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ABSTRACT

Chromosomes are the carriers of genetic information. Further understanding their
3D structure can help reveal gene-regulatory mechanisms and cellular functions.
A standard pipeline for reconstructing the chromosome 3D structure first applies
the single-cell Hi-C high-throughput screening method to measure pairwise inter-
actions between DNA fragments at different resolutions; then it adopts computa-
tional methods to reconstruct the 3D structures from these contacts. These include
traditional numerical methods and deep learning models, which struggle with lim-
ited model expressiveness and poor generalization across resolutions. To solve
this issue, we propose InertialGenome, a novel transformer-based framework for
robust and resolution-agnostic chromosome reconstruction. InertialGenome first
adopts the inertial frame for the pose canonicalization. Then, based on such an
invariant frame, it proposes a Transformer with geometry-aware positional encod-
ing, leveraging Nyström estimation. To verify the effect of InertialGenome, we
evaluate our model on two single-cell 3D reconstruction datasets with four resolu-
tions, reaching superior performance over all four computational baselines. In ad-
dition to the structure metrics, we observe that InertialGenome outperforms when
analyzing the function of reconstructed structures on two validation tasks. Finally,
we leverage InertialGenome for cross-resolution transfer learning, yielding up to
a 5% improvement from low to high resolution.

1 INTRODUCTION

The genome encodes the complete set of genetic information within an organism, stored as a full
DNA sequence. This information is packaged into chromosomes, which serve as the carriers of ge-
netic material and compact the DNA into three-dimensional structures. These chromosomes adopt
complex 3D conformations that play essential roles in gene regulation, cell differentiation, and dis-
ease progression (Lieberman-Aiden et al., 2009; Dixon et al., 2012; Rao et al., 2014). Importantly,
such an organization cannot be inferred from the linear DNA sequence alone (Consortium et al.,
2024).

Over the past two decades, diverse experimental techniques have emerged to probe the 3D confor-
mations. Early approaches such as 3C(Dekker et al., 2002), 4C(Simonis et al., 2006), and 5C(Dostie
et al., 2006) enable targeted interrogation of chromatin interactions at specific loci. More recent
genome-wide methods including ChIA-PET(Fullwood et al., 2009), SPRITE(Quinodoz et al., 2022),
GAM(Beagrie et al., 2017), and Hi-C(Belton et al., 2012) provide comprehensive maps of spatial
chromatin contacts across the entire genome. Among them, high-throughput chromosome confor-
mation capture (Hi-C) enables genome-wide profiling of interactions between genomic loci. In
Hi-C, the genome is partitioned into consecutive, non-overlapping segments called bins, with their
length determined by the chosen resolution (e.g., 1 kb, 10 kb, or 250 kb per bin, with higher reso-
lution corresponding to shorter segments). As a result, Hi-C produces a contact matrix that records,
for every pair of bins, the frequency of spatial contacts between their underlying DNA segments,
as illustrated in Figure 1A. Hi-C maps at different resolutions offer complementary insights: high-
resolution maps capture fine local structures but are often sparse and noisy, while low-resolution
maps are denser and more robust, reflecting global organization. We focus on this cross-resolution
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Figure 1: Overview of chromosome 3D reconstruction using Hi-C technology. (A): Experimental
implementation of Hi-C for obtaining contact matrix information. (B): Computational pipeline for
3D structure reconstruction via mathematical modeling or machine learning based on the Hi-C con-
tact matrix.

task by using low-resolution maps as structural priors to guide high-resolution 3D genome recon-
struction.

Following the Hi-C matrix, the next step is to computationally reconstruct the 3D conforma-
tions (Trieu & Cheng, 2017; Oluwadare et al., 2018; Wang & Cheng, 2025). Traditional numerical
methods based on distance geometry, such as ChromSDE (Zhang et al., 2013), miniMDS (Rieber
& Mahony, 2017), and 3DMAX (Oluwadare et al., 2018), are computationally intensive and largely
limited to low-resolution modeling due to data sparsity. To address these issues, deep learning of-
fers an efficient, data-driven alternative. For instance, HiC-GNN (Hovenga et al., 2023) leverages
node embeddings and graph neural networks to predict 3D conformation directly from Hi-C contact
graphs; HiCEGNN (Wang & Cheng, 2025) further incorporates E(3)-equivariance as a model con-
straint. However, these approaches share some key limitations: they rely solely on Hi-C contacts
without incorporating explicit geometric priors (e.g., chromatin principal axes or directional chain
structure). Moreover, the strong symmetry constraints of structures such as HiCEGNN limit model
expression ability, making it difficult to process asymmetric structures (such as anchored loops).

Our Contributions. To tackle this problem, we propose InertialGenome, a novel Transformer-based
framework for 3D chromosome reconstruction. InertialGenome has two main components. (1) In-
ertialGenome performs pose canonicalization. It aligns each chromosome to its inertial frame—a
coordinate system defined by the principal axes of its inertia tensor. This tensor is computed from the
3D point cloud of the chromosome. The alignment removes arbitrary rotations and translations, re-
sulting in a pose-invariant representation. (2) Based on this invariant frame, InertialGenome employs
a geometry-aware positional encoding into the Transformer architecture. The core idea is to project
the bin-wise positions into an imaginary space and use the Nyström method to estimate the pair-
wise distance via inner products. Specifically, Nyström enables efficient low-rank estimation of the
radial basis function (RBF) kernel over 3D coordinates, capturing long-range structural dependen-
cies without computing the full distance matrix. To verify the effectiveness of InertialGenome, we
conduct experiments on two single-cell 3D chromosome reconstruction datasets at four resolutions,
where it consistently outperforms four baselines in both two structure metrics and two functional
validation tasks. Additionally, InertialGenome excels at cross-resolution transfer tasks, reaching up
to a 5% performance improvement.

Related Work. Existing methods for 3D chromosome reconstruction fall into three categories (see
Appendix B): Distance-based methods (e.g., 3DMAX (Oluwadare et al., 2018), LorDG (Trieu
& Cheng, 2017)) convert contacts to distance constraints; Probabilistic approaches (e.g., BACH
(Hu et al., 2013), PASTIS (Varoquaux et al., 2014)) model contact matrices as observations from
spatial distributions; Deep learning methods (e.g., HiC-GNN (Hovenga et al., 2023), HiCEGNN
(Wang & Cheng, 2025)) map interactions to 3D structures via neural networks. However, these
methods have some limitations: they rely on simplistic modeling of contact matrices as the sole
input, lacking deeper structural interpretation, and their model expression ability may be constrained
and limited. To overcome these issues, we propose InertialGenome, a Transformer-based framework
that integrates inertial frame canonicalization and geometry-aware positional encoding, significantly
improving robustness across resolutions.
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2 PRELIMINARIES

The 3D chromosome reconstruction methods typically take the Hi-C contact matrix as input. The
resolution of a Hi-C contact matrix reflects the length of chromosome segments, with higher resolu-
tion corresponding to shorter segments. For example, at 1 kb resolution, each 1,000 base pairs forms
a segment. When applied to the human genome with standard masking of unmappable regions, this
yields approximately 248,947 bins. This underscores the sharp scale differences across resolutions,
with high-resolution 3D reconstruction being far more computationally demanding and challenging.

The reconstruction process consists of two key steps, as shown in Figure 1B. First, the contact
frequencies IFij are converted to spatial distances Dij based on the inverse relationship between
distance and contact frequency (Pombo & Nicodemi, 2014; Barbieri et al., 2012), expressed as
Dij = IF−γ

ij where γ ∈ [0.1, 0.2, . . . , 2]. Second, the 3D coordinates (xi, yi, zi) are inferred from
these distances using either numerical methods or deep learning methods. In the following paper, for
each bin i, we denote by ti the index of the i-th bin in the chromosome, and si = (sxi , syi , szi) ∈ R3

its canonicalized 3D coordinate i.e., pose-normalized via alignment to the chromosome’s principal
axes (see Section 3.1).

Problem formulation. In this work, we are interested in solving the 3D chromosome reconstruction
task. Following the existing paradigm (Hovenga et al., 2023; Wang & Cheng, 2025), the first step
is to apply a numerical method to generate an initial position C∗ ≜ {(x∗

i , y
∗
i , z

∗
i )}Ni=1, where N is

the number of bins (e.g., nodes), from Hi-C contact matrix. Then, our model takes these initial 3D
coordinates C∗ as the input, and the output is an accurately reconstructured 3D coordinates Ĉ ≜
{(x̂i, ŷi, ẑi}Ni=1. Rigorously, we are solving the chrosome 3D reconstruction task as Ĉ = f(C∗).

3 METHOD INERTIALGENOME

In this section, we introduce InertialGenome, a novel Transformer-based framework for robust and
resolution-agnostic chromosome reconstruction. It consists of three key components: inertial frame
canonicalization, geometry-aware positional encoding, and structure-aware fusion. Figure 2 shows
the whole architecture of InertialGenome.

Figure 2: The architecture of InertialGenome. The model takes as input 3D chromosome coor-
dinates reconstructed by numerical methods. It first performs inertial-frame canonicalization to
obtain a pose-invariant representation. Then, based on this invariant frame, InertialGenome applies
a Transformer with geometry-aware positional encoding, leveraging Nyström estimation, to process
the data. The framework then outputs stable 3D chromosome structures.

3.1 INERTIAL FRAME CANONICALIZATION

To achieve pose-invariant representation of 3D chromosome structures, we implement an iner-
tial frame canonicalization method, with the following steps: (1) Centroid translation: c̄ =
1
N

∑N
i=1 ci, where ci ∈ C∗. It will adjust position relative to the center c′i = ci− c̄. (2) Inertia ten-

sor computation: We estimate the normalized inertia tensor as Î = 1
N

∑N
i=1

(
∥c′i∥2I3 − c′i(c

′
i)

T
)
,

where I3 is the 3 × 3 identity matrix. (3) Principal axes alignment: We perform eigen-
decomposition of the inertia tensor Î = LΛLT , where Λ = diag(λx, λy, λz) contains the eigenval-
ues with λx ≥ λy ≥ λz . The columns of L are the corresponding orthonormal eigenvectors lx, ly, lz ,
which define the principal axes in descending eigenvalue order. (4) Chirality correction: We select
the farthest point cmax = argmaxi ∥c′i∥ and map it into the principal-axis frame: p = L⊤cmax,
where p = (px, py, pz) is the coordinate of the farthest point expressed in the principal-axis basis.
We then adjust the first two axes as lx ← sign(px)lx, ly ← sign(py)ly , and enforce a right-handed
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system by lz = lx × ly . Then, the canonical transform is R = [lx, ly, lz]
T . Pose-invariant coor-

dinates are obtained as si = Rc′i, where si ∈ S, S ≜ {sxi
, syi

, szi}Ni=1. Although chromosome
structures naturally occupy 3D space, reconstruction algorithms may yield degenerate cases (e.g.,
nearly coplanar nodes). We discard such samples before training. After applying the canonical
transform, each coordinate is represented as

si = R c′i, S ≜ {si}Ni=1 ⊂ R3. (1)

3.2 GEOMETRY-AWARE POSITIONAL ENCODING

In 3D chromosome structure modeling, we need a position embedding method that can maintain
both absolute position information and the relative distance when calculating the inner product, e.g.,
RT

sx1
,sy1 ,sz1

Rsx2 ,sy2 ,sz2
= Rsx1−sx2 ,sy1−sy2 ,sz1−sz2

.

(1) Geometric Position Encoding with RoPE. Inspired by Su et al. (2024), we extend Rotary Po-
sition Embedding (RoPE) to 3D Euclidean space. To achieve rotation-equivariant attention while
maintaining pairwise distance awareness, we decompose 3D spatial encoding into three indepen-
dent 2D rotary subspaces corresponding to the (x, y), (y, z), and (z, x) planes. This yields a 6-
dimensional geometric embedding structure, organized into three pairs, each pair encoding angular
information along one coordinate axis.

The 3D rotary position encoding is applied to the projected query and key vectors. Let qraw,kraw ∈
Rd denote the query and key vectors after linear projection but before positional encoding, associated
with 3D coordinate si = (sxi

, syi
, szi). We define the rotation operator Rsx,sy,sz as:

Rsx,sy,sz q
raw =


qraw
0
qraw
1
qraw
2
qraw
3
qraw
4
qraw
5

⊙

cos(sxθ0)
cos(sxθ0)
cos(syθ0)
cos(syθ0)
cos(szθ0)
cos(szθ0)

+


−qraw

1
qraw
0
−qraw

3
qraw
2
−qraw

5
qraw
4

⊙

sin(sxθ0)
sin(sxθ0)
sin(syθ0)
sin(syθ0)
sin(szθ0)
sin(szθ0)

 , (2)

where⊙ denotes element-wise multiplication. The final geometry-aware query and key are given by
q = Rsiq

raw and k = Rsik
raw, respectively. This formulation ensures that the inner product satisfies

the relative positional property: (Rs1q
raw)⊤(Rs2k

raw) = (qraw)⊤Rs1−s2k
raw, which encodes 3D

spatial relationships directly into attention scores. A detailed derivation is provided in Appendix C.

We implement three RoPE modes that differ in how the input embedding is processed before apply-
ing 3D rotary position encoding:

• Selective: The input embedding xi ∈ Rd is split into two halves. The first half (spatial part)
is linearly projected and then transformed by 3D RoPE; the second half (feature part) is kept
unchanged and directly concatenated.

• Separate: The two halves are independently linearly projected, but only the first half is connected
through 3D RoPE.

• Full: The entire embedding is linearly projected as a vector and fully transformed by 3D RoPE.

Input representation. Each token ti corresponds to a genomic bin with known 3D coordinates
si = (sxi

, syi
, szi) ∈ R3. The total number of bins for a chromosome at a given resolution defines

the vocabulary size. We map each bin ID ti ∈ {0, . . . ,vocab size − 1} to a learnable semantic
embedding Etoken(ti) ∈ Rdt via a matrix Wtok ∈ Rvocab size×dt .

The initial token representation is formed by concatenating this semantic embedding with the raw
spatial coordinates:

xi =
[
Etoken(ti); si

]
∈ Rd, (3)

Let x(s)
i and x

(f)
i denote the spatial and feature halves of xi, each of dimension d/2. The 3D rotary

position embedding is applied as follows:

RoPE-3D(xi) =


[
Rsi

(
W ropex

(s)
i

)
; x

(f)
i

]
(Selective)[

Rsi

(
W ropex

(s)
i

)
; W featx

(f)
i

]
(Separate)

Rsi

(
Wxi

)
(Full)

, (4)
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where W rope,W feat,W are learnable linear projections, and Rsi = Rsxi
,syi ,szi

is the 6D rotary
transformation defined in Equation (2).

(2) Nyström Approximation for Structure Tokenization. While RoPE-3D in Equation (2) effec-
tively encodes absolute and relative spatial positions, its axis-wise rotation mechanism is inherently
limited in modeling global pairwise distance relationships, such as long-range structural dependen-
cies or non-local geometric patterns. To address this, we incorporate a Nyström-based feature en-
coder (Williams & Seeger, 2000; Yang et al., 2012) that explicitly captures low-rank approximations
of the radial basis function (RBF) kernel over 3D coordinates.

Formally, let si ∈ R3 denote the canonicalized coordinate of token i. We define an RBF kernel
between any two points as:

κg(si, sj) = exp

(
−∥si − sj∥2

2σ2
g

)
,

where σg > 0 is the bandwidth of the g-th Gaussian kernel, and we consider a set of G scales
{σg}Gg=1. The Nyström method proceeds as follows:

Step 1: Anchor point selection. We fix a set of m anchor points {uk}mk=1 ⊂ R3, sampled uniformly
from the 3D space. For each scale σg , we construct the anchor–anchor Gram matrix Ag ∈ Rm×m

with entries:

[Ag]kℓ = κg(uk,uℓ) = exp

(
−∥uk − uℓ∥2

2σ2
g

)
.

To ensure numerical stability, we compute the Cholesky decomposition Ag = OgO
⊤
g , where Og ∈

Rm×m is a lower-triangular matrix, and precompute O−⊤
g for later use.

Step 2: Token–anchor similarity. For each token coordinate si, we compute its RBF similarities
to all anchors under scale σg:

Vg,i =
[
κg(si,u1), κg(si,u2), . . . , κg(si,um)

]
∈ Rm.

Step 3: Nyström projection. We project Vg,i using the precomputed inverse factor:

k̃g,i = Vg,i O
−⊤
g ∈ Rm.

This yields a low-rank approximation of the full kernel embedding.

Step 4: Multi-scale fusion and compression. We concatenate the projected features across all
scales:

k̃i =
[
k̃1,i; k̃2,i; . . . ; k̃G,i

]
∈ RGm,

and apply a learnable linear projection fθ : RGm → Rm to obtain the final Nyström structure
embedding:

Enyström(si) = fθ
(
k̃i
)
. (5)

This embedding encodes multi-scale, low-rank geometric information about si and is fused with
token and positional representations in the subsequent transformer layers.

3.3 STRUCTURE-AWARE FUSION

We fuse the geometry-aware positional encoding and Nyström structure features into a unified Trans-
former input.

Input Representation. For each token i, we construct the initial embedding by concatenating three
geometric components: (1) the base position embedding xi, (2) the normalized canonical coordinate
si

∥si∥ , which encodes directional information, and (3) the Nyström structure embedding Enyström(si).
This yields:

h0
i = Concat

(
xi,

si
∥si∥

, Enyström(si)
)
∈ Rdin . (6)

Position-Augmented Transformer Input. We then add the geometry-aware positional encoding
RoPE-3D(xi) to inject relative spatial context, followed by dropout:

H0 = Dropout
(
h0 + RoPE-3D(xi)). (7)

5
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Transformer Backbone. The sequence H0 is processed by L stacked Transformer layers:

Hl+1 = TransformerLayerl(Hl), l = 0, . . . , L− 1. (8)

The final representation HL aggregates multi-scale geometric and structural information, and is used
to predict the 3D coordinates of chromosome bins.

3.4 LEARNING OBJECTIVE

The overall training objective is a hybrid loss that combines a structural-preserving term and a value-
weighted regression term:

Ltotal = αLstruct + β Lweighted mse, β = 1− α, (9)

where α ∈ [0, 1] balances the two components.

Structural-learning loss. Let D = {Di,j} denote the input pairwise heterogeneity (derived from
the contact-derived distance representation) and let B = {bi} be the predicted 3D coordinates with
bi ∈ R3. For each bin i we define neighborhood selection probabilities in input and output spaces:

pj|i =
exp(−Di,j)∑
k ̸=i exp(−Di,k)

, qj|i =
exp(−∥bi − bj∥2)∑
k ̸=i exp(−∥bi − bk∥2)

. (10)

To align neighborhood structure between input and output we use a bidirectional Kullback–Leibler
(KL) divergence (Gong et al., 2023) objective:

Lstruct = λKL(P∥Q) + (1− λ)KL(Q∥P ), (11)

where KL(P∥Q) =
∑

i

∑
j ̸=i pj|i log

pj|i
qj|i

and λ ∈ [0, 1] trades off false positives and misses (use
λ = 0.1 by default). Full derivations are given in Appendix D.1.

Value-weighted MSE. While structural loss preserves global topology, precise distance prediction
requires an additional term. Hi-C data exhibits higher reliability and biological significance for
smaller distances (high-intensity contacts). We thus introduce a weighted mean squared error (MSE)
(Wang et al., 2024) that assigns adaptive weights based on true value ranks rather than treating all
errors equally. For a batch with n distinct distances, we compute weights wi for each value (see
Appendix D.2). Then, the weighted MSE is:

Lweighted mse =
∑
v∈V

wv ·
1

Nv

∑
(i,j)∈Iv

(
yij − ŷij

)2
, (12)

where V indexes distinct true distance values in the batch, Iv are the pairs with true value v, Nv =
|Iv|, yij is the target distance and ŷij is the predicted distance.

3.5 STABILITY OF INERTIAL FRAME ALIGNMENT

During our experiments we observed that inputs from physics- or regularization-based reconstruc-
tions (e.g., 3DMAX, LorDG) consistently benefited from inertial-frame alignment, whereas contact-
matrix eigendecomposition methods (e.g., Gram) showed little or no gain. To explain this contrast,
recall that the input coordinates are defined as C∗ = {(x∗

i , y
∗
i , z

∗
i )}Ni=1 ∈ RN×3. We define its

sample covariance

ΣC∗ =
1

N
(C∗)⊤C∗, (13)

which admits eigenvalues µ1 ≥ µ2 ≥ µ3 and orthonormal eigenvectors u1, u2, u3 corresponding to
the principal axes. The spectral gap

δ(C∗) = µ1 − µ2 (14)

quantifies how well the first principal direction is separated from the remainder.

Given two coordinate sets C∗(1) and C∗(2), we measure the angular difference of their leading
inertial axes by

θPC1

(
C∗(1),C∗(2)) = arccos

( ∣∣u1(C
∗(1))⊤u1(C

∗(2))
∣∣ ). (15)
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The stability of the principal directions under perturbations is controlled by the Davis–Kahan theo-
rem (Davis & Kahan, 1970). Let A be a symmetric matrix with leading eigenvector u and spectral
gap δ. If Ã = A+∆A has leading eigenvector ũ, then

sin∠
(
u, ũ

)
≤ ∥∆A∥2

δ
, (16)

where ∥ · ∥2 denotes the spectral norm. Applied to ΣC∗ (Equation (13)), Equation (16) shows that
when the spectral gap δ(C∗) (Equation (14)) is small, even minor perturbations in the data can
rotate the leading axis significantly. Conversely, a large gap yields stable inertial axes and reliable
alignment. This analysis and explanation can be found in Appendix E.

4 EXPERIMENTS

Datasets. We evaluated our method on two single-cell Hi-C datasets: human frontal cortex cell
(Wang & Cheng, 2024) and B-Lymphocyte cell (Oluwadare et al., 2020). Both datasets followed the
chromosome partitioning scheme of Wang & Cheng (2025), with training sets (frontal cortex: chr
1,3,5,7,8,9,11,13,15,16,17,19,21,22; B-Lymphocyte: adds chr 23), validation sets (chr 2,6,10,12 for
both), and test sets (chr 4,14,18,20 for both).

Baselines and Implementation. We compare our method with both classical numerical and deep
learning baselines for 3D chromosome structure reconstruction. The classical numerical methods
include 3DMax (Oluwadare et al., 2018) and LorDG (Trieu & Cheng, 2017), while the deep learning
baselines include HiC-GNN (Hovenga et al., 2023) and HiCEGNN (Wang & Cheng, 2025). All
baselines were run with their default configurations as provided in the respective source codes.

Metrics. We evaluate 3D chromosome reconstruction using two metrics: (1) Distance Spearman
correlation coefficient (dSCC) (Oluwadare et al., 2018) measures rank correlation between pre-
dicted and ideal distances (range [-1,1]); higher values indicate better structural quality and scale
invariance. (2) Distance root mean square error (dRMSE) (Varoquaux et al., 2014) quantifies
absolute distance errors; lower values denote higher accuracy and similarity to ideal distance map.

4.1 MAIN RESULTS

Reconstruction performance on Frontal cortex cell dataset. Table 1 compares six methods on
single-cell Hi-C data. Our two variants, IG-3DMAX and IG-LorDG, consistently outperform all
baselines in both dSCC and dRMSE across all resolutions. For example, at 320 kB, IG-3DMAX
achieves a dSCC of 0.9006, significantly higher than HiCEGNN (0.5804) and 3DMAX (0.2780),
while reducing dRMSE to 0.1697 from 0.2744. Similar improvements are observed at other reso-
lutions, with dSCC gains often exceeding 50% and dRMSE reductions of 30–40%. These results
demonstrate that combining inertial-frame canonicalization with our Transformer yields state-of-
the-art accuracy and stronger resolution-agnostic performance compared to equivariant and numer-
ical baselines. Traditional numerical methods (3DMAX, LorDG) perform substantially worse, with
dRMSE values orders of magnitude higher, due to the lack of direct di stance supervision. Gram-
matrix inputs also yield poor performance in our pipeline; we analyze this instability in Appendix E.

Reconstruction performance on B-Lymphocyte cell dataset. Table 5 compares six methods on
single-cell Hi-C data. IG-3DMAX achieves the best dSCC and lowest dRMSE across all four res-
olutions, demonstrating robust superiority. For example, at 1MB it attains a dSCC of 0.9209 and
dRMSE of 0.0822, outperforming all baselines. Similar advantages are observed at finer resolutions
(500KB, 250KB, 100KB), with dSCC consistently above 0.87 and dRMSE below 0.08. IG-LorDG
shows competitive dSCC at 500KB (0.8367) and 250KB (0.8440), but weaker performance at other
resolutions. This variation stems from LorDG’s inherent reconstruction limitations on this dataset
(e.g., high dRMSE 107.7091 at 1MB), which constrain IG-LorDG’s input quality. In contrast, IG-
3DMAX’s stability highlights our framework’s resilience to input variations, delivering state-of-the-
art accuracy regardless of baseline method performance (see Appendix F).
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Table 1: Performance comparison of six methods on 3D chromosome structure reconstruction from
single-cell Hi-C data (Frontal cortex cell test set). Metrics report distance-based Spearman correla-
tion (dSCC ↑) and root mean square error (dRMSE ↓) at four resolutions. Best results in bold.

Method 320KB 160KB 80KB 40KB

dSCC↑ dRMSE↓ dSCC↑ dRMSE↓ dSCC↑ dRMSE↓ dSCC↑ dRMSE↓
3DMAX 0.2780 23.1587 0.2302 23.3439 0.1774 23.9174 0.1754 24.6538
LorDG 0.6681 92.6582 0.6997 102.1392 0.6342 100.0507 0.5841 96.1048

HiC-GNN 0.2432 0.8366 0.2077 0.9083 0.1370 0.9352 0.0915 0.9456
HiCEGNN 0.5804 0.2744 0.5351 0.3550 0.3288 0.4158 0.2506 0.4317

IG-3DMAX 0.9006 0.1697 0.8577 0.1835 0.7727 0.2192 0.7187 0.2410
IG-LorDG 0.8713 0.1544 0.8056 0.1997 0.6835 0.2398 0.6036 0.2574

(1) 3DMAX vs. IG-3DMAX (2) LorDG vs. IG-LorDG

Figure 3: Learning rate ablation: performance at four resolutions for five learning rates. Red: dSCC
(left axis). Blue: dRMSE (right axis).

4.2 ABLATION STUDIES

Learning rate robustness. We evaluate our method’s robustness to input quality by varying the
learning rates {1, 0.5, 0.1, 0.05, 0.01} of 3DMAX and LorDG on Frontal cortex data. Input coordi-
nates generated under each setting are evaluated at four resolutions using dSCC (↑) and dRMSE (↓).
Figure 3 shows: (1) 3DMAX vs. IG-3DMAX, (2) LorDG vs. IG-LorDG. Our IG variants maintain
consistently high dSCC while reducing dRMSE to 10−1 scale across all learning rates. Baselines
show significant dRMSE fluctuations (up to 102 scale) and unstable performance. This demonstrates
InertialGenome’s superior stability and accuracy regardless of input learning rate and resolution.

Loss Components We analyze the contribution of the structural stability loss (Lstruct) versus the
coordinate regression loss (Lweighted mse) by varying their weighting ratio α/β in the total objective
(see Appendix G.1).

Component ablation. We assess the impact of key design choices by removing inertial-frame
alignment, RoPE-3D, or Nyström encoding from our full model (see Appendix G.2).

4.3 CASE STUDIES

A/B compartment validation. We validate the biological plausibility of our reconstructed struc-
tures using A/B compartment analysis (see Appendix H.1). Appendix Figure 6 compares dis-
tance distributions for IG-3DMAX and HICEGNN. IG-3DMAX shows significantly shorter intra-
compartment (A–A, B–B) than inter-compartment (A–B) distances (pA = 0.0001, pB = 0.0038),
confirming expected compartmental organization. In contrast, HICEGNN shows no significant
A–A/A–B separation (pA = 0.4360) and weak B–B separation (pB = 0.0000), indicating poor
compartmentalization. These results demonstrate that IG-3DMAX better captures spatial compart-
ment segregation than HICEGNN.
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Figure 4: Intra- vs. inter-TAD Euclidean distances for IG-3DMAX (left) and HiCEGNN (right).
Lower intra-TAD distances indicate stronger spatial clustering.
Table 2: Cross-resolution transfer results. Bold: improvement over same-resolution original model;
underline: HICEGNN transfer improvement.

Method 320kb→ 160kb 320kb→ 80kb 320kb→ 40kb

dSCC ↑ dRMSE ↓ dSCC ↑ dRMSE ↓ dSCC ↑ dRMSE ↓
HICEGNN-Transfer 0.5815 0.2997 0.4080 0.4108 0.2343 0.3840
HICEGNN-Original 0.5351 0.3550 0.3288 0.4158 0.2506 0.4317

IG-3DMAX-Full 0.7455 0.3159 0.6766 0.3464 0.6528 0.3588
IG-3DMAX-Selective 0.7399 0.3089 0.6698 0.3447 0.6467 0.3567
IG-3DMAX-Separate 0.7434 0.3057 0.6714 0.3392 0.6480 0.3580
IG-3DMAX-Original 0.7332 0.3071 0.6451 0.3328 0.6132 0.3374

TAD domain consistency validation. We assess whether bin within the same TAD are spatially
closer than those across TADs (see Appendix H.2). Figure 4 shows intra- vs. inter-TAD distances
for IG-3DMAX and HiCEGNN. IG-3DMAX yields consistently shorter intra-TAD distances across
chromosomes 4, 14, 18, and 20, with intra/inter ratios of 0.76–0.80 and highly significant p-values
(Appendix Table 8). HiCEGNN shows higher ratios (0.91–0.99) and weaker significance (e.g.,
p = 0.159 for chr20), indicating poor domain compaction. These results confirm that IG-3DMAX
better captures TAD-level spatial organization than HiCEGNN.

Cross-resolution transfer learning. We evaluate transfer from 320kb to finer resolutions (160kb,
80kb, 40kb). Table 2 shows IG-3DMAX consistently outperforms both its original model and
HICEGNN variants in dSCC and dRMSE. At higher resolutions (80kb, 40kb), IG-3DMAX main-
tains stable dRMSE ( 10−2) and improves dSCC by 5%, while HICEGNN degrades (dSCC drops
at 40kb). Our gains stem from RoPE and inertial-frame alignment, which preserve spatial rela-
tions across scales. HICEGNN lacks such geometric adaptation, leading to unstable performance.
IG-3DMAX demonstrates robust, resolution-agnostic reconstruction, with advantages magnified at
finer resolutions.

5 CONCLUSION

We presented InertialGenome, a Transformer-based framework for robust, resolution-agnostic 3D
chromosome reconstruction. It uses inertial-frame canonicalization for pose invariance and a
geometry-aware Transformer with Nyström positional encoding to capture long-range interactions
efficiently. Experiments on two single-cell datasets across four resolutions show that InertialGenome
consistently outperforms classical (3DMAX, LorDG) and deep learning (HiC-GNN, HiCEGNN)
methods in both structural accuracy and functional validation. Our cross-resolution strategy further
boosts high-resolution performance by up to 5%, demonstrating strong generalization and biological
plausibility.

By decoupling physical constraints from architecture, InertialGenome offers a flexible alternative to
SE(3)-equivariant models, paving the way for scalable 3D genome modeling. Future work will in-
tegrate multi-modal genomic data to enhance reconstruction robustness across diverse experimental
conditions.
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REPRODUCIBILITY STATEMENT
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A THE USE OF LARGE LANGUAGE MODELS

Answer: In the preparation of this work, the authors used large language models (LLMs) for two
specific purposes: (1) to refine and polish English language expression, and (2) to assist in the
formulation and typesetting of mathematical equations in LaTeX. All scientific content, research
design, analysis, and conclusions remain solely the responsibility of the authors.
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B RELATED WORK

B.1 DISTANCE AND CONTACT CONSTRAINED OPTIMIZATION METHODS

Distance-based methods rely on the assumption that genomic loci closer in the one-dimensional
sequence are also spatially proximal in three dimensions. The central idea is to exploit the inverse
relationship between Hi-C contact frequency and physical distance, thereby transforming the contact
matrix into a distance matrix and reformulating the reconstruction task as inferring 3D coordinates
from pairwise distances. A variety of algorithms adopt this paradigm, including miniMDS (Rieber
& Mahony, 2017), 3DMax (Oluwadare et al., 2018), ChromSDE (Zhang et al., 2013), Chromo-
some3D (Adhikari et al., 2016), ShNeigh1 (Li et al., 2020), LorDG (Trieu & Cheng, 2017), and
others. These methods aim to faithfully recover the underlying geometric distances. For example,
3DMax (Oluwadare et al., 2018) assumes that Hi-C data follow a Gaussian distribution and that
contact counts are independent given the structure, defining a log-likelihood objective to identify
the most probable conformation. LorDG (Trieu & Cheng, 2017), in contrast, employs a nonlinear
Lorentzian function to enforce structural consistency while improving robustness to noisy distance
constraints.In contrast, contact-based methods (Meluzzi & Arya, 2013; Trieu & Cheng, 2014; Ab-
bas et al., 2019) directly translate interaction frequencies (IFs) into spatial constraints without first
converting them into distances. For example, GEM (Abbas et al., 2019) enforces distance thresholds
between chromosome segments and incorporates biophysical feasibility to reconstruct 3D structures.

B.2 PROBABILITY BASED METHODS

Probabilistic methods typically assume that the global 3D structure underlies the observed contact
map and formulate chromosome reconstruction as a Bayesian inference or maximum likelihood
problem. In this framework, the contact matrix is modeled as data generated from specific prob-
ability distributions, with representative approaches including BACH (Hu et al., 2013), MCMC5C
(Rousseau et al., 2011), PASTIS (Varoquaux et al., 2014), PGS (Hua et al., 2018), and CHROM-
STRUCT 4 (Caudai et al., 2018). For instance, MCMC5C (Rousseau et al., 2011) employs a Gaus-
sian prior and uses Markov Chain Monte Carlo (MCMC) sampling to infer spatial coordinates from
the posterior distribution of interaction frequencies. BACH (Hu et al., 2013) assumes a Poisson
distribution for contact counts and applies MCMC to sample chromosome conformations. PASTIS
(Varoquaux et al., 2014), in contrast, optimizes spatial coordinates by maximizing the likelihood
under the assumption that contact frequencies follow a Poisson distribution conditioned on 3D po-
sitions.

B.3 DEEP LEARNING BASED METHODS

Unlike traditional distance and probability-based approaches, deep learning offers a fundamentally
different paradigm for reconstructing 3D chromosome structures from Hi-C data. HiC-GNN (Hov-
enga et al., 2023) pioneered this line of work by applying graph convolutional networks to capture
neighborhood structures in Hi-C interaction graphs, directly inferring 3D conformations from large-
scale data. Recently, HiCEGNN (Wang & Cheng, 2025) extended this idea by employing an SO(3)-
equivariant graph neural network (EGNN) to account for translational and rotational symmetries,
enabling accurate prediction of the 3D coordinates of genomic loci. These graph-based deep learn-
ing approaches demonstrate not only the feasibility but also the advantages of deep learning for 3D
genome modeling: they are faster and more straightforward than traditional optimization methods,
and they can leverage large Hi-C datasets to capture common structural patterns often missed by
conventional approaches. Building on this line of work, we propose a new deep learning frame-
work. In contrast to existing graph-based methods, our approach demonstrates that a Transformer
architecture can provide superior modeling capacity for 3D chromosome structure prediction.

C DERIVATION OF 3D GEOMETRIC POSITION EMBEDDING

We aim to extend the rotary position embedding (RoPE) mechanism to 3D Euclidean space for
chromosome structure modeling. The goal is to design a geometric position embedding such that
the relative rotation between two positions satisfies:

R⊤
x1,y1,z1Rx2,y2,z2 = Rx1−x2,y1−y2,z1−z2 . (17)
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To achieve this, we first recall that any imaginary number z = a + bi can be written in polar form
as:

z = r cos θ + ir sin θ = reiθ, (18)
where r = |z| and θ = arg(z). This can further be expressed in matrix exponential form using the
identity:

r exp(θJ) ≡ r exp(θ) · J, (19)

with J =

[
0 −1
1 0

]
, which satisfies J2 = −I , J3 = −J , J4 = I . Thus,

r exp(θJ) = r

∞∑
n=0

(θJ)n

n!
= r

(
I + θJ − θ2

2!
I − θ3

3!
J + · · ·

)
. (20)

Grouping terms by even and odd powers:

r exp(θJ) = r

( ∞∑
n=0

(−1)nθ2n

(2n)!
I

)
+ r

( ∞∑
n=0

(−1)nθ2n+1

(2n+ 1)!
J

)
(21)

= r cos θ · I + r sin θ · J (22)

= r

[
cos θ − sin θ
sin θ cos θ

]
. (23)

Hence, the 2D rotation matrix can be written as Rm = exp(mJ), and it follows that:

R⊤
mRn = exp(−mJ) exp(nJ) = exp((n−m)J) = Rn−m. (24)

Now, we generalize this to 3D. We define a 3D rotation operator Rx,y,z as the exponential of a
skew-symmetric matrix:

Rx,y,z = exp

θ


0 −x 0 0 0 0
x 0 0 0 0 0
0 0 0 −y 0 0
0 0 y 0 0 0
0 0 0 0 0 −z
0 0 0 0 z 0



 , (25)

which decomposes into three independent 2D rotations along the (x, y), (y, z), and (z, x) planes.

Expanding this matrix exponential yields:

Rx,y,z =


cosxθ − sinxθ 0 0 0 0
sinxθ cosxθ 0 0 0 0
0 0 cos yθ − sin yθ 0 0
0 0 sin yθ cos yθ 0 0
0 0 0 0 cos zθ − sin zθ
0 0 0 0 sin zθ cos zθ

 . (26)

When applied to a 6-dimensional token embedding q = [q0, q1, q2, q3, q4, q5]
⊤, we obtain:

Rx,y,zq =


q0
q1
q2
q3
q4
q5

⊙

cosxθ0
cosxθ0
cos yθ0
cos yθ0
cos zθ0
cos zθ0

+


−q1
q0
−q3
q2
−q5
q4

⊙

sinxθ0
sinxθ0
sin yθ0
sin yθ0
sin zθ0
sin zθ0

 , (27)

where θ0 is the base frequency (e.g., 10000−2/6), and ⊙ denotes element-wise multiplication.

This construction ensures that the inner product satisfies:

(Rx1,y1,z1q)
⊤(Rx2,y2,z2k) = q⊤Rx1−x2,y1−y2,z1−z2k, (28)

as required. Therefore, our 6D geometric embedding naturally captures relative spatial relationships
through rotational invariance.
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D DETAILED LOSS FUNCTIONS

D.1 STRUCTURAL-LEARNING LOSS

Let the spatial distance representation be

D = {D1, D2, ..., Dn}, Di = {Di,1, Di,2, ..., Di,n}, (29)

and the 3D coordinate representation be

S = {S1, S2, ..., Sn}, Si = (xi, yi, zi). (30)

Neighborhood Probability Distributions. Based on heterogeneity between genomic bins, the
probabilities are:

pj|i =
exp(−Dij)∑

k ̸=i exp(−Di,k)
, qj|i =

exp(−∥si − sj∥2)∑
k ̸=i exp(−∥si − sk∥2)

, (31)

where ∥si − sj∥2 is the squared Euclidean distance between bins i and j.

Bidirectional KL Divergence. Let P = {P1, ..., Pn} be the distance distribution and Q =
{Q1, ..., Qn} the 3D-space distribution. We define

KL(P∥Q) =
∑
i

∑
j ̸=i

pj|i log
pj|i

qj|i
, (32)

KL(Q∥P ) =
∑
i

∑
j ̸=i

qj|i log
qj|i

pj|i
. (33)

Balancing false positives and misses via parameter λ, the final structural-learning loss is:

Lstruct = λKL(P∥Q) + (1− λ)KL(Q∥P )

= λ
∑
i

∑
j ̸=i

pj|i log
pj|i

qj|i
+ (1− λ)

∑
i

∑
j ̸=i

qj|i log
qj|i

pj|i
. (34)

D.2 VALUE-WEIGHTED MSE LOSS

To emphasize smaller distances (high-intensity contacts), we weight the MSE by ranks. For a batch
with n distinct true distances, the weight for each value is computed as:

wi =
rank(i)

n(n+ 1)/2
, (35)

where rank(i) is the ascending rank order of value i (smallest value has rank 1 and receives the
highest weight).

The final weighted MSE loss is:

Lweighted-mse =
∑

i∈values

wi ·
∑

(yi − pi)
2

Ni
, (36)

where Ni is the frequency of true value i in the current batch.

By combining Equation (34) and Equation (36), our model simultaneously learns accurate local
distances and a consistent global structure, enabling more accurate and robust 3D chromosome
reconstruction.

E DERIVATIONS FOR INERTIAL ALIGNMENT STABILITY

We summarize here the derivation and the empirical checks that complement the main text.

Notation. C ∈ RN×N denotes the contact matrix, D = f(C) its corresponding distance matrix ob-
tained through the monotone transform f(·), H = I− 1

N 11⊤ the centering matrix, B = − 1
2HD2H
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the Gram matrix, and X ∈ RN×3 the centered 3D coordinates whose sample covariance is
ΣX = 1

NX⊤X .

First-order perturbation. Let ∆C be a small perturbation of C. By Taylor expansion of f we have
to first order

∆D ≈ f ′(C) ◦∆C.

Consequently, the Gram perturbation is

∆B ≈ −H (D ◦∆D)H.

Taking operator norms and using ∥H∥2 = 1 yields the bound

∥∆B∥2 ≲ ∥D∥∞ ∥f ′(C)∥∞ ∥∆C∥F .

Thus the size of ∆B scales linearly with the contact perturbation norm and with the current dis-
tances.

Effect on principal components. Let u1 be the leading eigenvector of B and ũ1 that of B +∆B.
By the Davis–Kahan theorem (Equation (16) in the main text) we have

sin∠(u1, ũ1) ≤
∥∆B∥2
δB

,

where δB is the spectral gap of B (difference between its first and second eigenvalues). Hence, even
very small perturbations of C can produce large rotations of the leading direction whenever δB is
small; conversely, a large gap yields robust orientation.

Empirical validation (Chromosome 3 at 320 kb). We found through numerical calculations that
many of the chromosome 3D coordinates used as input in grams are coplanar or almost coplanar,
which directly indicates the problem of using grams as input. Of course, we still validated the
difference between using two types of methods as inputs through our approach. We have selected
chromosome 3 for validation here because it is a gram as the input that there is no coplanar sample.
Table 3 reports the quantitative stability metrics of the Gram-based embedding and the 3DMax
reconstruction for the same chromosome. We observe that the Gram top eigenvalues are very close
(spectral gap δ ≈ 0), making its orientation unstable. 3DMax, on the other hand, shows a much
larger spectrum spread (δ ≈ 18.6) and correspondingly stable orientation.

Table 3: Stability metrics for Chromosome 3 (320 kb).

Top-3 spectrum Rotation stability

Gram [0.00547, 0.00546, 0.00502], δ = 0.0000 2.83
3DMax [70.62, 52.04, 41.30], δ = 18.58 4.49e–5

Noise experiment. Figure 5 shows the median angle of the first principal component (PC1) as a
function of injected noise scale. The Gram embedding (blue) displays rapid growth of the PC1
angle once noise is added, whereas the 3DMax embedding (orange) remains essentially unaffected.
This is consistent with the theoretical bound above: a vanishing spectral gap makes the orientation
of the Gram embedding highly sensitive to perturbations. These observations jointly validate our
perturbation analysis: even when distances and neighborhood structure are perfectly preserved, a
near-degenerate spectrum leads to unstable principal directions, whereas a large spectral gap confers
rotational stability.

IG-Gram experiment. Table 4 illustrates the performance of Gram reconstruction as input into
InertialGenome.

Table 4: dSCC and dRMSE of IG-Gram on different resolutions.

Method 320KB 160KB 80KB 40KB

dSCC↑ dRMSE↓ dSCC↑ dRMSE↓ dSCC↑ dRMSE↓ dSCC↑ dRMSE↓
IG-Gram 0.4770 0.3728 0.1079 0.4656 0.0524 0.4811 0.0083 0.5383
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Figure 5: Median PC1 angle versus noise scale for the Gram and 3DMax.

F RECONSTRUCTION PERFORMANCE ON B-LYMPHOCYTE CELL DATASET

Table 5 compares six methods on single-cell Hi-C data.

Table 5: Performance comparison of six methods on 3D chromosome structure reconstruction from
single-cell Hi-C data (B-Lymphocyte cell test set). Metrics report distance-based Spearman correla-
tion (dSCC ↑) and root mean square error (dRMSE ↓) at four resolutions. Best results in bold.

Method 1MB 500KB 250KB 100KB

dSCC↑ dRMSE↓ dSCC↑ dRMSE↓ dSCC↑ dRMSE↓ dSCC↑ dRMSE↓
3DMAX 0.9131 146.7464 0.8603 139.7606 0.8148 136.9766 0.6548 127.9119
LorDG 0.7462 107.7091 0.8103 117.5711 0.8316 112.0299 0.8395 98.9512

HiC-GNN 0.6778 0.2570 0.6457 0.2373 0.5827 0.1312 0.5334 0.2089
HiCEGNN 0.8847 0.0839 0.8068 0.0838 0.7530 0.0823 0.8017 0.0795

IG-3DMAX 0.9209 0.0822 0.9081 0.0777 0.8861 0.0593 0.8708 0.0790
IG-LorDG 0.8413 0.1114 0.8367 0.0979 0.8440 0.0675 0.7939 0.0867

G SUPPLEMENTARY FOR ABLATION STUDY

G.1 LOSS COMPONENTS

We analyze the contribution of the structural stability loss (Lstruct) versus the coordinate regression
loss (Lweighted mse) by varying their weighting ratio α/β in the total objective Ltotal = αLstruct +
βLweighted mse, where β = 1 − α. As shown in Table 6, removing structural supervision entirely
(α = 0) yields reasonable performance at coarse resolutions but leads to significant degradation
in dRMSE at fine scales (e.g., 40kb), indicating poor geometric consistency. In contrast, using
only structural loss (α = 1) improves dRMSE at coarse resolutions but harms distance correlation
(dSCC). A certain proportion of structural regularization (α = 0.1, 0.5) consistently achieves the
best trade-off across all resolutions, validating its role in enforcing biologically plausible 3D genome
topology without sacrificing coordinate fidelity.

G.2 COMPONENT ABLATION

Results using IG-3DMAX in Table 7 show: (1) Without inertial alignment, dRMSE increases across
all resolutions (e.g., from 0.1547 to 0.1641 at 320 kb), indicating its role in stabilizing global struc-
ture; (2) Removing RoPE consistently degrades both dSCC and dRMSE, confirming that relative
positional encoding is essential for structural fidelity; (3) Disabling the Nyström branch leads to the
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Table 6: Ablation study about IG-3DMAX on the loss weighting between structural stability and
coordinate regression. Reported metrics: distance-based Spearman correlation (dSCC ↑) and root
mean square error (dRMSE ↓) across four genomic resolutions. Best results per resolution are
bolded.

Ratio (α/β) 320KB 160KB 80KB 40KB

dSCC↑ dRMSE↓ dSCC↑ dRMSE↓ dSCC↑ dRMSE↓ dSCC↑ dRMSE↓
0.0 / 1.0 0.9030 0.1728 0.8627 0.1935 0.7532 0.2152 0.7132 0.2410
0.1 / 0.9 0.9029 0.1696 0.8595 0.1848 0.7663 0.2197 0.7158 0.2407
0.5 / 0.5 0.9002 0.1671 0.8580 0.1879 0.7741 0.2266 0.7203 0.2445
1.0 / 0.0 0.8815 0.1453 0.8484 0.1775 0.7677 0.2297 0.7192 0.2788

largest performance drop at fine scales (e.g., dRMSE rises by 0.0114 at 40 kb), demonstrating its
critical contribution to modeling long-range pairwise distances. The full model achieves the best
trade-off between structural consistency and coordinate accuracy, outperforming all ablated variants
at every resolution.

Table 7: Ablation study of key components in our model on single-cell Hi-C data (Frontal cortex
test set). Reported metrics: distance-based Spearman correlation (dSCC ↑) and root mean square
error (dRMSE ↓) across four genomic resolutions. Best results per resolution are bolded.

Model 320KB 160KB 80KB 40KB

dSCC↑ dRMSE↓ dSCC↑ dRMSE↓ dSCC↑ dRMSE↓ dSCC↑ dRMSE↓
Full (Ours) 0.9030 0.1547 0.8621 0.1809 0.7757 0.2035 0.7297 0.2382
w/o Inertial 0.9008 0.1641 0.8598 0.1869 0.7737 0.2185 0.7226 0.2385
w/o RoPE 0.8976 0.1613 0.8566 0.1894 0.7709 0.2229 0.7213 0.2454
w/o Nyström 0.9002 0.1659 0.8607 0.1998 0.7746 0.2218 0.7214 0.2496

H EXPERIMENTAL VALIDATION

H.1 VALIDATION VIA A/B COMPARTMENTALIZATION

To assess the biological plausibility of our predicted 3D chromosome structures, we validate them
based on A/B compartment organization. In eukaryotic nuclei, chromosomes spatially segregate
into two major compartments—A (active) and B (inactive)—with loci from the same compartment
(A–A or B–B) tending to be spatially closer than loci from different compartments (A–B).

We follow the process of Lieberman-Aiden et al. (2009) to assign compartment labels. For each
chromosome, we compute the Pearson correlation matrix of the normalized Hi–C contact matrix,
then extract the first principal component (PC1). Loci with positive PC1 values are assigned to
compartment A, and those with negative PC1 values to compartment B.

Distance computation and grouping. From the predicted 3D coordinates we compute pairwise
Euclidean distances and categorize them into three groups:

• intra-A: distances between loci within compartment A;
• intra-B: distances between loci within compartment B;
• inter-AB: distances between loci from compartments A and B.

Statistical analysis and visualization. We compare the distributions of these three groups using
box plots and permutation test. A valid 3D structure should exhibit significantly shorter distances
for intra-compartment pairs (A–A and B–B) than for inter-compartment pairs (A–B), indicating that
the predicted structures preserve the compartmental spatial organization.

H.2 VALIDATION VIA TAD DOMAIN CONSISTENCY

Topologically Associating Domains (TADs) are contiguous genomic regions within which loci tend
to interact more frequently with each other than with loci outside the domain (Dixon et al., 2012).
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Figure 6: A/B compartment validation. Box plots show intra- and inter-compartment distances for IG-3DMAX
(left) and HICEGNN (right).

Validating the biological plausibility of predicted 3D chromosome structures can therefore be per-
formed by examining whether spatial distances among loci within the same TAD are significantly
shorter than those between loci from different TADs.

TAD Boundary Acquisition TAD regions can be obtained from public annotations (e.g., ENCODE
project or 3D Genome Browser) or identified directly from Hi-C contact matrices using established
TAD callers such as: TopDom (Shin et al., 2016), Armatus (Filippova et al., 2014), and HiCExplorer
(Wolff et al., 2020). In our workflow, TADs were identified using TopDom following the procedure
in Serra et al. (2017).

Mapping 3D coordinates to TADs: Each bin in the 3D structure corresponds to a genomic interval
based on Hi-C resolution (e.g., 250 kb). For a bin indexed by i, its genomic span is [i× 250 kb, (i+
1)× 250 kb). We assign each 3D point to a TAD by checking whether its genomic start coordinate
falls within the start and end of any TAD interval.

Evaluation Metric (Mean intra-/inter-TAD distance): For each TAD, we compute the average
pairwise Euclidean distance Dintra among all loci inside the same TAD. We also compute the average
distance Dinter between loci across different TADs. A well-structured 3D prediction should satisfy:

mean(Dintra)≪ mean(Dinter), (37)

indicating spatial clustering of loci within the same TAD, consistent with known biological organi-
zation.

Statistical Testing We assessed whether intra-TAD distances are significantly smaller than inter-
TAD distances using the Mann–Whitney U test. Table 8 summarizes the mean intra- and inter-TAD
distances, intra/inter ratios, and corresponding p-values for IG-3DMAX and IG-LorDG reconstruc-
tions across chromosomes 4, 14, 18, and 20.

Table 8: TAD-based validation statistics for IG-3DMAX and HiCEGNN reconstructions. Mean
intra- and inter-TAD distances, intra/inter ratio, and Mann–Whitney U test p-values are reported for
selected chromosomes.

Model Chromosome Intra-TAD Inter-TAD Ratio (Intra/Inter) U test p-value
IG-3DMAX Chr4 0.852 1.122 0.760 0
IG-3DMAX Chr14 0.957 1.203 0.796 8.95e-93
IG-3DMAX Chr18 0.882 1.083 0.814 1.55e-66
IG-3DMAX Chr20 0.941 1.177 0.800 2.83e-47
HiCEGNN Chr4 0.408 0.442 0.925 2.61e-34
HiCEGNN Chr14 0.405 0.425 0.952 1.09e-4
HiCEGNN Chr18 0.380 0.416 0.914 3.16e-10
HiCEGNN Chr20 0.451 0.454 0.993 0.159
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These metrics together provide a quantitative assessment of whether the reconstructed 3D structures
preserve known domain-level chromatin organization. In particular, while IG-3DMAX consistently
shows significantly lower intra-TAD distances with low intra/inter ratios across all chromosomes,
HiCEGNN exhibits weaker separation and a non-significant result for chromosome 20, indicating
comparatively less biologically plausible domain organization in that case.

H.3 FISH-BASED VALIDATION OF 3D STRUCTURES

FISH experiments provide direct measurements of the spatial distances between genomic loci in the
nucleus. To validate our 3D chromatin structure predictions, we compared the predicted distances
between key regions—L1, L2, and L3—with the experimentally observed FISH distances reported
by Rao et al.(Rao et al., 2014). These regions were identified as loop anchors using HiCCUPS
analysis, with L1 and L2 forming a strong interaction peak, while L3 served as a non-interactive
control.

We evaluated our model outputs at 250 kb resolution, where sufficient structural detail is preserved
to accurately localize these regions. For each chromosome, we computed the Euclidean distances
between L1–L2 and L2–L3 in the predicted 3D structures, along with their corresponding contact
probabilities from the original Hi-C data.

As shown in Table 9, the predicted L1–L2 distances are consistently shorter than the L2–L3 distances
across all chromosomes, consistent with the experimental observations. Moreover, the contact prob-
abilities exhibit an inverse trend: higher values for L1–L2 compared to L2–L3, reflecting stronger
physical proximity. This agreement between predicted distances and Hi-C contact frequencies sup-
ports the biological plausibility of our modeled structures.

Table 9: FISH validation results on GM12878 chromosomes 11, 14, and 17 at 250 kb resolution.
The table shows the predicted L1–L2 and L2–L3 distances, and the corresponding KR-normalized
contact probabilities from Hi-C data.

Chromosome L1–L2 Distance L1–L2 Probability L2–L3 Distance L2–L3 Probability

11 0.8 2.74× 104 3.3 3.92× 103

14 2.2 9.10× 103 13.1 2.07× 103

17 2.3 2.05× 104 3.7 1.32× 104

The results demonstrate that our model captures the expected spatial organization: looped regions
(L1–L2) are closer in space and exhibit higher contact frequencies than non-looped regions (L2–L3).
This consistency with both FISH measurements and Hi-C data confirms that our method produces
biologically realistic chromatin structures.

21


	Introduction
	Preliminaries
	Method InertialGenome
	Inertial Frame Canonicalization
	Geometry-aware positional encoding
	Structure-aware Fusion
	Learning Objective
	Stability of Inertial Frame Alignment

	Experiments
	Main Results
	Ablation Studies
	Case Studies

	Conclusion
	The Use of Large Language Models
	Related Work
	Distance and Contact constrained optimization methods
	Probability based methods
	Deep learning based methods

	Derivation of 3D Geometric Position Embedding
	Detailed Loss Functions
	Structural-Learning Loss
	Value-Weighted MSE Loss

	Derivations for Inertial Alignment Stability
	Reconstruction Performance on B-Lymphocyte Cell Dataset
	Supplementary for Ablation Study
	Loss Components
	Component Ablation

	Experimental Validation
	Validation via A/B Compartmentalization
	Validation via TAD Domain Consistency
	FISH-based Validation of 3D Structures


