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Abstract: Learning from Demonstration (LfD) is a powerful method for enabling1

robots to perform novel tasks as it is often more tractable for a non-roboticist end-2

user to demonstrate the desired skill and for the robot to efficiently learn from3

the associated data than for a human to engineer a reward function for the robot4

to learn the skill via reinforcement learning (RL). Safety issues arise in modern5

LfD techniques, e.g., Inverse Reinforcement Learning (IRL), just as they do for6

RL; yet, safe learning in LfD has received little attention. In the context of agile7

robots, safety is especially vital due to the possibility of robot-environment colli-8

sion, robot-human collision, and damage to the robot. In this paper, we propose a9

safe IRL framework, CBFIRL, that leverages the Control Barrier Function (CBF)10

to enhance the safety of the IRL policy. The core idea of CBFIRL is to combine a11

loss function inspired by CBF requirements with the objective in an IRL method,12

both of which are jointly optimized via gradient descent. In the experiments, we13

show our framework performs safer compared to IRL methods without CBF, that14

is ∼ 15% and ∼ 20% improvement for two levels of difficulty of a 2D racecar15

domain and ∼ 50% improvement for a 3D drone domain.16

Keywords: Agile Robot, Learning from Demonstration, Control Barrier Function17

1 Introduction18

Agility is an indispensable feature for robots applied in manufacturing or everyday life [1, 2] be-19

cause the physical space can change very fast and the robots need to react quickly. Recent ad-20

vances in robot learning have offered the potential to improve the agility of various robots, including21

high-speed cars [3, 4, 5, 6], drones [7, 8], legged robots [9, 10], and robots in sports [11, 12]. Rein-22

forcement learning (RL) is a ubiquitous approach to robot learning for developing high-performance23

controllers for robots. Although various RL-based methods have shown promising results in both24

simulation and real robots, the design of reward functions that elicit desired behaviors could still25

be laborious and time-consuming [13]. Also, agents trained with RL can behave unnaturally [13].26

Although it’s hard to design controllers, humans can demonstrate robots for agile control (e.g., race-27

car driving and drone flying). As such, Learning from Demonstration (LfD), a field empowering28

end-users to program robots by demonstrations instead of a computing language [13, 14, 15, 16],29

can help address the issues by learning from experts and work in a more sample-efficient way.30

Inverse Reinforcement Learning (IRL) [17] is a technique in LfD research that aims to infer a31

demonstrator’s underlying objective function (i.e., reward) from demonstrations. However, the32

safety of IRL approaches is yet to be explored. Previous works in safe IRL [18, 19, 20, 21, 22]33

mainly focus on adding high-confidence bounds on the learned policy’s performance, which is an34

indirect approach to promote safety and dangerous cases can still happen as the underlying objective35

function can guide the agent into danger. Therefore, a direct approach to avoid dangerous configu-36

rations in IRL, instead of hoping for safety in a performance-focused way, is needed.37
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To address safety in RL [23, 24, 25, 26], researchers have leveraged the control barrier function38

(CBF) [27, 28], which is a method to synthesize a control policy that maintains the system within39

a safe set of states. Although CBF can help directly avoid dangerous cases in RL, to the best of40

our knowledge, there’s no work incorporating CBFs with IRL algorithms to mitigate possible safety41

issues. The most related works focus on synthesizing CBF from data (e.g., expert demonstrations)42

and combine the CBF with hand-designed control methods [29, 30, 31]. However, these methods43

fail to show how to make use of the synthesized CBF to enforce the learned policy in IRL safer.44

In this paper, we propose a framework named CBFIRL where the CBF, approximated by a neural45

network, is learned and utilized to enforce the learned policy in IRL to take safe actions by optimiz-46

ing a joint loss. We present empirical results over two simulated agile robot control tasks and find47

the proposed CBFIRL has ∼ 15% and ∼ 20% less collision for two levels of difficulty of one 2D48

racecar domain and ∼ 50% less collision for one 3D drone domain than just IRL.49

2 Preliminaries50

Markov Decision Process – We model the environment as a Markov Decision Process (MDP)51

M [32], which is defined by ⟨S,A, R, T, γ, ρ0⟩. S and A denote the state space and action space,52

respectively. R : S → R is the reward function that tells the reward for a given state. T : S×A → S53

represents a deterministic transition function that gives the next state s′ after applying the action a54

to current state s. γ ∈ (0, 1) is the temporal discount factor. ρ0 : S → R denotes the initial state55

distribution. A policy π : S × A → R is a mapping from states to probabilities over actions. We56

could generate a trajectory τ =< s0, a0, r0, · · · , st, at, rt, · · · > by executing the policy within57

the environment. The expected discounted return of one policy could be calculated by J(π) =58

Eτ∼π [
∑∞

t=0 γ
tR(st)]. The objective for RL is to find the optimal policy, π∗ = argmaxπ J(π).59

Inverse Reinforcement Learning – Inverse reinforcement learning (IRL) considers an MDP60

sans reward function and infers a reward function R̂ from a set of demonstration trajectories,61

D = {τ1, τ2, · · · , τN}. Our method is based on adversarial inverse reinforcement learning62

(AIRL) [33]. AIRL consists of a generator (i.e., a policy) to imitate the demonstrator and a dis-63

criminator to distinguish the generator’s behavior from that of the demonstrator. The discriminator64

is defined as Dθ = e{f̂θ(s,a)}/e{f̂θ(s,a)}+πϕ(a|s), where f̂θ(s, a) is the inferred advantage function and65

πϕ(a|s) is the learned policy parameterized by ϕ. The discriminator is trained to minimize a bi-66

nary cross entropy loss, LD. The generator policy πϕ(a|s) is trained by optimizing the policy loss,67

Lpolicy = max J(π), and to maximize the recovered reward function.68

Control Barrier Function – Let Ss ⊂ S be the safe states set, Sd = S\Ss be the dangerous69

states set, and S0 be the set of initial states. A control barrier function, h, needs to satisfy the three70

requirements [28, 34]: R1: ∀s ∈ S0, h(s) ≥ 0; R2: ∀s ∈ Sd, h(s) < 0; and R3: ∀s ∈ {s|h(s) ≥71

0}, (h(T (s, πϕ(s))) − h(s))/∆t + α(h(s)) ≥ 0. Here, α(·) is a class-K function (i.e., α(·) is72

strictly increasing and α(0) = 0). R1 and R3 ensure trajectories to stay inside the superlevel set73

Ch = {s ∈ S : h(s) ≥ 0}. R2 guarantees that unsafe states will never be visited under the policy74

πϕ. In order to obtain a safe policy πϕ(·) and an h(·) to meet the three requirements, we formulate75

a similar optimization objective as Qin et al. [26]. We denote P and H as the function classes for76

πϕ(·) and h(·), and T as the set of all trajectories. We assume initial states are safe, i.e. ∀s ∈ Ss,77

h(s) ≥ 0. We then define the function y : H×P × T → R as given by Equation 1.78

y(h, πϕ, τ) := min{ inf
s∈Ss

h(s), inf
s∈Sd

−h(s), inf
{s|h(s)≥0}∩τ

(h(T (s, πϕ(s)))− h(s))/∆t+ α(h) ≥ 0}

(1)
R1-R3 are satisfied when we find h(·) and πϕ(·) such that y(h, πϕ, τ) > 0 for ∀τ ∈ T . Thus, The79

optimization objective is given by Equation 2.80

Find h(·) ∈ H and πϕ(·) ∈ P, s.t. ∀τ ∈ T , y(h, πϕ, τ) > 0 (2)
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Figure 1: This figure depicts the architecture of CBFIRL.

3 Method81

As shown in Figure 1, we combine CBF with AIRL in two steps: Step 1) Formulate a barrier loss82

function Lbarrier to learn h(·) satisfying R1 and R2; Step 2) leverage h(·) to formulate a derivative83

loss function Lderivative to synthesize a safer policy πϕ(·) meeting R3. For Step 1, we formulate the84

Lbarrier as shown in Equation 3 based on Equation 1, where hω(·) is a neural network parameterized85

by ω. Terms in Equation 3 correspond to R1 and R2. Intuitively, minimizing the Lbarrier provides86

an hω(·) that could discriminate safe states from dangerous ones. We collect the set Ss and Ŝpd as87

described below in Section 3.1.88

Lbarrier =
∑
s∈Ss

max(−hω(s), 0) +
∑

s∈Ŝpd

max(hω(s), 0) (3)

89
For Step 2, we formulate the Lderivative as shown in Equation 4, where the policy πϕ(·) is a neural90

network parameterized by ϕ.91

Lderivative =
∑

s∈{s|hω(s)≥0}

max(−(hω(T (s, πϕ(s)))− hω(s))/∆t− α(hω(s)), 0) (4)

For the class-K function, we use a linear function α(h(s)) = λh(s). Minimizing the Lderivative92

enforces the πϕ(·) to generate actions that satisfy requirement R3, which provides a safe control93

policy. We now propose our combined loss function Lcombined as shown in Equation 5, where the94

w is a trade-off coefficient between discriminator loss and derivative loss.95

Lcombined = Lpolicy + w ∗ Lderivative (5)

By minimizing the Lcombined via gradient descent, we could obtain a safer policy. The AIRL will96

be pre-trained to converge and provide a policy. The neural network hω pre-trained in Step 1 will be97

used to generate the set {s|hω(s) ≥ 0}, where the states s are explored by the policy.98

3.1 Data Collection99

To learn a CBF that enhances policy safety, we need to collect state sets Ss, Sd before solving100

Equation 2. We assume the demonstration trajectories τ ∈ D are safe and initialize Ss to be the set101

of states in the demonstrations. We cannot request demonstrators to take a risk of hurting themselves102

or damaging the robots to provide the dangerous states. Therefore, we define potentially dangerous103

states Spd as a set that the agent has to pass before entering the Sd. We design a new requirement104

“R2′: For ∀s ∈ Spd, h(s) < 0”. As stated in the preliminaries, the agent cannot enter set Spd if R1,105

R2′, and R3 are satisfied. Hence, the agent cannot enter set Sd as well according to the definition106

of Spd. Therefore, R2′ is a more strict requirement that prevents the agent from entering dangerous107

states, and we could take the R2′ as R2 and replace Sd in Equation 1 with Spd.108
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Table 1: This table shows the comparison between CBFIRL and AIRL on two domains.

Environment Successful rate (Stdev) Collision rate (Stdev)
AIRL CBFIRL AIRL CBFIRL Improvement

2D racecar - 8 obstacles 0.97 (0.02) 0.95 (0.03) 0.58 (0.07) 0.49 (0.09) 15.52%
2D racecar - 16 obstacles 0.63 (0.28) 0.64 (0.07) 1.00 (0.12) 0.80 (0.09) 20.00%
3D drone - 32 obstacles 0.34 (0.37) 0.30 (0.33) 0.61 (0.40) 0.31 (0.19) 49.18%

Figure 2: 2D racecar environment. Figure 3: Heatmap of learned CBF.

Defining potentially dangerous states ensures that CBF learns information about dangerous states109

while being safe for users. Therefore, demonstrators can safely provide potentially dangerous states110

to a set Ŝpd, which acts to be an approximation to the Spd. To avoid losing all the feasible paths to the111

goal, we will request demonstrators to try to collect states close to dangerous states. One example112

of a good potential dangerous state close to dangerous state for a race car could be a position close113

to obstacles. We empirically show that the approximation Ŝpd works well, as shown in Section 4.114

4 Experimental Results115

We evaluate CBFIRL on two simulated control environments: a 2D racecar and a 3D drone [26]. For116

both environments, the agent travels across the map to reach the blue target from the green start point117

without colliding with the yellow obstacles that are moving. We define the state as the combination118

of the position and velocity of the agent and the nearest K obstacles. The episode terminates after119

100 timesteps for the 2D racecar and 400 for the 3D drone. We test two levels of difficulty in racecar120

(8 and 16 obstacles) and a setting of 32 obstacles for the drone domain.121

Two metrics are designed to evaluate the performance of the CBFIRL: “Successful rate” which122

measures the ratio of reaching the goal and “Collision rate” which shows the ratio of collision out of123

the 100 trajectories. We evaluate the two metrics on 100 trajectories to test CBFIRL’s task success124

and safety against AIRL. We summarize the comparison in Table 1. Across the three environments,125

CBFIRL achieves a smaller collision rate than AIRL, which indicates a safer policy. Meanwhile,126

CBFIRL achieves a similar success rate as AIRL, which shows that our method has a good balance127

between safety and performance without being over-conservative to stand still.128

To evaluate the learned control barrier function h(·) in discriminating the safe set, Ss, from the129

potentially dangerous states, Ŝpd, we visualize the h(·) for one 2D racecar state through the heatmap130

in Figure 3. In generating the heatmap, We fix the positions of all obstacles and only move the agent131

over the map, which provides us with the corresponding h(s) for varied s to build the heatmap.132

Figure 3 show h(s) < 0 (darker) in the area where the agent is close to the obstacles (Shown in133

Figure 2) and provides qualitative evidence that the set Ŝpd works well as an approximation of Spd.134

5 Conclusion135

In this paper, we develop a novel framework, CBFIRL, to learn a safe policy from demonstrations by136

embedding the safety property of CBF into IRL methods. We transform the optimization problem137

of satisfying CBF conditions into a learning framework where the loss functions could be used to138

enhance the safety of IRL. We empirically validate that the proposed CBFIRL has less collisions for139

the two agile-robot domains than just IRL.140
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