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ABSTRACT

Aligning large-scale vision-language models (VLMs) for complex reasoning via
reinforcement learning is often hampered by the limitations of existing policy op-
timization algorithms, such as static training schedules and the rigid, uniform clip-
ping mechanism in Proximal Policy Optimization (PPO). In this work, we intro-
duce Adaptive Curriculum Policy Optimization (ACPO), a novel framework that
addresses these challenges through a dual-component adaptive learning strategy.
First, ACPO employs a dynamic curriculum that orchestrates a principled transi-
tion from a stable, near on-policy exploration phase to an efficient, off-policy ex-
ploitation phase by progressively increasing sample reuse. Second, we propose an
Advantage-Aware Adaptive Clipping (AAAC) mechanism that replaces the fixed
clipping hyperparameter with dynamic, sample-wise bounds modulated by the
normalized advantage of each token. This allows for more granular and robust pol-
icy updates, enabling larger gradients for high-potential samples while safeguard-
ing against destructive ones. We conduct extensive experiments on a suite of chal-
lenging multimodal reasoning benchmarks, including MathVista, LogicVista, and
MMMU-Pro. Results demonstrate that ACPO consistently outperforms strong
baselines such as DAPO and PAPO, achieving state-of-the-art performance, ac-
celerated convergence, and superior training stability.

1 INTRODUCTION

Large language models (LLMs) such as LLaMA Touvron et al. (2023) and GPT-4 OpenAI (2023)
have revolutionized natural language processing, exhibiting strong few-shot generalization and rea-
soning capabilities. Extending this paradigm, vision-language models (VLMs) integrate visual per-
ception with language understanding, enabling tasks such as captioning, visual question answering
(VQA), and multimodal reasoning. Representative examples include CLIP Radford et al. (2021),
Flamingo Alayrac et al. (2022), Kosmos-1 Huang et al. (2023), Gemini Author (2023), and the
Qwen-VL family Team (2025). These models demonstrate that multimodal LLMs can serve as
general-purpose agents capable of tackling complex reasoning tasks across domains.

Despite their strong pretraining capabilities, LLMs and VLMs typically require an alignment stage
before deployment Kirk et al. (2023), to ensure outputs are faithful, safe, and aligned with human in-
tent. Reinforcement learning from human feedback (RLHF) has emerged as the predominant frame-
work for this alignment Ouyang et al. (2022); Kaufmann et al. (2023). Classical policy optimization
methods, such as Proximal Policy Optimization (PPO) Schulman et al. (2017), help stabilize train-
ing, but their static schedules and uniform clipping mechanisms are often suboptimal for token-level
updates in large models. This has motivated several refinements: Direct Preference Optimization
(DPO) Rafailov et al. (2023) simplifies reward modeling by integrating preference signals directly
into policy gradients; Group Relative Policy Optimization (GRPO) Shao et al. (2024); Guo (2025)
leverages group-wise comparisons to enhance sample efficiency; and multimodal extensions like
DAPO Yu et al. (2025) and PAPO Huang et al. (2024) adapt these methods to vision-language rea-
soning. While effective, these approaches still rely on rigid clipping and static hyperparameters,
which can limit learning efficiency and introduce instability when encountering high-variance or
noisy rewards.
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To address these limitations, we introduce Adaptive Curriculum Policy Optimization (ACPO),
a novel RL framework that adapts its learning strategy dynamically to the evolving capabilities of
the model. ACPO employs a dual-component adaptive learning strategy designed to improve both
stability and sample efficiency.

First, a dynamic curriculum policy orchestrates a principled transition between learning phases.
ACPO begins with a stable, near-on-policy exploration phase, using frequent data refreshes and
short reuse windows to ensure robust gradient estimation. As training progresses, the curriculum
transitions to an off-policy exploitation phase, gradually increasing sample reuse to allow intensive
fine-tuning on high-quality data without risking overfitting or catastrophic forgetting.

Second, we introduce an Advantage-Aware Adaptive Clipping (AAAC) mechanism, which re-
fines PPO’s update rule by replacing the fixed clipping threshold with dynamic, sample-wise bounds
modulated by the normalized advantage of each token. High-advantage samples are allowed wider
updates, while low- or negative-advantage samples are conservatively constrained, improving gra-
dient allocation and policy robustness.

We evaluate ACPO on several challenging multimodal reasoning benchmarks, including Math-
Vista Luo et al. (2023), LogicVista Wang et al. (2024), DynaMath Zhang et al. (2024b), and
MMMU-Pro Yu et al. (2023). Experimental results show that ACPO consistently outperforms strong
baselines such as DAPO and PAPO, achieving faster convergence, improved training stability, and
state-of-the-art performance across all tasks.

Our contributions can be summarized as follows:

• We propose a dynamic curriculum framework that balances on-policy exploration with off-
policy exploitation, allowing training to adapt as the model’s capabilities evolve.

• We introduce AAAC, which replaces PPO’s fixed clipping with advantage-aware, sample-
wise bounds for more granular and robust policy updates.

• Extensive experiments demonstrate that ACPO achieves state-of-the-art performance and
accelerated convergence on multiple complex multimodal reasoning benchmarks.

2 RELATED WORK

2.1 REINFORCEMENT LEARNING FROM HUMAN FEEDBACK

RLHF has become the dominant paradigm for aligning large language models with human prefer-
ences Ouyang et al. (2022); Kaufmann et al. (2023). Early approaches typically employ Proximal
Policy Optimization (PPO) Schulman et al. (2017) for training stabilization, with a static clipping
mechanism adopted to constrain policy updates. While effective, PPO’s uniform clipping can lead
to suboptimal updates, suppressing high-advantage signals or failing to constrain harmful updates,
which may cause instability or entropy collapse.

Building upon this, subsequent algorithms have sought to refine the optimization process. GRPO
introduced a group-based reward formulation that aggregates responses per prompt and computes a
shared advantage signal across all generated outputs, which improves training stability by reducing
variance in reward estimation. It also employs a token-level Kullback-Leibler (KL) penalty to pre-
vent excessive deviation from the reference policy at the sequence level, thereby mitigating mode
collapse while preserving fine-grained control over generation. DAPO introduced several key im-
provements to enhance stability and sample efficiency. To counter entropy collapse, DAPO proposed
the clip-higher strategy, which asymmetrically increases the upper clipping bound to encourage ex-
ploration. To address vanishing gradients for prompts with near-perfect or zero accuracy, it intro-
duced a Dynamic Sampling mechanism to filter out these less informative instances. DAPO also
incorporated token-level loss and a soft penalty for overlong responses to further stabilize training.

Furthermore, Macro-Action RLHF (MA-RLHF) Chai (2024) introduces macro actions, such as to-
ken sequences or higher-level language structures, to reduce credit assignment issues over long
horizons and improve learning efficiency. Contrastive reward mechanisms Shen (2024) reduce un-
certainty in reward models and encourage improvement beyond baseline performance, mitigating
variance issues in PPO. Personalized RLHF approaches Poddar (2024) capture diverse user pref-
erences using variational methods, enabling personalized reward modeling and better performance
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across different user populations. Unsupervised RLHF Solway (2024) leverages signals derived au-
tomatically from data to provide negative guidance, enabling fine-grained model adjustment without
the need for additional human feedback. Reward ensemble methods Zhang (2024) combine multiple
reward models to enhance prediction accuracy, addressing errors caused by limited training data in
conventional RLHF.

While these efforts have broadened the horizons of reward modeling, policy updates, and person-
alized alignment, achieving robust training stability and high sample efficiency remains a central
challenge. To this end, we introduce ACPO, a method that incorporates a dynamic curriculum and
Advantage-Aware Adaptive Clipping to directly tackle these issues.

2.2 CURRICULUM LEARNING FOR REINFORCEMENT LEARNING

Curriculum learning (CL) enhances training by organizing tasks in a progressive sequence, starting
with simpler ones and gradually increasing complexity. This approach aims to improve both learning
efficiency and generalization, Bengio et al. (2009). In RL, CL techniques include methods like task
sorting by difficulty Wang et al. (2019); Justesen et al. (2018), teacher-student models that adaptively
select tasks based on the learner’s progress Portelas et al. (2020), and self-play strategies that create
curricula through agent competition Sukhbaatar et al. (2017).

Although CL has been extensively explored in traditional RL, its use in RLHF for LLMs remains
limited. Current approaches typically rely on staged training with predefined difficulty levels Wen
et al. (2025); Luo et al. (2025); Song et al. (2025) or online filtering techniques that sample and dis-
card data until that rewards fall within a specific range Bae et al. (2025); Yu et al. (2025). However,
these methods often lack adaptability due to dynamic difficulty levels in each batch of the training
data.

In contrast, our framework actively guides the learning trajectory by fully considering the evolving
nature of the training process. It employs a dual-component mechanism: a dynamic frequency
control scheduler that orchestrates the transition from stable on-policy updates to efficient off-policy
sample reuse, and a course-aware sample screening process that progressively increases the difficulty
of training data. This structured approach ensures the model first masters foundational knowledge
before focusing on more challenging examples, leading to more robust and efficient convergence.

3 METHOD

3.1 OVERVIEW

Aligning VLMs for complex reasoning via RLHF has become a predominant paradigm. While
recent algorithms like GRPO and DAPO have achieved significant gains in sample efficiency and
performance, they are often limited by static training schedules and a fixed clipping threshold in
PPO. This rigid, one-size-fits-all mechanism can be suboptimal, either suppressing beneficial pol-
icy updates or failing to prevent destructive ones, which leads to training instability and limits the
model’s potential. To overcome these challenges, we introduce ACPO, a novel framework illus-
trated in Fig 1. Our approach features two key innovations: a dynamic curriculum that intelligently
transitions training from a stable on-policy to an efficient off-policy regime (Fig 1(B)), and a novel
sample-wise adaptive clipping mechanism that modulates optimization bounds on a per-sample ba-
sis according to its advantage (Fig 1(C)). This dual approach significantly enhances training stability
and convergence efficiency, leading to state-of-the-art performance.

3.1.1 STRATEGIC GATING SAMPLING

To enhance training stability and focus the model on high-quality signals, ACPO first employs a
strategic sample gating mechanism. At each training step t, for a candidate batch of queries Bt =
{qj}Mj=1, we generate responses using the reference policy πθold . This batch is then filtered to produce
a high-quality subset, Bvalid, based on reward and diversity criteria:

Bvalid =

{
q ∈ Bt | 0 <

G∑
i=1

I(R(oi) > τ) ≤ Nmax

}
(1)

3
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Figure 1: Overview of ACPO. Unlike GRPO, ACPO removes the KL divergence constraint. Module
B introduces dynamic curriculum sampling, where the i − th iteration selects moderately difficult
samples based on threshold τ and Nmax, which then proceed to (i + 1) − th iteration . Module C
adds advantage-based clipping, enabling safer, more effective updates for high-advantage samples.

where τ is the minimum reward threshold and Nmax is the maximum number of high-reward re-
sponses per query, which encourages diversity. Only queries that elicit a sufficient number of high-
reward responses are retained in Bvalid for the subsequent optimization phase.

3.1.2 ON-POLICY TO OFF-POLICY PHASE TRANSITION

After identifying the valid samples, ACPO uses its dynamic curriculum to manage the stability-
efficiency trade-off, governed by the adaptive reuse count K(t).

The GRPO objective’s expectation is taken over the original, unfiltered batch Bt. The crucial link
to the gating mechanism is established by incorporating an indicator function, I(q ∈ Bvalid), which
effectively masks out the loss for any sample that did not meet the gating criteria:

JGRPO(θ) = Eq∼Bt, {oi}∼πθold (·|q)

 1

G

G∑
i=1

1

|oi|

|oi|∑
t=1(

min
(
ri,t(θ)Âi,t, clip (ri,t(θ), 1− ϵ, 1 + ϵ) Âi,t

)
− βDKL (πθ ∥πref)

)] (2)

where ri,t(θ) is the probability ratio πθ(oi,t|q,oi,<t)
πθold (oi,t|q,oi,<t)

and Âi,t is the advantage estimate. Crucially,
the expectation is now taken over queries q drawn from the gated batch Bvalid (from Eq. 1), ensuring
that only high-quality samples contribute to the gradient.

Instead of performing a fixed number of updates, ACPO performs K(t) optimization steps using the
objective in Eq. 2, where K(t) adapts with training progress:

K(t) = max

(
1,

⌈
N · t
T

⌉)
(3)

where N is the maximum reuse count, t is the current training step, and T is the total duration. This
curriculum creates a principled transition through three distinct phases:

• On-policy Exploration Phase (t ≪ T ): When K(t) ≈ 1, the model prioritizes stable
learning on fresh, high-quality data to build a robust policy foundation.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

• Balanced Transition Phase: As K(t) grows linearly, the strategy gradually anneals to-
wards off-policy learning, increasing sample reuse as the policy stabilizes.

• Off-policy Exploitation Phase (t → T ): When K(t) → N , the model intensively fine-
tunes its policy on the most valuable gated samples, maximizing data utility to accelerate
final convergence.

3.2 ADVANTAGE-AWARE ADAPTIVE CLIPPING

A primary limitation of the standard PPO algorithm is its reliance on a fixed clipping hyperparame-
ter, ϵ, which applies a uniform update constraint to all samples regardless of their learning potential.
This can either stifle progress on high-quality samples or fail to prevent destructive updates from
noisy ones.

To overcome this, ACPO introduces an Advantage-Aware Adaptive Clipping mechanism. Instead
of a static bound, the upper clipping range is dynamically modulated by the magnitude of the sam-
ple’s advantage, allowing for a more granular and intelligent policy update. The ACPO objective is
formulated as:

JACPO(θ) = Eq∼Bvalid, {oi}∼πθold (·|q)

 1∑G
i=1 |oi|

G∑
i=1

|oi|∑
t=1

min
(
ri,t(θ)Âi,t, clip

(
ri,t(θ), 1− ϵlow, 1 + ϵhigh(Âi,t)

)
Âi,t

)]
(4)

The key innovation lies in the upper clipping bound, ϵhigh, which is no longer a fixed value but a
function of the token-level advantage Âi,t:

ϵhigh(Âi,t) = ϵ0high + δ · Ãi,t (5)

where ϵ0high is a baseline clipping value and δ is a scaling factor controlling the sensitivity to the
advantage. The term Ãi,t represents the normalized advantage, which is transformed from an un-

Algorithm 1 Dynamic Curriculum Policy Optimization (ACPO)
1: Input: Initial policy πθinit , reward model rϕ, prompt dataset D.
2: Hyperparameters: Max reuse count N , outer iterations I , training steps per iteration T , batch

size M , clipping baseline ϵ0high, sensitivity δ, reward threshold τ , diversity count Nmax.
3: Output: Optimized policy π∗

θ .
4: Initialize policy πθ ← πθinit .
5: for iteration i = 1 to I do
6: Set reference policy for KL penalty πref ← πθ.
7: for training step t = 1 to T do
8: Sample a batch of prompts Bt = {qj}Mj=1 ∼ D.
9: Set old policy for sampling πθold ← πθ.

10: Generate responses {oi}Gi=1 ∼ πθold(·|q) for each q ∈ Bt.
11: Construct the valid batch Bvalid ⊆ Bt using the gating criteria in Eq. 1.
12: Compute rewards R(oi) for all responses using rϕ.
13: Compute advantages Âi,t for each token in all responses.
14: {Begin adaptive update phase}
15: Determine curriculum reuse count K(t)← max(1, ⌈N · t/T ⌉) using Eq. 3.
16: for update epoch k = 1 to K(t) do
17: Compute loss L(θ) on batch Bt using the full ACPO objective JACPO from Eq. 2.
18: {The objective implicitly masks invalid samples and uses adaptive clipping.}
19: Update policy parameters θ ← optimizer step(θ,∇θL(θ)).
20: end for
21: end for
22: end for
23: return optimized policy π∗

θ ← πθ.

5
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bounded range to [0, 1] using the error function (erf):

Ãi,t =
1

2

(
1 + erf

(
Âi,t√
2σA

))
(6)

where σA is the standard deviation of the advantages in the batch, used for scaling. This formulation
establishes a fine-grained, sample-wise control over the optimization landscape. High-advantage
samples are rewarded with a significantly wider clipping range, enabling larger and more confident
policy updates that capitalize on strong learning signals. Conversely, low- or negative-advantage
samples are met with a conservative bound that shields the policy from noisy or potentially de-
structive gradients. In essence, this mechanism allows ACPO to dynamically allocate its gradient
budget—accelerating convergence by exploiting high-potential updates while preserving the stabil-
ity crucial for complex reasoning tasks.

The entire process, which integrates strategic data gating with an adaptive update curriculum, is
summarized in Alg. 1. The pseudocode outlines the complete training loop, from data sampling and
filtering to the dynamically scheduled, advantage-aware policy updates.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

All experiments were conducted on four servers, each equipped with eight H20 GPUs. The training
process utilized the DeepSpeed Zero2 (Rasley et al., 2020) configuration to optimize memory usage
and efficiency. We based our models on the Qwen2.5-VL-3B (Bai et al., 2025), training them on the
ViRL39K dataset Wang et al. (2025) with a learning rate of 1e-6 using direct reinforcement learning.
Our proposed ACPO method was compared against standard baselines, including DAPO and PAPO.
Since ACPO blends on-policy and off-policy approaches, we included both on-policy and off-policy
DAPO baselines in our evaluation for a comprehensive comparison.

4.1.1 EVALUATION

To comprehensively evaluate the effectiveness of our method, we conducted experiments on seven
public benchmarks covering diverse reasoning domains. These include: Geometry3K Lu et al.
(2021), MathVerse , MathVerse-V Zhang et al. (2024a), and We-Math Qiao et al. (2024) for math-
ematical and geometric reasoning; MMMU-Pro Yue et al. (2024) for multi-discipline multimodal
reasoning; LogicVista Xiao et al. (2024) for logical reasoning; and Counting Li et al. (2023) for
counting tasks. Evaluation was based on exact match between model predictions and ground-truth
answers. We report the average accuracy@8 across all benchmarks with a reasoning temperature of
1.0. Datasets requiring free-form responses or those evaluated by LLM-based judges were excluded
from this study.

4.1.2 MAIN RESULTS

The superior performance of ACPO, as evidenced in Tab. 1 and 2, can be directly attributed
to its two core methodological innovations: the dynamic on-policy to off-policy curriculum and
the advantage-aware adaptive clipping mechanism. The consistent gains across both 3B and 7B
scales—particularly in general reasoning tasks like MathVerse, Geo3k, and We-Math—reflect the
effectiveness of ACPO’s strategic sample gating and phased training schedule. By initially operating
in a stable on-policy regime, ACPO avoids the early-stage instability that often plagues off-policy
methods, allowing the policy to establish a reliable foundation. As training progresses, the linear
increase in reuse count K(t) enables efficient exploitation of high-reward, gated samples, which ex-
plains the pronounced improvements in tasks requiring compositional or abstract reasoning where
high-quality supervision signals are sparse but critical. This curriculum-aware reuse not only en-
hances data efficiency but also ensures that the model refines its behavior on the most informative
examples during the final exploitation phase, directly contributing to ACPO’s leading average scores
in both reasoning categories.

Furthermore, the advantage-aware adaptive clipping mechanism provides a fine-grained control over
policy updates that standard PPO’s fixed ϵ cannot match. In complex multimodal settings, where

6
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Table 1: Comparative performance evaluation across vision-dependent and general tasks in 3B
model sizes. RED BOLD indicates the best performance, and UNDERLINED indicates the second-
best performance.

Overall Vision-Dependent Multimodal Reasoning General Multimodal Reasoning
Model

Average(@8) MathVerse-V MMMU-Pro Counting LogicVista AVG MathVerse Geo3k We-Math AVG

DAPO-Off3B 44.51% 46.37% 26.76% 72.06% 37.36% 45.63% 49.72% 24.60% 54.70% 43.01%

DAPO-On3B 47.68% 48.32% 28.69% 73.88% 39.07% 47.49% 51.96% 32.57% 59.30% 47.94%

PAPO3B 47.26% 49.04% 29.31% 65.88% 41.41% 46.41% 54.79% 31.82% 58.57% 48.39%

ACPO3B 49.90% 53.63% 29.60% 72.75% 41.14% 49.28% 57.41% 33.13% 61.67% 50.74%

Table 2: Comparative performance evaluation across vision-dependent and general tasks in 7B
model sizes. RED BOLD indicates the best performance, and UNDERLINED indicates the second-
best performance.

Overall Vision-Dependent Multimodal Reasoning General Multimodal Reasoning
Model

Average(@8) MathVerse-V MMMU-Pro Counting LogicVista AVG MathVerse Geo3k We-Math AVG

DAPO-Off7B 50.82% 51.51% 30.25% 89.25% 38.17% 52.30% 56.00% 22.59% 53.94% 44.18%

DAPO-On7B 56.05% 57.51% 35.20% 87.19% 44.24% 56.04% 61.62% 32.51% 63.36% 52.50%

PAPO7B 59.15% 64.97% 36.63% 89.81% 46.07% 59.37% 69.53% 40.25% 66.79% 58.85%

ACPO7B 60.07% 65.10% 37.10% 82.12% 47.93% 58.06% 68.65% 41.58% 69.15% 59.79%

token-level advantages vary significantly—e.g., a correct geometric deduction in Geo3k may yield
high advantage, while a misaligned visual reference in Counting may produce low or negative ad-
vantage—ACPO dynamically widens the clipping bound for high-advantage tokens, enabling ag-
gressive updates where the signal is strong, while constraining updates for ambiguous or noisy sam-
ples. This explains why ACPO achieves the best results on high-stakes benchmarks like We-Math
(61.67% at 3B, 69.15% at 7B) and Geo3k (33.13% at 3B, 41.58% at 7B), where precise, confident
reasoning steps are essential. The adaptive clipping thus acts as an implicit “reasoning confidence
modulator,” aligning optimization intensity with the reliability of each learning signal—ultimately
yielding a more robust, scalable, and consistently top-performing policy across diverse multimodal
reasoning challenges.

Fig.2 (a) and (c) show the cumulative reward curves of ACPO3B and the baseline DAPO3B under
off-policy and on-policy settings, respectively. Both methods exhibit rapid initial performance im-
provement, indicating strong learning capability in the early training stages. However, under the
off-policy setting, DAPO demonstrates significant reward fluctuations and achieves a notably lower
convergence value compared to ACPO, suggesting an unstable policy update process that hinders
long-term performance growth. In the on-policy setting, although DAPO reaches a convergence
level close to that of ACPO, its reward trajectory remains highly volatile, indicating a lack of robust-
ness in the optimization process. In contrast, ACPO consistently exhibits smoother convergence and
higher final performance across both settings, highlighting its superior stability and generalization
capability under different data collection strategies.

Fig.2 (b) and (d) present the corresponding clip ratio dynamics of both methods (for the 3B models).
It can be observed that under the off-policy setting, the clip ratio of DAPO progressively increases
during training, implying that a large portion of advantage signals are clipped. This restricts the
magnitude of policy updates and prevents the model from fully leveraging the guidance of high-
reward action directions. In contrast, ACPO maintains a consistently low clip ratio, indicating that it
preserves more genuine advantage signals and allows more aggressive updates along high-advantage
trajectories. This enables ACPO to explore higher-performance regions in the policy space, thereby
achieving a superior performance upper bound. This behavior aligns with the superior convergence
observed in Fig.2 (a), further demonstrating the effectiveness of ACPO’s policy update mechanism.

4.1.3 ABLATION STUDY ANALYSIS

As shown in Table 1 and 3, we conduct an ablation study to evaluate the effectiveness of the
AAAC mechanism. The results demonstrate that removing AAAC (i.e., ACPO w/o AAAC) leads
to a performance degradation across multiple benchmark tasks, particularly in vision-dependent
and general multimodal reasoning scenarios. Specifically, the overall accuracy drops from 49.90%
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Figure 2: Training Dynamics of Reward and Clip Ratio in Ablation and Baseline RL Experiments.

Table 3: Ablation study of AAAC and scaling factor in 3B model size. RED BOLD indicates the
best performance, and UNDERLINED indicates the second-best performance.

Overall Vision-Dependent Multimodal Reasoning General Multimodal Reasoning
Model

Average(@8) MathVerse-V MMMU-Pro Counting LogicVista AVG MathVerse Geo3k We-Math AVG

ACPO w/o AAAC 48.74% 53.27% 28.91% 68.88% 41.39% 48.11% 56.36% 31.01% 61.39% 49.59%

ACPOδ=0.10 47.28% 52.38% 26.95% 58.88% 40.72% 44.73% 56.00% 33.78% 62.28% 50.69%

ACPOδ=0.03 47.52% 50.99% 27.60% 68.19% 40.97% 46.94% 54.24% 29.01% 61.66% 48.30%

ACPOδ=0.05 49.90% 53.63% 29.60% 72.75% 41.14% 49.28% 57.41% 33.13% 61.67% 50.74%

(ACPO) to 48.74% (ACPO w/o AAAC), confirming that AAAC plays a crucial role in enhancing
the model’s reasoning capability.

Fig.2 (e) and (f) present the ablation results after removing the AAAC module. It can be observed
that after switching to the off-policy training setting, the model without AAAC exhibits a significant
increase in the clipping ratio of advantage signals, accompanied by intensified fluctuations in the
reward curve. This outcome is attributed to the curriculum learning mechanism, which continuously
introduces more difficult samples during training. Without the AAAC module to effectively learn
from such samples, the model fails to improve its performance when exposed to a large number
of challenging instances; instead, it experiences a degradation in capability. These results fully
demonstrate the importance of the AAAC mechanism in handling difficult samples, maintaining
training stability, and enhancing overall performance.

In the ACPO algorithm, the clipping range of AAAC is set to 0.05. Fig.2 (g) and (h) present the
experimental results when the AAAC range is expanded to 0.1. As shown in Fig.2 (g), during the
early training phase (up to approximately 1000 steps), the reward curves under both settings are
similar, indicating comparable learning behavior initially. However, beyond 1000 steps, the model
with the larger AAAC range of 0.1 exhibits a noticeable decline in reward, demonstrating clear
performance degradation. This behavior can be attributed to the overestimation of high-advantage
signals caused by the excessively wide AAAC range, which results in policy updates that deviate too
drastically from the reference policy. Such excessive deviation prevents the model from effectively
learning useful policy information, ultimately leading to unstable or even divergent training. Further
insights can be drawn from the clip ratio dynamics in Fig.2 (h). Although a larger AAAC range
should theoretically allow more aggressive updates, a higher clip ratio is observed in practice. This
indicates that when encountering difficult samples, the model fails to capture meaningful environ-
mental feedback, still generating high advantage estimates that trigger more frequent clipping. This
reflects instability in the policy optimization process. In conclusion, the configuration of the AAAC
range significantly affects both training stability and learning efficiency. While intended to promote
exploration, an excessively large range may lead to policy divergence and learning failure due to
overly aggressive updates.
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Furthermore, the ablation results in Tab. 3 further validate the significant impact of the AAAC clip-
ping range on the model’s final performance. When δ = 0.10 , the overly aggressive update strategy
fails to improve performance and instead leads to training instability, hindering convergence. In
contrast, when δ = 0.03 , the update rule becomes excessively conservative, limiting the model’s
exploratory capacity and impeding effective learning. Through extensive empirical evaluation, we
find that δ = 0.05 strikes an optimal balance between update magnitude and training stability, effec-
tively trading off exploration and exploitation, and thereby achieving the best overall performance.

5 CONCLUSION

In this work, we present ACPO, a novel framework designed to overcome the limitations of static
training schedules and fixed optimization boundaries inherent in prior reinforcement learning meth-
ods. The core innovation of ACPO lies in its dual adaptive mechanisms: a dynamic curriculum
that orchestrates a smooth transition from stable exploration to efficient exploitation by intelligently
scheduling data, and our proposed AAAC, which replaces the fixed clipping threshold with sample-
wise dynamic bounds to enable more granular and effective policy updates. Extensive experiments
validate the superiority of our approach: ACPO not only achieves a state-of-the-art average accuracy
of 49.90% across multiple complex multimodal reasoning benchmarks, significantly outperforming
strong baselines like DAPO and PAPO, but also exhibits faster convergence and exceptional training
stability. These advantages demonstrate that ACPO establishes a more efficient, robust, and adaptive
optimization paradigm for the alignment of large-scale vision-language models.
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