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Abstract

Model editing has become a de-facto practice to address hallucinations and outdated
knowledge of large language models (LLMs). However, existing methods are
predominantly evaluated in isolation, i.e., one edit at a time, failing to consider
a critical scenario of compositional model editing, where multiple edits must
be integrated and jointly utilized to answer real-world multifaceted questions.
For instance, in medical domains, if one edit informs LLMs that COVID-19
causes “fever” and another that it causes “loss of taste”, a qualified compositional
editor should enable LLMs to answer the question “What are the symptoms of
COVID-19?” with both “fever” and “loss of taste” (and potentially more). In this
work, we define and systematically benchmark this compositional model editing
(CME) task, identifying three key undesirable issues that existing methods struggle
with: knowledge loss, incorrect preceding and knowledge sinking. To overcome
these issues, we propose A3E, a novel compositional editor that (1) adaptively
combines and adaptively regularizes pre-trained foundation knowledge in LLMs
in the stage of edit training and (2) adaptively merges multiple edits to better
meet compositional needs in the stage of edit composing. Extensive experiments
demonstrate that A3E improves the composability by at least 22.45% without
sacrificing the performance of non-compositional model editing. The code is
available at https://github.com/piaohongming/A3E.

1 Introduction

LLMs learn extensive knowledge from massive pre-training corpora and utilize the learned knowledge
during inference to meet a wide range of tasks [1, 2, 3, 4]. Despite their impressive capabilities,
especially as the pre-training data and model size scale [5], LLMs remain prone to factual hallu-
cinations [6] and outdated knowledge [7]. These errors often emerge gradually after deployment
and significantly impairs system reliability, which necessitates timely and effective corrections.
Conventional solutions such as re-training are not only time-consuming, but fine-tuning without
access to pre-training data also poses a high risk of interfering with irrelevant knowledge. Therefore,
model editing [8] has emerged as a promising approach that enables targeted updates to LLMs in
a data-efficient manner (minimal reliance on pre-training data), localized scope (limited impact on
irrelevant knowledge), and with high reliability (accurate correction of the targeted knowledge).

Efforts toward model editing center around improving reliability [9, 10], generalization [10, 11], and
locality [8, 12], with further studies exploring editing ripple effects [13], bidirectional generalization
[14], and its impact on downstream tasks [15, 16, 17, 18]. Progress along with these attempts is
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Figure 1: There are two stages in CME: edit training and edit composing. (a) An example for MAC:
Multiple symptoms for a disease. (b) An example for MQC: Multiple laws involved in one crime.

unanimously evaluated under a single-edit assumption; that is, LLMs recall each atomic edit in
isolation. For example, if an edit previously taught an LLM that COVID-19 causes “loss of taste”,
evaluations only test whether this LLM can correctly recall this isolated fact, e.g., “I have loss of taste,
do I have COVID-19?” Unfortunately, this evaluation paradigm diverges significantly from real-world
demands. In many practical domains, such as medicine and law (as shown in Fig. 1), questions likely
require access to multiple edits simultaneously. In Fig. 1(a), for instance, answering a multi-symptom
diagnostic question requires composing two pieces of knowledge (multi-answer composition, MAC);
if these facts were introduced through prior edits, LLMs must effectively leverage both. Similarly,
in Fig. 1(b), questions may require reasoning over multiple pieces of edited knowledge to form a
unified answer (multi-question composition, MQC). In this paper, we formally define and benchmark
tasks that demand such compositional capability as Compositional Model Editing (CME) tasks.
The success of CME hinges on two criteria: (1) in the edit training stage, individual edits must
be performed in a way that guards their composability for downstream inference; (2) in the edit
composing stage, question-related edits must be effectively merged.

As shown in Fig. 2, state-of-the-art editing methods suffer from knowledge loss, incorrect preceding
and knowledge sinking, which comprehensively encompass all the failure cases we observed. MEND
[9] and ROME [8] modify the entire matrix in the feed-forward netwok (FFN) through hypernetworks
and closed-form solutions, respectively, which yields significant knowledge loss when composing
different edits. AlphaEdit [19] exhibits a similar level of knowledge loss, likely because it prevents
interference between edits by projecting each update into the null space of unrelated questions.
However, in the MAC and MQC settings we target, where a single question depends on multiple
edits, this orthogonality collapses and conflicts between edits still persist. WISE [20] alleviates
knowledge loss by randomly masking parameter updates of each individual edit, though the likelihood
of mask overlap grows significantly as the number of edits increases and thus composability degrades.
GRACE [21], MELO [22], and T-patcher [23] replace hidden states or insert new key-value pairs in
the FFN layer in a low-rank form. Such low storage overhead for each edit enables them to treat all
edits as an external vector database attached to the original parameters. Despite reduced knowledge
loss, all three methods suffer from the pronounced issue of incorrect preceding. Collectively, these
limitations reveal a pressing gap, i.e., how to train and compose different edits to improve edit
composability?

Our response to the question is the proposed A3E. Specifically, previous works [24, 25] have pointed
out that the FFN layer in Transformer [26] is a key-value neural memory [27], where the down
projection matrix stores robust and generalizable foundation knowledge pre-trained on large datasets.
The composition of these foundation knowledge pieces forms multiple advanced knowledge needed in
the generation process of LLMs. We hypothesize and empirically verify that leveraging the pre-trained
foundation knowledge in the down projection matrix is sufficient for not only composing the new
knowledge but also boosting composability. Thus, in order to train edits with better composability,
we Adaptively combine the pre-trained foundation knowledge in the down projection matrix to reduce
knowledge loss. By Adaptively regularizing the use of selected knowledge at the last answer token
and non-label logits, we effectively alleviate knowledge sinking and incorrect preceding. In order to
compose edits to further enhance composability, we utilize a vector database [21, 22] to filter out
irrelevant edits in a question-wise way at inference and Adaptively merge relevant edits with proper
combinations of pre-trained foundation knowledge. In summary, our contributions are four-fold.
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fever, loss of fever. 

fever, loss of taste. What are the symptoms of COVID-19?
fever, Stomachache, loss of taste. fever fever is a … 

(a) Knowledge Loss (b) Incorrect Preceding (c) Knowledge Sinking

Figure 2: The illustration of knowledge loss, incorrect preceding and knowledge sinking. The text in
blue, red, green represents the first correct answer, the wrong answer and the second correct answer.
(a) Knowledge loss: Part of answers are not correctly generated. (b) Incorrect preceding: Wrong
answers are generated before the correct answers. (c) Knowledge sinking: Context-irrelevant content
are generated after prior answers; that is, the starting point for generating subsequent answer “loss
of taste” is no longer the question itself (e.g., “What are the symptoms of COVID-19?”), but the
question combined with the prior answers (e.g., “What are the symptoms of COVID-19? fever”).

• We are the first to define and benchmark the CME evaluation setup, paving the way for future
model editors to support multi-edit reasoning that is crucial for real-world use cases.

• We conduct a systematic analysis of existing methods under CME, revealing three pivotal failure
modes in composability, including knowledge loss, incorrect preceding and knowledge sinking.

• We develop a dual-stage framework, edit training (adaptive combining and regularizing) and edit
composing (adaptive merging), that preserves the effectiveness of individual edits while enabling
their synergistic integration during inference.

• Through extensive experiments on two datasets and four CME tasks, we improves the composability
by at least 22.45%, without sacrificing the performance of non-compositional model editing.

2 Preliminaries

In this section, we first provide a formal definition of compositional model editing, and then demon-
strate how to perform edit training and edit composing in FFN. Please refer to Tab. 3 for the definition
of notations.

2.1 Compositional Model Editing (CME)

In model editing (ME), let fΘ : X 7→ Y, parameterized by Θ, represents a model mapping the input
x to the output fΘ(x). Given a model Θ0 before a single edit (xe, ye), let I(xe) denote the in-scope
input with the same semantics as the edit question. Then the objective of ME is:

fΘe
= ME (fΘ0

, xe, ye) , s.t. fΘe
(x) =

{
ye if x ∈ I(xe),
fΘ0

(x) if x /∈ I(xe).
(1)

Compositional model editing (CME) contains two stages: edit training and edit composing. For
the edit training stage, an edit is trained for (xe, ye). For the edit composing stage, the model
needs to compose the edit for (xe, ye) with other edits at inference time to answer a single question.
Let C(Xe) represent the question that contains the semantics of multiple edit questions Xe =
{xe, x

1
e, x

2
e, ..., x

c−1
e } including xe, where c is the composition number. Let C(Ye) represent the

target output that contains corresponding multiple answers Ye = {ye, y1e , y2e , ..., yc−1
e } including ye.

The shared objective for the two stages becomes

fΘe
= CME (fΘ0

, xe, ye) , s.t. fΘe
(x) =

{
C(Ye) if x ∈ I(C(∀Xe)),
fΘ0

(x) else (2)

It is worth noting that, first, the edits involved in edit composing are not necessarily all contained
within (Xe,Ye), which introduces interference from edits useless to the current problem. Additionally,
within our definition, all edits may appear asynchronously over time and be distributed spatially.
Therefore, our definition is applicable to both lifelong model editing and federated model editing.
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Figure 3: The visualization of different baselines, where MEND, ROME, AlphaEdit and WISE edit
either Wdown or both Wup and Wdown with or without mask. In contrast, GRACE, T-patcher, and
MELO edit the Wdown or both Wup and Wdown in different low-rank forms.

2.2 Edit Training and Edit Composing in FFN

Based on the results in Fig. 2, we categorize the factors influencing the composability of edits into
Composable and Context-preserving. Whether the edits are composable refers to whether there
is significant interference between the trained edits, which impacts knowledge loss and incorrect
preceding. Context-preserving, on the other hand, refers to whether the edits affect the model’s
ability to follow the context to generate other answers, thereby influencing knowledge sinking. In this
section, we discuss whether edit training stage of existing methods effectively have these properties
and whether their edit composing preserves these properties as shown in Table 1.

Most existing model editing methods insert new knowledge by modifying the parameters or outputs
of the FFN layer during the forward process of different tokens. The FFN operates as key-value
neuron memories, where the values (rows) in the down projection layer, store pre-trained foundation
knowledge obtained from vast amounts of data [24, 25]. During the forward process, it retrieves
values from the down projection matrix Wdown ∈ Rn×m by matching the keys in the up projection
matrix Wup ∈ Rm×n with the input hin ∈ R1×m:

hout = FFN(hin) = aWdown + bdown, where a = Act(hinWup + bup). (3)

Here, Act is the activation function (e.g., Relu [28], Gelu [29], and SwiGLU [30]). a is the vector of
activation values and serves as the weights to retrieve different pre-trained foundation knowledge in
Wdown. bdown ∈ R1×m and bup ∈ R1×n are bias vectors.

Table 1: Summary of model editing methods under
composable and context-preserving in edit training
and if edit composing preserves these properties.

Method Edit Training Edit Composing
Composable Context-preserving

MEND ✗ ✗ ✗
ROME ✗ ✗ ✗

AlphaEdit ✗ ✗ ✗
WISE ✔ ✗ ✗

T-patcher ✗ ✗ ✗
GRACE ✗ ✔ ✗
MELO ✗ ✗ ✗

A3E ✔ ✔ ✔

We summarize edit training and edit composing
in FFN for existing methods in Fig. 3. Among
them, GRACE only edits the forward process
of the last input token while achieving context-
preserving. The other methods modify the for-
ward process of all tokens but lack context-
preserving. MEND, ROME, AlphaEdit and
WISE modify the entire Wdown, or Wup and
Wdown to insert new knowledge in edit training,
thus different ∆Wup and ∆Wdown are added
together to utilize multiple pieces of knowledge
in edit composing. AlphaEdit only edits Wdown
and projects ∆Wdown onto the null space of the
preserved knowledge including other edits be-
fore applying it to Wdown to avoid interference between edits. However, in the CME settings we
focus on, where a single question depends on multiple edits, this orthogonality becomes ineffective
and conflicts between edits still persist. WISE learns more composable edits by masking part of Wup
and Wdown in edit training, but the mask on the whole matrix with no carefully designed compos-
ing algorithm struggles to keep a large number of edits composable in edit composing. T-patcher
concatenates multiple keys A ∈ Rm×r and corresponding values B ∈ Rr×m to Wup and Wdown

respectively. For GRACE, the output hout are replaced with the sum of edit vectors ∆hout ∈ R1×m

for multiple pieces of knowledge. MELO trains a LoRA [31] (A,B) for each edit, where A ∈ Rn×r

and B ∈ Rr×m. The combination of different knowledge is achieved by concatenating A and B of
different LoRAs, respectively. Thanks to the low storage overhead of their low-rank form, GRACE
and MELO employ a vector database to store all edits and filter out useless ones during inference,

4



which achieves more composable edit composing with a large number of edits than others but the
results contain more incorrect preceding and are far from ideal.

3 Rethinking the Composability in Model Editing

This section examines existing model editing methods to explore three key questions: How to train
composable edits? How to train context-preserving edits? How to compose edits to further enhance
composability? Our answers are Finding 1, Finding 2 and Finding 3, respectively.

Experimental settings. We conducted analytical experiments using the Llama3-8B model [32] on
the PEAK-CF dataset [33] with 50 2-edit composition samples, During inference, we generate 30
tokens for each question, which is enough to output all edited answers. We analyze the performance
of existing model editing methods with the metric SR-S = 1

|Dtest|
∑|Dtest|

t=1 I(∀a ∈ Yt, rank(a) < |Yt|),
which is the rate of question t in test dataset Dtest that all edited answers Yt are output before
irrelevant content, where rank(·) represents the rank of an answer in all answers in the output and
|Yt| represents the number of edited answers. Please refer to Appendix H for an example.

Finding 1. The combination of pre-trained foundation knowledge is enough for ME while boosting
the composability. As introduced in Sec. 1, Wdown stores pre-trained foundation knowledge obtained
from vast amounts of data. Our hypothesis is that the ability of LLMs to combine different advanced
knowledge stems from these well-trained foundation knowledge elements. These elements boosts
the composability with a more robust and generalizable knowledge representation from large-scale
pre-training. We validate our hypothesis by the average performance of methods editing full matrix
and in low-rank form when editing Wup or Wdown at different layers. As shown in Fig. 4(a) and
Fig. 4(b), editing Wup is sufficient to guarantee the performance compared with editing Wdown as
well as editing both Wup and Wdown. This means the pre-trained foundation knowledge in Wdown
is sufficient to express new knowledge. The generally higher SR-S of editing Wup in different
layers shown in Fig. 4(c) confirms our hypothesis. For a more comprehensive discussion about the
sufficiency of editing Wup for higher SR-S and less knowledge loss, please refer to Appendix I.

(a) (b) (c)

Figure 4: (a) Performance of non-compositional ME measured by SR-1 when editing Wdown, Wup or
both of them. (b) Performance of non-compositional ME measured by SR-1 when editing Wdown,
Wup or both of them with pseudo samples to simulate totally unseen knowledge (Appendix I). (c)
Performance of CME measured by SR-S when editing Wdown, Wup or both of them.

(a) (b)

Figure 5: The relevance (a) between the change of hid-
den state at [la] and the context-preserving rate (b) between
context-preserving and SR-S.

Finding 2. Less change of the hid-
den state of the last answer token [la],
more context-preserving. We demon-
strate in Fig. 5(a) the relationship be-
tween the context-preserving rate and
the change of the hidden state at the
edited FFN layer when inferring with
[la] (e.g, “What are the symptoms
of COVID-19? fever”). The results
show an evident inverse relationship
between these two factors in the base-
lines, indicating that a smaller change
in the hidden state of [la] can achieve
better context-preserving. The finding
also answers why GRACE achieves context-following, because it has no parametric interference on
the forward process of [la] by editing the last input token only.
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Figure 7: Our proposed A3E, including adaptive combination (Sec. 4.1), adaptive regularization (Sec.
4.1) and adaptive merging (Sec. 4.2).

Figure 6: Performance of CME
measured by SR-S with or without
Adaptive Merging.

Finding 3. Setting the elements with different signs in differ-
ent edits to zero (Adaptive Merging) during edit composing
enhances the composability. The elements with opposite signs
between different edits may contain conflicting knowledge. In
Fig. 6, inspired by [34], we validate that setting these opposing
elements in different edits to zero better balances the knowledge
forgetting in the edits and their negative interference on each
other. As can be seen, the mean performance of methods edit-
ing the full matrix and in low-rank form with Adaptive Merging
outperforms directly composing different edits.

4 The Proposed Method

Although the three findings mentioned above contributes the composability of model editing, there
still lacks of a unified framework to fully integrate their advantages. How to train composable
and context-preserving edits? Based on Finding 1, we adaptively select the pre-trained foundation
knowledge using a mask and in a low-rank form to utilize the vector database, namely Adaptive
Combination of pre-trained foundation knowledge. We propose two Adaptive Regularization to
regularize the use of pre-trained foundation knowledge inspired by Finding 2 while further alleviating
incorrect preceding in low-rank form. How to compose edits to further enhance composability?
We utilize a vector database to filter out useless edits following [21, 22] while proposing Adaptive
Merging for different combinations of pre-trained foundation knowledge inspired by Finding 3. The
method is shown in Fig. 7. Please refer to Appendix D for the vector database and Alg. 1-2 for the
complete editing progress.

4.1 How to train composable and context-preserving edits?

Adaptive Combination. Inspired by Finding 1, we perform model editing only on Wup in a low-rank
form similar to LoRA but incorporate an adaptive mask on B. The adaptive mask aims to only
preserve the most related pre-trained foundation knowledge to achieve a better trade-off between the
composability and learning ability. Specifically, an (A,B) pair is trained for each edit following [22].
The forward process of the edited FFN is calculated as:

hout = FFNedit(hin,A,B,M) = aWdown + bdown,

where a = Act(hinWup + h̄inĀ(B×M)︸ ︷︷ ︸
∆a

+bup). (4)

6



Algorithm 1 The Edit Training Stage
1: Input The initial LLM fθ, the edit dataset Dedit, the initialized vector database Sdb.
2: Output The vector database Sdb
3: for each edit (xe, ye) ∈ Dedit do
4: Compute mask Me.
5: Replace hout = FFN(hin) (Eq. (3)) with hout = FFNedit(hin,Ae,Be,Me) (Eq. (4)) at selected

layers.
6: Update (Ae,Be) with L (Eq. (7)).
7: Save Ke into Sdb as the key of vector database and save (Ae,Be) as the corresponding value.
8: end for

A ∈ Rm×r,B ∈ Rr×n are the components of LoRA while h̄in and Ā are normalized hin and A
to avoid the weights of using different B have significant differences and lead to knowledge loss.
M ∈ Rr×n is the mask to select top k related values in Wdown, where the correlation is calculated by
the dot product between values in Wdown and the answer tokens’ embedding:

Adaptive Regularization. Based on Finding 2, we design a regularization Lc to restrict the additional
use of pre-trained foundation knowledge by the last answer token [la], thereby enabling the context-
preserving to generate the next answer. Specifically:

Lc = ||h̄[la]
in Ā||2, (5)

where h̄
[la]
in represents the normalized input hidden state of the FFN layer at [la]. Lc achieves

context-preserving by encouraging a low ∆a in Eq. (4).

In order to further alleviate incorrect preceding in low-rank form, we propose another regularization
Lo to restrict the logits of tokens h[a]

logit except labels by:

Lo =
∑

[a]

∑
i∈W[a]

[h[a]
logit]i, (6)

where [a] represents the positions of an edit sample with labels, W[a] represents the set of all token
IDs except the label of the position [a]. During the edit training stage, we optimize (A,B) with the
loss:

L = Le + αLc + βLo, (7)

where Le are cross-entropy loss, α and β are hyperparameters.

4.2 How to compose edits?

Adaptive Merging. During the inference time, after filtering out useless edits by the vector database
Sdb (Appendix D), we need to compose different combinations of pre-trained foundation knowledge
and different edits may conflict in the utilization of pre-trained foundation knowledge. Specifically,
some edits aim to leverage the j-th value in Wdown to compose the target answer, so [∆a]j tends to
be positive. In contrast, other edits may want to erase the knowledge in the j-th row to compose the
target answer, so [∆a]j tends to be negative. Inspired by Finding 3, when such conflicts occur, we
set [∆a]j of all used edits to 0 to avoid the overly strong impact on each other. For simplicity, we
represent this merging process of different ∆a as

∑̂
and the ∆a of preserved useful edits by vector

database as S. Thus the forward process during inference changes to:

hout = FFNtest(hin,S) = aWdown + bdown,

where a = Act(hinWup +
∑̂

∆a∈S
∆a+ bup).

(8)

5 Experiment

5.1 Evaluation Benchmarks

Dataset. We utilize the PEAK-CF and PEAK-T datasets [33], which contain a large number of
questions with multiple answers. We keep the questions for which Llama3-8B [32] and Mistral-7B

7



Algorithm 2 The Edit Composing Stage
1: Input The initial LLM fθ, the vector database Sdb, the test dataset Dtest.
2: Output The answers of the queries in Dtest.
3: for each query Xt ∈ Dtest do
4: Retrieve edits and calculate the ∆a set and St related to Xt with its representation hdb

(Eq. (9)).
5: Generate the output with replacing hout = FFN(hin) (Eq. (3)) with hout = FFNtest(hin,St)

(Eq. (8))
6: end for

[35] models have more than four unknown answers, with 1,949 instances in PEAK-CF and 922
instances in PEAK-T. We directly use the rephrase instances and locality instances from PEAK-CF
and PEAK-T to test the generalization and locality. Please refer to Appendix G for the specific
construction process.

Evaluation metrics. Inspired by [33], we evaluate baselines and our methods with SR-S =
1

|Dtest|
∑|Dtest|

t=1 I(∀a ∈ Yt, rank(a) < |Yt|), which represents the success rate with all edited an-
swers in the output without incorrect preceding. In Appendix H, we provide examples about
SR-S while discussing its effectiveness for evaluation and the results of its variants; SR-1 =

1
c|Dtest|

∑|Dtest|
i=1

∑
a∈Yt

I(a ∈ Ŷt), which represents the success rate that edited answers a ∈ Yt

are in the output answer set Ŷt. c represents the composition number, which means c pieces of
edited knowledge are needed for a question; GSR = 1

|Drep|
∑|Drep|

t=1 I(∀a ∈ Yt, rank(a) < |Yt|), but
the questions are changed into rephrased ones with the same semantic to evaluate the generalization;
LSR = 1

|Dloc|
∑|Dloc|

t=1 Rouge-L(Ŷ loc
t ,Y loc

t ), which represents the f1 score of Rouge-L [36] between

the edited outputs Ŷ loc
t for locality questions and origin output Y loc

t . Please refer to Appendix K for
examples of the input.

Baselines. We compared our method with FT, ROME, KE, MEND, AlphaEdit, WISE, T-patcher,
GRACE, and MELO. Please refer to Appendix G for more details.

5.2 Experimental Results

Different datasets and CME tasks. To evaluate the effectiveness of the proposed A3E, we conduct
large-scale experiments with all instances of the PEAK-CF and PEAK-T datasets, covering four
CME tasks: independent multi-answer composition (IMAC), independent multi-question composition
(IMQC), multi-answer composition (MAC) and multi-question composition (MQC). In independent
scenarios, we manually filter out useless edits for each question to directly verify the effectiveness
of adaptive combination, regularization and merging without the effect of vector database. In MAC
and MQC, the vector database is used to evaluate in real-world scenarios with a large number of
edits asynchronously and distributedly. We set the composition number to 2, which means two
pieces of edited knowledge are needed for a question. The results shown in Table 2 indicate that
A3E consistently performs better on four CME tasks across two datasets. For IMAC on PEAK-CF,
A3E surpasses all baselines by at least 22.45% in SR-S, at least 13.63% in SR-1 and at least 18.36%
in GSR. Even on challenging MAC, A3E consistently achieves the best editing performance and
generalization while maintaining similar level locality. The lead of A3E on PEAK-T is even more
obvious, with at least 67.16% and 406.73% in SR-S for IMQC and MQC respectively.

Different number of edits. To evaluate the performance of A3E throughout the lifelong usage
process, we compare the performance among A3E, GRACE and MELO, which have relatively strong
MAC and MQC capability. The results of MAC on PEAK-CF, as shown in Fig. 8(a), indicate that
A3E maintains the most outstanding performance until 3898 edits. Please refer to Appendix. J.1 for
more results.

Different composition number. So far, we have conducted experiments with a composition number
of 2. To demonstrate that A3E still has superiority when it needs to simultaneously utilize more
edited knowledge, we compared the performance of A3E, GRACE, and MELO with composition
numbers ranging from 1 to 4, each containing 50 (50×1), 100 (50×2), 150 (50×3) and 200 (50×4)
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Table 2: Performance measured by metrics in Sec. 5.1 in 1) IMAC (3898 edits) and MAC (3898
edits) on PEAK-CF. 2) IMAC (1984 edits) and MAC (1984 edits) on PEAK-T. 3) IMQC (1948 edits)
and MQC (1948 edits) on PEAK-CF. 4) IMQC (992 edits) and MQC (992 edits) on PEAK-T.

Method
PEAK-CF PEAK-T

IMAC MAC IMAC MAC

SR-S↑ SR-1↑ GSR↑ SR-S↑ SR-1↑ GSR↑ LSR↑ SR-S↑ SR-1↑ GSR↑ SR-S↑ SR-1↑ GSR↑ LSR↑

FT 0.31 12.01 0.36 0.00 0.00 0.00 5.25 0.10 1.92 0.10 0.00 0.00 0.00 3.79
ROME 0.92 16.30 0.82 0.00 0.62 0.00 12.25 0.30 18.24 0.60 0.00 0.00 0.00 6.22

KE 0.92 10.31 0.72 0.00 0.00 0.00 10.51 0.10 5.04 0.10 0.00 0.00 0.00 4.56
MEND 2.36 23.09 1.90 0.00 0.56 0.00 12.35 1.01 12.40 0.81 0.00 0.00 0.00 5.41

AlphaEdit 5.44 31.01 4.57 6.98 33.24 6.16 15.17 2.02 21.78 2.12 0.50 16.28 0.41 8.45
WISE 39.99 65.20 38.60 0.10 5.65 0.10 15.21 23.08 54.64 21.37 0.20 2.92 0.20 8.40

T-patcher 26.64 52.54 12.83 0.00 0.59 0.00 1.01 20.77 43.6 18.15 0.00 0.00 0.00 0.67
GRACE 15.20 57.44 14.53 12.99 50.16 9.75 27.19 6.55 41.93 6.05 5.65 33.07 5.04 37.54
MELO 19.46 44.33 18.47 18.22 38.51 16.68 24.13 9.48 28.94 9.07 6.96 22.94 6.56 35.98

A3E 48.97 75.49 45.69 43.38 70.72 39.48 25.76 41.63 51.62 36.90 38.00 49.60 35.89 40.97

Method
PEAK-CF PEAK-T

IMQC MQC IMQC MQC

SR-S↑ SR-1↑ GSR↑ SR-S↑ SR-1↑ GSR↑ LSR↑ SR-S↑ SR-1↑ GSR↑ SR-S↑ SR-1↑ GSR↑ LSR↑

FT 5.64 21.65 4.82 0.00 0.00 0.00 2.09 0.00 3.23 0.40 0.00 0.00 0.00 2.12
ROME 23.49 47.08 19.38 0.00 0.41 0.00 4.52 19.15 21.92 14.52 0.00 0.00 0.00 3.63

KE 1.03 15.40 0.77 0.00 0.00 0.00 3.92 4.23 8.06 3.13 0.00 0.00 0.00 2.98
MEND 5.23 22.38 5.05 0.00 0.00 0.00 3.77 14.11 17.54 8.77 0.00 0.00 0.00 4.02

AlphaEdit 7.69 28.57 5.64 5.33 24.92 4.21 6.92 16.33 18.44 11.09 5.65 25.11 5.04 4.11
WISE 46.56 70.11 44.51 0.0 3.23 0.0 7.28 27.62 32.77 24.60 0.20 3.33 0.20 4.40

T-patcher 33.23 60.41 31.30 0.00 0.00 0.00 0.45 26.81 31.68 25.20 0.00 0.00 0.00 0.32
GRACE 6.56 39.02 5.23 3.59 34.61 2.87 38.71 6.05 32.06 5.54 4.84 30.55 3.63 38.59
MELO 20.31 44.16 18.47 9.13 36.16 8.21 43.22 6.25 23.49 5.85 2.82 19.86 2.02 36.25

A3E 52.51 73.49 52.41 26.46 53.44 20.31 45.73 46.17 68.85 38.31 28.63 53.73 21.77 41.37

edits, respectively. As shown in Fig. 8(b), although the SR-S gradually decreases with increasing
composition number, A3E always maintains a significantly better performance. Please refer to
Appendix. J.1 for more results.

(a)

(c) (d)

(b)

Figure 8: (a) Performance change of A3E and baselines in MAC
until 3898 edits on PEAK-CF. (b) The effect of composition
number from 1 to 4 in MAC on PEAK-CF. (c) The comparison
between A3E and baselines in non-compositional ME on PEAK-
CF. (d) The effect of different backbones and different prompts in
MAC on PEAK-CF.

Non-compositional ME. A
stronger composability should
not come at the expense of worse
non-compositional ME perfor-
mance. Therefore, we compare
the average non-compositional
ME performance of A3E and
baselines. The results, as shown
in Fig. 8(c), demonstrate that
our method is on par with
baselines in SR-1, GSR and LSR.
We provide non-compositional
results of other datasets in
Appendix J.6.

Different backbones and
prompts. To investigate the
impact of different backbones
(Llama3-8B and Mistral-7B) and
few-shot prompts (please refer
to Appendix K) on the proposed
method, we conduct experiments
in MAC setting with 3898 edits.
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The results in Fig. 8(d) show that: (1) A3E has a leading SR-S when using different backbones and
different prompts. (2) A3E and baselines generally have better editing performance on Llama3-8B.
(3) When using different few-shot prompts to combine multiple questions, there is a certain
performance difference in A3E. This may be due to the fact that, although we manually ensure that
few-shot prompts do not contain answers and content obviously related to answers, there may still
be some implicit associations between them and the answers. However, this does not affect the
significant improvement of A3E on the composability of model editing. Please refer to Appendix. J.3
and Appendix. J.4 for more comprehensive results. We also provide more discussions on failure
cases in Appendix J.7 and generalization in Appendix J.8.

5.3 Ablation Study

As shown in Fig. 9(a), we conduct experiments in MAC with 3898 edits to evaluate seven ablation
versions removing the proposed Lo, Lc, adaptive combination, adaptive merging, norm and editing
only Wup, respectively. All the components contribute to the composability of A3E. Please refer to
Appendix. J.5 for more results. We further demonstrate three advantages of the components.

(a) (b) (c)

Figure 9: (a) Performance of A3E and seven ablation versions in MAC on PEAK-CF. (b) The
robustness of edited knowledge when randomly masking B in Wup editing, Wdown editing and
Wup&Wdown editing in non-compositional ME on PEAK-CF. (c) Performance improved by adaptive
merging with random masks from different seeds or adaptive combination in MAC on PEAK-CF.

Advantage 1. Adaptive combination achieves performance beyond the trade-off between composabil-
ity and learning ability. As can be seen from Fig. 9(b), although adding a random mask can achieve
good composability, the larger standard deviation indicates that it is significantly affected by the
random seed. Meanwhile, as the unmask size increases, the learning ability gradually improves with
the increasing overlap between edits. We overcome this trade-off by using adaptive combination to
select more useful pre-trained foundation knowledge.

Advantage 2. Lc makes better context-preserving. See Fig. 5(a), by incorporating Lc, our method
significantly reduces the change in the hidden state at the last answer token compared to our methods
without Lc, thus improving the context-preserving capability and achieving a level comparable to
GRACE. Meanwhile, as shown in Fig. 5(b), our stronger context-preserving capability successfully
translates into a higher SR-S.

Advantage 3. Adaptive merging and adaptive combination mutually reinforce each other. In Fig. 9(c),
we compare the impact of test-time random masks on B for editing Wdown and Wup in the non-
compositional ME scenario, where the mask size is set to the mean size of the parts that require
adaptive merging in the CME scenario. It shows that editing Wup is less likely to suffer from
forgetting caused by the presence of adaptive merging.

6 Conclusion

In this paper, we first define and benchmark the CME task, which aims to evaluate the ability of model
editing methods to simultaneously utilize multiple edited knowledge. By revisiting existing model
editing methods, we point out their lack of composability manifests as knowledge loss, incorrect
preceding and knowledge sinking. To mitigate them, we propose A3E to train more composable and
context-preserving edits and compose edits with enhanced composability. Extensive experiments
under various scenarios, backbones, and prompts demonstrate the effectiveness of the proposed A3E.
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A Notation

Table 3: The definition of the notations.

Notation Definition

m Input & output dimension of feed-forward network (FFN)
n Hidden dimension of FFN
d Vocabulary size

Wup Parameters of the first layer of FFN; Wup ∈ Rm×n

Wdown Parameters of the second layer of FFN; Wdown ∈ Rn×m

bup Bias vector of the first layer of FFN; bup ∈ R1×n

bdown Bias vector of the second layer of FFN; bdown ∈ R1×m

hin Input hidden state of FFN; hin ∈ R1×m

hout Output hidden state of FFN; hout ∈ R1×m

a Activation vector after the first layer of FFN; a ∈ R1×n

(A,B) Two learnable low-rank matrices A ∈ Rn×r(Rm×r) and B ∈ Rr×m(Rr×n) to constrain the
parameter updates to lie in a low-rank subspace following [1,2]

M The mask to select pre-trained foundation knowledge in Wdown; M ∈ Rr×n

hlogit Output logits of LLM
W The set of all token IDs
S The preserved edits for inference by the vector database
a Generated answer of LLM
Ŷ The set of generated answers of LLM
Y The set of edited answers

B Related Work

Model Editing. Model editing has become a popular technique to correct LLMs without the costly
re-training. Existing model editing methods are mainly divided into constrained fine-tuning, meta-
learning, locating-and-editing, and memory-based methods. Meta-learning methods such as MEND
[9] and KE [7] train a hypernetwork to generate model updates, with MALMEN [37] addressing the
cancellation effects. Locating-and-editing methods like ROME [8] identify factual associations in the
feed-forward layer and update them. Building on this, MEMIT [38] extends it to a batch edit setting,
while AlphaEdit [19] projects perturbation onto the null space of the preserved knowledge to achieve
better lifelong model editing. To avoid conflicts among numerous edits and the impact on original
knowledge, memory-based methods such as SERAC [39], T-patcher [23], GRACE [21], MELO [22]
and WISE [20] construct extra working memory in different knowledge preservation forms, from
which useless knowledge is filtered out during inference.

Model Editing Evaluation. From single edit to batch edit and then to lifelong edit, the evaluation of
model editing methods is becoming increasingly close to real-world applications and more challenging
in terms of the ability to handle interference between different edits and with the original knowledge.
In addition to the classic assessments of reliability [9, 10], generalization [10, 11], and locality [8, 12],
Cohen et al. [13] proposed evaluating the ripple effect of model editing, which means a series of
knowledge that needs to be changed along with the new knowledge. Ma et al. [14] evaluated the
knowledge inserted into the model bidirectionally, while these works [15, 16, 17, 18] assessed the
impact of model editing methods on general downstream tasks. Unlike previous works, we are
the first to point out that model editing methods should possess composability, namely enabling
the model to use multiple edited knowledge simultaneously. On the one hand, our work extends
locality to scenarios where multiple edits are needed for the same input (multi-question composition
& multi-answer composition), which needs to avoid interference between useful edits. On the other
hand, our work expands generalization in two ways. From the input perspective, we explore how to
make an edit generalize to scenarios where only part of the input requires the edit (multi-question
composition). From the output perspective, we explore how to make an edit generalize to scenarios
when there is some content that corresponds to multiple other edits in the output (multi-question
composition & multi-answer composition). This work takes model editing a step further towards
more complete answers and more complex questions. It is noteworthy that a seemingly related
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work [40] considers the success of a single edit in a multi-hop question with reasoning, instead of
compositional question/answers that require multiple edits in our focus.

Model Merging. Model merging aims to merge the weights of different models while retaining
their respective knowledge. However, due to permutation symmetry [41] and disjoint optimization
trajectories [42], simply averaging two models can lead to a catastrophic drop in their performance.
RegMean [43] proposed a closed-form solution by solving a local linear regression problem for each
linear layer, but it requires additional data transmission and inference overhead. Fisher merging [44]
weighs the parameters in each model with the Fisher Information Matrix [45, 46], but suffers from
memory overhead and conflicts during the merging of multiple models. Recently, since different fine-
tuned models initialized from the same pre-trained model effectively share a part of the optimization
trajectory, model merging methods based on pre-trained models, such as TIES-Merging [34], task
arithmetic in tangent space [47], and ColD Fusion [48], have achieved leading results. Our method
draws inspiration from these works but differs in that our proposed compositional model editing aims
to enable the model to utilize model merging to use multiple edited knowledge simultaneously during
the inference.

C Compositional vs. Collect & Edit

compositional model editing addresses a different scenario where: during the edit training for
“fever” and the edit training for “loss of taste”, they are unaware of each other. This means we
cannot collect all of the knowledge to be edited and then directly compose them at text level. We will
explain why this scenario is meaningful below.

As stated in Sec. 2.1 (cf. Lines 97–99) and illustrated in Fig. 1, we believe that it is necessary to
support model editing in a federated manner. Specifically, when an open-source model is deployed
globally, numerous distinct errors may arise simultaneously across different deployed regions. We
want these deployers can benefit from the edits of each other.

• In such cases, similar to the assumption that raw data cannot be shared in federated learning
due to regulations like GDPR [49], different deployers are only able to share trained
edits. In such cases, when a deployer receives trained edits from other deployers, it does
not know the questions of the edits. It is impossible to get complete answers during edit
training because:

1. The deployer has to iterate through all previous edit questions to determine which
previous edits need to be composed with the newly received edit to form a complete
answer.

2. However, storing all previous edit questions is impossible in lifelong model editing.
• When exchanging raw data is allowed, local deployers still have to perform immediate

model editing to mitigate potential adverse effects without waiting to receive errors
discovered by other deployers. In this scenario, assuming that each of n deployers updates
an answer to the same question and exchanges these n different answers with each other.

– Continuously injecting complete knowledge would require n times edit training for
each deployer at most.

– Exchanging independently trained edits would only require 1 time edit training for
each deployer.

Training edits independently while ensuring their composability supports model editing in a
federated manner much more efficiently. This is especially important in the field of model
editing, which emphasizes immediate correction of errors.

Meanwhile, for multi-question composition, compositional model editing is clearly meaningful
because,

• Edits for any two different questions may need to be composed during testing.
• Different errors to be edited may be discovered at different time.

Therefore, it is impossible to exhaustively cover all possible composition cases for complete knowl-
edge during the edit training process.
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D The Design of Vector Database

To enhance the edit composing stage, we adapt the vector database in [21, 22] in a simple but effective
way. We retrieve useful edited knowledge with a threshold γ to ensure locality and a top-p selection
to balance the completeness of knowledge and interference from useless edits:

S = {(A,B)|(K,A,B) ∈ Sdb and hdbK
⊤ > γ

and hdbK
⊤ ∈ top-p(hdbK

⊤)},
(9)

where S represents the retrieved edits from the vector database Sdb with K ∈ R1×m as the key and
(A,B) as the value. K is saved from a selected hidden state of the edit question. hdb ∈ R1×m

represents the selected hidden state of the test question, which are hyperparameters. We use hdb to
retrieve edits by matching K. Because of the mask M, we only need to save the unmasked B and
the unmasked position. Please refer to Alg. 1 and Alg. 2 for the construction and utilization of Sdb.
Please also refer to Alg. 2 for the complete test procedure.

E Handling Continuous Editing Situations

When adding an edit for “loss of taste,” if we recognize that the existing edit for “fever” is outdated,
our method can easily remove the outdated edit with the following locate-and-delete algorithm:

1. Iterate and mask each edit (A,B) in the retrieved part S of the vector database
during the generation process → locate the edit that leads to the outdated answer.
2. Delete the located edit.

We consider a three-answer composition scenario with 3× 50 successful edits to test the effectiveness
of the locate-and-delete algorithm above, where each question receives two correct edits and one
outdated edit. The accuracy of deleting the outdated edits is 100%. We encourage the construction
of outdated edits feedback and avoidance mechanisms when deploying A3E.

F Computational and Memory Overhead

In Tab. 4 and Tab. 5, we provide a more detailed analysis of the computational and memory overhead
compared to baselines with Llama3-8B and Llama3-70B from four aspects: storage overhead,
trainable parameters, extra FLOPs for inference (infer.), extra FLOPs for training (train.). We
only provide the extra FLOPs for training of T-patcher, GRACE, MELO and A3E because other
methods that update the whole matrix or train a hypernetwork have significantly larger training
overhead. Specifically,

• Storage overhead refers to the additional parameters that need to be stored compared to the
pre-trained model for 1000 edits.

• Trainable parameters denote the parameters that are updated during training for each edit.
• Infer. denotes extra FLOPs compared to the pre-trained model for the inference of u tokens with v

input tokens.
• Train. denotes extra FLOPs compared to the vanilla forward-backward progress with cross-entropy

loss for w training steps of an edit with z-token answer.

For Llama3-8B,

We also provide the extra FLOPs of the proposed adaptive combination, adaptive regularization and
adaptive merging for inference and training:

• Adaptive merging of A3E: 1.64u× 10−5 GFLOPs
• Adaptive combination of A3E: 0.03z GFLOPs
• Adaptive regularization of A3E: 1.28wz × 10−4 + 1.64w × 10−5 GFLOPs

In A3E, w is set to 50 and z < u for a instance. The extra FLOPs for training and inference are very
small compared to the generation of u tokens with v input tokens with an 8B model, which is about
16u+ 16v GFLOPs.
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Table 4: Computational and Memory Overhead in Llama3-8B.

Method Storage Overhead Trainable Parameters infer. (GFLOPs) train. (GFLOPs)

FT 0 0.54GB 0 -
ROME 1.64GB 0.54GB 0 -
KE 0.72GB 0.72GB 0 -
MEND 1.14GB 1.14GB 0 -
AlphaEdit 1.64GB 0.54GB 0 -
WISE 0.11GB 0.11GB 0.27v + 0.27u -
T-patcher 0.07GB 32.77KB 0.02u 0.01wz
GRACE 0.07GB 32.77KB 0.02 0
MELO 0.13GB 98.30KB 0.02 0
A3E 0.07GB 39.94KB 0.02 + 4.92u× 10−5 0.03z + 1.28wz × 10−4 + 1.64w × 10−5

Table 5: Computational Overhead in Llama3-70B.

Method Trainable Parameters infer. (GFLOPs) train. (GFLOPs)

FT 1.88GB 0 -
ROME 1.88GB 0 -
KE 2.52GB 0 -
MEND 2.09GB 0 -
AlphaEdit 1.88GB 0 -
WISE 0.38GB 0.94v + 0.94u -
T-patcher 65.54KB 0.03u 0.02wz
GRACE 65.54KB 0.03 0
MELO 180.22KB 0.03 0
A3E 72.71KB 0.03 + 1.19u× 10−4 0.09z + 1.28wz × 10−4 + 2.87w × 10−5

For Llama3-70B,

We also provide the extra FLOPs of the proposed adaptive combination, adaptive regularization and
adaptive merging for inference and training:

• Adaptive merging of A3E: 1.19u× 10−4 GFLOPs
• Adaptive combination of A3E: 0.09z GFLOPs
• Adaptive regularization of A3E: 1.28wz × 10−4 + 2.87w × 10−5 GFLOPs

In A3E, w is set to 50 and z < u for a instance. The extra FLOPs for training and inference are very
small compared to the generation of u tokens with v input tokens with an 70B model, which is about
140u+ 140v GFLOPs.

G Experiment Details

For the baselines, we follow the reproduction code and hyperparameters as described in [11]. For
A3E, we set the unmasked size k to 896 for PEAK-CF and to 448 for PEAK-T. We set the loss weight
α to 8 and β to 1 to balance their utilities. We store the output of the 5-th down projection layer at the
last subject token as K and hdb. We set the edited FFN layer to 31, the learning rate to 0.01, and train
each edit for 50 epochs. To better evaluate the priority of different answers within the model, for all
baselines and A3E, we assign a penalty of 10 to the answers that have already been generated. How to
achieve effective compositional model editing under both instruction-tuned models and conventional
inference settings remains an area requiring urgent exploration. For GRACE, MELO and A3E, we
use the vector database in Appendix D with the same p = 4 and γ = 0.5. The experiments are
conducted on a server with 8 NVIDIA RTX 5880 Ada GPUs.

For the benchmark construction with PEAK-CF as an example: (1) The original PEAK-CF is a
model editing dataset containing questions with multiple answers. (2) We queried Llama3-8B and
Mistral-7B, selecting questions from PEAK-CF where both models missed four or more answers,
along with their corresponding missing answers in PEAK-CF. (3) For multi-answer composition,
the retained questions and their randomly selected c missing answers form a test instance, where c
is the composition number. (See Tab. 17 for an example) (4) For multi-question composition, we
randomly selected c retained questions without repetition and one randomly chosen missing answer
per question to form a test instance. (See Tab. 19 for an example)
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H Discussions of SR-S

Fig. 10 shows a correct example and a false example of SR-S. SR-S aims to accurately measure the
interference between different edits to evaluate the composability without considering the case of
outputting unrelated answers after all correct answers. This is to mitigate the confounding effect
of conventional model editing, where “outputting unrelated answers after correct answers” is also
a problem, and warrant fairness in evaluating composability. We report the metric SR-AS when
“outputting unrelated answers after all correct answers” is considered as an error in Table 6. A3E
maintains a clearly superior performance.

fever, Stomachache, loss of taste.

(a) SR-S

(b) SR-AS

fever, loss of taste, Stomachache.

fever, loss of taste. What are the symptoms of COVID-19?

fever, loss of taste. What are the symptoms of COVID-19?

fever, loss of taste. fever, loss of taste, Stomachache. fever, Stomachache, loss of taste.

Figure 10: The illustration of (a) SR-S and (b) SR-AS. The text in blue, red, green represents the first
correct answer, the wrong answer and the second correct answer, respectively.

Table 6: Performance measured by SR-S and SR-AS in 1) IMAC (3898 edits) and MAC (3898 edits)
on PEAK-CF. 2) IMAC (1984 edits) and MAC (1984 edits) on PEAK-T. 3) IMQC (1948 edits) and
MQC (1948 edits) on PEAK-CF. 4) IMQC (992 edits) and MQC (992 edits) on PEAK-T.

Method
PEAK-CF PEAK-T

IMAC MAC IMAC MAC

SR-S↑ SR-AS↑ SR-S↑ SR-AS↑ SR-S↑ SR-AS↑ SR-S↑ SR-AS↑

FT 0.31 0.26 0.00 0.00 0.10 0.00 0.00 0.00
ROME 0.92 0.62 0.00 0.00 0.30 0.05 0.00 0.00

KE 0.92 0.41 0.00 0.00 0.10 0.00 0.00 0.00
MEND 2.36 1.95 0.00 0.00 1.01 0.05 0.00 0.00

AlphaEdit 5.44 4.67 6.98 5.23 2.02 1.64 0.50 0.30
WISE 39.99 30.12 0.10 0.00 23.08 17.97 0.20 0.10

T-patcher 26.64 18.98 0.00 0.00 20.77 16.74 0.00 0.00
GRACE 15.20 11.90 12.99 10.31 6.55 5.13 5.65 4.31
MELO 19.46 15.03 18.22 14.73 9.48 7.60 6.96 5.54

A3E 48.97 40.69 43.38 35.92 41.63 33.68 38.00 30.90

Method
PEAK-CF PEAK-T

IMQC MQC IMQC MQC

SR-S↑ SR-AS↑ SR-S↑ SR-AS↑ SR-S↑ SR-AS↑ SR-S↑ SR-AS↑

FT 5.64 3.70 0.00 0.00 0.00 0.00 0.00 0.00
ROME 23.49 18.99 0.00 0.00 19.15 15.12 0.00 0.00

KE 1.03 0.81 0.00 0.00 4.23 3.53 0.00 0.00
MEND 5.23 3.59 0.00 0.00 14.11 10.28 0.00 0.00

AlphaEdit 7.69 6.16 5.33 4.31 16.33 12.70 5.65 4.54
WISE 46.56 37.68 0.00 0.00 27.62 21.67 0.20 0.00

T-patcher 33.23 26.39 0.00 0.00 26.81 20.26 0.00 0.00
GRACE 6.56 4.93 3.59 2.77 6.05 4.54 4.84 3.93
MELO 20.31 15.61 9.13 7.39 6.25 5.04 2.82 2.28

A3E 52.51 43.02 26.46 22.07 46.17 37.40 28.63 24.19
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I The Sufficiency of Editing Wup

I.1 For higher SR-S

From an intuitive perspective, new information does not appear out of thin air, it will be related to
past information to some extent.

From an empirical perspective, we have shown in Fig. 4(a) that using existing columns to form new
knowledge (edit Wup) can achieve results comparable to or even slightly better than editing Wdown
alone, as well as editing both Wup and Wdown simultaneously. In Fig. 4(b), we conduct the experiment
above with fake relation in the input (e.g. share border with -> share boodee with) and fake answer
(e.g. Syria -> Sykie) to simulate unseen knowledge. It can be seen that the performance does not
change a lot. These experiments indicate that editing Wup is enough to guarantee the performance.

From a mathematical perspective, Wdown is often of full rank, which to some extent guarantees its
expressive power in its output space.

I.2 For less knowledge loss

From an intuitive perspective, the distinction between pretrained knowledge and edited knowledge
from existing model editing methods lies in the fact that pretrained knowledge is the combination
of pretrained foundation knowledge in Wdown, whereas existing model editing methods directly
manipulate the output of Wdown. Meanwhile, we know that pretrained models can leverage pretrained
knowledge to answer questions requiring multiple answers, but when using multiple edited knowledge,
they exhibit significant knowledge loss. Therefore, we intuitively hypothesize that knowledge loss
may partly stem from the fact that edited knowledge is not the combination of pretrained foundation
knowledge.

From an empirical perspective, we observe that editing Wup (i.e., combining pretrained foundation
knowledge into edited knowledge) results in less min knowledge loss across 27-31 layers and across
baselines compared to editing Wdown or editing both Wup and Wdown in Tab. 7 while leading to
higher SR-S and similar non-compositional performance (Fig. 4).

Table 7: Min knowledge loss across 27-31 layers and across baselines when editing Wup, Wdown,
Wup and Wdown.

Method Min knowledge loss (%)

Wup 60.6
Wdown 71.4

Wup and Wdown 69.7

J Additional Experimental Results

J.1 The effect of the composition number and the number of edits

In Fig. 11, we provide complete experimental results for the effect of different number of edits and
the composition number in MAC and MQC on PEAK-CF and PEAK-T. In PEAK-CF dataset, we
also conducted additional experiments by sampling 50 questions with 10+ unknown answers each
and evaluated the performance with a composition number of 10.

Table 8: Experimental results on PEAK-CF dataset with composition number 10.

Method ROME AlphaEdit WISE T-patcher GRACE MELO A3E

SR-1 2.40 4.60 9.40 6.60 8.60 12.20 17.20

As shown in Tab. 8, the experimental results demonstrate that when a large number of edits need
to be applied simultaneously, A3E still significantly outperforms the baselines on the SR-1 metric,
which means A3E retains more edited knowledge with large composition numbers.
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Figure 11: (a)-(d) Performance with different composition number measured by SR-S and SR-1 in
MAC and MQC on PEAK-CF and PEAK-T. (e)-(h) Performance change with different number of
edits measured by SR-S and SR-1 in MAC and MQC on PEAK-CF and PEAK-T.

J.2 The effect of hyperparameters

The hyperparameters of A3E are not sensitive and are easy to adjust. First, as shown in Fig. 12(a)-
12(d), compared with the performance improvement of A3E, its performance is not sensitive to
the selection of α, β, γ, and p. Second, the adjustment of hyperparameters is straightforward for
two reasons: 1) As shown in Fig. 12(a)-12(e), all hyperparameters exhibit similar behavior across
different datasets (i.e., PEAK-CF and PEAK-T), indicating that a one-time hyperparameter search is
almost sufficient, and repeated re-tuning can be avoided. 2) As shown in Fig. 12(a)-12(b), there exist
correlations among certain hyperparameters, e.g., setting α = 8β often leads to the best performance.
This enables joint tuning, thereby reducing the number of hyperparameters that need to be adjusted.

(a) (b) 

(e) (d) (c) 

Figure 12: The effect of (a) α, β on the performance measured by SR-S in MAC on PEAK-CF, (b) α,
β on the performance measured by SR-S in MAC on PEAK-T. The effect of (c) γ, (d) p and (e) k on
the performance measured by SR-S in MAC on PEAK-CF and PEAK-T.

J.3 The effect of different backbones

Table 9 shows the performance with backbone Mistral-7B in four scenarios on two datasets.
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Table 9: Performance with Mistral-7B measured by metrics in Sec. 5.1 in 1) IMAC (3898 edits) and
MAC (3898 edits) on PEAK-CF. 2) IMAC (1984 edits) and MAC (1984 edits) on PEAK-T. 3) IMQC
(1948 edits) and MQC (1948 edits) on PEAK-CF. 4) IMQC (992 edits) and MQC (992 edits) on
PEAK-T.

METHOD
PEAK-CF PEAK-T

IMAC MAC IMAC MAC

SR-S↑ SR-1↑ GSR↑ SR-S↑ SR-1↑ GSR↑ LSR↑ SR-S↑ SR-1↑ GSR↑ SR-S↑ SR-1↑ GSR↑ LSR↑

FT 0.26 10.19 0.31 0.00 0.00 0.00 4.93 0.00 2.03 0.32 0.00 0.00 0.00 2.10
ROME 0.77 13.83 0.71 0.00 0.52 0.00 11.51 14.44 17.61 11.83 0.00 0.00 0.00 3.59

KE 0.76 8.74 0.73 0.00 0.00 0.00 9.88 3.19 5.08 2.55 0.00 0.00 0.00 3.85
MEND 1.97 19.58 1.66 0.00 0.00 0.00 11.61 10.64 11.06 7.14 0.00 0.00 0.00 3.98

ALPHAEDIT 4.54 26.30 3.99 5.75 27.99 5.20 15.06 12.31 11.63 9.03 6.27 19.41 6.95 4.15
WISE 33.91 58.70 32.68 0.10 4.57 0.10 14.98 19.25 40.93 17.84 0.00 1.21 0.00 8.02

T-PATCHER 22.22 44.56 11.19 0.00 0.59 0.00 0.95 20.21 31.68 20.53 0.00 0.00 0.00 0.32
GRACE 12.68 48.72 12.68 10.70 42.24 8.22 23.55 4.56 20.22 4.51 5.37 23.61 5.00 40.14
MELO 15.24 35.25 14.52 13.80 32.99 13.23 23.11 7.86 23.99 7.60 5.75 18.95 5.24 34.76

A3E 40.84 64.03 39.86 35.73 59.55 33.30 24.21 34.80 43.43 31.21 31.75 41.53 30.04 40.88

METHOD
PEAK-CF PEAK-T

IMQC MQC IMQC MQC

SR-S↑ SR-1↑ GSR↑ SR-S↑ SR-1↑ GSR↑ LSR↑ SR-S↑ SR-1↑ GSR↑ SR-S↑ SR-1↑ GSR↑ LSR↑

FT 0.28 9.79 0.31 0.00 0.00 0.00 5.24 0.00 2.71 0.00 0.00 0.00 0.00 2.06
ROME 0.82 13.28 0.79 0.00 0.40 0.00 12.55 15.89 18.35 12.15 0.00 0.00 0.00 3.53

KE 0.82 8.40 0.69 0.00 0.00 0.00 12.49 3.51 6.75 2.62 0.00 0.00 0.00 2.90
MEND 2.12 18.82 1.82 0.00 0.36 0.00 12.73 11.71 14.69 7.34 0.00 0.00 0.00 3.92

ALPHAEDIT 4.88 25.26 4.38 3.60 21.03 2.82 15.70 13.55 15.44 9.28 4.74 21.01 4.44 4.00
WISE 38.96 58.73 37.27 0.00 2.71 0.00 7.32 23.39 27.42 20.56 0.00 2.82 0.00 4.20

T-PATCHER 23.90 42.80 12.28 0.00 0.37 0.00 1.90 22.25 26.53 21.09 0.00 0.00 0.00 0.34
GRACE 13.64 46.80 13.91 6.69 31.74 4.46 44.85 5.02 26.85 4.64 4.06 25.56 3.20 37.57
MELO 16.94 36.96 15.40 7.60 30.29 6.88 42.10 5.44 19.76 4.84 2.42 16.73 1.81 36.20

A3E 43.94 61.50 43.74 22.33 44.76 18.06 45.33 38.31 57.66 32.06 23.99 44.96 19.15 40.27

J.4 The effect of different prompts

Table 10-11 shows the performance of A3E and state-of-the-art baselines WISE, GRACE, MELO
with different prompts in four scenarios on two datasets.
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Table 10: Performance with prompt 2 measured by metrics in Sec. 5.1 in 1) IMAC (3898 edits) and
MAC (3898 edits) on PEAK-CF. 2) IMAC (1984 edits) and MAC (1984 edits) on PEAK-T. 3) IMQC
(1948 edits) and MQC (1948 edits) on PEAK-CF. 4) IMQC (992 edits) and MQC (992 edits) on
PEAK-T.

Method
PEAK-CF PEAK-T

IMAC MAC IMAC MAC

SR-S↑ SR-1↑ GSR↑ SR-S↑ SR-1↑ GSR↑ LSR↑ SR-S↑ SR-1↑ GSR↑ SR-S↑ SR-1↑ GSR↑ LSR↑

FT 0.26 9.97 0.30 0.00 0.00 0.00 5.36 0.09 1.59 0.09 0.00 0.00 0.00 3.15
ROME 0.76 13.54 0.68 0.00 0.51 0.00 12.17 0.50 15.15 0.25 0.00 0.00 0.00 6.17

KE 0.75 8.48 0.59 0.00 0.00 0.00 10.65 0.09 4.18 0.09 0.00 0.00 0.00 4.79
MEND 1.92 18.80 1.55 0.00 0.45 0.00 12.06 0.82 10.00 0.66 0.00 0.00 0.00 5.37

AlphaEdit 4.60 26.21 3.86 5.90 28.10 5.21 15.82 1.71 18.41 1.80 0.42 13.76 0.34 8.14
WISE 32.81 53.54 31.67 0.13 4.59 0.12 15.46 18.88 44.78 17.72 0.27 2.51 0.27 8.04

T-patcher 22.43 44.30 10.77 0.05 0.44 0.04 1.81 17.46 36.71 15.49 0.00 0.00 0.00 0.70
GRACE 12.66 48.04 12.10 10.88 41.96 8.21 22.73 5.39 34.98 5.22 4.62 27.81 4.32 37.57
MELO 17.75 40.52 16.84 16.68 35.20 15.31 25.05 8.58 26.35 8.45 6.26 21.11 6.11 35.07

A3E 47.88 73.86 44.68 42.48 69.20 38.70 25.88 40.66 50.40 36.25 37.13 48.68 35.26 40.03

Method
PEAK-CF PEAK-T

IMQC MQC IMQC MQC

SR-S↑ SR-1↑ GSR↑ SR-S↑ SR-1↑ GSR↑ LSR↑ SR-S↑ SR-1↑ GSR↑ SR-S↑ SR-1↑ GSR↑ LSR↑

FT 4.68 17.98 4.00 0.00 0.00 0.00 2.73 0.01 2.68 0.34 0.00 0.00 0.00 2.76
ROME 19.51 39.10 16.09 0.00 0.34 0.00 4.75 15.92 18.20 12.07 0.00 0.00 0.00 3.02

KE 0.85 12.79 0.64 0.00 0.00 0.00 3.25 3.49 6.63 2.58 0.00 0.00 0.00 2.45
MEND 4.21 18.05 4.07 0.00 0.00 0.00 3.04 11.5 14.28 7.15 0.00 0.00 0.00 4.28

AlphaEdit 6.50 24.15 4.76 4.51 21.06 3.56 6.85 13.81 15.58 9.38 4.77 21.23 4.26 4.48
WISE 38.14 57.51 36.46 0.09 2.55 0.08 7.90 22.51 26.66 20.52 0.06 2.96 0.06 4.88

T-patcher 27.95 50.93 26.32 0.09 0.11 0.08 0.29 22.45 26.47 21.58 0.00 0.22 0.00 0.53
GRACE 5.35 32.55 4.25 3.10 28.88 2.48 38.33 4.87 26.57 4.94 3.83 25.81 3.24 38.58
MELO 18.45 40.30 16.78 8.45 32.99 7.60 39.48 5.65 21.22 5.53 2.36 18.40 2.05 36.45

A3E 51.28 71.83 51.19 26.01 52.22 19.97 44.69 45.02 67.14 37.81 27.82 52.84 21.52 40.77

Table 11: Performance with prompt 3 measured by metrics in Sec. 5.1 in 1) IMAC (3898 edits) and
MAC (3898 edits) on PEAK-CF. 2) IMAC (1984 edits) and MAC (1984 edits) on PEAK-T. 3) IMQC
(1948 edits) and MQC (1948 edits) on PEAK-CF. 4) IMQC (992 edits) and MQC (992 edits) on
PEAK-T.

Method
PEAK-CF PEAK-T

IMAC MAC IMAC MAC

SR-S↑ SR-1↑ GSR↑ SR-S↑ SR-1↑ GSR↑ LSR↑ SR-S↑ SR-1↑ GSR↑ SR-S↑ SR-1↑ GSR↑ LSR↑

FT 0.28 9.33 0.24 0.00 0.00 0.00 5.08 0.08 1.49 0.08 0.00 0.00 0.00 3.95
ROME 0.72 12.78 0.64 0.00 0.48 0.00 12.61 0.47 14.31 0.24 0.00 0.00 0.00 6.88

KE 0.72 8.09 0.56 0.00 0.00 0.00 10.24 0.10 3.95 0.08 0.00 0.00 0.00 4.58
MEND 1.83 17.92 1.47 0.00 0.43 0.00 12.58 0.80 9.81 0.65 0.00 0.00 0.00 5.28

AlphaEdit 4.34 24.78 3.65 5.58 26.56 4.92 15.12 1.62 17.40 1.62 0.40 13.01 0.33 8.75
WISE 31.58 51.53 30.48 0.13 4.42 0.12 15.99 18.17 43.10 17.06 0.26 2.42 0.26 8.78

T-patcher 20.97 41.43 10.07 0.05 0.41 0.04 1.75 16.34 34.36 14.51 0.00 0.00 0.00 0.66
GRACE 12.05 45.75 11.52 10.41 39.95 7.82 27.64 5.13 33.30 4.97 4.40 26.49 4.12 37.07
MELO 13.36 30.52 12.68 12.57 26.51 11.55 24.03 6.44 19.82 6.41 4.69 15.94 4.63 34.95

A3E 46.38 71.54 43.28 41.15 67.03 37.49 25.39 39.25 48.64 35.03 35.80 46.99 34.02 40.86

Method
PEAK-CF PEAK-T

IMQC MQC IMQC MQC

SR-S↑ SR-1↑ GSR↑ SR-S↑ SR-1↑ GSR↑ LSR↑ SR-S↑ SR-1↑ GSR↑ SR-S↑ SR-1↑ GSR↑ LSR↑

FT 4.38 16.81 3.74 0.00 0.00 0.00 2.62 0.01 2.50 0.32 0.00 0.00 0.00 2.65
ROME 18.42 36.93 15.20 0.00 0.32 0.00 4.54 15.03 17.19 11.40 0.00 0.00 0.00 3.85

KE 0.80 12.08 0.60 0.00 0.00 0.00 3.07 3.33 6.32 2.46 0.00 0.00 0.00 2.34
MEND 4.13 17.71 3.99 0.00 0.00 0.00 3.98 10.96 13.61 6.81 0.00 0.00 0.00 4.12

AlphaEdit 6.14 22.83 4.50 4.26 19.91 3.36 6.53 13.06 14.73 8.87 4.51 20.07 4.02 4.29
WISE 36.71 55.35 35.09 0.09 2.45 0.08 7.67 21.66 25.65 19.77 0.36 2.86 0.20 4.74

T-patcher 26.16 47.68 24.64 0.00 0.00 0.00 0.27 20.98 24.74 20.20 0.00 0.00 0.00 0.51
GRACE 5.09 30.99 4.04 2.96 27.49 2.37 38.78 4.63 25.28 4.72 3.64 24.59 3.10 38.04
MELO 13.87 30.34 12.61 6.39 24.84 5.74 39.73 4.26 16.13 4.11 1.89 13.76 1.45 37.08

A3E 49.49 69.33 49.40 25.10 50.40 19.28 45.13 43.60 65.03 36.64 26.94 51.19 20.85 41.51
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J.5 Ablation study

In Table 12, we provide the comprehensive results of ablation study in four scenarios on two datasets.

Table 12: Ablation study measured by metrics in Sec. 5.1 in 1) IMAC (3898 edits) and MAC (3898
edits) on PEAK-CF. 2) IMAC (1984 edits) and MAC (1984 edits) on PEAK-T. 3) IMQC (1948 edits)
and MQC (1948 edits) on PEAK-CF. 4) IMQC (992 edits) and MQC (992 edits) on PEAK-T.

Method
PEAK-CF PEAK-T

IMAC MAC IMAC MAC

SR-S↑ SR-1↑ GSR↑ SR-S↑ SR-1↑ GSR↑ LSR↑ SR-S↑ SR-1↑ GSR↑ SR-S↑ SR-1↑ GSR↑ LSR↑

A3E w/o lo 44.07 67.94 41.12 39.04 63.65 35.53 23.19 37.47 46.46 33.21 34.20 44.64 32.30 40.97
A3E w/o lc 39.18 60.39 36.55 34.70 56.58 31.59 23.61 33.31 41.30 29.52 30.40 39.68 28.71 40.77

A3E w/o combin. 37.54 57.88 35.03 33.26 54.22 30.27 23.15 32.13 39.83 28.47 29.32 38.28 27.70 40.61
A3E w/o merg. 38.60 59.51 36.02 34.20 55.75 31.12 24.31 32.47 40.26 28.78 29.64 38.69 28.00 40.95
A3E w/o norm 38.85 59.89 36.25 34.41 56.10 31.32 25.44 31.85 39.49 28.23 29.07 37.95 27.46 41.34
A3E w/ down 37.30 57.50 34.80 33.04 53.86 30.07 25.62 31.22 38.71 27.67 28.50 37.20 26.92 40.72

A3E w/ up&down 39.58 61.02 36.93 35.07 57.16 31.91 25.76 32.54 40.35 28.84 29.70 38.77 28.06 40.02
A3E 48.97 75.49 45.69 43.38 70.72 39.48 25.76 41.63 51.62 36.90 38.00 49.60 35.89 40.97

Method
PEAK-CF PEAK-T

IMQC MQC IMQC MQC

SR-S↑ SR-1↑ GSR↑ SR-S↑ SR-1↑ GSR↑ LSR↑ SR-S↑ SR-1↑ GSR↑ SR-S↑ SR-1↑ GSR↑ LSR↑

A3E w/o lo 47.26 66.14 47.17 23.81 48.09 18.28 45.66 41.56 61.96 34.47 25.76 48.35 19.59 39.23
A3E w/o lc 42.01 58.79 41.93 21.17 42.75 16.24 45.59 36.94 55.07 35.65 22.90 42.98 17.42 39.10

A3E w/o combin. 40.52 56.71 40.45 20.42 41.23 15.67 44.29 35.39 52.78 29.38 21.95 41.19 16.68 39.17
A3E w/o merg. 40.96 57.32 40.88 20.64 41.68 15.84 44.67 36.40 54.28 30.20 22.57 42.36 17.17 39.61
A3E w/o norm 40.17 56.22 40.10 20.24 40.88 15.53 44.99 36.63 54.62 30.39 22.71 42.63 17.28 40.82
A3E w/ down 39.38 55.12 39.31 19.84 40.08 15.23 44.30 35.17 52.44 29.18 21.80 40.93 16.59 38.51

A3E w/ up&down 41.04 57.45 40.97 20.68 41.77 15.87 44.75 37.32 55.65 30.97 23.14 43.44 17.60 38.33
A3E 52.51 73.49 52.41 26.46 53.44 20.31 45.73 46.17 68.85 38.31 28.63 53.73 21.77 41.37

J.6 Non-compositional ME evaluation on classic datasets for ME

As shown in Tab. 13, the non-compositional performance of A3E is on par with baselines.

Table 13: Non-compositional results on classic ME dataset ZsRE [50] and Counterfact [8] follow-
ing [11] on Llama3-8B.

Method ZsRE Counterfact
SR-1↑ GSR↑ LSR↑ SR-1↑ GSR↑ LSR↑

FT 47.95 52.32 73.08 51.53 48.14 63.95
ROME 99.53 97.52 95.57 100.00 92.77 77.40
MEND 92.24 90.70 96.23 79.10 58.76 91.19
AlphaEdit 98.00 96.54 95.57 99.55 95.03 79.21
WISE 93.39 92.53 100.00 98.59 93.50 99.32
T-patcher 95.28 94.24 92.62 95.03 93.79 89.38
GRACE 96.69 94.00 100.00 99.77 94.12 100.00
MELO 95.28 94.08 100.00 98.53 92.88 100.00
A3E 97.00 96.77 100.00 99.77 93.79 100.00

J.7 Failure cases analysis

We conducted failure case analysis for overlapping, contradictory, and capacity-exceeding edits
as follows:

• For overlapping and contradictory cases, we conducted statistical analysis on the PEAK-CF
dataset under the IMAC scenario with 50 cases of two-edit composition, measuring:

– The overlapping selection of pre-trained foundation knowledge, calculated by the overlapping
length between non-zero ∆a (Sec. 4.1) regions of two edits in adaptive merging (Sec. 4.2)

– The contradictory utilization of pre-trained foundation knowledge, calculated by the length of
regions with different signs between ∆a (Sec. 4.1) of two edits in adaptive merging (Sec. 4.2)
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The table below presents how the SR-S metric, which is inversely proportional to the proportion
of failure cases, varies across different overlapping and contradictory ranges. As the overlapping
length and contradictory length increase, the SR-S of A3E gradually decreases, but it remains
significantly higher than the baselines.

Table 14: SR-S across different overlapping ranges.

Overlapping [0, 500) [500, 1000) [1000, 1500) [1500,+∞)

SR-S 75.00 66.67 45.45 50.00

Table 15: SR-S across different contradictory ranges.

Contradictory [0, 200) [200, 400) [400, 600) [600,+∞)

SR-S 66.67 68.75 57.14 46.67

Table 16: SR-S comparison with baselines.

Baselines MEND ROME AlphaEdit WISE T-patcher GRACE MELO

SR-S 4.00 4.00 8.00 32.00 20.00 14.00 20.00

• For capacity-exceeding cases, we found that the failure cases of baselines and A3E in both compo-
sitional model editing and non-compositional model editing scenarios often involve numerical data
in answers. For example,

– Edit 1: Rheinmetall, which has designed 12 cm leFH 08
– Test 1: Rheinmetall, which has designed 12 cm leFH 8 (failure)
– Edit 2: Rheinmetall, which has designed 35.5 cm Haubitze M1
– Test 2: Rheinmetall, which has designed 35.5 cm Haubitze M1 (success)
– Composition test: Rheinmetall, which has designed 12 cm leFH, 12 cm Haubitze M8

(failure)

This may stem from the model’s inherent inability to accurately distinguish numerical data. There-
fore, addressing such inherent limitations of the model is a valuable direction for future work in
model editing.

We believe these findings can guide future research to further improve edit composability.

J.8 Generalization

The potential generalization limitations are as follows:

• Noisy scenarios. In Fig. 8(d), we tested the impact of different few-shot prompts on A3E’s
performance. These varied few-shot prompts not only controlled the model’s output but also
simulated different noise present in the context. The results show that while A3E’s performance is
affected, it still maintains a leading performance compared to the baselines.

• Noisy open-domain scenarios. We humbly acknowledge that in open-domain scenarios, noisy
contexts may still impact the retrieval accuracy of the vector database. Since A3E primarily focuses
on edit training and edit composing, we will explore

– optimizing the hidden state positions for retrieval based on the real data distribution in
application scenarios

– employing more powerful embedding models
– training a question-rewriting module to better align with the vector database

for optimal performance in the future work.
• Adversarial scenarios. We conducted additional experiments using 2× 50 successful edits from

the PEAK-CF dataset under the IMAC setting by providing the tested question with incorrect
answers in the few-shot prompts. The results demonstrate that A3E consistently (100%) outputs
the edited answers across all test cases, proving its robustness against contextual interference.
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Table 17: An example of multi-answer composition containing two pieces of edited knowledge,
where the blue text indicates the question and the rephrased question.

Question Bertrand Russell is the author of

Answer Power: A New Social Analysis, A History of Western Philosophy

Edit 1 xe Bertrand Russell is the author of

Edit 1 ye Power: A New Social Analysis

Edit 2 xe Bertrand Russell is the author of

Edit 2 ye A History of Western Philosophy

Test Xt Tim Dorsey, who has written the Cadillac Beach, Nuclear Jellyfish, Triggerfish Twist, Hammer-
head Ranch Motel, The Big Bamboo, Orange Crush (novel), Hurricane Punch, The Stingray
Shuffle, Atomic Lobster, Torpedo Juice (novel), Florida Roadkill.\n Jerusalem, which is the
partner town of NYC, New York, Praha, New York City, United States, Rio de Janeiro, NY, New
York, NY, Prague, New York City, Tehran, Buenos Aires, Moscow, Manhattan.\n Pushkin is
the author of The Fountain of Bakhchisaray, Eugene Onegin, The Tale of the Fisherman and the
Fish, Poltava (poem), The Tale of the Golden Cockerel, Dubrovsky (novel), The Belkin Tales,
Onegin, The Stone Guest (play), The Bronze Horseman (poem), The Queen of Spades (story),
The Tale of the Priest and of His Workman Balda, The Gypsies, The Blizzard, Tatiana Larina,
The Tale of the Dead Princess and the Seven Knights.\n WWE is the owner of WWE Classics
on Demand, FCW Florida Heavyweight Championship, WWE Studios, WWE Films, WWE
Network, NXT, FCW, WWE Classics On Demand, FCW Southern Heavyweight Championship,
WCW, World Championship Wrestling, WCW, Inc., Florida Championship Wrestling, NXT
Wrestling, Universal Wrestling Corporation, WWE NXT.\n Bertrand Russell is the author of

Test Yt Power: A New Social Analysis, A History of Western Philosophy

Rephrased test Tim Dorsey, who has written the Cadillac Beach, Nuclear Jellyfish, Triggerfish Twist, Hammer-
head Ranch Motel, The Big Bamboo, Orange Crush (novel), Hurricane Punch, The Stingray
Shuffle, Atomic Lobster, Torpedo Juice (novel), Florida Roadkill.\n Jerusalem, which is the
partner town of NYC, New York, Praha, New York City, United States, Rio de Janeiro, NY, New
York, NY, Prague, New York City, Tehran, Buenos Aires, Moscow, Manhattan.\n Pushkin is
the author of The Fountain of Bakhchisaray, Eugene Onegin, The Tale of the Fisherman and the
Fish, Poltava (poem), The Tale of the Golden Cockerel, Dubrovsky (novel), The Belkin Tales,
Onegin, The Stone Guest (play), The Bronze Horseman (poem), The Queen of Spades (story),
The Tale of the Priest and of His Workman Balda, The Gypsies, The Blizzard, Tatiana Larina,
The Tale of the Dead Princess and the Seven Knights.\n WWE is the owner of WWE Classics
on Demand, FCW Florida Heavyweight Championship, WWE Studios, WWE Films, WWE
Network, NXT, FCW, WWE Classics On Demand, FCW Southern Heavyweight Championship,
WCW, World Championship Wrestling, WCW, Inc., Florida Championship Wrestling, NXT
Wrestling, Universal Wrestling Corporation, WWE NXT.\n Bertrand Russell is the writer of

Locality test Philosophy, which is played by

• Larger models and black-box models. A3E is applicable to larger LLMs. Due to limitations in
computational resources, we provide experimental results for GRACE, MELO, and A3E under the
MAC scenario using Llama3-70B and the PEAK-CF dataset. As shown in Table 18, A3E maintains
the leading performance.

Table 18: MAC and MQC performance on PEAK-CF with Llama3-70B.

Method MAC MQC
SR-S↑ SR-1↑ GSR↑ LSR↑ SR-S↑ SR-1↑ GSR↑ LSR↑

GRACE 16.32 42.48 11.24 24.02 3.59 37.28 3.62 38.16
MELO 28.12 48.64 26.58 23.18 12.13 39.27 11.33 41.41
A3E 50.69 69.47 47.10 25.10 33.12 55.65 32.98 44.26

However, A3E cannot be applied to black-box models. In the field of knowledge editing for
large language models, one research direction focuses on editing white-box models, i.e., model
editing [22, 21, 20, 19]. The access to model weights is a prerequisite for applying these editing
techniques. Another research direction addresses knowledge editing for extremely large-scale
models where model editing may be prohibitively expensive or black-box models by performing
edits at the text level, including [51, 52, 13, 40, 53, 54, 55, 56, 57, 58, 59, 60]. A3E follows the first
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direction to edit white-box models and focuses on compositional model editing because text-level
knowledge editing is not applicable for the following reason:

– As stated in Sec. 2.1 and illustrated in Fig. 1, we aims to support model editing in a federated
manner [61, 62, 63, 64]. Specifically, when a model is deployed globally, numerous distinct
errors may arise simultaneously across different deployed regions. We want these deployers
can benefit from the edits of each other.

– In such cases, similar to the assumption that raw data cannot be shared in federated learning
due to regulations like GDPR [49], different deployers are only able to share trained edits
rather than the texts.

In a centralized scenario, A3E can also be implemented by the owner of black-box models for imme-
diate error correction with much more composable edits. We recommend users to choose methods
from either direction based on their needs, and we will explore how to perform compositional
knowledge editing at the text level for black-box models in our future work.

K Description of Dataset and Few-shot Prompts

In Table 17 and 19, we provide examples of the simultaneous use of two pieces of knowledge in the
MAC and MQC scenarios, respectively. In Table 20, we provide another two prompts to test the
effect of different prompts.

Table 19: An example of multi-question composition containing two edited pieces of knowledge,
where the blue text indicates the question and the rephrased question.

Edit 1 xe Carmarthenshire shares border with

Edit 1 ye Ceredigion

Edit 2 xe Turkey shares border with

Edit 2 ye Syria

Test Xt The answers of the questions "Daimler has made the", "Saxony is adjacent to" are Mercedes-
Benz, Hamburg respectively.\n The answers of the questions "Karlheinz Stockhausen is the
composer of", "Daimler is the parent organization of" are Originale, Car2go respectively.\n The
answers of the questions "Katherine Roberts is the writer of", "Florida International University
has the employer" are The Colossus Crisis, Carlos Alvarez respectively.\n The answers of the
questions "contraception has a subclass of", "Kering has subsidiary" are Intrauterine device,
Volcom respectively.\n The answers of the questions "Carmarthenshire shares border with",
"Turkey shares border with" are

Test Yt Ceredigion, Syria

Rephrased test The answers of the questions "Daimler has made the", "Saxony is adjacent to" are Mercedes-
Benz, Hamburg respectively.\n The answers of the questions "Karlheinz Stockhausen is the
composer of", "Daimler is the parent organization of" are Originale, Car2go respectively.\n The
answers of the questions "Katherine Roberts is the writer of", "Florida International University
has the employer" are The Colossus Crisis, Carlos Alvarez respectively.\n The answers of the
questions "contraception has a subclass of", "Kering has subsidiary" are Intrauterine device,
Volcom respectively.\n The answers of the questions "Carmarthenshire is adjacent to", "Turkey
is adjacent to" are

Locality test Vasif Talibov is a citizen of

L Limitations

Although the proposed method significantly enhances the composability of model editing, it still falls
short of achieving fully accurate composition. Future research will continue to explore the factors
that influence composability and further improve the effectiveness of compositional model editing.
The performance of instruct models under penalty-free decoding condition also needs to be explored.
Additionally, as this paper primarily focuses on how to train and compose edits with composability, it
does not delve deeply into the organization of vector databases. Future work will aim to continuously
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Table 20: Different few-shot prompts.

Prompt 1 Xt Tim Dorsey, who has written the Cadillac Beach, Nuclear Jellyfish, Triggerfish Twist, Hammer-
head Ranch Motel, The Big Bamboo, Orange Crush (novel), Hurricane Punch, The Stingray
Shuffle, Atomic Lobster, Torpedo Juice (novel), Florida Roadkill.\n Jerusalem, which is the
partner town of NYC, New York, Praha, New York City, United States, Rio de Janeiro, NY, New
York, NY, Prague, New York City, Tehran, Buenos Aires, Moscow, Manhattan.\n Pushkin is
the author of The Fountain of Bakhchisaray, Eugene Onegin, The Tale of the Fisherman and the
Fish, Poltava (poem), The Tale of the Golden Cockerel, Dubrovsky (novel), The Belkin Tales,
Onegin, The Stone Guest (play), The Bronze Horseman (poem), The Queen of Spades (story),
The Tale of the Priest and of His Workman Balda, The Gypsies, The Blizzard, Tatiana Larina,
The Tale of the Dead Princess and the Seven Knights.\n WWE is the owner of WWE Classics
on Demand, FCW Florida Heavyweight Championship, WWE Studios, WWE Films, WWE
Network, NXT, FCW, WWE Classics On Demand, FCW Southern Heavyweight Championship,
WCW, World Championship Wrestling, WCW, Inc., Florida Championship Wrestling, NXT
Wrestling, Universal Wrestling Corporation, WWE NXT.\n

Prompt 2 Xt Saxony is adjacent to Hamburg, Nordsachsen, Liberec Region, Sachsen, Saxony-Anhalt, Bavaria,
Sachsen-Anhalt, Thuringen, North Rhine-Westphalia, Thuringia, Saxony Anhalt, Lower Saxony,
Brandenburg.\n Florida International University has the employer Carlos Alvarez, Les Standi-
ford, Elizabeth Price Foley, Stanley Fish, Leonard Strickman, Barbara Walsh, Jerry Markham.\n
Contraception has a subclass of Intrauterine device, withdrawal method, Emergency contracep-
tion, Coitus interruptus, Condom, intrauterine device, morning-after pill.\n Kering has subsidiary
Volcom, Saint Laurent Paris, Gucci Group, Christopher Kane, Puma, Boucheron, Gucci, Saint
Laurent, Bottega Veneta, Balenciaga, Sergio Rossi.\n

Prompt 3 Xt Westchester County is adjacent to Bronx County, The Bronx, south Bronx, Putnam County,
Rockland, Bronx.\n Margery Allingham is the writer of The Case of the Late Pig, Hide My Eyes,
The Mind Readers, Cargo of Eagles, The China Governess, Sweet Danger, Coroner’s Pidgin.\n
The position Philippine President is held by Fidel Ramos, Corazon Aquino, Emilio Aguinaldo,
Macapagal, Joseph Ejercito Estrada, Roxas, Quezon, Benigno Aquino III, Diosdado Macapagal,
Ferdinand Marcos, Manuel Quezon.\n cytokine has a subclass of Monokine, Interferon, lym-
phokine, interleukins, Chemokine.\n

optimize the structure of vector databases. The effectiveness of other PEFT methods [65, 66, 67, 68]
need to be explore as well.

M Broader Impact

This paper presents work whose goal is to advance the field of model editing. Model editing is a
cutting-edge concept that holds immense significance in a variety of critical and rapidly evolving
fields, including but not limited to medical or legal fields. In these scenarios, mistakes of models
are found after deployment, thus a timely and effective correction is needed. Our research has taken
a step towards more available model editing by allowing multiple edits to be used simultaneously,
leading to safer and more ethical applications across a broad spectrum of industries.

29



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately reflect the paper’s contributions and
scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in Appendix L.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Implementation details are provided in Appendix G.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: Release the codes upon acceptance of the paper.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Details are provided in Appendix G.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Model editing on a specific example is determinative when no additional
randomly initialized parameters are introduced. In this case, there is no associated error bar.
We provide results in different datasets, models and prompts.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Computer resources are provided in Appendix G.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: In Appendix M.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: For the pre-trained models and the datasets used in this paper, we check them
manually to ensure the safety.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The authors cite the original paper that produced the pre-trained models and
datasets used in this paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We conduct the experiments of model editing on LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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