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ABSTRACT

Data selection is essential for training deep learning models. An effective data
sampler assigns proper sampling probability for training data and helps the model
converge to a good local minimum with high performance. Previous studies in
data sampling are mainly based on heuristic rules or learning through a huge
amount of time-consuming trials. In this paper, we propose an automatic swift
sampler search algorithm, SS, to explore automatically learning effective samplers
efficiently. In particular, SS utilizes a novel formulation to map a sampler to a low
dimension of hyper-parameters and uses an approximated local minimum to quickly
examine the quality of a sampler. Benefiting from its low computational expense,
SS can be applied on large-scale data sets with high efficiency. Comprehensive
experiments on various tasks demonstrate that SS powered sampling can achieve
obvious improvements (e.g., 1.5% on ImageNet) and transfer among different
neural networks.

1 INTRODUCTION

Training data plays a pivotal role in deep learning tasks. The sampling probability of data in the
training process can significantly influence the performance of the learned model. A set of works
Jiang et al. (2019); Katharopoulos & Fleuret (2018); Needell et al. (2014); Johnson & Guestrin (2018);
Han et al. (2018) have demonstrated improvements in model training by sampling data according to
different features and under different rules. These studies reveal that how to sample examples during
training is nontrivial and sampling data in a totally uniform way is not always the optimal choice.

Previous works on data sampling strategy include two main categories: human-defined rules and
learning-based methods. Some works Han et al. (2018); Jiang et al. (2019); Katharopoulos & Fleuret
(2018); Hacohen & Weinshall (2019); Kumar et al. (2010) proposed manually designed rules, such as
setting the sampling probability of training examples with loss values larger than a threshold as zero,
or making the sampling probability proportional to the gradient norms. Such human-defined rules are
designed for specific tasks and hardly adapts to different scenarios, because optimal sampling strategy
varies among different tasks and data sets. Learning-based methods Fan et al. (2017); Jiang et al.
(2017); Ren et al. (2018) explore an automatic way to assign sampling probability to a given learning
task, including sample-based and differential based methods. Sample-based methods take advantage
of deep reinforcement learning (DRL) Fan et al. (2017) to model the training process of the target
model as an environment and use a DRL model to learn the optimal sampling strategy during training.
These methods need hundreds of replays of the training process and require too much searching cost
to be applied on large-scale data sets, e.g., ImageNet Russakovsky et al. (2015). Differential based
methods Ren et al. (2018); Shu et al. (2019) assume a completely clean meta dataset and use the
inner product between the gradients of training data and meta data to sample or reweight training
data. The problem is that the clean meta data is not guaranteed to be available for all scenarios, and
complex changes are made in the training process.

To explore an automatic way of sampler search, we focus on improving sample-based search methods
as they do not require extra meta data and impose no change in the training process when applying
the obtained sampler. Typically, a sample-based method repeatedly uses an agent (e.g., Bayesian
Optimization or Deep Reinforcement Learning) to sample a sampler and evaluate the objective
function value of the sampled sampler to update the agent. There are three challenges in designing a
sample-based method for automatic sampler search: (1) High dimension. A sampler is defined by
a vector of sampling probabilities of all instances in the training set. Therefore, the complexity of
searching the optimal sampler in a sample-based way increases exponentially with the number of
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training instances. (2) Sharpness. As great difference exists among gradients of various instances in
the training set, sampling probability of some instances has a significant impact on the performance
of resulted models. Such property results in the sharpness of the objective function for samplers and
harms the efficiency of the agent’s learning. (3) Costly evaluation. The agent seeks a sampler that
achieves high performance when used to train the model from scratch. Thus the evaluation of a single
sampler causes high computational expense (e.g., training 100 epochs from scratch on ImageNet).

In this paper, we aim at addressing the three problems listed above. For the high dimension problem
(1), we define sampler as a function mapping the feature of the training data to their sampling
probabilities and formulate the search space of sampler as a family of composite functions, which
are represented by a small number of hyper-parameters. The amount is much less than the number
of training data. Moreover, our formulation of the sampler has a flexible expression covering any
features used in previous works and is adaptive to a range of data sets. We carefully choose the
features and mapping functions so that the number of parameters to be learned for the sampler is
only 10. To relieve the sharpness problem (2) of the objective function, we modify the objective
function by designing a transform function to smooth the landscape of the objective function. This
transform function balances the amounts of gradient norm in different areas of the definition domain
of the objective function. For the costly evaluation problem (3), we use a fast approximation method
for learning the network, which is much less expensive than training from scratch. Integrating the
designs above, we propose an automatic swift sampler learning (SS) method, where we choose naive
Bayesian Optimization (BO) Brochu et al. (2010); Klein et al. (2016); Snoek et al. (2012) as the
agent. The swift here means our formulation of the sampler has a very small volume of parameters,
and our method has a high speed of sampler learning, like a swift, the small and fast bird.

We apply SS to training neural networks with various sizes, including ResNet-18 and SE-ResNext-101,
with training data from different data sets including ImageNet Russakovsky et al. (2015), CIFAR10
and CIFAR100 Krizhevsky et al. (2009). Experiments demonstrate obvious improvements in the
performance compared with the baseline and other methods, e.g., 1.5% on ImageNet. During the
search process, SS optimizes much faster compared with previous automatic methods, and the learned
sampler consists of only 10 hyper-parameters. Further analysis shows that the sampler found by SS
transfers well among neural networks with various architectures and sizes. The contributions of this
paper are summarized as follows: (1) We formulate a search space of sampler consisting of a new
family of functions. The family of functions is decided by a small number of parameters and also
has flexible expression. The reduced dimension facilitates the application of SS on large-scale data
sets. (2) To improve the efficiency of the optimization of the sampler, we smooth the sharp objective
function of the sampler search problem with a carefully designed transform function. (3) We use an
approximation method to approximate the local minima of the sampler efficiently tried by the agent.
This method makes SS fast and capable of improving the performance of models on large data sets.

2 RELATED WORK

Hard-wired Methods. Hard-wired methods have fixed sampling rules and focus on a few particular
problems, e.g., imbalance, noise and training speed up. Each problem needs respective hand-crafted
rules and the designs are based on specific understandings of data. Thus, these methods hardly
generalizes over a wide range of data sets. In Han et al. (2018), the sampling method focuses
on denoising problem, and neglects instances with loss values larger than a gradually increasing
threshold. It needs prior knowledge on the ratio of noisy instances in the data set. For imbalance, Lin
et al. (2017); Wang et al. propose methods to boost the training of imbalanced data by optimizing
the sampling or weighting (a ’soft’ sampling way) of instances, and develop different features as
the signals of imbalance. Importance sampling Ma et al. (2017); Graves et al. (2017) speeds up the
training process by giving larger sampling probabilities to instances with higher loss values, which
does not fit noisy data sets. Curriculum learning (CL) methods Kumar et al. (2010); Jiang et al. (2015)
are also related to our work. It shows that some particular sampling orders benefit training process.

Learning-based Methods. Like recently proposed automated loss function search Li et al. (2019a)
and augmentation policy search methods Lin et al. (2019); Tian et al. (2020), many recent works also
explore automatically learning how to optimize data sampling. They can achieve generalization on
various scenarios. Fan et al. (2017) proposes a RL-based framework to optimize the data sampling in
different training stages under the setting of mini-batch SGD. It models the RL agent as the teacher
to guide the training of the student model. This method requires multiple runs of training from
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scratch, thus does not fit large data sets such as ImageNet. Li et al. (2019b) proposes a similar
RL-based framework to reweight training instances, which can be viewed as a soft sampling method.
Some other related works Ren et al. (2018); Shu et al. (2019) propose differential based methods.
It makes use of the gradients of loss of a completely clear meta dataset, sampling or weighting the
training datum via the inner product between their gradients and meta data gradients. In summary,
the methods in Fan et al. (2017); Li et al. (2019b) require lots of parameters with high computational
costs and needs extra data Ren et al. (2018); Shu et al. (2019). In comparison, our approach is fast,
requires few parameters but no extra data.

Bayesian Optimization. Bayesian Optimization (BO) has shown its great potentials in optimizing the
hyper-parameters of learning tasks. The method in Snoek et al. (2012) first introduces BO to optimize
the hyper-parameters of various tasks, including SVM and regression. FABOLAS Klein et al. (2016)
constructs a BO-based method to simultaneously optimizes computation cost and information gain
w.r.t hyper-parameters of SVM and training data size. It is at most 100 times faster than previous
methods. Recently, NASBOT Kandasamy et al. (2018) explores the usage of BO in neural architecture
search by mathematically defining the distance between two architectures. The distance enables the
design of kernel for BO. In our approach, the use of Bayesian Optimization is not our contribution,
although naive Bayesian Optimization is used for solving our problem. Therefore, the recent advances
in Bayesian Optimization can be also used for our approach.

3 METHOD

We introduce SS in this section. First, we describe the problem of sampler search in a bilevel
optimization framework, consisting of the outer loop and the inner loop. The outer loop uses an agent
to learn to sample the sampling probabilities of training instances and optimizes the performance
of the target model when trained under the sampled sampling probabilities. And the inner loop
minimizes the loss of model parameters on the training set, with sampling probabilities given by
the outer loop. Further, we formulate the sampler, define its search space, and design a transform
function to smooth the curvature of the objective function of the outer loop. Then, we introduce our
agent for the learning of sampling in the outer loop. Finally, we propose a highly efficient method to
approximate the local minima of given sampling probabilities rather than training from scratch.

3.1 PROBLEM FORMULATION

A common practice of training deep neural networks (DNN) is using mini-batch SGD to update the
network parameters. The batches are formed by uniformly sampling from the training set. Sampling
methods usually take different settings where the sampling probability of training instances are
optimized Kumar et al. (2010); Jiang et al. (2015); Ma et al. (2017); Jiang et al. (2019); Needell et al.
(2014). In this work, we focus on finding a static sampling probability which guides the parameters
of target DNN to the local optimum with the best performance on the validation set. We formulate
this problem as follows.

For a target task, e.g., image classification, its training set and validation set are respectively denoted
by Dt and Dv , and the parameters of the target model are denote by w. Each sample xi for xi ∈ Dt

has its corresponding sample probability τ (xi). We define the probability function τ as sampler.
We formulate the optimization of τ as a bilevel problem.

The inner loop learns the network parameters that minimize the expected loss on the target task under
the sampling probability τ given by the outer loop. Denoted by w∗ (τ) the local minima of network
parameters trained with loss L(x;w) and sample probability τ , w∗ (τ) is obtained as follows:

w∗ (τ) = argminEx∼τ [L(x;w)] . (1)

The outer loop uses an agent to search for the best sampler τ . Specifically, the network with
parameters w∗ (τ) obtained from the inner loop is used for searching the sampler τ that has the best
score P (Dv;w

∗ (τ)) on validation set Dv , where P (D;w) is the performance score of parameters
w on a given data set D and P (Dv;w

∗ (τ)) is our objective function. The outer loop problem is
described as:

τ∗ = argmax
τ

P (Dv;w
∗ (τ)) . (2)

Both the outer loop and the inner loop are difficult to solve. The outer loop is a high-dimension
optimization problem, where the optimized sampler τ (xi) has a dimension equal to the number
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of training data. In addition, the objective function P (Dv;w
∗ (τ)) for the agent of the outer loop

encounters a sharpness problem. Further, given a τ from the outer loop, the inner loop needs to train
from scratch with τ to get the local minima w∗ (τ), which involves high computational cost. We
introduce our solutions to the three problems hereinafter.

3.2 SAMPLER FORMULATION

The complexity of the optimization problem increases exponentially with the dimension of τ , which
is the number of training data. However, modern hyper-parameter optimization methods like BO can
hardly handle more than 30 hyper-parameters Brochu et al. (2010). Hence we reduce the dimension
of τ by a simple formulation. The high dimension comes from independence among training samples.
However, we assume that the optimal sampler lies in a more compact subdomain. Instead, we restrict
that the difference in the sampling probabilities of two training instances is bounded by their distance
in the feature space, e.g., the (loss, entropy) space.

Example. As an intuitive example, we consider cropped images in ImageNet Russakovsky et al.
(2015) dataset as samples and define a one-dimension feature space where the feature is the loss
value. Cropped images with the highest loss values have small distance between each other in this
feature space. Further, as we show in section 4, most of them are noisy instances, which should all
be assigned sampling probabilities near 0. It means they also have small sampling probabilities
difference.

Mathematically, the intuition above can be formulated as constraining samplers to satisfy Lipschitz
condition:

|τ (xi)− τ (xj)| ≤ C · ∥f (xi)− f (xj)∥2 , (3)

where ∥f (xi)− f (xj)∥2 is the L2 distance in the space of feature vector f and C is a real positive
number.

Dimension Reduction With the above consideration, we define τ (x) as a multivariate continuous
function of the features of instance x, described by

τ (x) = F (f1 (x) ,f2 (x) , ...fN (x)) , (4)

where F is a multivariate continuous function and fi (x) is i-th feature of example x (i = 1, ..., N ).
The choices of features have been explored in a wide range, e.g., loss in Jiang et al. (2019); Katharopou-
los & Fleuret (2018), and density in Fan et al. (2017). Our choice of features is discussed in the latter
sections.

We consider a family of F which have flexible expression and low dimension. F are formed by:
(1) a univariate piecewise linear function H defined on the period [0, 1], (2) a univariate transform
function T which balances the density of the gradient of instances along the period [0, 1] to smooth the
objective function of the agent and (3) an multivariate aggregation function G (x) which aggregates
information from all features f :

F (f1 (x) ,f2 (x) , ...,fN (x)) = H (T (G (x))) , (5)

G (x) =

N∑
i=1

ci · fi (x), (6)

where ci are real-value coefficients aggregating features and T maps the input G (x) to a value in
the closed interval [0, 1]. The definition of T and the explanation of why it smooths the objective
function of the agent are given in the latter part of this section. To aggregate different features in a
unified scale [0, 1], we use cumulative distribution function cdf of the features:

fi (x) = cdf (fo
i (x)) , (7)

where fo
i denotes the original numerical value of features, e.g., cross entropy loss in classification

with range [0,∞).

The G (x) in Equ. 6 takes a linear aggregation form and projects the whole feature space to a single
dimension, which distinguishes the importance of different instances to the greatest extent. H is a
continuous piecewise linear function because it can fit a wide range of continuous function when the
number of segments is large enough.
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With such definition, F is decided by parameters in functions H , T , and G, much smaller than the
number of the training data.

τ defined by Equ. 4, Equ. 5, Equ. 6, and Equ. 7 satisfies Lipschitz condition when cdf and transform
T are continuous in close definition domains.

Search Space For the univariate piecewise linear function H , we define e0, e1, ..., eS as the positions
of endpoints, and define v0,v2, ...,vS as the values on the endpoints. e0 and eS are fixed as 0 and 1.
Then the feasible domain (search space) of the sampler τ is:

es ≤ ej , vs ∈ [0, 1] , ∀ 0 ≤ s ≤ j ≤ S, (8)
ci ∈ [−1, 1] , ∀ 1 ≤ i ≤ N . (9)

In our implementation, S is 4 and N is 2, resulting in totally only 10 hyper-parameters.

Smooth the Objective Function When the curvature of objective function P (Dv;w
∗ (τ)) is too

large, i.e., with a sharp landscape, agents like BO would need more trials to find the maxima Brochu
et al. (2010). Such sharpness problem exists in our scenario. This sharpness problem is caused by the
imbalance between the gradients of training instances lying in different segments of the piecewise
linear function H . For the function H whose input is t(x) = T (G(x)) and one of its segment
[ei−1, ei], if the instances x with t(x) lying the interval [ei−1, ei] have much larger gradients than
the other intervals, then a little variation of the value vi or vi−1 will cause a large difference on
the overall gradient from the whole training data, which results in large difference in the objective
function P . For example, the worst trained 10% instances of ImageNet contains over 90% gradients
norm of the whole set. It means the curvature of objective function P around τ∗ is likely to be sharp
and the value of P is only distinguishable in a little sub-domain of τ . If the maxima τ∗ has such
sharpness problem, the efficiency of the agent would be reduced as we show in Appendix A.1. To
smooth the objective function, we define the cumulative gradient function cgf :

T (u) = cgf (u) =

∑
xi∈Dt,G(xi)<=u grad (xi)∑

xi∈Dt
grad (xi)

, (10)

where grad (xi) is the gradient norm of xi. It can be easily proved that any two intervals in the
domain of H with equal lengths contain the same amount of total gradient norm, as cgf (u) itself is
the cumulative gradient norm. This design brings the search on sampler optimization problem with
high efficiency. We conduct experiment in Appendix A.1 to verify the necessity of objective function
smoothing via comparing T = cgf and T = cdf .

Static vs. Varying Features In our formulation, τ (x) is a static function, which restricts that the
features do not change in the training process as well. This means a pre-trained model should be used
to produce features for Dt rather than the model currently being trained. The reason is that a model
being trained often forgets and re-memorizes part of Dt Toneva et al. (2018), resulting in jitters and
noises for the features like loss or entropy. Thus we empirically find that fixed features are more
effective than varying features for learning samplers.

3.3 OPTIMIZATION

Bayesian Optimization For simplicity, we define z = [e0, ..., eS ,v0, ...,vS , c1, ..., cN ], and replace
P (Dv;w

∗ (τ)) with P (z) in the latter discussion because τ and z are one-to-one mapped. In the
outer loop, to find maxima z∗ of P with as few trials as possible, we explore the advantage of
Bayesian Optimization Brochu et al. (2010). Bayesian Optimization is an approach to optimize
objective functions that take a long time (e.g., hours) to evaluate. It is best-suited for optimization
over continuous domains with the dimension less than 30, and tolerates stochastic noise in function
evaluations, which are exactly characteristics of our problem. Recent works proved the potential
of Bayesian Optimization (BO) on hyper-parameter tuning of DNN Klein et al. (2016); Snoek
et al. (2012). Given the black-box performance function P : Z → R, BO aims to find an input
z∗ = argmaxz∈Z P (z) that globally maximizes P (z).

BO requires a prior p (P ) over the performance function, and an acquisition function ap : Z → R
quantifying the utility of an evaluation at any z, depending on the prior p. With these ingredients,
the following three steps are iterated Brochu et al. (2010): (1) find the most promising zt+1 ∈
argmax ap (z) by numerical optimization; (2) evaluate the expensive and often noisy function
Qt+1 ∼ P (zt+1)+N

(
0, σ2

)
and add the resulting data point (zt+1, Qt+1) to the set of observations
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Ot = (zj , Qj), j = 1, ..., t; (3) update the prior p (P |Ot+1) and acquisition function ap(P |Ot+1) with
new observation set Ot+1. Typically, evaluations of the acquisition function a are cheap compared to
evaluations of P such that the optimization effort is negligible.

Gaussian Processes Gaussian processes (GP) are a prominent choice for p (P ), thanks to their
descriptive power and analytic tractability Brochu et al. (2010). Formally, a GP is a collection of
random variables, such that every finite subset of them follows a multivariate normal distribution.
To detail the distribution, a GP is identified by a mean function m (often set to m (z) = 0), and a
positive definite covariance function (kernel) k (often set to RBF kernel Brochu et al. (2010)). Given
history observation Ot, the posterior p (P |Ot) follows normal distribution according to the above
definition, with mean and covariance functions of tractable, analytic form. It means we can estimate
the mean and variance of P on a new point zt+1 by marginalize over p (P |Ot). The mean and the
variance denote the expected performance of and the potential of zt+1.

Acquisition Function The role of the acquisition function is to trade off expected performance and
potential by choosing next tried point zt+1. Popular choices include Expected Improvement (EI),
Upper Confidence Bound (UCB), and Entropy Search (ES) Brochu et al. (2010).

In our method, following the popular settings in Brochu et al. (2010), we choose GP with RBF kernel
Brochu et al. (2010) and a constant m function whose value is the mean of performance P (zt) of all
tried samples. For the choice of acquisition function, we use UCB in all our experiments.

Algorithm 1 SS
1: Inputs: Eo (BO steps), Ef (fine-tune epochs), Dt, Dv , f , wshare, BO (the agent)
2: CandidateSamplers = ∅
3: Initialize(BO)
4: for s = 1 : Eo do
5: τ = BO.sample()
6: for e = 1 : Ef do
7: w = TrainForOneEpoch(wshare,τ ,f ,Dt)
8: end for
9: P (τ) = P(w,Dv)

10: BO.Update(τ ,P (τ))
11: CandidateSamplers = CandidateSamplers ∪ {τ}
12: end for
13: Outputs: CandidateSamplers.Top

3.4 LOCAL MINIMA APPROXIMATION

The critical problem of the inner loop is how to get w∗ (τ) at an acceptable computational cost.
Training from scratch is too computationally expensive to be used on a large data set. Hence, we
design a method to obtain an approximation of w∗ (τ) at a limited cost.

First, we focus on the main properties of w∗ (τ): (1) minimizing the expected loss on the train set
with sampler τ , (2) undergoing a complete training process. We assume that weight vectors w with
the two properties are accurate enough to approximate w∗ (τ) so that we can use this approximated
w∗ (τ) to learn τ . Our method initializes the parameters w for different samplers τ with the same
parameters wshare which is learned from a complete training process to meet property (2). After this
special initialization, we fine-tune wshare with the given sampler. For property (1), we refer to recent
works on the memorization of DNN Toneva et al. (2018); Kirkpatrick et al. (2017), which shows
DNN tends to fit the data currently used for training and forget historical training instances. As an
analogy, our experiments show that the parameters fine-tuned from wshare under τ converge to the
same loss level as w∗ (τ) trained from scratch and with enough iterations.

The shared starting point wshare is the weight trained from scratch with uniform sampling. Experi-
ments in Appendix A.1 demonstrate the effectiveness of our approximation method.

The complete process of SS is in Algorithm 1. We use BO to explore Eo samplers. In each step,
BO agent samples the candidate sampler τ . We use the candidate sampler τ to produce probabilities
with the pre-trained feature f for sampling training data. The sampled training data are then used for
fine-tuning the network weight. After the fine-tuning for Ef epochs, BO agent is updated with the
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Methods Noise Rate
0 0.1 0.2 0.3 0.4

Baseline 93.3 / 74.3 88.9 / 67.5 81.8 / 60.7 74.7 / 53.1 64.9 / 45.1
REED 93.4 / 74.3 89.4 / 68.1 83.4 / 62.5 77.4 / 55.2 68.6 / 50.7
MN 93.4 / 74.2 90.3 / 69.0 86.1 / 65.1 83.6 / 59.6 76.6 / 56.9
LR 93.2 / 74.2 91.0 / 70.1 89.2 / 68.3 88.5 / 63.1 86.9 / 61.3
SS 93.8 / 75.2 91.7 / 71.2 90.4 / 69.2 89.7 / 64.4 88.0 / 62.3

Table 1: SS results on CIFAR10 and CIFAR100 comparisons with other methods. The number pair X
/ Y means the Top-1 accuracy on CIFAR10 is X% and on CIFAR100 is Y%.

candidate sampler τ and its performance on fine-tuned parameters, then it produces more accurate
estimations of the better sampler to facilitate the next sampling.

4 EXPERIMENT

In this section, we choose three classification and face recognition tasks as benchmarks to illustrate
the effectiveness of SS: CIFAR10, CIFAR100, ImageNet, and MS1M, including data sets with
both small and large sizes. Due to space limitations, we have included the ablation experiments in
Appendix A.1.

In all experiments, the optimization step Eo is fixed as 40, and the fine-tune epochs Ef are set to 5.
We set the number of segments S as 4 in all cases. We tuned these hyper-parameters by separately
increasing them until negligible improvements are obtained on ImageNet. The features and shared
start points wshare are from the pre-trained models with the same architectures as the target models.
We norm the sum τ to 1 when use it to sample. For the choice of features, we consider the following
two features: (1) Loss: Training loss is frequently utilized in curriculum learning, hard example
mining and self-paced method. It is a practicable discriptor and is usually viewed as signals of
hardness or noise. For our classification benchmarks, we use the Cross Entropy (CE) loss. (2)
Renormed Entropy: The entropy of predicted probabilities is also widely used in current methods. To
decouple it from CE loss, we delete the probability of target label from the probability vector, and
renorm the rest ones in the vector to 1. Then we use the resulted renormed vector to calculate the
entropy:

Er (xi) = −
∑
j ̸=yi

pj∑
j ̸=yi

pj
log

(
pj∑

j ̸=yi
pj

)
, (11)

where pj denotes the predicted probability of the j-th class. A small Er results from a peak in the
distribution over the rest vector, which often implies a misclassification, while a large Er implies a
hard instance.

4.1 CIFAR EXPERIMENT

CIFAR10 and CIFAR100 are two well-known classification tasks. We explore the performance of
our method with the target model ResNet18 on both the original data sets and the data sets with four
ratios of noisy labels, 10%, 20%, 30%, and 40%. When generating noisy labels, we random sample
instances in each class with the given ratios and uniformly change their labels into the rest incorrect
classes. We set batch size as 128 and the L2 regularization as 1e-3. The training process lasts 80
epochs, and the learning rate is initialized as 0.1 and decays by time 0.1 at the 40-th and 80-th epoch.
We adopt mini-batch SGD with Nesterov and set the momentum as 0.9.

To fully explore the effectiveness of our method, we compare them with both heuristic and learning-
based denoising methods, including: (1) REED Reed et al. (2014), is a method developed for
denoising, which changes the training target into a convex combination of the model prediction and
the label. (2) MN, MENTORNET Jiang et al. (2017), utilizes an RNN-based model trained on meta
data. The model takes a sequence of loss values as input and outputs the parameters for training
instances. (3) LR (learning to reweight), is a meta-learning algorithm that learns to reweight training
examples based on the inner products between their gradient directions and the gradient direction
of the meta data set. We do not compare with the previous sampler search method Fan et al. (2017)
because it focuses on speeding up the training but does not improve the final accuracy.
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Results The effectiveness of SS on CIFAR is listed in Tab. 1. It can be observed that SS ranks the
top on the two data sets with different noise rates, showing that our method’s ability in learning the
optimal sampling patterns. Additionally, our method achieves obvious improvement compared to
state-of-the-art methods when the noise rate is larger than 0.2.

Model MBNet-v2 ResNet-18 ResNet-50 ResNet-101 SRNext-50 SRNext-101
Baseline 70.4 / 89.7 70.2 / 89.4 76.3 / 93.1 78.0 / 93.8 78.6 / 93.9 78.9 / 94.4
SS(self) 71.9 / 90.1 71.6 / 89.8 77.7 / 93.0 79.3 / 94.0 79.8 / 94.2 80.0 / 94.6
SS(R18) - 71.6 / 89.8 - - 79.5 / 94.2 79.8 / 94.5
SS(R50) - - 77.7 / 93.0 - 79.6 / 94.2 79.8 / 94.5

Table 2: Comparision of Top-1/5 accuracies of SS and baseline on ImageNet ILSVRC12. “MBNet"
and “SRNext" means MobileNet and SE-ResNext. SS(self), SS(R18) and SS(R50) means the the
sampler is searched on the target model, ResNet-18 and ResNet-50. It is observed that SS has
consistent improvements on Top-1 Acc on all cases, and the performance gain on Top-5 is relatively
less because we only use Top-1 Acc as the objective of sampler search.

Visualization To demonstrate how SS distinguishes corrupted data on the noisy cases, we visualize
both the resulted sampler and the noisy instances on the 40% noise case on CIFAR10. We plot the
distribution of noisy instances over the chosen 2-D feature space (Loss, Er) in Fig. 1(a), and compare
it with the sampling probability under the resulted sampler in the same space in Fig. 1(b). They
show that noisy instances mainly locate in the area with the largest loss and the lowest Er, while the
sampler resulted from SS discards instances in the noisy area. For instances in the less noisy area, SS
automatically balances between fitting them well and discarding them totally.
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Figure 1: A demonstration of the effectiveness of our SS. (a) The density of noisy instances of
noise 40% on CIFAR10 in (Loss,Er) space. (b) The sampling probability of sampler from SS. (a)(b)
show that SS accurately distinguishes the noisy instances and discards them.

4.2 IMAGENET EXPERIMENT

Benefiting from the high efficiency of SS, we implement it on a large classification dataset, ImageNet
ILSVRC12. We conduct experiments on it with models of different sizes, including MobileNet-v2
Sandler et al. (2018), ResNet-18, ResNet-50, ResNet-101 He et al. (2016), SE-ResNext-50, and
SE-ResNext-101 Hu et al. (2018). Because the pipeline of the training of ImageNet often involves
augmentation by random crop, we sample the crops instead of the whole image. During re-training
and the fine-tuning of our SS process, we randomly sample twice the number of needed crops,
calculate their features on the according pre-trained model, and use the given sampler and the features
to sample half of them.

We train the models with SGD with Nesterov, at an initial learning rate 0.1 and a momentum 0.9
with mini-batch size 2048. The learning rate decays 0.1 at the 30-th, 60-th and 90-th epochs, for
a total of 100 epochs. We adopt random crop, horizontal flip, and color jitter, which are common
augmentations widely use for training ImageNet Goyal et al. (2017).

Results The results are listed in Tab. 2. SS consistently improves the performances of different
architectures by 1.1% ∼ 1.5% on top-1 accuracy. The total cost of the sampler searching is much
less than the RL-based sampler search method Fan et al. (2017), which needs hundreds of runs of
complete training.

Transferability A question deserving exploration is the transferability of the resulted sampler of
SS. If the sampler searched on a relative small architecture can generalize to different architectures,
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Figure 2: Visualization of sampler searched on ImageNet ILSVRC12: (a) The cropped images (yellow
boxes) with the least sampling probability in sampler from SS. Most of them are in inappropriate
positions and contain irrelevant objects. (b) The sampling probability of sampler from SS.

much computation cost will be saved. We examine the performance of the optimized sampler of
ResNet-18 and ResNet-50 on SE-ResNext-50 and SE-ResNext-101, shown in Tab. 2. We find that
the performances of the samplers of the small models are comparable with that of target big models,
which implies a possibility of further reduction of search cost.

Visualization It is beneficial to understand what SS learns during the search course. Taking ResNet-
50 as the case, we list part of image crops with the least sampling probabilities for several classes in
figure 2(a). It could be observed that most of the discarded crops are background or irrelevant objects.
Further, we plot the average sampling probability of crops with different levels of loss on a pre-trained
model in figure 2(b). It shows that cropping with loss at around percentile 30% achieves the highest
probability, which is likely to be the so called hard examples. Moreover, the worst learned crops are
almost discarded due to the inappropriate cropping positions.

4.3 FACE RECOGNITION EXPERIMENT

We further apply SS on a face recognition task where the training set is MS1M Guo et al. (2016) and
test set is YTF Sengupta et al. (2016). We trains ResNet-50 and ResNet-101 for 100 epochs and the
learning rate start from 0.1 and drop to 0 with the cosine scheduler. We set momentum to 0.9 and
weight decay to 5e - 4. Results in Tab. 3 implies SS’s generality in improvements among tasks.

Model ResNet-50 ResNet-101
Baseline 97.41 97.54

SS 97.50 97.74

Table 3: Comparision of verification performance % of SS and baseline on train set MS1M and test
set YTF.

5 CONCLUSION

In this paper, an automatic sampler search method called SS is proposed. We describe the sampler
search problem in a bilevel way and construct a sampler search space with a low dimension and
a flexible expression. We design objective function smoothness and local minima approximation
methods separately for the outer and inner loop, achieving a low computational cost of the search.
Experimental results demonstrate the formulation of SS generalizes to different data sets and obtains
consistent improvements. The low computation cost facilitates the SS to boost the target model on
a large dataset ImageNet. Further, the resulted sampler shows a good ability to transfer between
models.
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A APPENDIX

A.1 ABLATION STUDY

In this section, we verify the effectiveness of our designs of the optimization in the outer, and the
inner loops verification can be found in appendices.

A.1.1 INNER LOOP VERIFICATION

A critical question is, to what extent the performance of the approximated local minima is consistent
with the real minima of training from scratch. One of the appropriate metrics is the rank correlation
between them. A high-rank correlation implies that sampler with well-approximated minima also
performs well when training from scratch. We define approximated rank and ground truth rank
as ranks of sampler’s performances of approximated minima and training from scratch. With the
definitions, we listed the following two metrics: (1) SR. The Spearman’s Rank correlation coefficient
Myers et al. (2013) between approximated and ground truth ranks. We calculate it to measure the
correlation. SR ranges from -1 to 1, i.e., completely negative and positive correlation. (2) TR. The
ground truth rank of the top-1 sampler in approximated rank. We use it to show whether SS is good
at finding the top samplers.

We run 5 times of SS with different random seeds on CIFAR10 with 40% noise and use the last
10 samplers in the search to evaluate the correlation. We also randomly generate 5 pairs of ranks
as the baseline of SR. The averages, maxima and minima of the two metrics are listed in Tab. 4.
Although SR is not obviously distinguished from a random baseline, TR is consistent near 1 in all
cases, demonstrating the reliability of SS in ranking top samplers.

Metric Average Max Value Min Value
SR(RD) 0.10 0.49 -0.41
SR(SS) 0.72 0.91 0.43

TR 1.6 3.0 1.0

Table 4: Verification of our local minima approximation method on noise 40% CIFAR10. “RD"
denotes the Spearman’s Rank correlation between random generated sequence pairs.

A.1.2 OUTER LOOP VERIFICATION

To shows the effectiveness of our outer loop optimization, we compare SS with a random search
and a simple reinforcement learning (RL) method Lin et al. (2019); Li et al. (2019a). Further, to
demonstrate how the function cgf in section 3.2 boosts the search efficiency, we set T as cdf for
comparison. Performances of tried samplers under the four settings on the CIFAR10 with 40%
noise are shown in figure 3. RL outperforms random search but is worse than SS with cdf due to
BO’s advantage in estimating the whole landscape of the OF. SS with cgf ranks top, implying the
effectiveness of cgf in smoothing the OF.
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Figure 3: Verification of the efficiency of BO and the effectiveness of cgf in smoothing the OF.
On ImageNet ILSVRC12, SS(cdf ) outperforms RL as its estimation of the whole landscape of OF.
SS(cgf ) optimize faster than SS(cdf ) as it smooths the OF.
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