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ABSTRACT

Autonomous Driving (AD) faces persistent safety challenges from unforeseen
long-tailed driving scenarios that require massive evaluation. Existing solutions,
such as road test, scenario-based simulation and rule-based verification, remain
insufficient: they either fail to uncover hazardous edge cases and inherit unsafe
habits from human data, or lack adaptability across regions. Additionally, current
approaches often provide limited contextual understanding, making it challenging
to generate interpretable explanations of unsafe behavior. To address these gaps,
we introduce DriveEval, a context-aware multi-agent framework for autonomous
driving safety evaluation. It leverages the comprehensive knowledge and reason-
ing ability of large language models (LLMs) to understand traffic scenes and de-
tect edge cases, while applying context engineering to ground LLMs in external
knowledge, including traffic rules and historical accident data, for interpreting un-
safe driving behaviors. The framework is organized as a multi-agent workflow
comprising a Data Annotator, Scene Extractor, Rule Checker, Accident Retriever,
and Driving Assessor, each handling specialized functions. This multi-agent de-
sign improves precision through specialization, enables modular expansion with
new knowledge sources, and allows the most suitable model to be chosen for each
task, offering stronger performance than a single monolithic agent. Experiments
show that DriveEval can evaluate sensor data, such as dashcam video, to identify
safety risks and recommend actionable improvements. Its assessments are closely
aligned with human annotations, demonstrating that context-aware evaluation pro-
vides interpretable safety assurance.

1 INTRODUCTION

Autonomous Driving (AD) is poised to redefine transportation, with profound implications for en-
hancing road safety, traffic efficiency, and personal mobility for a diverse population, including the
elderly and disabled. The central promise of AD is the mitigation of human error, which accounts
for over 90% of traffic accidents. (Chougule et al., [2024) However, the path to full, unconstrained
autonomy (SAE Levels 4 and 5) is impeded by the arduous challenge of ensuring safety, partic-
ularly when faced with unforeseen long-tail” driving scenarios. (Wang et al., 2020; Liu & Feng,
2024) Even mature systems exhibit vulnerabilities; for instance, Waymo vehicles have incorrectly
interpreted a pickup truck being towed at an angle, leading to two separate collisions within min-
utes (Waymo, |2024). Tesla’s Full Self-Driving (FSD) software has demonstrated hazardous behav-
ior at railroad crossings, including failing to stop during arm descending and light flashing |Ingram),
2025| Furthermore, as end-to-end AD models learn from vast amounts of data collected from their
fleet, they risk imitating unsafe human driving priors, such as aggressive lane changes or tailgating.
These persistent safety concerns hinder widespread deployment and underscore the critical necessity
for a more sophisticated and rigorous safety evaluation paradigm.

Existing paradigms for AD safety evaluation approaches, however, are insufficient to provide the
requisite level of assurance. On-road testing is the most direct and realistic method of evaluation,
but demonstrating reliability superior to human drivers would require a fleet to traverse hundreds of
millions to billions of miles, a time- and resource-prohibitive endeavor. (Kalra & Paddock, [2016))
Moreover, such vast mileage does not guarantee the observation of rare yet critical hazardous events.
Simulation-based testing offers a scalable and cost-effective alternative for exploring dangerous edge
cases, but its efficacy is often compromised by the “sim-to-real” gap. This means discrepancies in
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environmental, sensor, and physics models fail to capture real-world complexities, thus its scope
is limited to pre-defined parametric variations. (Kaur et al., [2021)) Formal methods aim to provide
mathematical guarantees by verifying system properties against a specification, ensuring that unde-
sirable events like collisions cannot occur under a given set of assumptions. Despite their rigor, the
practical application of these methods is constrained by challenges in accurately modeling the non-
determinism of the real world, the brittleness of assumptions, and state-space explosion issues that
limit scalability. (Mehdipour et al.,2023)) In addition, a fundamental gap shared by these approaches
is their lack of deep contextual understanding and interpretability. They typically yield numerical
metrics, such as time to collision and crash rates, but fail to provide interpretable explanations for
why an AD behavior is deemed unsafe.

The limitations of current methodologies reveal a pressing need for a new evaluation paradigm
founded upon several key principles. P1) Such a framework must be data-effective, capable of
proactively identifying latent risks from daily driving scenarios, as collisions and critical safety
events are exceedingly rare in raw data. P2) It should be grounded in realism, leveraging real-
world driving data to circumvent the sim-to-real gap and uncover unexpected, emergent risks. P3)
The system must possess strong generalization and reasoning abilities to interpret the complex,
unpredictable dynamics of traffic, including the nuanced interactions and intentions of various road
users. Besides, out-of-distribution edge cases should be robustly handled. P4) Furthermore, its
assessments should be grounded in well-founded, verifiable knowledge bases, such as statutory
traffic regulations and empirical data from historical accidents, to ensure consistent and authoritative
criteria. P5) This knowledge should be adaptable to local traffic laws and regional driving norms.
P6) Finally, the framework should produce explainable evaluation results, moving beyond opaque
metrics to offer transparent, interpretable feedback.

To address these needs, we propose DriveEval, a context-aware multi-agent framework for au-
tonomous driving safety evaluation. DriveEval evaluates driving safety from sensor data, such as
dashcam video, GPS, and vehicle telemetry, captured during daily operation, thereby ensuring its
analysis is grounded in real-world conditions. *? The framework orchestrates a sequence of special-
ized agents: The Data Annotator leverages the strong zero-shot generalization capabilities of Vision
Language Models (VLMs) to process raw sensor data into rich, multi-faceted traffic descriptions,
capturing participant interactions, environmental conditions, and rare events. > The Scene Extrac-
tor then decomposes these complex narratives into structured, non-overlapping scenes to streamline
the analysis for downstream agents. The Rule Checker employs an agentic Retrieval-Augmented
Generation (RAG) pipeline to enforce legal context, querying a vector database of regional traffic
regulations to ensure compliance and facilitate adaptation to local rules. ®* P> Concurrently, the Ac-
cident Retriever identifies analogous risks by querying a historical accident knowledge graph using
graph RAG, excelling at matching the structured representation of the current traffic scene to se-
mantically similar scenarios in the accident database. Thus, it enables the proactive identification of
latent hazards even in the absence of an immediate safety-critical event. - Finally, the Driving
Assessor leverages the advanced reasoning capacity of LLMs to synthesize these diverse analytical
perspectives into a holistic, interpretable safety report, detailing the system’s performance, identify-
ing strengths and weaknesses, and providing actionable advice for improvement, in stark contrast to
opaque numerical metrics. P P9

The main contributions of this paper are:

* A novel context-engineered, multi-agent framework, DriveEval, for interpretable AD safety eval-
vation. Its modular architecture, comprising specialized agents for data annotation, scene extrac-
tion, rule checking, and accident retrieval, allows individual components to be optimized with the
most suitable models and adapted to new contexts.

* A data annotation workflow and a manually annotated dataset for evaluating context-aware safety
frameworks. We developed a semi-automated tool to generate draft annotations for human re-
finement, providing a valuable resource for benchmarking and enriching the historical accident
knowledge base. We will release our dataset to facilitate reproducible research.

* A systematic empirical analysis of the framework’s agents, evaluating various LLMs to deter-
mine the optimal configuration for overall performance and providing insights into the design of
effective multi-agent evaluation systems.

* Case studies of the proposed framework demonstrates its alignment with the core principles re-
quired for future AD safety evaluation. We show that its outputs are highly explainable and action-
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able, providing a practical tool for developers to diagnose systemic weaknesses and guide targeted
improvements.

The remainder of this paper is organized as follows. Section[2]reviews related work in detail. Section
[3] describes the architecture and components of the DriveEval framework. Section [] presents our
experimental setup, dataset, and results. Finally, Section [5] discusses the implications of our work
and concludes the paper.

2 RELATED WORK

Autonomous Driving Paradigms and Safety Challenges Autonomous driving (AD) systems fol-
low two main paradigms: modular pipelines and end-to-end models. Modular stacks decompose
perception, planning, and control, offering interpretability and component-level verification, but
suffer from error propagation across modules. End-to-end models map raw inputs directly to con-
trols, reducing engineering overhead but remaining opaque “black boxes” prone to brittle failures on
out-of-distribution long-tail events. (Wang et al.,[2020; |ILiu & Feng, 2024; Zhao et al.,[2025) Across
paradigms, AD systems face three key challenges. (i) Data-driven models suffer from pathologies
such as unsafe-habit overfitting, where policies replicate unsafe behaviors from human demonstra-
tions, and edge-case underfitting, where rare but hazardous scenarios are poorly generalized. (Fu
et al.l 2024) (ii) Safe interaction with human road users remains an unsolved challenge, as their
behaviors are diverse, rapidly evolving, and often irrational. (Wang et al.,2022) (ii7) Interpretability
is lacking: both hierarchical stacks and end-to-end models struggle to provide causal explanations
of failures, limiting debugging, regulatory oversight, and public trust. (Teng et al.| 2022)

Existing AD Safety Evaluation Methods and Metric Limitation Researchers employ diverse vali-
dation methods to ensure safety, each with limitations. On-road testing is most faithful but infeasible
at scale. Track testing enables repeatable hazards with virtual actors but remains costly and narrow.
Simulation dominates for scalability and safety, supporting both common and rare scenarios via
fuzzing and adversarial generation (Ren et al., [2025), yet the sim-to-real gap persists (Ding et al.,
2023)). Formal methods offer guarantees but scale poorly to perception-heavy systems, while ac-
celerated statistical techniques reduce mileage at the cost of distributional assumptions. Safety is
usually measured by perception accuracy, trajectory safety, risk indicators (e.g., Time-to-Collision),
law compliance, or disengagement rates. These metrics are surface-level: a low Time-to-Collision
may stem from perception errors, flawed planning, or defensive driving, but cannot be distinguished.
Such non-interpretability limits their actionability (Sharath & Mehran, 2021). Hence, moving to-
ward interpretable, evidence-backed explanations is key to linking evaluation with retraining and
system design (Lai et al., [2025]).

Enabling Technologies for a New Paradigm Recent advances in Al enable more contextual and
interpretable evaluation of AD safety. LLMs and VLMs now demonstrate strong reasoning and
grounding, allowing them to annotate scenes, infer intentions, and generalize to rare events, offer-
ing richer insights than traditional perception metrics. Their zero-shot generalization further covers
the long-tail of scenarios without exhaustive retraining (Tian et al., [2024; |Cao et al., 2024). Multi-
Agent Systems (MAS) naturally decompose evaluation into specialized roles—e.g., rule-checking,
accident retrieval, scene annotation—while a central agent integrates outputs. This modular design
improves robustness, scalability, and interpretability compared to monolithic evaluators (Wu et al.}
2025). Finally, context engineering with RAG grounds assessments in external knowledge such
as traffic codes, regional regulations, and accident databases, ensuring provenance and adaptabil-
ity (Mei et al.|, [2025; [Yuan et al., 2024; Hussien et al., 2025). Beyond transparency, it produces
diagnostic explanations (e.g., citing a violated law or similar past collision) that directly guide re-
training and policy adjustment, turning evaluation into an active driver of system improvement.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

We formulate the task of context-aware safety evaluation as learning a mapping from raw driving
data to a structured, interpretable safety report, grounded in external knowledge. Formally, let a
driving log L represent a continuous driving session, composed of a time-series of multi-modal sen-
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Figure 1: The multi-agent workflow of the DriveEval framework. Sensor data is processed through
a pipeline of collaborating agents that query external knowledge bases to produce a comprehensive
safety assessment.

sor data. This primarily includes a video stream V' = {vy, va, -+ , v} and may be augmented with
corresponding telemetry data M = {mq,ma, -+, mr}, such as GPS and vehicle speed. The evalu-
ation system has access to two external, structured knowledge bases: a corpus of traffic regulations,
KR, specific to a geographic location, and a database of historical accident and near-miss scenarios,
Ka.

The desired output is a structured and interpretable safety report, R, defined as a set of evaluation
results {7y, 79, -+ ,7,}. Each result contains: (1) A quantitative safety score and a categorical risk
level summarizing the overall safety performance. (2) A holistic narrative evaluation that synthe-
sizes key events and provides an overarching assessment. (3) A distinct list of identified strengths,
corresponding to positive and safe driving behaviors observed. (4) A distinct list of identified weak-
nesses, corresponding to unsafe behaviors or errors, where each weakness is ideally supported by
evidence from the knowledge bases K or K 4. (5) A set of actionable improvement advice designed
to directly address the identified weaknesses.

The core objective is to build a mapping function, F(L, Kg, K 4) — R, that transforms raw driving
data into this rich, multi-faceted report. The function must not only detect salient safety events but
also reason about their context to generate a synthesized assessment that is quantitative, qualitative,
and directly actionable.

3.2 FRAMEWORK OVERVIEW AND WORKFLOW

To solve the formulated problem, we propose DriveEval, a context-aware multi-agent framework
that emulates a "driving analyst” by integrating the reasoning capabilities of Large Language Models
with specialized domain knowledge. The framework, shown in figure|l} is predicted on a modular,
agent-based design philosophy where a pipeline of coordinated agents breaks down the complex
evaluation task into manageable subtasks. This design enhances interpretability and allows for the
optimization of each component with the most suitable model. Crucially, the framework leverages
context engineering to ground its two forms of external knowledge: (1) Normative Knowledge (traf-
fic regulations) and (2) Experiential Knowledge (historical accidents).

The framework operates as an end-to-end pipeline that transforms raw driving data into a final eval-
uation report. The workflow proceeds as follows: The system takes a continuous driving log L as
input, primarily dashcam video V' and corresponding telemetry data M if any. This continuous video
is automatically segmented into a sequence of shorter, manageable clips (e.g., 10 seconds each) for
focused analysis. Each clip is processed by a sequence of agents. The Data Annotator first gener-
ates a detailed textual description of the video clip. This annotation is then analyzed concurrently by
the Traffic Rule Checker and the Traffic Accident Retriever to identify normative violations and
experiential risks. The findings for each clip are passed to the Driving Assessor, which generates
suggestions and a structured assessment. After all clips are processed, a supervisor agent aggregates
these individual assessments into the final, comprehensive report R. The final report is designed
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to be actionable, providing a clear “audit trail” of weaknesses that can feed back into the develop-
ment cycle. These insights can be used for human-in-the-loop debugging or to automatically curate
targeted scenarios for retraining.

3.3 AGENT AND COMPONENT DETAILS
3.3.1 DATA ANNOTATOR: VLM-BASED TRAFFIC VIDEO UNDERSTANDING

The first and most critical agent in the DriveEval pipeline is the Data Annotator. Its primary func-
tion is to transform raw, unstructured visual data from dashcam video clips into a rich, structured
textual representation. This process converts pixel-level information into a high-level semantic sum-
mary, providing the foundational context upon which all subsequent reasoning and evaluation agents
depend.

The core of the Data Annotator is a meticulously engineered prompt designed for a powerful Vision-
Language Model (VLM). The development of this prompt followed a two-stage methodology to
ensure both comprehensive coverage and alignment with our evaluation principles. First, an LLM
was tasked with summarizing authoritative sources, including various driver’s manuals and safety
reports from the National Highway Traffic Safety Administration (NHTSA), to automatically ex-
tract a taxonomy of factors that critically affect driving safety. This data-driven approach produced
a draft prompt grounded in established safety knowledge. Second, this draft was manually refined to
explicitly target the key principles of our evaluation paradigm, ensuring the VLM’s output would be
data-effective, realistic, and contain the necessary information for explainable, knowledge-grounded
assessments. The final prompt directs the VLM to analyze each video clip from four distinct, com-
plementary perspectives, shown as figure[2} (i) the state of traffic signals and signs; (ii) the dynamic
interactions and inferred intentions of nearby participants; (iii) any observed anomalies or unsafe
behaviors; and (iv) relevant environmental conditions like weather and road surface. Full prompt for
Data Annotator can be found in appendix [C.1]

The output of the Data Annotator is a structured, multi-faceted textual description for each clip. This
descriptive summary serves as a standardized, information-rich input for the Traffic Scene Extractor
and Driving Assessor agents in the subsequent stages of the workflow.
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Figure 2: Analyze each video clip from four dis- Figure 3: A flexible set of scene types for LLM-
tinct and complementary perspectives. based traffic scene extraction.

3.3.2 TRAFFIC SCENE EXTRACTOR: NARRATIVE SCENE DECOMPOSITION

The Traffic Scene Extractor agent acts as an intelligent parser, taking the dense, multi-faceted nar-
rative generated by the Data Annotator and distilling it into a set of discrete, safety-relevant scenes.
While the Data Annotator provides a comprehensive overview, its raw output can be verbose and
contain interwoven details from different moments or aspects of a clip. The Extractor’s role is to
streamline this information into focused, non-overlapping scene descriptions, which are critical for
the precise knowledge retrieval and reasoning performed by downstream agents.

The core of the Traffic Scene Extractor is an LLM-based prompting strategy that guides the model to
dissect the comprehensive annotation. The prompt in appendix [C.2] as shown in figure 3] defines a
flexible set of scene types, including Environmental Conditions, Ego Vehicle Behavior, Traffic Inter-
actions, Rule Compliance/Violations, and Outcomes/Consequences. Crucially, the prompt instructs
the LLM to incorporate causal factors, inferred intentions, participant interactions, and temporal se-
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quences within each scene description. This ensures that the extracted scenes are not just isolated
observations but semantically rich accounts of safety-critical moments. The prompt also includes
detailed positive and negative examples of both normal driving and incident scenarios, demonstrat-
ing how to compose concise, safety-relevant descriptions and how to avoid redundant or irrelevant
details. The primary goal is to extract up to S distinct safety-relevant scenes, each focusing on a
specific aspect or moment from the annotation.This decomposition provides granular inputs for sub-
sequent analysis. The output is a list of these refined textual scene descriptions, ready for use by the
Traffic Rule Checker and Traffic Accident Retriever. This decomposition provides granular inputs
for subsequent analysis. The output is a list of these refined textual scene descriptions, ready for use
by the Traffic Rule Checker and Traffic Accident Retriever.

3.3.3 TRAFFIC ACCIDENT RETRIEVER: EXPERIENTIAL ANALYSIS

The Traffic Accident Retriever agent identifies latent risks by cross-referencing the current driving
scene with a rich knowledge base of past incidents, capturing dangers that may not involve a formal
rule violation. This agent provides the framework with an “experiential” understanding of what
makes a situation hazardous, even if all parties are acting legally. The core of this component is an
agentic GraphRAG pipeline that involves two major phases: offline knowledge base construction
and online retrieval and analysis.

Graph Construction

The agent’s knowledge is stored in the Historical Accident Graph Database (K 4), which is
constructed from real-world incident data to serve as the system’s long-term memory of dan-
gerous scenarios. The process begins with a dataset of accident videos, such as the Nexar
Dashcam Collision Prediction dataset, where 10-second clips containing collision or near-miss
scenes are extracted. For each of these clips, the Data Annotator generates detailed textual an-
notations, which serve as the source documents for populating the graph. To ensure a con-
sistent and structured representation of these incidents, we first define a graph schema in ap-
pendix [D} This schema specifies explicit node labels like Accident, TrafficCondition,
TrafficAction, and TrafficParticipant, along with the permissible relation-
ships between them, such as TrafficAction —-[:CONTRIBUTE_TO]-> Accident or
EgoVehicle —[:INTERACTS_WITH]-> TrafficParticipant. The annotation docu-
ments are then processed through an automated pipeline to build the graph database (e.g., Neo4;).
This involves chunking each annotation into smaller text segments and using a schema-constrained
entity extraction tool, like LangChain’s LLMGraphTransformer. This tool is configured with
our predefined schema, guiding an LLM to extract entities and relationships that strictly conform to
the allowed labels and types. These extracted entities are ingested as nodes with their descriptions,
and the relationships form the edges of the graph. Additionally, vector embeddings are generated
for each chunk and entity, enabling efficient semantic search later. This process is applied incremen-
tally across all accident documents, culminating in a unified and interconnected knowledge graph of
historical incidents.

Agentic GraphRAG for Risk Retrieval

During an evaluation, the Traffic Accident Retriever agent takes a structured scene description from
the Traffic Scene Extractor as its query and performs a multi-stage Graph RAG retrieval process
to find analogous historical incidents. This process is designed to maximize both relevance and
recall. Initially, a hybrid search strategy is employed: the query is converted into an embedding for a
vector similarity search across Chunk nodes in the graph, identifying semantically similar historical
contexts. Concurrently, a full-text search is performed to capture chunks containing exact keyword
matches. For the most relevant chunks identified by this hybrid approach, the agent then expands
its search within the graph. It traverses 1-2 hops (adaptively based on similarity) from these chunks
to retrieve all connected entities and their relationships, thereby gathering the full contextual details
of the historical incident. This step moves beyond isolated text snippets to reconstruct complete
accident scenarios from the graph.

The retrieved set of historical scenarios forms a candidate pool. A crucial subsequent step is agentic
filtering, where an LLM assesses the contextual relevance of each candidate to the specific query
scene, effectively filtering out any irrelevant or misleading results. Finally, the highly-relevant,
filtered historical accident scenarios are passed to a dedicated LLM, prompted to act as a “traffic
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accident analyst.” This LLM, guided by the prompt (provided in appendix [C.3), receives both the
current traffic scene and the retrieved historical context. Its task is to synthesize this information to
identify potential accidents that could plausibly arise from the current driving scene and to provide
a clear, causal explanation for why the current scene is risky, based on the outcomes of similar
past events. This sophisticated process allows the Traffic Accident Retriever to flag latent risks by
effectively asking, "Have we seen a situation like this lead to an accident before?”, thereby directly
fulfilling the framework’s principle of proactive, data-effective risk identification.

3.4 TRAFFIC RULE CHECKER: NORMATIVE ANALYSIS

The Traffic Rule Checker agent performs a normative analysis, auditing the driving behavior de-
picted in a scene against a verifiable knowledge base of codified traffic regulations. Before the
online analysis, the agent’s knowledge is prepared in the Traffic Rule Vector Database (Kr). This
knowledge base is meticulously constructed by ingesting textual regulations from relevant jurisdic-
tions, such as state-specific vehicle codes. Each rule is encoded into a high-dimensional vector using
a sentence embedding model and stored in the Milvus database. This structure enables efficient se-
mantic retrieval, allowing the agent to find relevant laws even if the query scene does not use exact
legal terminology.

This agent is implemented as a robust, multi-step pipeline using a framework like LangGraph to
ensure a structured and accurate evaluation. Its architecture combines an LLM for efficient reasoning
with a Milvus vector database for rapid rule retrieval. The agent’s core logic follows a sequential,
three-stage agentic RAG process: Retrieve, Grade, and Verify. The agent’s online workflow begins
with the Retrieval step, where it takes a scene description from the Traffic Scene Extractor as a query.
It performs a vector similarity search against the K i database to fetch the top-k most semantically
similar traffic rules. However, semantic similarity alone can sometimes retrieve rules that are related
but not directly applicable. To address this and prevent false positives, the process moves to the
Relevance Grading step. Here, an LLM acts as a grader, analyzing each retrieved rule in the context
of the specific driving scene. Guided by a the prompt in appendix[C.4] it filters out any rules deemed
irrelevant, ensuring that only the most pertinent statutes are passed to the final stage. This critical
filtering step significantly reduces noise and focuses the final analysis.

In the final Violation Verification step, the original scene description and the filtered, highly-relevant
rules are passed to another LLM. This LLM is prompted with a specific persona, such as a “police
officer,” to meticulously analyze the scene and determine if the vehicle’s actions violated any of
the provided rules. The agent’s final output is a structured object, conforming to a Pydantic model,
which clearly states whether a violation was “found” or “not_found” and provides a concise reason
for the judgment. This multi-step, agentic process of retrieving, grading, and verifying ensures
that the final assessment of legal compliance is not only accurate but also robust and contextually
grounded.

3.5 DRIVING ASSESSOR: HOLISTIC SYNTHESIS AND REPORTING

The Driving Assessor is the final agent in the DriveEval pipeline, responsible for synthesizing the
analytical outputs from all upstream agents into a single, cohesive, and actionable safety report (R).
This agent functions as an expert driving instructor and safety analyst, leveraging a powerful LLM
to perform a final, holistic evaluation of the driving performance observed in a given scene.

The agent’s reasoning process is initiated by providing the LLM with a comprehensive set of inputs
for each analyzed clip. These inputs include the rich textual scene description from the Data An-
notator, the list of identified violations from the Traffic Rule Checker, and the analogous historical
risks surfaced by the Traffic Accident Retriever. This aggregated information is structured into a
detailed prompt in appendix which guides the LLM to perform its analysis in a structured and
evidence-based manner.

A core component of this agent’s methodology is a standardized safety scoring rubric, which anchors
the LLM’s evaluation to a predefined set of criteria. This rubric prevents subjective or arbitrary
assessments and ensures consistency across all evaluations. The scoring is based on a 1-10 scale,
which is mapped to four distinct risk levels: Critical (scores 1-4), High (5-7), Medium (8), and
Low (9-10). The specific criteria for each score are highly contextual, depending on whether an
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accident or near-miss occurred, who was at fault (the ego-vehicle or another participant), and the
quality of the ego-vehicle’s reaction or attempt to mitigate the situation. For example, scores in the
“Critical” range are reserved for actual collisions, with a lower score indicating greater fault on the
part of the ego-vehicle. This detailed, evidence-based rubric forces the LLM to move beyond simple
summarization and perform nuanced causal reasoning.

After applying the rubric to determine the most appropriate safety score, the agent is prompted to
generate the final, multi-faceted report (R) as defined in our Problem Formulation. This structured
output includes: the final safety score and its corresponding risk level; a holistic narrative evalua-
tion that justifies the score by summarizing the key events and behaviors; distinct lists of identified
strengths and weaknesses to provide balanced feedback; and a set of specific, actionable improve-
ment advice designed to guide developers in rectifying the identified flaws. This final synthesis step
transforms a collection of isolated analytical findings into a valuable and interpretable evaluation,
directly fulfilling the framework’s core principle of producing explainable and actionable results.

4 EXPERIMENTS AND CASE STUDIES

4.1 EXPERIMENTAL SETUP

To rigorously assess the performance of the DriveEval framework and its constituent agents, we
conducted a series of experiments focusing on the effectiveness of various Large Language Models
(LLMs) and Vision-Language Models (VLMs) within their respective roles. This section details the
datasets employed, the specific models chosen for evaluation, and the infrastructure supporting our
experimental setup.

Datasets Our evaluation strategy is built upon two categories of datasets: 1) the primary evaluation
dataset DriveEval, which provides comprehensive system assessment through 200 diverse dashcam
clips (about 35 minutes) paired with human-annotated safety reports created via a four-step process
of query-driven video sourcing, manual event marking, precise clip extraction, and structured report
generation; 2) and the knowledge base datasets, which ground the agent through two components:
the Traffic Rule Vector Database (K ), derived from the Pennsylvania Driver’s Manual by con-
verting it into Markdown, segmenting, and embedding for semantic retrieval; and the Historical
Accident Graph Database (K 4), constructed from 750 accident or near-miss videos in the Nexar
dataset, where annotated 10-second clips were processed into textual descriptions, organized under
a manually defined schema, and transformed into a Neo4j knowledge graph capturing entities and
relationships. For more details, please see [A]

Models for Evaluation Our evaluation methodology focuses on assessing the performance of vari-
ous state-of-the-art Large Language Models (LLMs) and Vision-Language Models (VLMs) within
each agent’s specific role. For conciseness, all model names are presented in a simplified for-
mat, omitting provider and platform prefixes (e.g., ‘gpt-40°‘ for ‘openai:gpt-40°). Data Annotator
(VLM): This agent, responsible for initial scene interpretation, was evaluated using the follow-
ing VLMs, which process frame image sequences from video clips: ‘gpt-40°, ‘gpt-4.1°, ‘gpt-5°,
‘03, ‘claude-opus-4-1°, ‘claude-sonnet-4-2°, ‘gemini-2.5-pro‘, ‘gemma-3-27b°*, ‘grok-4°, ‘qwen2-
5-vl-72b-instruct’, ‘qwen-vl-max°‘, and ‘glm-4.5v‘. Other Agents (LLM): For the Traffic Scene
Extractor, Traffic Rule Checker, Traffic Accident Retriever, and Driving Assessor agents, which pri-
marily handle textual inputs, we evaluated a comprehensive set of LLMs including: ‘gpt-40°, ‘gpt-
4.1°, ‘gpt-5°, ‘03°, ‘claude-opus-4-1°, ‘claude-sonnet-4-2°, ‘gemini-2.5-pro‘, ‘gemma-3-27b°, ‘grok-
4, ‘qwen2-5-vl-72b-instruct’, ‘qwen-vl-max‘, ‘glm-4.5v*, ‘llama-3.3-70b-versatile‘, ‘deepseek-r1-
distill-llama-70b*, ‘qwen3-max°‘, ‘glm-4.5°, ‘sonar-pro‘, ‘qwen3-32b‘, ‘gpt-oss-120b°, ‘kimi-k2-
instruct-0905°¢, ‘llama-4-scout-17b-16e-instruct‘, and ‘llama-4-maverick-17b-128e-instruct".

Implementation Details The DriveEval framework is orchestrated using LangGraph, which man-
ages the multi-agent pipeline and their interactions. For the underlying data storage and retrieval,
Milvus serves as the vector database for K, while Neo4;j is utilized as the graph database for K 4.

4.2 DISCUSSION ON BEST MODEL FOR AGENTS

We explore the best model for each agent and the results are provided in Appendix [E] For data anno-
tator agent, gpt-4o can achieve best performance on traditional similarity metrics while consuming
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Figure 4: An aggressive and illegal maneuver by another vehicle

least time. While for traffic scene extractor agent, llama-3.3-70b obtains highest scores on textual
metrics but is almost 10x slower than fastest model. A similar phenomenon can also be observed in
other agents. Thus, the best model for each agent does not remain consistent, which further validates
the necessity of multi-agent design, which assigns the optimal LLM to the corresponding agent.

4.3 CASE STUDY

‘We make two case studies to show how our DriveEval framework works in real-world scenes:

Case 1: To demonstrate DriveEval’s capabilities, we analyze a complex near-miss event from our
dataset involving an aggressive merge from the shoulder, as shown in figure @ The ego-vehicle is
traveling in the rightmost lane of a highway when a black pickup truck accelerates rapidly along
the right shoulder and merges abruptly into the ego-vehicle’s lane directly in front of it, without
signaling. The Data Annotator successfully captures these key details, producing a rich description
that notes the “abrupt merge,” the “lack of signaling,” and the resulting “unsafe” and “close fol-
lowing distance.” The Traffic Scene Extractor then decomposes this narrative into distinct, safety-
relevant scenes for analysis, including “a black pickup truck merging into the ego-vehicle’s lane
from the right shoulder without signaling” and “ego-vehicle maintains its lane and speed, follow-
ing the pickup truck at a close distance after the merge, resulting in a reduced following distance.”
Traffic Rule Checker correctly identifies the pickup truck’s multiple violations, such as “failure to
yield to traffic already on the major roadway,” “not following the steps to merge with traffic from
an acceleration lane,” and “merging from the shoulder without signaling. Traffic Accident Retriever
finds that the current scenario strongly resembles past incidents, leading to a side-swipe and a rear-
end collision. The Driving Assessor synthesizes these findings into a comprehensive safety report.
It provides improvement advice, that the ego vehicle should “immediately adjust your speed and
increase your following distance” and “stay alert for vehicles on the shoulder.” These system results
are highly aligned with the human’s judgment.

Case 2: This case study highlights the critical importance of geographical context for accurate
traffic rule checking. In a scenario where the ego-vehicle operates in a left-hand traffic region and
veers slightly left to avoid a head-on collision with an oncoming vehicle occupying its lane, the
Data Annotator accurately describes the evasive action. However, if the Traffic Rule Checker is
powered by a knowledge base (K r) designed for right-hand traffic, it incorrectly flags a violation,
stating that the leftward maneuver goes against the rule to escape to the right if possible.” This false
positive directly impacts the Driving Assessor, which would then assign a suboptimal safety score.
This scenario starkly illustrates DriveEval’s need for adaptive, region-specific knowledge bases that
can dynamically switch or modify traffic rules based on the operational context, ensuring accurate
normative analysis across diverse global driving conventions.

5 CONCLUSION AND FUTURE WORK

In this paper, we proposed DriveEval, a context-aware multi-agent framework for evaluating the
safety of autonomous driving systems. By coordinating agents for scene parsing, rule checking,
and accident retrieval, the framework leverages language and vision-language models to provide
transparent and fine-grained assessments that complement traditional quantitative metrics. Our ex-
periments demonstrate that DriveEval not only aligns well with human judgment but also highlights
subtle risks and rare corner cases often overlooked by existing evaluation pipelines. For future
work, we aim to scale evaluations to larger and more diverse datasets to ensure robustness across re-
gions, weather, and traffic conditions. Furthermore, closing the loop between evaluation and training
through automatic scenario generation and curriculum design can accelerate system improvement.
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ETHICS STATEMENT

This work focuses on advancing the safety evaluation of autonomous driving (AD) through context-
aware multi-agent methods. Our framework is intended solely for research and safety assurance,
not for deployment without rigorous validation. We acknowledge that reliance on large language
and vision-language models may introduce biases from training data, which could affect fairness or
reliability across regions. To mitigate such risks, we emphasize transparency through interpretable,
provenance-backed assessments and encourage further audits before real-world adoption. We also
recognize broader societal impacts: while improving AD safety can reduce accidents and save lives,
misuse or premature deployment of evaluation tools may create false confidence. Responsible use
therefore requires careful collaboration with regulators, domain experts, and affected communities.

REPRODUCIBILITY STATEMENT

We provide detailed descriptions of our framework design, agent roles, datasets, and evaluation pro-
tocols in the main text and appendix. All experiments rely on publicly available datasets and models,
with hyperparameters, prompts, and implementation details specified to ensure replicability. Code
has been provided in anonymous Github repository https://anonymous.4open.science/
r/DriveGuard-_811C/|to facilitate verification and extension by the community.
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A SUPPLEMENTARY INTRODUCTION ON DATASETS

Our evaluation strategy is underpinned by two categories of datasets: a primary ground-truth eval-
uation dataset for comprehensive system assessment, and specialized knowledge base datasets for
agent grounding.

Primary Evaluation Dataset (DriveEval) For a rigorous, in-depth evaluation of our framework,
we developed the DriveEval Dataset, a novel collection of 200 diverse dashcam video clips (totaling
approximately 35 minutes) paired with comprehensive, human-annotated safety reports. The dataset
was created through a robust 4-step workflow: (1) building various queries and sourcing raw videos
from YouTube using over 175 targeted, safety-critical search queries; (2) using an interactive web-
based tool for human annotators to manually review and mark relevant events; (3) extracting these
marked events into precisely timed 10-second clips; and (4) generating gold-standard, structured
ground-truth reports for each clip using a dedicated annotation tool that mirrors our framework’s
final output.

Knowledge Base Datasets Normative Knowledge (K z): The Traffic Rule Vector Database was
constructed by ingesting the official Pennsylvania Driver’s Manual (a PDF document). This man-
ual was first converted to Markdown, subsequently segmented into manageable chunks, and then
embedded into a Milvus vector database to facilitate efficient semantic retrieval of specific traffic
regulations. Experiential Knowledge (K 4): The Historical Accident Graph Database was built
upon the Nexar Dashcam Crash Prediction dataset. We utilized all approximately 750 videos clas-
sified as positive” (i.e., containing a collision or an imminent near-miss). From these, 10-second
clips capturing the full accident or near-miss event were extracted. Our Data Annotator processed
these clips to generate detailed traffic annotations. Based on these unstructured textual descriptions,
we manually defined a comprehensive graph schema. The Neo4j LLM Knowledge Graph Builder
was then employed to construct the knowledge graph in Neo4;, extracting entities and relationships
from these annotations in accordance with our predefined schema.

B STATEMENT ON THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the spirit of transparency and in accordance with conference guidelines, we disclose the use of
Large Language Models (LLMs) as assistive tools in the preparation of this paper and its associated
software.

Throughout the preparation of this manuscript, we utilized LLMs, specifically Gemini 2.5 Pro and
GPT-5, as writing assistants. Their role was primarily confined to improving the clarity, flow, and
grammatical correctness of the text. The models were used for tasks such as rephrasing sentences for
better readability, correcting grammar, and polishing the overall prose. However, the core scientific
ideation, the formulation of the methodology, the analysis of results, and the final conclusions were
conceived and articulated entirely by the human authors.

In addition to writing, the Claude Code was employed as a coding assistant during the code develop-
ment phase of this project. Its role was significant in accelerating the implementation of our custom
dataset collection and annotation tools. Furthermore, Claude was used to assist in debugging and re-
fining the project’s codebase. All Al-generated code was thoroughly reviewed, tested, and validated
by the authors to ensure its correctness and alignment with the project’s objectives.

We affirm that LLMs were used as productivity tools and are not considered authors of this work.
The human authors take full responsibility for the scientific integrity, accuracy, and originality of all
content, including any text or code initially suggested by an LLM.

C FuLL PROMPTS

C.1 PROMPT FOR DATA ANNOTATOR
The following is the complete prompt used for the Data Annotator agent, designed to guide the

Vision-Language Model (VLM) in generating rich, multi-faceted textual descriptions from dashcam
video clips.
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You are an expert in analyzing dashcam footage for driving behavior
research.

Analyze this dashcam video clip for indexing in a driving behavior
analysis system. Focus on concisely describing key elements relevant
to driving safety, interactions, and intentions, with particular
attention to but not limited to the following:

+*xTraffic Signals and Traffic signs:»*x
+ Describe the following aspects throughout the clip, noting any
transitions. Describe the traffic signs. Describe the the ego-vehicle
s actions in response to each change.
- Road signs: Speed limits, stop signs, yield signs, warning signs, etc

- Traffic signals: Red, yellow, green lights, pedestrian signals.

— Other Lane markings: Yellow and white solid lines, dashed lines, bus
lanes, bike lanes, left-turn only, right-turn only, marked
crosswalk, etc.

*xInteractions and Intentions of Traffic Participants:*x

+ Describe the location/position of the ego-vehicle (first lane to the
left, closest opposite lane, etc.), given the opposite lines are
usually divided by solid yellow lines and others are divided by white

lanes.

* Identify all visible traffic participants, their types(Car, truck, bus,
motorcycle, bicycle, pedestrian, etc.), and attributes (Size, color,
make/model, lane position, speed, direction, signaling). Note any

vulnerable road users (VRUs), such as pedestrians, cyclists, and
motorcyclists.

* Describe the sequence of events in the clip, paying close attention to
the timing of actions and reactions between the ego-vehicle and other

traffic participants.

* Describe the movements of other vehicles, particularly those that turn
left or right, merge into the ego-vehicle’s lane, or change lanes
abruptly. Note their trajectories relative to the ego-vehicle.

* Describe the interactions and intentions of traffic participants,
including the ego-vehicle. Analyze the following aspects:

— Following distance: Is the ego-vehicle maintaining a safe following
distance?

— Lane changes: Are lane changes executed safely and with proper
signaling?

- Merging/yielding: How does the ego-vehicle handle merging and
yielding situations?

— Right-of-way: Does the ego-vehicle respect right-of-way rules?

— Turning: Analyze turning maneuvers for smoothness, signal use, and
adherence to lane markings.

+ Analyze and explain the reasons or intentions of above behaviors if any

**xUnsafe Behaviors and Situations:xx*

« Identify any situations where the ego-vehicle or other vehicles come
close to each other, such as near-collisions, sudden braking, or
sharp turns. Describe the factors that contributed to these
situations.

* Identify any traffic violations by the ego-vehicle or other
participants, such as running red lights, speeding, illegal lane
changes, or failing to yield.

* Other unsafe behaviors:

— Speeding: Is the ego-vehicle exceeding the speed limit or driving too
fast for conditions?
— Aggressive driving: Tailgating, weaving through traffic, sudden
braking, wrong way, etc.
— Distracted driving: Any signs of the driver being distracted (e.g.,
phone use, eating, looking away from the road).
— Drowsy driving: Any indications of driver fatigue.

13
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% Unusual Circumstances:
— Construction zones
— Accidents
— Emergency vehicles
- Road debris
— Pedestrians or animals unexpectedly entering the roadway
* Note please skip the description of the absence of findings.

**Road Features and Environment:xx

* Describe relevant road types (intersection, roundabouts, local/
residential roads, highways, freeways, expressways, one-way roads,
etc.), features(single lane, multiple lanes, road conditions, etc.),
and conditions (Dry, wet, icy, slippery, etc.).

* Note the environmental context [weather (Sunny, cloudy, rainy, snowy,
foggy, etc.), time of day(Daytime, nighttime, dawn, dusk, etc.),
visibility (Clear, limited, etc.)].

Provide an informative description, avoid statements about the absence of
findings.

C.2 PROMPT FOR TRAFFIC SCENE EXTRACTOR

The following is the complete prompt used for the Traffic Scene Extractor agent, designed to
guide the Large Language Model in decomposing dashcam annotations into distinct, safety-relevant
scenes.

[

("system", "You are a traffic scene decomposition expert. Your task
is to extract driving safety scenes from dashcam annotations,
focusing only on aspects relevant to traffic rule checking and
accident risk assessment."),

(lluserll, nmn

Extract UP TO 5 distinct driving safety scenes from the dashcam
annotation. Focus only on scenes relevant to driving safety -
skip irrelevant aspects.

**FLEXIBLE SCENE TYPESxx (use as needed, can repeat important types):

1. ENVIRONMENTAL CONDITIONS
- Road layout, weather, visibility, traffic density affecting
safety
- Example: "Four-lane bridge with solid yellow no-passing lines
during clear daylight conditions"

2. EGO VEHICLE BEHAVIOR
- Ego vehicle’s driving actions, decisions, speed, positioning
- Example: "Ego vehicle maintains safe following distance while
traveling in left lane of bridge"

3. TRAFFIC INTERACTIONS
- Interactions between vehicles, normal or risky
— Example: "Blue car encounters stopped vehicle and begins evasive
lane change maneuver"

4. RULE COMPLIANCE/VIOLATIONS
— Following traffic rules properly OR breaking them
- Example: "Blue car crosses solid yellow no-passing zone lines
into oncoming traffic lane"

5. **OUTCOMES/CONSEQUENCES * %
- Results of actions: safe completion or negative consequences
— Example: "Head-on collision causes ego vehicle to lose control
and leave roadway"
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**RICH CONTEXT GUIDELINES** (include when available):

— **CAUSES**: What led to this situation (e.g., stopped car blocking
lane)

— **xINTENTIONSxx: Why actions were taken (e.g., avoiding obstacle,
reaching destination)

— **INTERACTIONS*x*: How participants affect each other (e.g., forcing

sudden braking)

— **SEQUENCESxx: Order of events (e.g., lane change -> crossing lines
-> collision)

— **xCONDITIONSxx: Environmental factors affecting behavior (e.g., wet
roads, limited visibility)

**FLEXIBLE COMPOSITION EXAMPLES: xx

**Normal Driving Scenario:*x*

— "Four-lane residential street with 25mph speed limit during clear
afternoon conditions, moderate traffic density with parked cars
lining both sides creating narrow travel lanes"

"Ego vehicle maintains appropriate 22mph speed in right lane,
positioned center of travel lane with 3-second following distance
behind silver sedan, driver demonstrating cautious behavior due

to parked car obstacles"

— "Pedestrian approaches marked crosswalk from right sidewalk; ego
vehicle recognizes pedestrian’s intention to cross, begins
gradual deceleration 50 feet before crosswalk, comes to complete
stop to yield right-of-way"

— "Ego vehicle activates right turn signal 100 feet before
residential driveway entrance, checks mirrors for cyclists,
reduces speed to 8mph for safe turning radius while ensuring no
oncoming traffic conflicts"

— "Successful completion of residential navigation with consistent
rule compliance, appropriate speed management for conditions, and

proactive safety measures protecting vulnerable road users"

*xIncident Scenario:xx

— "Two-lane bridge with solid yellow no-passing lines separating
opposing traffic, clear weather but limited escape routes due to
concrete barriers, 45mph speed limit with moderate traffic flow"

— "Blue sedan in opposite direction encounters stopped disabled
vehicle blocking its travel lane, driver attempts emergency lane
change but misjudges available space and oncoming traffic speed,
panic response leads to overcorrection"

— "Blue sedan crosses solid yellow no-passing zone markings into ego
vehicle’s lane while traveling approximately 40mph, violating
traffic law prohibiting passing in no-passing zone, creating
immediate head-on collision risk"

— "Head-on collision occurs as blue sedan strikes ego vehicle’s front
—-left quarter panel, impact forces cause ego vehicle to lose
directional control despite driver’s attempted evasive steering”

— "Ego vehicle crosses into oncoming lanes and impacts concrete
barrier before coming to rest, collision sequence demonstrates
how improper passing decisions escalate from a traffic violation
to severe multi-vehicle incident with potential for serious
injuries"

**OUTPUT FORMAT:** Return clean scene descriptions without scene
numbers or type labels. Focus purely on the safety-relevant
content.

**ANTI-OVERLAP RULES: x*%

— Each scene focuses on ONE specific aspect or moment

— Avoid describing the same incident from multiple perspectives
— Important safety aspects can have multiple scenes if distinct
— Skip scene types not relevant to driving safety
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Complex annotation:
{annotation}

Extract up to 5 distinct safety-relevant scenes. Include rich context
(causes, intentions, interactions, sequences) when available.

Focus each scene on one specific aspect.
nw ")

C.3 PROMPT FOR ACCIDENT RETRIEVER

The following is the complete prompt used for identifying potential accidents.

[

("system", "You are a traffic accident analyst. You are given

historical traffic accidents retrieved from neo4j graph database,
and you need to summarize the possible accidents of the traffic

scene."),

("userH, mmwn

The historical traffic accidents are inside the <
historical_traffic_accidents> tag. The traffic scene is inside
the <traffic_scene> tag.

### Response Guidelines:

1. xxDirect Answersx*x: Provide clear and thorough answers to the user
s queries without headers unless requested. Avoid speculative
responses.

2. %xxUtilize History and Contextxx: Leverage relevant information
from the current driving scene, and the context provided below.

3. *xNo Greetings in Follow-ups#*x*: Start with a greeting in initial
interactions. Avoid greetings in subsequent responses unless
there’s a significant break or the chat restarts.

5. *%xAvoid Hallucinationxx: Only provide information based on the
context provided. Do not invent information.

6. **Response Lengthxx: Keep responses concise and relevant. Aim for
clarity and completeness within 4-5 sentences unless more detail
is requested.

7. *xTone and Stylex*: Maintain a professional and informative tone.
Be friendly and approachable.

8. xxError Handlingxx: If a query is ambiguous or unclear, ask for
clarification rather than providing a potentially incorrect
answer.

10. »xContext Availability**: If the context is empty, do not provide

answers based solely on internal knowledge. Instead, respond "No
possible accident is found."

### Answer Format:

— Possible accidents

— Explanation reasons why the current driving scene can cause the
accidents

<traffic_scene>
{traffic_scene}
</traffic_scene>

<historical_traffic_accidents>

{historical_traffic_accidents}

</historical_traffic_accidents>
nmmwn
)

C.4 PROMPT FOR RULE CHECKER
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("system", "You are a retrieval grader for traffic rule retrieval.
Given a query, you are grading the relevance of the retrieved
traffic rule.."),

(lluser", mmww

The query is inside the <query> tag, and the retrieved traffic rule
is inside the <retrieved_traffic_rule> tag.

<query>
{query}
</query>

<retrieved_traffic_rule>
{retrieved_traffic_rule}
</retrieved_traffic_rule>

The goal is to filter out the retrieved traffic rule that is not
relevant to the query, so grade it as not relevlant only if the
retrieved traffic rule cannot provide any information to
determine if the query violates the traffic rule or not.

If the retrieved traffic rule contains some information that can be
used to determine if the query violates the traffic rule or not,
even if it is not the exact answer, then grade it as relevant.

Output ’"no’ if the retrieved traffic rule is completely not relevant
to the query, otherwise output ’'yes’.

wnnn

)

C.5 PROMPT FOR DRIVING ASSESSOR

("system", """You are an expert driving instructor and safety analyst
Your role is to provide comprehensive, constructive feedback on
driving behavior based on traffic scene analysis, accident risks

, and rule violations.

Your assessment should be:

— Objective and evidence-based using the standardized safety scoring
criteria

— Constructive and educational

- Focused on safety improvement

- Specific and actionable"""),
(lluserll, mmwn
Analyze the following driving scenario and provide a comprehensive

safety assessment:

**Complex Traffic Annotation:*x
{annotation}

**Accident Analysis Results:*x
{accident_results}

*xTraffic Rule Violation Results:#*x*
{rule_results}

## SAFETY SCORING CRITERIA (1-10)

Use these specific criteria to assign the safety score. Choose the
score that best matches the observed scenario:

**CRITICAL RISK LEVELS (1-4) :x*x
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— x*xScore lxx: Accident involving the ego vehicle caused by ego
vehicle’s traffic rule violation

— x*xScore 2%*: Accident involving the ego vehicle caused by ego
vehicle’s fault/risky behavior (non-violation)

— x*xScore 3x*: Accident involving the ego vehicle caused by others,
but ego vehicle did not react properly or failed to mitigate

— x*xScore 4xx: Accident involving the ego vehicle caused by others,
ego vehicle tried best to mitigate damages/loss

**HIGH RISK LEVELS (5-7) :%x*

— x*x3Score 5x*: Near miss involving the ego vehicle caused by ego
vehicle’s traffic rule violation

— x*x3core 6**: Near miss involving the ego vehicle caused by ego
vehicle’s risky behavior (non-violation)

— xx3Score 7x*: Near miss involving the ego vehicle caused by other
traffic participants, ego vehicle involved but not at fault

*+*MEDIUM RISK LEVEL (8) :xx%
— x*xScore 8x*: No accident or near miss, but ego vehicle violates
traffic rules or exhibits risky behaviors

*+*LOW RISK LEVELS (9-10) :#*
— x*xScore 9x*: No accident or near miss, other traffic participants
violate rules or exhibit risky behaviors, ego vehicle takes

defensive actions
— xxScore 10%*: Safe driving with good behavior, defensive driving,
correct response to emergencies

## RISK LEVEL MAPPING

— xxCriticalx*: Scores 1-4 (Actual accidents involving the ego
vehicle occurred)

— xxHigh**: Scores 5-7 (Near misses involving the ego vehicle
occurred)

- **xMedium*+*: Score 8 (Violations/risky behavior without immediate
danger)

— *xxLow**: Scores 9-10 (Safe or defensive driving)

## ASSESSMENT REQUIREMENTS
Based on the above criteria, provide:

1. xxSafety Score (1-10)**: Rate using the exact criteria above -
justify your score selection

2. *x0Overall Evaluation*x: Summarize the driving performance with
reference to the scoring criteria

3. *xStrengthsxx: Identify positive behaviors, defensive actions, and
proper emergency responses

4. xxWeaknessesxx: Point out risky behaviors, violations, poor
reactions, or missed opportunities for safety

5. *xxImprovement Advicexx: Provide specific, actionable
recommendations to move toward higher safety scores

6. xxRisk Levelx*: Assign based on score mapping (critical/high/
medium/low)

## SCORING GUIDELINES:
— *xAccidents take precedencex*: Any actual collision/accident

involving the ego vehicle = scores 1-4 regardless of other
factors

— xxNear misses are seriousxx: Close calls involving the ego vehicle
without contact = scores 5-7

— xxDistinguish faultx*: Consider who caused the incident (ego
vehicle vs others)

- xxEvaluate responsex*: How well did ego vehicle react to others’
mistakes?
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- x*xContext mattersxx: Consider weather, visibility, traffic density,
road conditions
— xxDefensive driving**: Reward proactive safety measures and
anticipation
— xxMultiple incidentsx**: Use the lowest applicable score if multiple
safety issues occur

## OUTPUT FOCUS:

— Be specific about which scoring criteria applies

— Reference specific moments in the annotation

- Explain the gap between current score and higher safety levels
— Provide constructive rather than punitive feedback

— Help driver understand why certain behaviors affect safety scores
nw ll)

D ACCIDENT GRAPH SCHEMA

The following is the customized schema we defined for accident annotation documents.

TrafficCondition —[:CONTRIBUTE_TO]-> Accident
TrafficAction —-[:CONTRIBUTE_TO]-> Accident
TrafficRuleViolation —-[:CONTRIBUTE_TO]-> Accident
Accident -[:INCLUDES]-> RollOver

Accident —-[:INCLUDES]-> PotentialCollision
Accident —-[:INCLUDES]-> NearMiss

Accident —-[:INCLUDES]-> UnsafeSituation
Accident —-[:INCLUDES]-> Collision

Accident -[:INCLUDES]-> Injury

LaneMarking —-[:INDICATES]-> LaneType
LaneType —[:IMPACTS]-> TrafficCondition
TrafficSignal —[:IMPACTS]-> TrafficCondition
RoadSign —[:IMPACTS]-> TrafficCondition
RoadFeature —-[:IMPACTS]-> TrafficCondition
Environment -[:IMPACTS]-> TrafficCondition

TrafficAction —-[:CONTRIBUTE_TO]-> TrafficRuleViolation
TrafficCondition —[:CONTRIBUTE_TO]-> TrafficRuleViolation

TrafficParticipant -[:Respond_To]-> TrafficSignal
EgoVehicle -[:Respond_To]-> RoadSign

EgoVehicle —[:INTERACTS_WITH]-> TrafficParticipant
TrafficParticipant —-[:INTENDS]-> TrafficAction
EgoVehicle —[:INTENDS]-> TrafficAction

EgoVehicle -[:EXECUTES]-> TrafficAction
TrafficParticipant —[:EXECUTES]-> TrafficAction

E EVALUATION TABLES

E.1 DATA ANNOTATOR

Metrics Overview. The annotation component evaluates multimodal models on their ability to
generate comprehensive driving scenario descriptions. Traditional similarity metrics include
BLEU and ROUGE-L, which measure lexical and sequential overlap, and Semantic Similarity,
which captures meaning beyond word overlap using embeddings. LL.M-as-Judge metrics (scored
1-10) include Accuracy, measuring factual correctness of events; Completeness, reflecting coverage
of critical driving events; and Clarity, assessing readability and utility of annotations for downstream
analysis.
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Table 1: Annotation Component performance across multimodal models. Best values in each col-
umn are highlighted in bold.

Model BLEU ROUGE-L Semantic Accuracy Completeness Clarity Avg Time
gpt-40 0.43 0.63 0.91 6 5 8 12.9s
gpt-4.1 0.10 0.29 0.81 6 7 9 29.8s
gpt-5 0.03 0.21 0.78 8 8 9 1m 50s
03 0.01 0.16 0.67 8 8 9 41.3s
claude-opus-4-1 0.07 0.24 0.76 5 4 8 17.9s
claude-sonnet-4 0.05 0.24 0.77 5 4 8 22.6s
gemini-2.5-pro 0.10 0.27 0.74 6 6 8 19.4s
gemma-3-27b 0.09 0.25 0.73 4 3 7 21.1s
grok-4 0.06 0.29 0.82 5 5 7 39.8s
qwen2.5-vl-72b 0.11 0.30 0.81 4 3 7 19.7s
qwen-vl-max 0.08 0.26 0.77 5 5 8 22.4s
glm-4.5v 0.06 0.29 0.85 5 4 8 28.4s

E.2 TRAFFIC SCENE EXTRACTOR

Metrics Overview. We evaluate scene extraction performance using three categories of metrics.
Traditional similarity metrics include BLEU and ROUGE-L, which measure lexical and sequen-
tial overlap with human-written scenes, as well as Semantic Similarity, which captures meaning
beyond word overlap using embeddings. Enhanced averages include Safety Avg, which weights
detection toward safety-critical events (e.g., accidents, near-misses), Temporal Avg, which evalu-
ates chronological consistency of scene ordering, and Coherence Avg, which measures narrative
flow across transitions. LLM-as-Judge scores (on a 1-10 scale) include Extraction Quality, assess-
ing boundary detection and completeness, Temporal Coherence, measuring logical ordering, and
Safety Relevance, evaluating the focus on safety-critical content.

Table 2: Scene Component performance across text models. Best values in each column are high-

lighted in bold.

Model BLEU ROUGE-L ic Coverage Safety Avg Temporal Avg Coherence Avg Extract Temporal Safety Avg Time
gpt-4o 0.20 0.40 0.86 0.96 0.50 0.64 0.69 9 10 10 11.0s
gpt-4.1 0.14 0.37 0.87 0.96 0.64 0.66 0.68 9 10 10 4.9s
gpt-5 0.08 0.30 0.84 0.95 0.47 0.71 0.66 9 10 10 22.6s
03 0.05 0.26 0.83 0.95 0.48 0.54 0.67 9 10 10 11.5s
claude-opus-4-1 0.05 0.27 0.84 0.94 0.54 0.72 0.71 9 10 10 9.5s
claude-sonnet-4 0.07 0.29 0.86 0.94 0.61 0.77 0.74 9 10 10 11.7s
gemini-2.5-pro 0.08 0.29 0.82 0.87 0.51 0.78 0.72 9 10 10 15.8s
gemma-3-27b 0.10 0.35 0.85 0.95 0.55 0.79 0.66 9 10 10 29s
grok-4 0.09 0.31 0.86 0.96 0.59 0.78 0.71 9 10 10 19.0s
qwen2.5-vl-72b 0.12 0.34 0.86 0.95 0.46 0.79 0.74 9 10 10 9.6s
qwen-vl-max 0.09 0.32 0.85 0.96 0.52 0.74 0.72 9 10 10 4.8s
glm-4.5v 0.09 0.32 0.84 0.94 0.54 0.80 0.68 9 10 10 30.2s
Illama-3.3-70b 0.41 0.57 0.90 0.96 0.64 0.79 0.72 9 10 10 5.2s
deepseek-r1-70b 0.10 0.36 0.83 0.94 0.49 0.74 0.60 9 10 10 4.1s
qwen3-max 0.05 0.25 0.84 0.96 0.64 0.75 0.69 9 10 10 5.5s
glm-4.5 0.08 0.30 0.86 0.95 0.51 0.74 0.72 9 10 10 12.5s
sonar-pro 0.13 0.35 0.86 0.92 0.58 0.75 0.70 9 10 10 6.7s
qwen3-32b 0.09 0.32 0.86 0.94 0.60 0.74 0.68 9 10 10 2.8s
gpt-0ss-120b 0.08 0.32 0.86 0.96 0.45 0.78 0.68 9 10 10 3.1s
kimi-k2 0.07 0.30 0.85 0.96 0.60 0.73 0.68 9 10 10 1.0s
Illama-4-scout-17b 0.14 0.40 0.86 0.92 0.55 0.74 0.70 9 9 9 648ms
llama-4-maverick-17b  0.15 0.41 0.87 0.96 0.65 0.77 0.69 9 10 10 495ms

E.3 TRAFFIC ACCIDENT RETRIEVER

Metrics Overview. The accident component evaluates models on their ability to detect accident
risks and predict consequences. Traditional classification metrics include Precision, Recall, F1,
and Accuracy, measuring correctness, completeness, and overall predictive balance. Enhanced
safety metrics include the Temporal Causality Score, which checks whether models capture logi-
cal cause-and-effect chains (violations leading to accidents), and the Safety Criticality Score, which
weights accidents by severity. LLM-as-Judge metrics (1-10 scale) cover Risk Assessment Accu-
racy, Consequence Prediction, and Context Understanding, ensuring models provide realistic and
context-aware accident analyses. Efficiency is reported as average inference time per video.

20



Under review as a conference paper at ICLR 2026

Table 3: Accident Component performance across text models. Best values in each column are

highlighted in bold.
Model Precision Recall F1 Accuracy RiskAssess Consequence Context Avg Time
gpt-4o 0.97 092 094 0.89 8 9 9 27.3s
gpt-4.1 0.97 093  0.95 0.91 9 9 9 30.6s
gpt-5 0.96 093 094 0.89 8 9 9 24.7s
03 0.97 092 094 0.89 8 9 9 26.1s
claude-opus-4-1 0.97 093 094 0.90 9 9 9 25.0s
claude-sonnet-4 0.97 093 094 0.90 8 9 9 26.3s
gemini-2.5-pro 0.97 093  0.95 0.91 9 9 9 27.0s
gemma-3-27b 0.97 093 094 0.90 8 9 9 26.8s
grok-4 0.97 093 094 0.90 8 9 9 25.7s
gwen2.5-vl-72b 0.97 093 094 0.90 9 9 9 25.9s
qwen-vl-max 0.97 092 094 0.89 8 9 9 27.4s
glm-4.5v 0.96 093 094 0.89 8 8 8 28.0s
llama-3.3-70b 0.97 093  0.95 0.91 9 9 9 26.2s
deepseek-r1-70b 0.97 093 094 0.90 8 9 9 27.1s
gwen3-max 0.97 092 094 0.89 8 9 9 28.1s
glm-4.5 0.97 093 094 0.90 8 9 8 25.8s
sonar-pro 0.96 092 093 0.88 8 8 8 29.5s
qwen3-32b 0.96 095 095 0.91 9 9 9 26.6s
gpt-oss-120b 0.97 093 094 0.90 9 9 9 28.9s
kimi-k2 0.96 093 094 0.90 8 9 9 25.6s
llama-4-scout-17b 0.95 091 092 0.86 8 8 8 25.6s
llama-4-maverick-17b 0.97 093 094 0.90 9 9 9 24.6s

E.4 TRAFFIC RULE CHECKER

Metrics Overview. The violation component evaluates models on their ability to detect traffic
violations and provide legally consistent explanations. Traditional classification metrics include
Precision, Recall, F1, and Accuracy, which measure correctness and completeness of violation de-
tection. Enhanced safety metrics include the Safety Criticality Score, which weights violations by
their risk severity. LLM-as-Judge metrics (scored 1-10) include Detection Accuracy, Explanation
Quality, and Legal Consistency, which evaluate the factual accuracy of detections, the clarity and
completeness of reasoning, and adherence to traffic laws, respectively. Efficiency is reported as
average inference time per video.

Table 4: Violation Component performance across text models. Best values in each column are

highlighted in bold.
Model Precision Recall F1 Accuracy Safety Avg Detection Explain Legal Avg Time
gpt-4o 0.90 092  0.90 0.87 0.18 9 8 9 8.7s
gpt-4.1 0.89 0.89 0.87 0.85 0.16 8 8 9 8.3s
gpt-5 0.87 090 0.87 0.85 0.17 8 8 8 22.5s
o3 0.87 091 0.87 0.85 0.17 8 8 9 8.3s
claude-opus-4-1 0.87 091 0.87 0.85 0.18 8 8 8 22.2s
claude-sonnet-4 0.87 091  0.87 0.85 0.17 8 8 8 14.8s
gemini-2.5-pro 0.91 089 0.88 0.85 0.16 8 9 8 17.5s
gemma-3-27b 0.89 090 0.88 0.85 0.16 8 8 9 8.9s
grok-4 0.87 092 0.88 0.86 0.17 8 8 8 27.4s
qwen2.5-vl-72b 0.87 091 0.87 0.85 0.17 8 8 8 18.1s
qwen-vl-max 0.90 090 0.88 0.85 0.17 8 9 8 14.1s
glm-4.5v 0.90 091 0.89 0.86 0.16 9 9 9 18.0s
llama-3.3-70b 0.88 090 0.87 0.85 0.16 8 8 8 17.1s
deepseek-r1-70b 0.90 091 0.89 0.86 0.16 8 8 8 7.5s
gwen3-max 0.90 091  0.89 0.86 0.17 8 8 8 7.6s
glm-4.5 0.87 091 0.87 0.85 0.17 8 8 8 7.8s
sonar-pro 0.90 090 0.88 0.85 0.16 8 8 8 7.1s
qwen3-32b 0.87 090 0.87 0.85 0.17 8 8 8 7.2s
gpt-oss-120b 0.89 090 0.88 0.85 0.18 8 8 8 7.1s
kimi-k2 0.90 091  0.89 0.86 0.18 9 8 9 7.1s
llama-4-scout-17b 0.90 090 0.88 0.85 0.17 8 9 9 7.3s
llama-4-maverick-17b 0.90 090 0.88 0.85 0.15 8 8 8 7.1s
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E.5 DRIVING ASSESSOR

Metrics Overview. The assessment component evaluates models on their ability to generate com-
prehensive driving evaluations that include safety scores, risk levels, and improvement advice. Tra-
ditional metrics include Score Correlation, which measures consistency between predicted and
expert-assigned safety scores, and Risk Accuracy, which assesses correct classification of risk cat-
egories (Low/Medium/High/Critical). Enhanced coverage metrics evaluate the completeness and
relevance of the assessment, including Content Coverage, Advice Similarity, and Evaluation Sim-
ilarity. LLM-as-Judge metrics (1-10 scale) further assess Assessment Accuracy, Advice Action-
ability, and Score Justification, ensuring outputs align with expert judgment and provide practical
improvement guidance. Efficiency is measured by average inference time per video.

Table 5: Assessment Component performance across text models. Best values in each column are

highlighted in bold.
Model ScoreCorr RiskAcc Coverage Avg Assessment Advice Justify Avg Time
gpt-4o 0.36 0.86 0.95 9.0 9.4 9.1 12.3s
gpt-4.1 0.36 0.86 0.94 9.0 9.4 9.1 13.4s
gpt-5 0.36 0.86 0.95 9.0 9.5 9.0 11.7s
03 0.36 0.86 0.95 9.1 9.1 9.0 9.9s
claude-opus-4-1 0.36 0.86 0.95 9.0 9.3 9.1 9.0s
claude-sonnet-4 0.36 0.86 0.96 9.0 9.3 9.0 10.3s
gemini-2.5-pro 0.45 0.86 0.95 9.0 9.2 9.0 11.3s
gemma-3-27b 0.36 0.86 0.96 9.0 9.2 9.0 10.0s
grok-4 0.36 0.86 0.95 9.0 9.3 9.0 10.4s
qwen2.5-vl-72b 0.45 0.86 0.96 8.9 9.3 8.9 9.5s
qwen-vl-max 0.36 0.86 0.96 9.0 9.1 9.0 10.6s
glm-4.5v 0.36 0.86 0.95 9.0 9.2 9.1 9.7s
llama-3.3-70b 0.45 0.86 0.95 8.9 9.0 8.9 10.1s
deepseek-r1-70b 0.45 0.86 0.96 9.0 9.1 9.0 8.3s
gwen3-max 0.45 0.86 0.95 8.8 9.0 8.8 9.9s
glm-4.5 0.45 0.86 0.95 8.8 9.2 9.0 10.4s
sonar-pro 0.45 0.86 0.97 8.9 9.3 9.0 10.4s
qwen3-32b 0.45 0.86 0.95 8.9 9.3 8.9 8.9s
gpt-0ss-120b 0.45 0.86 0.94 8.9 9.1 8.9 9.8s
kimi-k2 0.45 0.86 0.96 8.9 9.3 8.9 10.1s
llama-4-scout-17b 0.45 0.86 0.96 8.9 9.2 9.0 11.0s
llama-4-maverick-17b 0.45 0.86 0.95 8.8 9.1 9.0 10.7s
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