for multimodal sentiment analysis. In Proceedings of EMNLP 2021.

Hazarika, D., Zimmermann, R., and Poria, S. (2020). Misa: Modality-invariant and-specific rep-
resentations for multimodal sentiment analysis. In Proceedings of the 28th ACM International
Conference on Multimedia, pages 1122–1131.

Hershey, J. R., Roux, J. L., and Weninger, F. (2014). Deep unfolding: Model-based inspiration of
novel deep architectures. arXiv preprint arXiv:1409.2574.

10

https://github.com/slyviacassell/_MFAS/


Hou, J.-C., Wang, S.-S., Lai, Y.-H., Tsao, Y., Chang, H.-W., and Wang, H.-M. (2017). Audio-visual
speech enhancement based on multimodal deep convolutional neural network. arXiv preprint
arXiv:1709.00944.

Hsu, W.-N. and Glass, J. (2018). Disentangling by partitioning: A representation learning framework
for multimodal sensory data. arXiv preprint arXiv:1805.11264.

Hu, J., Shen, L., Albanie, S., Sun, G., and Wu, E. (2019). Squeeze-and-excitation networks.

Joze, H. R. V., Shaban, A., Iuzzolino, M. L., and Koishida, K. (2020). Mmtm: Multimodal transfer
module for cnn fusion. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 13289–13299.

Khan, F. S., Anwer, R. M., Van De Weijer, J., Bagdanov, A. D., Vanrell, M., and Lopez, A. M.
(2012). Color attributes for object detection. In 2012 IEEE Conference on Computer Vision and
Pattern Recognition, pages 3306–3313. IEEE.

Khattar, D., Goud, J. S., Gupta, M., and Varma, V. (2019). Mvae: Multimodal variational autoen-
coder for fake news detection. In The world wide web conference, pages 2915–2921.

Koller, D. and Friedman, N. (2009). Probabilistic graphical models: principles and techniques.
MIT press.

Li, X. and Seignez, E. (2018). Driver inattention monitoring system based on multimodal fusion
with visual cues to improve driving safety. Transactions of the Institute of Measurement and
Control, 40(3):885–895.

Liang, P., Lyu, Y., Fan, X., Wu, Z., Cheng, Y., Wu, J., Chen, L., Wu, P., Lee, M., Zhu, Y., et al.
(2021a). Multibench: Multiscale benchmarks for multimodal representation learning.

Liang, T., Lin, G., Feng, L., Zhang, Y., and Lv, F. (2021b). Attention is not enough: Mitigating
the distribution discrepancy in asynchronous multimodal sequence fusion. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 8148–8156.

Liu, P., Chang, S., Huang, X., Tang, J., and Cheung, J. C. K. (2019). Contextualized non-local neural
networks for sequence learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 33, pages 6762–6769.

Liu, Y., Fan, Q., Zhang, S., Dong, H., Funkhouser, T., and Yi, L. (2021). Contrastive multimodal
fusion with tupleinfonce. In Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), pages 754–763.

Liu, Z., Shen, Y., Lakshminarasimhan, V. B., Liang, P. P., Zadeh, A., and Morency, L.-P.
(2018). Efficient low-rank multimodal fusion with modality-specific factors. arXiv preprint
arXiv:1806.00064.

Mogadala, A., Kalimuthu, M., and Klakow, D. (2021). Trends in integration of vision and language
research: A survey of tasks, datasets, and methods. Journal of Artificial Intelligence Research.

Nagrani, A., Yang, S., Arnab, A., Jansen, A., Schmid, C., and Sun, C. (2021). Attention bottlenecks
for multimodal fusion. Advances in Neural Information Processing Systems, 34.

Narayanan, A., Siravuru, A., and Dariush, B. (2019). Temporal multimodal fusion for driver behav-
ior prediction tasks using gated recurrent fusion units. CoRR, abs/1910.00628.

Neshatpour, K., Homayoun, H., and Sasan, A. (2019). Icnn: The iterative convolutional neural
network. ACM Transactions on Embedded Computing Systems (TECS), 18(6):1–27.

Ning, Q., Dong, W., Shi, G., Li, L., and Li, X. (2020). Accurate and lightweight image super-
resolution with model-guided deep unfolding network. IEEE Journal of Selected Topics in Signal
Processing, 15(2):240–252.

Osadciw, L. and Veeramachaneni, K. (2009). Fusion, Decision-Level. Springer US.

11



Pérez-Rúa, J.-M., Vielzeuf, V., Pateux, S., Baccouche, M., and Jurie, F. (2019). Mfas: Multimodal
fusion architecture search. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 6966–6975.

Rahman, W., Hasan, M. K., Lee, S., Zadeh, A., Mao, C., Morency, L.-P., and Hoque, E. (2020). In-
tegrating multimodal information in large pretrained transformers. In Proceedings of the confer-
ence. Association for Computational Linguistics. Meeting, volume 2020, page 2359. NIH Public
Access.

Ramachandram, D. and Taylor, G. W. (2017). Deep multimodal learning: A survey on recent ad-
vances and trends. IEEE signal processing magazine, 34(6):96–108.

Sankaran, S., Yang, D., and Lim, S.-N. (2021). Multimodal fusion refiner networks.

Sardelich, M. and Manandhar, S. (2018). Multimodal deep learning for short-term stock volatility
prediction. arXiv preprint arXiv:1812.10479.

Shankar, S. (2022). Multimodal fusion via cortical network inspired losses. In Proceedings of the
60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pages 1167–1178.

Shankar, S., Breck, E., and Atwood, J. (2017). Assessing representation issues in developing world
data.

Simonyan, K. and Zisserman, A. (2015). Two-stream convolutional networks for action recognition.
In Proceedings of the Neural Information Processing Systems (NIPS).

Siriwardhana, S., Reis, A., Weerasekera, R., and Nanayakkara, S. (2020). Jointly fine-tuning” bert-
like” self supervised models to improve multimodal speech emotion recognition. arXiv preprint
arXiv:2008.06682.

Sui, J., Adali, T., Yu, Q., Chen, J., and Calhoun, V. D. (2012). A review of multivariate methods for
multimodal fusion of brain imaging data. Journal of neuroscience methods, 204(1):68–81.
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