
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

STEPHINT: MULTI-LEVEL STEPWISE HINTS ENHANCE
REINFORCEMENT LEARNING TO REASON

Anonymous authors
Paper under double-blind review

ABSTRACT

Reinforcement learning with verifiable rewards (RLVR) is a promising approach
for improving the complex reasoning abilities of large language models (LLMs).
However, current RLVR methods face two significant challenges: the near-miss
reward problem, where a small mistake can invalidate an otherwise correct rea-
soning process, greatly hindering training efficiency; and exploration stagnation,
where models tend to focus on solutions within their “comfort zone,” lacking the
motivation to explore potentially more effective alternatives. To address these
challenges, we propose StepHint, a novel RLVR algorithm that utilizes multi-
level stepwise hints to help models explore the solution space more effectively.
StepHint generates valid reasoning chains from stronger models and partitions
these chains into reasoning steps using our proposed adaptive partitioning method.
The initial few steps are used as hints, and simultaneously, multiple-level hints
(each comprising a different number of steps) are provided to the model. This
approach directs the model’s exploration toward a promising solution subspace
while preserving its flexibility for independent exploration. By providing hints,
StepHint mitigates the near-miss reward problem, thereby improving training effi-
ciency. Additionally, the external reasoning pathways help the model develop bet-
ter reasoning abilities, enabling it to move beyond its “comfort zone” and mitigate
exploration stagnation. StepHint outperforms competitive RLVR enhancement
methods across six mathematical benchmarks, while also demonstrating superior
generalization and excelling over baselines on out-of-domain benchmarks.

1 INTRODUCTION

Eliciting the reasoning capabilities of large language models (LLMs) through Reinforcement Learn-
ing with Verifiable Rewards (RLVR) has emerged as a powerful paradigm (Jaech et al., 2024; Guo
et al., 2025). In RLVR frameworks, a policy model explores the solution space by generating rea-
soning chains. The model is then optimized using algorithms like PPO (Schulman et al., 2017) and
GRPO (Shao et al., 2024), based on the advantages of final outcomes of these chains.

However, free exploration within the vast and complex solution space introduces significant chal-
lenges. A key issue is the near-miss reward problem, where a single incorrect step voids an other-
wise reward-worthy reasoning chain. This leads to training inefficiency, as models expend resources
on repeatedly almost-correct solutions. Moreover, as shown by Yue et al. (2025), existing RLVR
methods often refine the model’s ability to sample known reasoning chains rather than discover
novel or higher-quality ones. Consequently, when a task exceeds the model’s current capabilities,
it tends to remain confined to its “comfort zone,” unable to independently advance beyond familiar
solutions—an issue we term exploration stagnation.

We propose StepHint, a novel augmented RLVR algorithm that integrates multi-level stepwise hints
to address these challenges. StepHint leverages reasoning chains from advanced models such as
Deepseek-R1 (Guo et al., 2025), partitioning them into discrete reasoning steps.1 It then provides
only the initial few steps as hints for the model to complete the reasoning process. This approach
effectively simplifies the solution space while preserving sufficient exploratory flexibility. Specif-

1A reasoning step refers to a distinct logical stage within the overall reasoning chain and typically comprises
multiple tokens. It should not be confused with a token-prediction step during generation or a training step.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

ically, during RLVR—regardless of the policy optimization algorithm used—StepHint’s pipeline
comprises two key steps:

Step 1: Adaptive stepwise partitioning of reasoning chains. We introduce a probabilistic parti-
tioning strategy that adaptively splits reasoning chains into meaningful steps, moving beyond super-
ficial markers like “First” or “Second.” Our method estimates, at each token, the model’s probability
of generating an end-of-reasoning token (e.g., </think>). A position is identified as a candidate
endpoint if the estimated probability at this position exceeds that of the next position. From these
candidates, we randomly sample several endpoints, subject to a minimum length constraint, result-
ing in a fixed number of segments. The initial few steps are later provided as hints to guide the
model’s rollouts during RL training.

Step 2: Multi-level hints for problem solving. We define a hint’s “level” as the number of initial
reasoning steps it provides. A high-level hint contains many steps, potentially making the task
trivial for the model, diminishing training efficacy. Conversely, a low-level hint with too few steps
may be insufficient to guide the model, leaving it vulnerable to the “near-miss reward problem.”
Determining the optimal hint level for a given model-problem pair is inherently difficult, as the
model abilities keeps improving durning trianing. Our simple yet effective solution is to generate
multi-level hints for each problem. With sufficiently fine-grained step partitioning, at least one hint
level is likely to be suitable for the model’s current reasoning ability.

By adaptively providing multi-level hints, StepHint effectively addresses both the near-miss reward
problem and exploration stagnation. First, the model receives appropriate guidance to complete
reasoning chains correctly, significantly reducing near-miss rewards and improving training effi-
ciency—leading to faster convergence. Second, exposure to high-quality hints steers the policy to-
ward more sophisticated reasoning patterns, preventing stagnation during independent exploration.
This not only enhances the model’s ability to break through its “comfort zone” but also avoids the
poor generalization typical of SFT-based methods.

We evaluate StepHint by training a series of LLMs on mathematical tasks and comparing their per-
formance against strong RLVR-enhanced baselines. Results demonstrate StepHint’s effectiveness
on both in-domain (math) and out-of-domain tasks.

• In-domain performance: Across six math benchmarks, StepHint surpasses existing methods by
an average accuracy of 3.16 percentage points. Notably, it achieves significant improvements in
pass@k performance—a rigorous measure of reasoning abilities (Yue et al., 2025)—on two chal-
lenging benchmarks, AIME24 and AIME25 (Li et al., 2024), even at large k values.

• Out-of-domain generalization: StepHint also achieves the highest results on out-of-domain,
non-mathematical benchmarks such as ARC-C (Clark et al., 2018) and GPQA-D (Rein et al., 2024),
highlighting its robust generalization beyond its training domain.

2 BACKGROUND: REINFORCEMENT LEARNING WITH VERIFIABLE
REWARDS

Reinforcement Learning (RL) has been instrumental in advancing the reasoning capabilities of Large
Language Models (LLMs) by enabling them to learn optimal reasoning chains through reward-based
feedback (Hu et al., 2025; Guo et al., 2025). A popular paradigm in this domain is Reinforcement
Learning with Verifiable Rewards (RLVR), which is a specialized RL paradigm for training LLMs
on tasks where the correctness of an outcome can be objectively verified, such as mathematical
problem-solving or code generation. In the RLVR framework, the learning process is typically
driven by automated, often binary (correct/incorrect), reward signals, which facilitates scalable self-
improvement (Gao et al., 2023).

Proximal Policy Optimization (PPO) PPO (Schulman et al., 2017) is a widely-used algorithm
that optimizes the the LLM’s generation policy (πθ) by maximizing expected rewards while prevent-
ing excessively large updates that could destabilize training. Given a problem q, the policy model
πθ samples N rollouts, denoted as {y1, y2, · · · , yN}, PPO optimizes the following objective:

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

LPPO
θ =

1

N

N∑
i=1

1

|yi|

|yi|∑
t=1

{
min

[
ri,tÂi,t, clip (ri,t, 1− ϵ, 1 + ϵ) Âi,t

]}
− βDKL(πθ||πref),

where:

• ri,t =
πθ(yi,t|q,yi,<t)
πold(yi,t|q,yi,<t)

is the probability ratio between the current policy πθ and the policy
before the update, πold. The clip function bounds this ratio, which disincentivizes overly
aggressive policy changes that could destabilize training.

• Âi,t is the advantage of taking token yi,t as the t token of rollout i. It quantifies how much
better that action is compared to the average action value at that state.

• βDKL(πθ||πref) is a penalty term that discourages the current policy from deviating too far
from a reference policy πref (often the initial model).

A key component of standard PPO is the critic model, which is required to calculate the token-level
advantage Âi,t. However, training this critic is computationally expensive and complex.

Group Relative Policy Optimization (GRPO) To address the challenges of PPO, GRPO (Shao
et al., 2024) is introduced as a simpler yet effective alternative. It has demonstrated strong perfor-
mance and efficiency, particularly in complex mathematical reasoning tasks (Liu et al., 2025; Yan
et al., 2025; Zeng et al., 2025; Hu et al., 2025).

GRPO computes a single, uniform advantage value for all tokens within a rollout, based on the final
outcome of that entire rollout. Specifically, for a given problem q, N rollouts {y1, y2, · · · , yN} are
sampled. Each complete rollout yi is assigned a final reward R(yi), which is typically binary in
RLVR settings: R(yi) = 1 if the answer of yi is correct, and R(yi) = 0 otherwise. GRPO then
calculates a rollout-level advantage by normalizing this reward across the group. This advantage
value is assigned to every token within that rollout:

ÂGRPO
i,t =

R(yi)− mean ({R(y1), · · · , R(yN)})
std ({R(y1), · · · , R(yN)})

. (1)

By replacing the token-level advantage Âi,t with this rollout-level advantage ÂGRPO
i,t , GRPO retains

the core PPO objective while eliminating the need for a critic model.

Since PPO and GRPO have become the predominant methods for training LLMs on reasoning tasks,
this paper will focus exclusively on these two approaches.

3 METHOD

We frame the reasoning process as a stepwise reduction of a solution space. This perspective in-
spires our core idea: guiding the model’s exploration with stepwise hints. To build this foundation,
we first formalize the generation of reasoning chains as a solution space exploration (Section 3.1).
This formalization helps identify critical issues in existing methods, such as near-miss rewards and
exploration stagnation, and lays the groundwork for our proposed method, StepHint (Section 3.2),
which is designed to address these challenges.

3.1 MOTIVATION:A SOLUTION SPACE REDUCTION VIEW OF REASONING

We model the autoregressive generation of a reasoning chain as a sequential reduction of a solution
space R, which comprises all possible reasoning chains for a given prompt C (Guo et al., 2025). This
process is represented by a sequence of states, where each state Sk = (C, t1, . . . , tk) corresponds to
the partial reasoning chain after k tokens. The complexity or uncertainty of the remaining solution
space at each state is quantified by the conditional entropy H(R|Sk).

While this entropy is generally intractable to compute directly, as it requires summing over all pos-
sible chains in R, it serves as a powerful conceptual tool for analysis. A higher entropy indicates a
complex and unconstrained solution space. The following proposition formalizes the intuition that
each generation step, in expectation, reduces the solution space’s complexity.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Proposition 1. Let R be the solution space and Sk−1 be the state after k − 1 tokens have been
generated. Upon generating the next token tk to form state Sk = (Sk−1, tk), the expected entropy
of the solution space is bounded by the current entropy:

Etk∼P (·|Sk−1)[H(R|Sk)] ≤ H(R|Sk−1).

We leave the detailed proof in Appendix B. Proposition 1 formally establishes that autoregressive
generation is a structured process of uncertainty reduction. However, the reduction in entropy quan-
tifies the convergence of certainty, not necessarily the correctness or logical validity of the reasoning
chain. A model can become increasingly certain about a flawed conclusion, which still manifests as
a decrease in entropy.

This distinction reveals a critical failure mode. An early error can irrevocably prune the subspace
of correct solutions, R∗ ⊂ R. Formally, this occurs when the model reaches a state Sk where the
probability of the correct solution set collapses to zero: P (R∗|Sk) ≈ 0. Subsequently, the model
may continue to confidently reduce entropy, but it does so within the incorrect subspace R\R∗,
inevitably arriving at a “confident but wrong” conclusion.

3.2 STEPHINT: MULTI-LEVEL STEPWISE HINTS ENHANCE RLVR

Based on the views above, an initial error can lead to an incorrect final answer, even if the subse-
quent reasoning is logically sound, as it originates from a flawed premise. This “near-miss” reward
problem can be mitigated by providing early guidance. Furthermore, a model’s exploration of the
solution space is intrinsically constrained by the model’s ability. Without external guidance, the
exploration will be limited to a narrow subspace (Yue et al., 2025). Our proposed method, StepHint,
addresses these two challenges by leveraging part of the strong reasoning chains from a more capa-
ble model as hints during training.

Given a problem, StepHint first obtains a valid reasoning chain from a stronger model, and then
performs two key stages to enhance the target model being trained: (1) adaptive stepwise partitioning
of on-hand reasoning chains and (2) multi-level hints for problem solving.

In the following, we focus on detailing the latter two stages. We will frequently use the term “rea-
soning step” to refer to an intact unit of thought, which may consist of several sentences. Please
note that this is distinct from a “training step,” which refers to updating the model after processing a
batch of data, or a “next-token prediction step,” which generates a single token at a time.

3.2.1 ADAPTIVE STEPWISE PARTITIONING OF ON-HAND REASONING CHAINS

Definitions Let the reasoning chain be denoted as G = t1 ◦ t2 ◦ · · · ◦ tn, where each ti represents
a single token, and ◦ denotes concatenation. A reasoning step corresponds to a sequence of tokens
ti ◦ · · · ◦ tj(1 ≤ i ≤ j ≤ n) that forms an intact unit of thought. A hint is composed of one or more
reasoning steps and serves as a conditioning prompt that guides the target model’s reasoning toward
a promising direction, helping it explore otherwise intractable solution spaces. The level of a hint
is determined by the number of reasoning steps it contains—the more reasoning steps included, the
richer the guidance it offers to the target model, and thus the higher its level.

Method details We need a flexible method to adaptively partition a complete reasoning chain G
into m reasoning steps, then combine appropriate number of reasoning steps as a hint in appropriate
level to the target model. Conventional approach relies on syntactic cues, such as keywords like
“first,” “next,” or “Step 1.” However, such heuristics are prone to misidentifying the boundaries of
reasoning steps and lack the flexibility. (Moens, 2017)

In contrast, we leverage the model’s output probability distribution to identify the boundaries of
reasoning steps. We hypothesize that when a reasoning step concludes, the model’s probability
of completing the entire chain should be relatively high. Conversely, at the beginning of a new
step, this probability should decrease as the model expects additional reasoning to follow. This
perceived likelihood of reasoning completion can be captured by the probability assigned to a special
“end-of-thinking” token, </think>, which is explicitly introduced during pretraining to mark the
conclusion of reasoning (Team, 2024; Guo et al., 2025). Formally, the model’s tendency to conclude
reasoning at token ti can be quantified by the probability p(</think> | Gi), where Gi denotes the
token sequence up to ti.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Tim has 68 – 30 = 38 apples. Harry has 38 ÷ 2 = 19 apples.

</think>

Token 1
Token 2

Token z
</think>< </think> </think>

Tim has 68 – 30 = 38 apples. Harry has 38 ÷ 2 = 19 apples.
≥ 𝑙 ≥ 𝑙 ≥ 𝑙

Token 1
Token 2

Token z

Token 1
Token 2

Token z

Token 1
Token 2

Token z

Next-token
Probability
Distribution

Not a candidate
Candidate

Randomly sample
a valid partition

>

Figure 1: Adaptive stepwise partitioning of a reasoning
chain: step boundaries are identified where the probability
of concluding the reasoning chain after the current token,
p(</think>|Gi), is greater than concluding after the subse-
quent token, p(</think>|Gi+1). A final partition is chosen
to meet constraints on step count m and minimum length l.

This hypothesis leads us to our
core partitioning method: a to-
ken ti is considered a can-
didate reasoning step bound-
ary if and only if the prob-
ability of concluding the rea-
soning chain after ti is greater
than the probability of conclud-
ing it after the subsequent to-
ken, ti+1: p(</think>|Gi) >
p(</think>|Gi+1). By iter-
ating through the entire reason-
ing chain, we collect all to-
kens satisfying this condition
as candidate boundaries. To
maintain high-quality reasoning
steps, we enforce two con-
straints during partitioning: (1)
adjacent boundaries must be at
least l tokens apart to avoid overly short steps, and (2) the number of steps must equal the predeter-
mined value, m. In practice, multiple valid partitionings may satisfy these constraints, we randomly
sample one to proceed with. Figure 1 illustrates this token-distribution-based partitioning method.
An alternative selection strategy and its effect is discussed in Appendix G.2.

3.2.2 MULTI-LEVEL HINTS FOR PROBLEM SOLVING

Building on the adaptive stepwise partitioning method described above, we divide the reasoning
chain into m reasoning steps. A key question is how many of these steps should be included as a
complete hint for the target model.

An ideal-level hint matches the model’s current capabilities—it is neither too weak nor too strong.
Moreover, this optimal level shifts continuously as the model’s reasoning ability evolves. Consider-
ing these challenges, rather than determining the ideal level at each training step, we provide hints at
multiple levels. Our core hypothesis is that if the partitioning is fine-grained enough, there is likely
to be a hint that fits the model’s needs well. Specifically, we construct a set of m − 1 multi-level
hints, H. Each hint is a prefix of the full chain G, created by concatenating the first j steps:

H = {hj |hj = S1 ◦ S2 ◦ · · · ◦ Sj , for j = 1, · · · ,m− 1},
where Si represents the i-th reasoning step. Low-level hints preserve considerable problem-solving
difficulty. In contrast, high-level hints simplify the solution space, making the completion easier.

For each problem in the training set, we construct three types of prompts for the model to complete:

1. Hinted problems: For each of the m − 1 hint levels, the model is asked to complete the
reasoning from that hint using khint rollout attempts per hint.

2. Unhinted problems: To preserve the model’s independent exploration, it also solves the
problem from scratch without any hints. It is allowed kunhint rollouts in this case.

3. Reference trajectory: The original ground-truth reasoning chain G is also provided to
the target model and used to assign rewards. This ensures that the model is consistently
exposed to the correct solution path during training.

Figure 2 illustrates this multi-level hinting and completion process. In total, the model generates
khint(m − 1) + kunhint + 1 completions per training problem, each receiving a reward based on
correctness. StepHint strikes a balance between guiding the model with reliable hints and allowing
it to learn from its own exploration mistakes, leading to more effective learning.

The above method applies to most RLVR algorithms but poses issues for GRPO (He et al., 2025),
prompting further adaptations and discussion. In GRPO, an incorrect completion assigns negative
advantages to all tokens in the rollout—including those in the correct hint prefix. This steers the
model away from the correct reasoning chains. To address this, we modify GRPO by clipping

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

This means the midpoint of A and B
......
is a vertical line through P.
Choosing Points on the Line:
There are 100 points on the line, and we can
choose any two of these points to form an
isosceles triangle with P.
……
Calculating Combinations:
𝐶!""# = !""∗%%

#
= 4950

……
<answer>4950</answer>

the line, there is a corresponding point B such
that PA=PB.
Counting the Triangles:for each pair of
symmetric points we can form an
isosceles triangle......
Pair Counting: This gives us 50 pairs.
For each pair, we can form an isosceles
triangle with P
<answer>50</answer>

To solve this problem......
The equal sides are from the 100 points on
the line
......
The number of ways to choose 2 points from
100 points is given by the combination formula
𝐶!""# = !""∗%%

#
= 4950

. Since each pair can form 2 isosceles triangles,
the total number of triangles in this case is
4950 ∗ 2 = 9900.
The equal sides are from the point not on the
line
......
Since there are 100 points on the line, we can
form 100 isosceles triangles in this way.
Adding the triangles from both cases......
<answer>10000</answer>

Policy 𝜽

𝑺𝟏
To solve the problem of
Understanding Isosceles Triangles: the
other two vertices A and B on the line must
be equidistant from P.

To solve the problem of
Understanding Isosceles Triangles: the
other two vertices A and B on the line must
be equidistant from P.
𝑺𝟐

𝑺𝟏

This means PA = PB.
Symmetry Consideration: This
symmetry ensures that for each point A on

Completion

Completion

Unhinted RolloutHint 𝒉𝟏 Hint 𝒉𝟐

On a straight line lie 100 points and another point outside the line. What is the maximum
number of isosceles triangles that can be formed using these 101 points as vertices?

Problem

𝑺𝟏 :To solve the problem of ……from P. 𝑺𝟐: This means PA=PB…… point A on 𝑺𝟑: one side of
the foot……With P. 𝑺𝟒: Thus, the maximum number of …… is 50.

Reasoning Chain

!𝑨𝒊,𝒕
Advantages

Figure 2: An overview of the multi-level hinting process. The process begins with a ground-truth
reasoning chain, which is partitioned into m steps (Section 3.2.1). From these steps, we construct
m − 1 prefix-based hints(h1, h2, · · · , hm−1). The model is trained to generate completions from
each hint level, as well as from scratch (Unhinted), and a reference trajectory.

negative advantages to zero for tokens in the hint prefix when the completion is incorrect; that is, we
set ÂGRPO

i,t = max(0, ÂGRPO
i,t) (see Eq. 1 for the definition of ÂGRPO

i,t). This adaptation prevents
the model from being penalized for correct prefixes, aligning the training process with our intended
mechanism. We empirically validate the effectiveness of this design in Appendix G.1 and prove the
convergence of StepHint in Appendix H.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Training data To construct our training data, we generated complete reasoning chains for chal-
lenging problems. This process yield a training dataset of approximately 26,000 instances. The
specific details of our data construction and processing methods are described in Appendix D.

Hyperparameters We train two backbone models using GRPO (Shao et al., 2024) for 5 epochs
each: Qwen-2.5-7B-Instruct (Yang et al., 2024a; Team, 2024) and Qwen-2.5-Math-7B (Yang et al.,
2024b). The training prompt template is shown in Appendix C. The training is based on the VeRL
framework (Sheng et al., 2024). Other training settings are detailed in Appendix E. The effect of
applying an alternative optimization algorithm, Dr.GRPO, is further examined in Appendix G.3.

Baselines We compare our method against five categories of baselines: (1) Vanilla GRPO: We
train Qwen-2.5-7B-Instruct and Qwen-2.5-Math-7B using vanilla GRPO with the same settings as
StepHint. (2) Dr.GRPO: We train Qwen-2.5-7B-Instruct using Dr.GRPO (Liu et al., 2025) under the
same settings. (3) SFT: We fine-tune the backbone models with our dataset. (4) Other RLVR Meth-
ods: We evaluate several other reinforcement learning from verifier rewards (RLVR) enhancement
techniques, including SimpleRL-Zero-7B (Zeng et al., 2025), Qwen-2.5-Math-7B-SimpleRL-Zoo,
OpenReasonerZero-7B (Hu et al., 2025), and Oat-7B (Liu et al., 2025). (5) RL with Reference
Trajectory: We include Luffy-Qwen-2.5-7B-Instruct (Yan et al., 2025) and Luffy-Qwen-Math-7B-
Zero. For baselines in categories (4) and (5), we use their publicly released model weights and
prompt templates for evaluation.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance comparison of StepHint with baseline methods on in-domain and out-of-
domain benchmarks. The top score in each column is in bold, and the second-highest is underlined.
Backbone models are denoted by: *Qwen-2.5-7B-Instruct, †Qwen-2.5-7B, ‡Qwen-2.5-Math-7B.

Model

In-Domain Out-of-Domain

AIME24
(avg@5)

MATH500
(pass@1)

AMC
(avg@5)

Olympiad
(pass@1)

Minerva
(pass@1)

AIME25
(avg@5)

Avg.
-

ARC-C
(pass@1)

GPQA-D
(pass@1)

Avg.
-

SFT* 20.00 78.80 53.73 36.89 36.40 10.67 50.05 90.96 23.23 81.17

SFT‡ 26.00 82.20 59.52 45.19 34.19 15.33 54.77 67.66 23.74 61.31

On-policy RLVR replication

Vanilla-GRPO* 24.67 76.60 51.33 43.41 39.34 10.67 52.59 91.30 37.37 83.51

Vanilla-GRPO‡ 24.67 78.60 60.72 40.00 36.40 15.33 51.85 79.78 36.87 73.58

Dr.GRPO* 24.00 78.20 51.57 42.81 39.34 12.00 52.87 91.64 35.86 83.58

Other RLVR methods

ORZ-7B† 24.67 81.00 46.90 45.60 33.46 15.30 53.76 90.53 40.40 83.28

SimpleRL† 22.00 76.00 47.90 39.30 36.40 5.30 49.83 74.74 32.32 68.61

SimpleRL‡ 28.00 76.20 57.59 37.93 34.93 12.00 49.80 63.91 27.27 58.61

Oat‡ 36.00 78.40 59.75 42.52 36.40 10.00 52.92 59.89 33.84 56.13

RL with reference trajectory

LUFFY* 21.30 77.80 44.82 40.00 36.40 14.67 50.69 81.83 32.32 74.67

LUFFY‡ 27.33 83.20 60.24 48.00 38.97 17.33 57.19 81.83 35.86 75.19

StepHint* 29.33 82.80 61.69 47.41 43.38 17.30 57.69 91.89 42.42 84.74

StepHint‡ 36.00 87.00 62.65 52.15 38.24 18.87 60.35 84.73 38.89 78.10

Evaluation We follow prior work (Yan et al., 2025) and evaluate on six math datasets: AIME
2024, AIME 2025, AMC (Li et al., 2024), Minerva (Lewkowycz et al., 2022), OlympiadBench (He
et al., 2024), and MATH500 (Hendrycks et al., 2021). For the AIME 24/25 and AMC datasets, given
their limited data points, we conduct each evaluation five times and report the average results. To
evaluate generalization, we also incorporate two non-math benchmarks, ARC-C (Clark et al., 2018)
and GPQA-D (Rein et al., 2024), as out-of-domain tests. We report the weighted average accuracy
for both in-domain and out-of-domain benchmarks. The generation length is also set to 4,110. All
results were evaluated using Math-Verify2 and OAT-Grade (Liu et al., 2024) on 8×A100s.

4.2 MAIN RESULTS

Table 1 shows the overall performance of StepHint and baseline methods.

When applied to the general-purpose model, Qwen-2.5-7B-Instruct, StepHint achieves the highest
performance on in-domain math tasks among all compared methods. Compared to other RLVR
methods, StepHint shows a 3.93 percentage point improvement over the next-best method, ORZ.
Furthermore, StepHint consistently surpasses the SFT baseline, indicating that StepHint effectively
learns beyond simple token imitation, leading to improved reasoning outcomes.

Notably, the Qwen-2.5-7B-Instruct model trained with StepHint outperforms the specialized Qwen-
2.5-Math-7B trained with any other method, highlighting the substantial boost in reasoning ability
provided by StepHint and allowing a generalist model to outperform a specialist in its own domain.

For the specialized Qwen-2.5-Math-7B model, as expected from its specialized design (Yang et al.,
2024b), the Math model performs lower on the out-of-domain benchmarks compared to the general-
purpose Qwen-2.5-7B-Instruct. However, StepHint not only leads the board in in-domain math tasks
compared with baselines but also enables the Math model to achieve the highest out-of-domain test
performance among all baselines. This suggests that the improvements are not solely due to domain-
specific knowledge but also reflect an enhancement of the model’s general reasoning capabilities.

2https://github.com/huggingface/Math-Verify

7

https://github.com/huggingface/Math-Verify

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

21 22 23 24 25 26 27

k (Number of Generations)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pa
ss

@
k

StepHint
SFT
Vanilla-GRPO
Qwen-2.5-7B-Base

21 22 23 24 25 26 27

k (Number of Generations)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pa
ss

@
k

StepHint
SFT
Vanilla-GRPO
Qwen-2.5-7B-Base

Figure 3: Comparison of pass@k results on the AIME24 and AIME25 datasets. Left: AIME24;
Right: AIME25.

We now turn our analysis to Luffy, an RL method that employs an entire reasoning chain from a
stronger model as a reference trajectory. A key limitation of this paradigm is its potential inability to
fully address the near-miss reward issue, as the model’s exploration is not directly guided. Although
using expert trajectories can mitigate exploration stagnation, it may come at the expense of the
intrinsic exploration mechanism vital to reinforcement learning. In contrast, StepHint integrates
external hints with the model’s own exploration, fostering a more robust learning process. Our
experimental results substantiate this claim, demonstrating that StepHint outperforms Luffy on both
in-domain and out-of-domain tasks.

To further assess the generalizability of our approach, we conducted experiments on Llama-3.1-
8B (Dubey et al., 2024), comparing StepHint with GRPO. The results, presented in Table 2, demon-
strate that our method achieves superior performance. Training settings are detailed in Appendix F.

Table 2: Results on Llama-3.1-8B.

AIME24 MATH500 AMC Olympiad Minerva AIME25 Avg.

GRPO 4.00 9.00 6.02 3.56 12.13 0 6.81

StepHint 6.00 44.00 18.56 13.48 20.22 1.30 24.13

4.3 PASS@K EVALUATION

Many studies (Chen et al., 2021; Wang et al., 2022) show that with a limited number of rollouts,
models may perform poorly on certain tasks. However, with a sufficiently large number of rollouts,
they are more likely to solve these problems. Therefore, to fully assess the model’s potential perfor-
mance, pass@k accuracy is a more suitable metric (Yue et al., 2025). In this context, a problem is
considered solved if any of the k sampled reasoning chains yields a correct answer.

Figure 3 presents the pass@k results on the AIME24 and AIME25 datasets. The results demonstrate
that StepHint improves the model’s pass@k performance. In contrast, Vanilla-GRPO shows a slower
rate of improvement at higher values of k, which aligns with findings from previous work (Yue
et al., 2025). The superior performance under pass@k evaluation further validates the effectiveness
of StepHint. Additionally, the performance difference can be attributed to the exploration strategies
the models employ. While Vanilla-GRPO suffers from “exploration stagnation,” StepHint guides
the model’s exploration, helping it break free from its “comfort zone.”

4.4 METHOD ANALYSIS FROM TRAINING DYNAMICS

Figure 4 illustrates the training dynamics of StepHint and Vanilla-GRPO on Qwen-2.5-7B-Instruct,
comparing them across three key metrics: entropy, response length, and training rewards.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 200 400 600 800 1000

Training Steps

0.5

0.6

0.7

0.8

0.9

R
ew

ar
d

HintStep
GRPO

0 200 400 600 800 1000

Training Steps

0.0

0.2

0.4

0.6

0.8

E
nt

ro
py

HintStep
GRPO

0 200 400 600 800 1000

Training Steps

0

500

1000

1500

2000

2500

R
es

po
ns

e
L

en
gt

h

HintStep
GRPO

Figure 4: Training dynamics of StepHint compared with GRPO. Left: Reward; Middle: Entropy;
Right: Response Length.

Reward The reward curves highlight the different learning phases. Due to the multi-level step-
wise hints provided by StepHint, the problem-solving difficulty for the model is lower compared
to Vanilla-GRPO. As a result, the reward score for StepHint is consistently higher, reflecting the
mitigation of the near-miss reward issue. A closer examination of the trends in both curves offers
further insights. Vanilla-GRPO shows a steady, monotonic increase in reward as it refines its exist-
ing policy. In contrast, StepHint experiences a brief initial dip in reward before a rapid and sustained
increase. This initial dip likely reflects an adaptation period where the model transitions from sim-
ple exploitation to a more complex, hint-guided exploration. Once adapted, the model efficiently
discovers higher-reward solutions, leading to faster and effective learning to reason.

Entropy Both methods exhibit an overall decrease in entropy, though their trajectories diverge
as training progresses. The entropy of StepHint remains higher than that of Vanilla-GRPO. This
suggests that the hints provided by StepHint encourage a more diverse policy, preventing premature
convergence to a narrow solution subspace and promoting a higher level of exploration (Cheng et al.,
2025). This trend reflects, to some extent, the mitigation of exploration stagnation.

Response length The two methods demonstrate distinct patterns in generated response length.
StepHint shows an initial sharp increase in length, which we attribute to the model learning to
mimic the structured, stepwise reasoning chains provided by the multi-level hints. These hints are
often more detailed than the model’s initial, more direct responses.

5 RELATED WORKS

RL-based post-training has demonstrated remarkable success in mathematical reasoning tasks (Shao
et al., 2024; Yang et al., 2024b). Research in this area has primarily advanced in three directions:
(1) optimizing the models and their training data, (2) refining inference-time strategies, and (3)
improving policy optimization methods.

The first direction involves constructing high-quality, large-scale mathematical reasoning
datasets (Wang et al., 2023; Ye et al., 2025; Zhao et al., 2025) and designing specialized training
or fine-tuning methods (Jaech et al., 2024; Mitra et al., 2024). The second direction focuses on guid-
ing the model’s step-by-step thought processes without altering its underlying weights, typically
through sophisticated prompting techniques such as Chain-of-Thought (Wei et al., 2022) and inno-
vations in in-context learning (Wu et al., 2024). The third direction aims at developing advanced
policy optimization algorithms. GRPO, an advancement of PPO (Schulman et al., 2017), has re-
cently gained popularity due to its simplicity and strong performance (Hu et al., 2025; Zeng et al.,
2025). Additionally, several improvements have been proposed for GRPO; for example, Liu et al.
(2025) identified inherent length and difficulty biases in vanilla GRPO and addressed these issues.

6 CONCLUSION

In this paper, we introduced StepHint, a novel RLVR algorithm that incorporates multi-level step-
wise hints. This mechanism is designed to provide the model with assistance tailored to its evolving
capabilities, thereby facilitating the learning process by addressing challenges such as near-miss re-
wards and exploration stagnation. StepHint not only outperforms strong baselines on mathematical
benchmarks but also demonstrates robust generalization to out-of-domain tasks, highlighting the
promising potential of the stepwise hinting paradigm for RLVR enhancement.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

The code used for training StepHint is available at https://anonymous.4open.science/
r/StepHint-AC69. We will release the model weights at a later date.

Training Data: The models and methodology for constructing our training dataset is detailed in
Appendix D.

Training Details: The specifics of the training process are described in Section 4.1 and Appendix E.

Evaluation Details: The hyperparameters used for evaluation are also detailed in Section 4.1.

REFERENCES

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Daixuan Cheng, Shaohan Huang, Xuekai Zhu, Bo Dai, Wayne Xin Zhao, Zhenliang Zhang, and
Furu Wei. Reasoning with exploration: An entropy perspective. arXiv preprint arXiv:2506.14758,
2025.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In
International Conference on Machine Learning, pp. 10835–10866. PMLR, 2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi Hu,
Xu Han, Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for
promoting agi with olympiad-level bilingual multimodal scientific problems. arXiv preprint
arXiv:2402.14008, 2024.

Zhiwei He, Tian Liang, Jiahao Xu, Qiuzhi Liu, Xingyu Chen, Yue Wang, Linfeng Song, Dian
Yu, Zhenwen Liang, Wenxuan Wang, et al. Deepmath-103k: A large-scale, challenging, de-
contaminated, and verifiable mathematical dataset for advancing reasoning. arXiv preprint
arXiv:2504.11456, 2025.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Jingcheng Hu, Yinmin Zhang, Qi Han, Daxin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
model. arXiv preprint arXiv:2503.24290, 2025.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv
preprint arXiv:2412.16720, 2024.

Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
reasoning problems with language models. Advances in Neural Information Processing Systems,
35:3843–3857, 2022.

10

https://anonymous.4open.science/r/StepHint-AC69
https://anonymous.4open.science/r/StepHint-AC69

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Huang, Kashif
Rasul, Longhui Yu, Albert Q Jiang, Ziju Shen, et al. Numinamath: The largest public dataset in
ai4maths with 860k pairs of competition math problems and solutions. Hugging Face repository,
13:9, 2024.

Zichen Liu, Changyu Chen, Xinyi Wan, Chao Du, Wee Sun Lee, and Min Lin. Oat: A research-
friendly framework for llm online alignment. https://github.com/sail-sg/oat, 2024.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee,
and Min Lin. Understanding r1-zero-like training: A critical perspective. arXiv preprint
arXiv:2503.20783, 2025.

David JC MacKay. Information theory, inference and learning algorithms. Cambridge university
press, 2003.

Arindam Mitra, Hamed Khanpour, Corby Rosset, and Ahmed Awadallah. Orca-math: Unlocking
the potential of slms in grade school math. arXiv preprint arXiv:2402.14830, 2024.

Marie-Francine Moens. Argumentation mining: How can a machine acquire common sense
and world knowledge? Argument & Computation, 9:1 – 14, 2017. URL https://api.
semanticscholar.org/CorpusID:3483942.

Yury Polyanskiy and Yihong Wu. Information theory: From coding to learning. Cambridge univer-
sity press, 2025.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
mark. In First Conference on Language Modeling, 2024.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.
github.io/blog/qwen2.5/.

Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025. URL
https://qwenlm.github.io/blog/qwq-32b/.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Zengzhi Wang, Rui Xia, and Pengfei Liu. Generative ai for math: Part i–mathpile: A billion-token-
scale pretraining corpus for math. arXiv preprint arXiv:2312.17120, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Jinyang Wu, Mingkuan Feng, Shuai Zhang, Feihu Che, Zengqi Wen, Chonghua Liao, and Jianhua
Tao. Beyond examples: High-level automated reasoning paradigm in in-context learning via mcts.
arXiv preprint arXiv:2411.18478, 2024.

Jianhao Yan, Yafu Li, Zican Hu, Zhi Wang, Ganqu Cui, Xiaoye Qu, Yu Cheng, and Yue Zhang.
Learning to reason under off-policy guidance. arXiv preprint arXiv:2504.14945, 2025.

11

https://github.com/sail-sg/oat
https://api.semanticscholar.org/CorpusID:3483942
https://api.semanticscholar.org/CorpusID:3483942
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwq-32b/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai,
Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng
Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai
Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan
Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2
technical report. arXiv preprint arXiv:2407.10671, 2024a.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu,
Jianhong Tu, Jingren Zhou, Junyang Lin, Keming Lu, Mingfeng Xue, Runji Lin, Tianyu Liu,
Xingzhang Ren, and Zhenru Zhang. Qwen2.5-math technical report: Toward mathematical ex-
pert model via self-improvement. arXiv preprint arXiv:2409.12122, 2024b.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie Xia, and Pengfei Liu. Limo: Less is more
for reasoning. arXiv preprint arXiv:2502.03387, 2025.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
at scale. arXiv preprint arXiv:2503.14476, 2025.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does re-
inforcement learning really incentivize reasoning capacity in llms beyond the base model? arXiv
preprint arXiv:2504.13837, 2025.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
zoo: Investigating and taming zero reinforcement learning for open base models in the wild. arXiv
preprint arXiv:2503.18892, 2025.

Xueliang Zhao, Wei Wu, Jian Guan, and Lingpeng Kong. Promptcot: Synthesizing olympiad-level
problems for mathematical reasoning in large language models. arXiv preprint arXiv:2503.02324,
2025.

A USE OF LLMS

As described in Appendix E, we use LLMs to generate high-quality reasoning chains and partition
these chains into logical steps. We believe that this use of LLMs serves as a justified auxiliary tool,
and this controlled process does not introduce academic or ethical risks.

B PROOF OF PROPOSITION 1

Proposition 1:
Etk∼p(·|Sk−1)[H(R|Sk)] ≤ H(R|Sk−1)

Proof. We want to prove the following inequality:

Etk∼p(·|Sk−1)[H(R|Sk)] ≤ H(R|Sk−1)

This inequality states that the expected entropy of solution space R conditioned on the state Sk is
less than or equal to the entropy of R conditioned on the prior state Sk−1. The state Sk is reached
from Sk−1 after an observation or transition tk. Let’s denote the random variable for this transition
as Tk.

First, let’s clarify the notation. The expression on the left-hand side, Etk∼p(·|Sk−1)[H(R|Sk)], rep-
resents the conditional entropy H(R|Sk). The conditional entropy H(X|Y) is defined as the ex-
pectation of the entropy of X over the values of Y . The subscript simply makes the underlying
probability model explicit: the distribution of the state Sk is induced by the distribution of the prior
state Sk−1 and the transition Tk.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

The proof of this relationship relies on the non-negativity of conditional mutual information. The
conditional mutual information between two random variables, R and Tk, given a third variable
Sk−1, is defined as:

I(R;Tk|Sk−1) = H(R|Sk−1)−H(R|Sk−1, Tk)

A fundamental property of mutual information is that it is always non-negative (MacKay, 2003;
Polyanskiy & Wu, 2025):

I(R;Tk|Sk−1) ≥ 0

From this, it directly follows that:

H(R|Sk−1) ≥ H(R|Sk−1, Tk)

This equation shows that conditioning on an additional variable, Tk, can only decrease (or leave
unchanged) the entropy of R.

Now, we must relate the term H(R|Sk−1, Tk) to the term H(R|Sk). The state Sk is the result of a
process that starts in state Sk−1 and undergoes the transition Tk. This means that the information
contained in the pair of variables (Sk−1, Tk) fully determines the state Sk. In many typical models,
knowing Sk is equivalent to knowing the pair (Sk−1, Tk) that produced it. If we assume this equiv-
alence, then conditioning on Sk is the same as conditioning on the pair (Sk−1, Tk). Therefore, we
have:

H(R|Sk) = H(R|Sk−1, Tk)

Substituting this equality back into our previous inequality, we arrive at the desired result:

H(R|Sk) ≤ H(R|Sk−1)

This completes the proof.

C TEMPLATE OF QWEN-2.5

Template of Qwen-2.5
<|im start|>system
You are a helpful assistant. The assistant first thinks about the reasoning process in
the mind and then provides the user with the answer. The reasoning process and
answer are enclosed within <think> </think> and <answer> </answer>
tags, respectively, i.e., <think> reasoning process here </think><answer>
answer here </answer>. Now the user asks you to solve a mathematical rea-
soning problem. After thinking, when you finally reach a solution, clearly state
the answer marked with \boxed{} and within <answer> </answer> tags, i.e.,
<answer>\boxed{answer}</answer>
<|im end|>
<|im start|> user
{question}
<|im end|>
<|im start|>assistant
<think>

D TRAINING DATA CONSTRUCTION

We gathered all problems from the DAPO dataset (Yu et al., 2025) and selected problems of difficulty
level 7 or higher from the DEEPMATH dataset (He et al., 2025). The DEEPMATH dataset provides
solution reasoning chains, while for each question in the DAPO dataset (Yu et al., 2025), we sample
a total of 12 reasoning chains using DAPO-Qwen-32B (Yu et al., 2025), QWQ-32B (Team, 2025),
and DeepSeek-R1-Distill-Qwen-32B (Guo et al., 2025), with 4 samples per model. The sampling is
conducted under a 0-shot setting, with a temperature of 1 and a maximum length of 8,192. We filter
these to retain all reasoning chains that are both correct and have a length of no more than 4,110. In
cases where multiple chains satisfy these conditions, we randomly select one.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

All reasoning chains are partitioned into m = 4 steps with the method we proposed in Section 3.2.1,
each longer than l = L

8 tokens, where L is the total length of a reasoning chain G, with QWQ-
32B (Team, 2025). This threshold ensures that even the shortest step contains a substantive amount
of information, while allowing for the natural length variation between different steps in a complex
reasoning process.

E TRAINING SETUP

We set a global batch size of 128 and a fixed learning rate of 1e − 6. Following (Yan et al., 2025),
we set the KL loss coefficient β = 0, indicating no reference model is used for regularization. We
configure khint = 2 and kunhint = 5. During training, the temperature for rollout generation is set to
1.0. Our training is completed on 8×A100s.

Since the Qwen-2.5-Math-7B model (Yang et al., 2024b) has a relatively short context length of
4,096 tokens, we adopt a community-released variant that extends the context length to 32k tokens.3

F TRAINING SETTINGS FOR LLAMA

Due to temporal and computational constraints, we train the Llama-3.1-8B model for 4 epochs
on our dataset using two methods: StepHint and GRPO. We increased the maximum generation
length to 4,500 during training to ensure it could accommodate the longest external reasoning chains
within the dataset. To align with the original Llama pre-training paradigm, we introduced slight
modifications to the prompt template. All other hyperparameters remained consistent with those of
the Qwen-2.5 models.

Template of Llama-3.1
system
You are a helpful assistant. The assistant first thinks about the reasoning process in
the mind and then provides the user with the answer. The reasoning process and
answer are enclosed within <think> </think> and <answer> </answer>
tags, respectively, i.e., <think> reasoning process here </think><answer>
answer here </answer>. Now the user asks you to solve a mathematical rea-
soning problem. After thinking, when you finally reach a solution, clearly state
the answer marked with \boxed{} and within <answer> </answer> tags, i.e.,
<answer>\boxed{answer}</answer>
user
{question}
assistant
<think>

G ABLAION STUDY

G.1 NON-NEGATIVE ADVANTAGE FOR HINTS

We perform an ablation study with the Qwen2.5-7B-Instruct model to assess the effect of enforcing
a non-negative constraint on the advantages of hints. As shown in Table 3, w/ Constraint denotes
the configuration where the advantage values of hints are constrained to be non-negative, whereas
baseline corresponds to the baseline without this constraint. The results demonstrate that introducing
the non-negative constraint improves the model’s mathematical reasoning performance.

G.2 STEPWISE PARTITIONING STRATEGY

In this section, we conduct an ablation study on the stepwise partitioning strategy introduced in Sec-
tion 3.2.1. We compare two approaches: Base, which selects k tokens uniformly at random from

3https://huggingface.co/open-r1/Qwen2.5-Math-7B-RoPE-300k

14

https://huggingface.co/open-r1/Qwen2.5-Math-7B-RoPE-300k

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 3: Ablation results on the effect of applying non-negative advantage constraint for hints.

AIME24 MATH500 AMC Olympiad Minerva AIME25 Avg.

Qwen2.5-7B-Instruct-StepHint

baseline 28.00 81.40 57.30 45.30 39.70 14.70 55.43

w/ Constraint 29.33 82.80 61.69 47.41 43.38 17.30 57.69

candidate tokens that satisfy the condition (p(</think>|Gi) > p(</think>|Gi+1)) and the in-
terval constraints; and Salient, which selects the top-k candidate tokens exhibiting the largest prob-
ability drop (p(</think>|Gi)− p(</think>|Gi+1)) while satisfying the interval constraints.

Table 4: Performance comparison of different stepwise partitioning strategies.

Strategy AIME24 MATH500 AMC Olympiad Minerva AIME25 Avg.

Qwen2.5-7B-Instruct-StepHint

Base 29.33 82.80 61.69 47.41 43.38 17.30 57.69

Salient 29.33 83.80 59.28 47.41 43.01 18.67 57.84

Qwen2.5-Math-7B-StepHint

Base 36.00 87.00 62.65 52.15 38.24 18.87 60.35

Salient 36.00 86.60 63.86 53.33 38.24 18.67 60.78

As shown in Table 4, both strategies achieve comparable overall performance.

G.3 OPTIMIZATION ALGORITHM

In this section, we evaluate the effect of different optimization algorithms on our proposed StepHint
method. Specifically, we employ Dr.GRPO as the optimization algorithm and compare its perfor-
mance against Vanilla-GRPO. The results are summarized in Table 5.

Table 5: Performance comparison of StepHint under different optimization algorithms.

AIME24 MATH500 AMC Olympiad Minerva AIME25 Avg.

Qwen2.5-7B-Instruct-StepHint

GRPO 29.33 82.80 61.69 47.41 43.38 17.30 57.69

Dr.GRPO 32.00 82.40 61.00 49.04 42.65 18.0 58.15

Qwen2.5-Math-7B-StepHint

GRPO 36.00 87.00 62.65 52.15 38.24 18.87 60.35

Dr.GRPO 40.67 88.60 65.30 51.70 40.44 22.67 61.33

H PROOF OF CONVERGENCE

We first recall two standard assumptions from stochastic non-convex optimization.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Assumption 1 (Smoothness). The objective function J(θ) is continuously differentiable, and its
gradient is L-Lipschitz:

∥∇J(θ1)−∇J(θ2)∥ ≤ L∥θ1 − θ2∥, ∀θ1, θ2.

Consequently, for any update θt+1:

J(θt+1) ≥ J(θt) + ⟨∇J(θt), θt+1 − θt⟩ − L
2 ∥θt+1 − θt∥2.

Assumption 2 (Bounded Variance). The variance of the stochastic gradient estimator ĝt is bounded:

E
[
∥ĝt − E[ĝt|θt]∥2

∣∣ θt] ≤ σ2.

Proposition 2. Let ĝt denote the token-averaged PPO/GRPO stochastic gradient estimator used by
StepHint at iteration t. Let phint ∈ [0, 1] be the expected fraction of tokens in a rollout that are hint
tokens, and let α ∈ [0, 1] be the probability that a rollout produced under the current policy yields a
correct final outcome. Assume the following modeling approximations at iteration t:

(A1) Token homogeneity: the expected per-token policy-gradient contribution within a rollout
is approximately the same across token positions, i.e.

E
[
∇θ log πθ(τi,j)Âi,j

]
≈ ct ∇J(θt)

for some scalar ct > 0, so that token-level expectations align with the full policy gradient
direction.

(A2) Clipping/ratio approximation for hint tokens: for hint tokens in rollouts that produce a
correct outcome the PPO probability ratio ri,j = πθ(τi,j)/πold(τi,j) is typically above the
upper clip 1 + ϵ, hence the clipped surrogate multiplies the advantage by approximately
1 + ϵ; for non-hint tokens the ratio is approximated as ri,j ≈ 1 so clipping is inactive.

Under (A1)–(A2) define
βt := (1− phint) + αphint(1 + ϵ).

Then the conditional expectation of the StepHint gradient estimator can be approximated by

E[ĝt | θt] ≈ βt ∇J(θt).

Proof. Write ĝt for the token-averaged stochastic gradient estimator at iteration t. Let a rollout
contain multiple tokens and let gj denote the gradient contribution (surrogate objective / policy-
gradient contribution) associated with a generic token position j in a rollout. We drop the rollout
index for notational simplicity and condition all expectations on θt.

The token-averaged estimator can be written as an expectation over token positions:

E[ĝt | θt] = E[gj | θt] = (1−phint)E[gj | token j is not a hint, θt]+phint E[gj | token j is a hint, θt],

since a token is either a hint token (fraction phint) or a non-hint token (fraction 1− phint).

We treat the two terms separately.

Non-hint tokens. For non-hint tokens the surrogate is the standard PPO/GRPO surrogate built
from the student policy’s own probabilities and advantages. Under Assumption (A1) we approx-
imate the per-token expected contribution by a common direction proportional to the full policy
gradient:

E[gj | non-hint, θt] ≈ E[∇θ log πθ(τ) Â],

Hint tokens. For tokens that are provided as hints we further condition on whether the entire
rollout ends in a correct final outcome. Let α denote the probability (under the current policy and
the environment) that a rollout is correct. Then, conditioning on hint token and rollout correctness,

E[gj | hint, θt] = (1− α)E[gj | hint, rollout incorrect, θt] + αE[gj | hint, rollout correct, θt].

By the StepHint design (and the modification to GRPO described in the paper), when a rollout is
incorrect the negative advantages assigned to hint tokens are clipped to zero (i.e. the algorithm

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

prevents penalizing the model for hint tokens in incorrect rollouts). Therefore the contribution from
hint tokens in incorrect rollouts is (approximately) zero:

E[gj | hint, rollout incorrect, θt] ≈ 0.

For hint tokens in correct rollouts, Assumption (A2) posits that the PPO probability ratio rj =
πθ(τj)
πold(τj)

is typically above the upper clipping threshold 1+ ϵ, so that the clipped surrogate evaluates

approximately to (1 + ϵ)Â. Together with the token-homogeneity approximation (A1) that aligns
per-token expectation with Gt, we obtain

E[gj | hint, rollout correct, θt] ≈ (1 + ϵ)Gt.

Combining the two subcases for hint tokens gives

E[gj | hint, θt] ≈ (1− α) · 0 + α · (1 + ϵ)Gt = α(1 + ϵ)Gt.

Combine hint and non-hint contributions. Substitute the approximations for the two conditional
expectations back into the decomposition at the top:

E[ĝt | θt] ≈ (1− phint)Gt + phint
(
α(1 + ϵ)Gt

)
=

(
(1− phint) + αphint(1 + ϵ)

)
Gt.

Recalling Gt ≡ E[∇θ log πθ(τ) Â] = ∇J(θt) (the standard policy-gradient direction under our
estimator), we obtain

E[ĝt | θt] ≈ βt ∇J(θt), where βt := (1− phint) + αphint(1 + ϵ).

This completes the derivation.

Theorem H.1 (Convergence to stationarity). Suppose Assumptions 1–2 hold and that Proposi-
tion 2’s approximation is valid with βt ∈ [βmin, βmax] for constants 0 < βmin ≤ βmax < ∞.
Consider stochastic ascent updates

θt+1 = θt + ηĝt

with fixed step size satisfying

η ≤ 1

Lβmax
.

Let J∗ = supθ J(θ) < ∞. Then for every integer T ≥ 1,

1

T

T−1∑
t=0

E
∥∥∇J(θt)

∥∥2 ≤ 2 (J∗ − J(θ0))

ηTβmin
+

Lη σ2

βmin
.

Hence, choosing η = Θ(1/
√
T) yields the standard stochastic non-convex rate

min
0≤t<T

E
∥∥∇J(θt)

∥∥2 = O
(
T−1/2

)
,

i.e., the iterates converge to a stationary point in expectation at the usual O(1/
√
T) speed.

Proof. Starting from Assumption 1 and substituting ∆ = θt+1 − θt = ηĝt gives

J(θt+1) ≥ J(θt) + η⟨∇J(θt), ĝt⟩ − Lη2

2 ∥ĝt∥2.
Take the conditional expectation Et[·] = E[· | θt] and apply Proposition 2 to replace Et[ĝt] by
βt∇J(θt) (approximately):

Et[J(θt+1)] ≥ J(θt) + ηβt∥∇J(θt)∥2 − Lη2

2 Et∥ĝt∥2.

Use the variance decomposition Et∥ĝt∥2 = ∥Et[ĝt]∥2+Et∥ĝt−Et[ĝt]∥2 together with Assumption 2
to obtain

Et∥ĝt∥2 ≤ β2
t ∥∇J(θt)∥2 + σ2.

Substituting back,

Et[J(θt+1)]− J(θt) ≥
(
ηβt − Lη2β2

t

2

)
∥∇J(θt)∥2 − Lη2σ2

2 .

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

With the choice η ≤ 1/(Lβmax) we have Lηβt ≤ 1, hence

ηβt − Lη2β2
t

2 = ηβt

(
1− Lηβt

2

)
≥ ηβt

2 .

Thus
ηβt

2 ∥∇J(θt)∥2 ≤ Et[J(θt+1)− J(θt)] +
Lη2σ2

2 .

Taking total expectation, summing t = 0, . . . , T − 1, and using the bound βt ≥ βmin > 0 yields

ηβmin

2

T−1∑
t=0

E∥∇J(θt)∥2 ≤ E[J(θT)]− J(θ0) +
TLη2σ2

2 .

Since E[J(θT)] ≤ J∗ we obtain

1

T

T−1∑
t=0

E∥∇J(θt)∥2 ≤ 2(J∗ − J(θ0))

ηTβmin
+

Lησ2

βmin
,

which proves the theorem. Choosing η ∝ T−1/2 gives the stated O(1/
√
T) rate.

18

	Introduction
	Background: Reinforcement Learning with Verifiable Rewards
	Method
	Motivation:a solution space reduction view of reasoning
	StepHint: multi-level stepwise hints enhance RLVR
	Adaptive stepwise partitioning of on-hand reasoning chains
	Multi-level hints for problem solving

	Experiments
	Experimental settings
	Main results
	Pass@k evaluation
	Method analysis from training dynamics

	Related works
	Conclusion
	Use of LLMs
	Proof of proposition 1
	Template of Qwen-2.5
	Training data construction
	Training setup
	Training settings for Llama
	Ablaion study
	Non-negative advantage for hints
	Stepwise partitioning strategy
	Optimization algorithm

	Proof of convergence

