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ABSTRACT

Reinforcement learning with verifiable rewards (RLVR) is a promising approach
for improving the complex reasoning abilities of large language models (LLMs).
However, current RLVR methods face two significant challenges: the near-miss
reward problem, where a small mistake can invalidate an otherwise correct rea-
soning process, greatly hindering training efficiency; and exploration stagnation,
where models tend to focus on solutions within their “comfort zone,” lacking the
motivation to explore potentially more effective alternatives. To address these
challenges, we propose StepHint, a novel RLVR algorithm that utilizes multi-
level stepwise hints to help models explore the solution space more effectively.
StepHint generates valid reasoning chains from stronger models and partitions
these chains into reasoning steps using our proposed adaptive partitioning method.
The initial few steps are used as hints, and simultaneously, multiple-level hints
(each comprising a different number of steps) are provided to the model. This
approach directs the model’s exploration toward a promising solution subspace
while preserving its flexibility for independent exploration. By providing hints,
StepHint mitigates the near-miss reward problem, thereby improving training effi-
ciency. Additionally, the external reasoning pathways help the model develop bet-
ter reasoning abilities, enabling it to move beyond its “comfort zone” and mitigate
exploration stagnation. StepHint outperforms competitive RLVR enhancement
methods across six mathematical benchmarks, while also demonstrating superior
generalization and excelling over baselines on out-of-domain benchmarks.

1 INTRODUCTION

Eliciting the reasoning capabilities of large language models (LLMs) through Reinforcement Learn-
ing with Verifiable Rewards (RLVR) has emerged as a powerful paradigm (Jaech et al., 2024; Guo
et al., 2025). In RLVR frameworks, a policy model explores the solution space by generating rea-
soning chains. The model is then optimized using algorithms like PPO (Schulman et al., 2017) and
GRPO (Shao et al., 2024), based on the advantages of final outcomes of these chains.

However, free exploration within the vast and complex solution space introduces significant chal-
lenges. A key issue is the near-miss reward problem, where a single incorrect step voids an other-
wise reward-worthy reasoning chain. This leads to training inefficiency, as models expend resources
on repeatedly almost-correct solutions. Moreover, as shown by Yue et al. (2025), existing RLVR
methods often refine the model’s ability to sample known reasoning chains rather than discover
novel or higher-quality ones. Consequently, when a task exceeds the model’s current capabilities,
it tends to remain confined to its “comfort zone,” unable to independently advance beyond familiar
solutions—an issue we term exploration stagnation.

We propose StepHint, a novel augmented RLVR algorithm that integrates multi-level stepwise hints
to address these challenges. StepHint leverages reasoning chains from advanced models such as
Deepseek-R1 (Guo et al., 2025), partitioning them into discrete reasoning steps.1 It then provides
only the initial few steps as hints for the model to complete the reasoning process. This approach
effectively simplifies the solution space while preserving sufficient exploratory flexibility. Specif-

1A reasoning step refers to a distinct logical stage within the overall reasoning chain and typically comprises
multiple tokens. It should not be confused with a token-prediction step during generation or a training step.
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ically, during RLVR—regardless of the policy optimization algorithm used—StepHint’s pipeline
comprises two key steps:

Step 1: Adaptive stepwise partitioning of reasoning chains. We introduce a probabilistic parti-
tioning strategy that adaptively splits reasoning chains into meaningful steps, moving beyond super-
ficial markers like “First” or “Second.” Our method estimates, at each token, the model’s probability
of generating an end-of-reasoning token (e.g., </think>). A position is identified as a candidate
endpoint if the estimated probability at this position exceeds that of the next position. From these
candidates, we randomly sample several endpoints, subject to a minimum length constraint, result-
ing in a fixed number of segments. The initial few steps are later provided as hints to guide the
model’s rollouts during RL training.

Step 2: Multi-level hints for problem solving. We define a hint’s “level” as the number of initial
reasoning steps it provides. A high-level hint contains many steps, potentially making the task
trivial for the model, diminishing training efficacy. Conversely, a low-level hint with too few steps
may be insufficient to guide the model, leaving it vulnerable to the “near-miss reward problem.”
Determining the optimal hint level for a given model-problem pair is inherently difficult, as the
model abilities keeps improving durning trianing. Our simple yet effective solution is to generate
multi-level hints for each problem. With sufficiently fine-grained step partitioning, at least one hint
level is likely to be suitable for the model’s current reasoning ability.

By adaptively providing multi-level hints, StepHint effectively addresses both the near-miss reward
problem and exploration stagnation. First, the model receives appropriate guidance to complete
reasoning chains correctly, significantly reducing near-miss rewards and improving training effi-
ciency—leading to faster convergence. Second, exposure to high-quality hints steers the policy to-
ward more sophisticated reasoning patterns, preventing stagnation during independent exploration.
This not only enhances the model’s ability to break through its “comfort zone” but also avoids the
poor generalization typical of SFT-based methods.

We evaluate StepHint by training a series of LLMs on mathematical tasks and comparing their per-
formance against strong RLVR-enhanced baselines. Results demonstrate StepHint’s effectiveness
on both in-domain (math) and out-of-domain tasks.

• In-domain performance: Across six math benchmarks, StepHint surpasses existing methods by
an average accuracy of 3.16 percentage points. Notably, it achieves significant improvements in
pass@k performance—a rigorous measure of reasoning abilities (Yue et al., 2025)—on two chal-
lenging benchmarks, AIME24 and AIME25 (Li et al., 2024), even at large k values.

• Out-of-domain generalization: StepHint also achieves the highest results on out-of-domain,
non-mathematical benchmarks such as ARC-C (Clark et al., 2018) and GPQA-D (Rein et al., 2024),
highlighting its robust generalization beyond its training domain.

2 BACKGROUND: REINFORCEMENT LEARNING WITH VERIFIABLE
REWARDS

Reinforcement Learning (RL) has been instrumental in advancing the reasoning capabilities of Large
Language Models (LLMs) by enabling them to learn optimal reasoning chains through reward-based
feedback (Hu et al., 2025; Guo et al., 2025). A popular paradigm in this domain is Reinforcement
Learning with Verifiable Rewards (RLVR), which is a specialized RL paradigm for training LLMs
on tasks where the correctness of an outcome can be objectively verified, such as mathematical
problem-solving or code generation. In the RLVR framework, the learning process is typically
driven by automated, often binary (correct/incorrect), reward signals, which facilitates scalable self-
improvement (Gao et al., 2023).

Proximal Policy Optimization (PPO) PPO (Schulman et al., 2017) is a widely-used algorithm
that optimizes the the LLM’s generation policy (πθ) by maximizing expected rewards while prevent-
ing excessively large updates that could destabilize training. Given a problem q, the policy model
πθ samples N rollouts, denoted as {y1, y2, · · · , yN}, PPO optimizes the following objective:
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LPPO
θ =

1

N

N∑
i=1

1

|yi|

|yi|∑
t=1

{
min

[
ri,tÂi,t, clip (ri,t, 1− ϵ, 1 + ϵ) Âi,t

]}
− βDKL(πθ||πref),

where:

• ri,t =
πθ(yi,t|q,yi,<t)
πold(yi,t|q,yi,<t)

is the probability ratio between the current policy πθ and the policy
before the update, πold. The clip function bounds this ratio, which disincentivizes overly
aggressive policy changes that could destabilize training.

• Âi,t is the advantage of taking token yi,t as the t token of rollout i. It quantifies how much
better that action is compared to the average action value at that state.

• βDKL(πθ||πref) is a penalty term that discourages the current policy from deviating too far
from a reference policy πref (often the initial model).

A key component of standard PPO is the critic model, which is required to calculate the token-level
advantage Âi,t. However, training this critic is computationally expensive and complex.

Group Relative Policy Optimization (GRPO) To address the challenges of PPO, GRPO (Shao
et al., 2024) is introduced as a simpler yet effective alternative. It has demonstrated strong perfor-
mance and efficiency, particularly in complex mathematical reasoning tasks (Liu et al., 2025; Yan
et al., 2025; Zeng et al., 2025; Hu et al., 2025).

GRPO computes a single, uniform advantage value for all tokens within a rollout, based on the final
outcome of that entire rollout. Specifically, for a given problem q, N rollouts {y1, y2, · · · , yN} are
sampled. Each complete rollout yi is assigned a final reward R(yi), which is typically binary in
RLVR settings: R(yi) = 1 if the answer of yi is correct, and R(yi) = 0 otherwise. GRPO then
calculates a rollout-level advantage by normalizing this reward across the group. This advantage
value is assigned to every token within that rollout:

ÂGRPO
i,t =

R(yi)− mean ({R(y1), · · · , R(yN )})
std ({R(y1), · · · , R(yN )})

. (1)

By replacing the token-level advantage Âi,t with this rollout-level advantage ÂGRPO
i,t , GRPO retains

the core PPO objective while eliminating the need for a critic model.

Since PPO and GRPO have become the predominant methods for training LLMs on reasoning tasks,
this paper will focus exclusively on these two approaches.

3 METHOD

We frame the reasoning process as a stepwise reduction of a solution space. This perspective in-
spires our core idea: guiding the model’s exploration with stepwise hints. To build this foundation,
we first formalize the generation of reasoning chains as a solution space exploration (Section 3.1).
This formalization helps identify critical issues in existing methods, such as near-miss rewards and
exploration stagnation, and lays the groundwork for our proposed method, StepHint (Section 3.2),
which is designed to address these challenges.

3.1 MOTIVATION:A SOLUTION SPACE REDUCTION VIEW OF REASONING

We model the autoregressive generation of a reasoning chain as a sequential reduction of a solution
space R, which comprises all possible reasoning chains for a given prompt C (Guo et al., 2025). This
process is represented by a sequence of states, where each state Sk = (C, t1, . . . , tk) corresponds to
the partial reasoning chain after k tokens. The complexity or uncertainty of the remaining solution
space at each state is quantified by the conditional entropy H(R|Sk).

While this entropy is generally intractable to compute directly, as it requires summing over all pos-
sible chains in R, it serves as a powerful conceptual tool for analysis. A higher entropy indicates a
complex and unconstrained solution space. The following proposition formalizes the intuition that
each generation step, in expectation, reduces the solution space’s complexity.
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Proposition 1. Let R be the solution space and Sk−1 be the state after k − 1 tokens have been
generated. Upon generating the next token tk to form state Sk = (Sk−1, tk), the expected entropy
of the solution space is bounded by the current entropy:

Etk∼P (·|Sk−1)[H(R|Sk)] ≤ H(R|Sk−1).

We leave the detailed proof in Appendix B. Proposition 1 formally establishes that autoregressive
generation is a structured process of uncertainty reduction. However, the reduction in entropy quan-
tifies the convergence of certainty, not necessarily the correctness or logical validity of the reasoning
chain. A model can become increasingly certain about a flawed conclusion, which still manifests as
a decrease in entropy.

This distinction reveals a critical failure mode. An early error can irrevocably prune the subspace
of correct solutions, R∗ ⊂ R. Formally, this occurs when the model reaches a state Sk where the
probability of the correct solution set collapses to zero: P (R∗|Sk) ≈ 0. Subsequently, the model
may continue to confidently reduce entropy, but it does so within the incorrect subspace R\R∗,
inevitably arriving at a “confident but wrong” conclusion.

3.2 STEPHINT: MULTI-LEVEL STEPWISE HINTS ENHANCE RLVR

Based on the views above, an initial error can lead to an incorrect final answer, even if the subse-
quent reasoning is logically sound, as it originates from a flawed premise. This “near-miss” reward
problem can be mitigated by providing early guidance. Furthermore, a model’s exploration of the
solution space is intrinsically constrained by the model’s ability. Without external guidance, the
exploration will be limited to a narrow subspace (Yue et al., 2025). Our proposed method, StepHint,
addresses these two challenges by leveraging part of the strong reasoning chains from a more capa-
ble model as hints during training.

Given a problem, StepHint first obtains a valid reasoning chain from a stronger model, and then
performs two key stages to enhance the target model being trained: (1) adaptive stepwise partitioning
of on-hand reasoning chains and (2) multi-level hints for problem solving.

In the following, we focus on detailing the latter two stages. We will frequently use the term “rea-
soning step” to refer to an intact unit of thought, which may consist of several sentences. Please
note that this is distinct from a “training step,” which refers to updating the model after processing a
batch of data, or a “next-token prediction step,” which generates a single token at a time.

3.2.1 ADAPTIVE STEPWISE PARTITIONING OF ON-HAND REASONING CHAINS

Definitions Let the reasoning chain be denoted as G = t1 ◦ t2 ◦ · · · ◦ tn, where each ti represents
a single token, and ◦ denotes concatenation. A reasoning step corresponds to a sequence of tokens
ti ◦ · · · ◦ tj(1 ≤ i ≤ j ≤ n) that forms an intact unit of thought. A hint is composed of one or more
reasoning steps and serves as a conditioning prompt that guides the target model’s reasoning toward
a promising direction, helping it explore otherwise intractable solution spaces. The level of a hint
is determined by the number of reasoning steps it contains—the more reasoning steps included, the
richer the guidance it offers to the target model, and thus the higher its level.

Method details We need a flexible method to adaptively partition a complete reasoning chain G
into m reasoning steps, then combine appropriate number of reasoning steps as a hint in appropriate
level to the target model. Conventional approach relies on syntactic cues, such as keywords like
“first,” “next,” or “Step 1.” However, such heuristics are prone to misidentifying the boundaries of
reasoning steps and lack the flexibility. (Moens, 2017)

In contrast, we leverage the model’s output probability distribution to identify the boundaries of
reasoning steps. We hypothesize that when a reasoning step concludes, the model’s probability
of completing the entire chain should be relatively high. Conversely, at the beginning of a new
step, this probability should decrease as the model expects additional reasoning to follow. This
perceived likelihood of reasoning completion can be captured by the probability assigned to a special
“end-of-thinking” token, </think>, which is explicitly introduced during pretraining to mark the
conclusion of reasoning (Team, 2024; Guo et al., 2025). Formally, the model’s tendency to conclude
reasoning at token ti can be quantified by the probability p(</think> | Gi), where Gi denotes the
token sequence up to ti.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Tim has 68 – 30 = 38 apples. Harry has 38 ÷ 2 = 19  apples.

</think>

Token 1
Token 2

Token z
</think>< </think> </think>

Tim has 68 – 30 = 38 apples. Harry has 38 ÷ 2 = 19  apples.
≥ 𝑙 ≥ 𝑙 ≥ 𝑙

Token 1
Token 2

Token z

Token 1
Token 2

Token z

Token 1
Token 2

Token z

Next-token 
Probability 
Distribution

Not a candidate
Candidate

Randomly sample
a valid partition

>

Figure 1: Adaptive stepwise partitioning of a reasoning
chain: step boundaries are identified where the probability
of concluding the reasoning chain after the current token,
p(</think>|Gi), is greater than concluding after the subse-
quent token, p(</think>|Gi+1). A final partition is chosen
to meet constraints on step count m and minimum length l.

This hypothesis leads us to our
core partitioning method: a to-
ken ti is considered a can-
didate reasoning step bound-
ary if and only if the prob-
ability of concluding the rea-
soning chain after ti is greater
than the probability of conclud-
ing it after the subsequent to-
ken, ti+1: p(</think>|Gi) >
p(</think>|Gi+1). By iter-
ating through the entire reason-
ing chain, we collect all to-
kens satisfying this condition
as candidate boundaries. To
maintain high-quality reasoning
steps, we enforce two con-
straints during partitioning: (1)
adjacent boundaries must be at
least l tokens apart to avoid overly short steps, and (2) the number of steps must equal the predeter-
mined value, m. In practice, multiple valid partitionings may satisfy these constraints, we randomly
sample one to proceed with. Figure 1 illustrates this token-distribution-based partitioning method.
An alternative selection strategy and its effect is discussed in Appendix G.2.

3.2.2 MULTI-LEVEL HINTS FOR PROBLEM SOLVING

Building on the adaptive stepwise partitioning method described above, we divide the reasoning
chain into m reasoning steps. A key question is how many of these steps should be included as a
complete hint for the target model.

An ideal-level hint matches the model’s current capabilities—it is neither too weak nor too strong.
Moreover, this optimal level shifts continuously as the model’s reasoning ability evolves. Consider-
ing these challenges, rather than determining the ideal level at each training step, we provide hints at
multiple levels. Our core hypothesis is that if the partitioning is fine-grained enough, there is likely
to be a hint that fits the model’s needs well. Specifically, we construct a set of m − 1 multi-level
hints, H. Each hint is a prefix of the full chain G, created by concatenating the first j steps:

H = {hj |hj = S1 ◦ S2 ◦ · · · ◦ Sj , for j = 1, · · · ,m− 1},
where Si represents the i-th reasoning step. Low-level hints preserve considerable problem-solving
difficulty. In contrast, high-level hints simplify the solution space, making the completion easier.

For each problem in the training set, we construct three types of prompts for the model to complete:

1. Hinted problems: For each of the m − 1 hint levels, the model is asked to complete the
reasoning from that hint using khint rollout attempts per hint.

2. Unhinted problems: To preserve the model’s independent exploration, it also solves the
problem from scratch without any hints. It is allowed kunhint rollouts in this case.

3. Reference trajectory: The original ground-truth reasoning chain G is also provided to
the target model and used to assign rewards. This ensures that the model is consistently
exposed to the correct solution path during training.

Figure 2 illustrates this multi-level hinting and completion process. In total, the model generates
khint(m − 1) + kunhint + 1 completions per training problem, each receiving a reward based on
correctness. StepHint strikes a balance between guiding the model with reliable hints and allowing
it to learn from its own exploration mistakes, leading to more effective learning.

The above method applies to most RLVR algorithms but poses issues for GRPO (He et al., 2025),
prompting further adaptations and discussion. In GRPO, an incorrect completion assigns negative
advantages to all tokens in the rollout—including those in the correct hint prefix. This steers the
model away from the correct reasoning chains. To address this, we modify GRPO by clipping
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This means the midpoint of A and B 
...... 
is a vertical line through P.
Choosing Points on the Line:
There are 100 points on the line, and we can 
choose any two of these points to form an 
isosceles triangle with  P. 
……
Calculating Combinations: 
𝐶!""# = !""∗%%

#
= 4950

……
<answer>4950</answer>

the line, there is a corresponding point B such 
that PA=PB.
Counting the Triangles: ......for each pair of 
symmetric points ...... we can form an 
isosceles triangle...... 
Pair Counting: ...... This gives us 50 pairs. 
For each pair, we can form an isosceles 
triangle with P ...... 
<answer>50</answer>

To solve this problem...... 
The equal sides are from the 100 points on 
the line 
......
The number of ways to choose 2 points from 
100 points is given by the combination formula 
𝐶!""# = !""∗%%

#
= 4950

. Since each pair can form 2 isosceles triangles, 
the total number of triangles in this case is 
4950 ∗ 2 = 9900.
The equal sides are from the point not on the 
line 
......
Since there are 100 points on the line, we can 
form 100 isosceles triangles in this way.
Adding the triangles from both cases......
<answer>10000</answer>

Policy 𝜽

𝑺𝟏
To solve the problem of ......
Understanding Isosceles Triangles: ...... the 
other two vertices A and B on the line must 
be equidistant from P.

To solve the problem of ......
Understanding Isosceles Triangles: ...... the 
other two vertices A and B on the line must 
be equidistant from P.
𝑺𝟐

𝑺𝟏

This means PA = PB.
Symmetry Consideration: ...... This 
symmetry ensures that for each point A on

Completion

Completion

Unhinted RolloutHint 𝒉𝟏 Hint 𝒉𝟐

On a straight line lie 100 points and another point outside the line. What is the maximum 
number of isosceles triangles that can be formed using these 101 points as vertices?

Problem

𝑺𝟏 :To solve the problem of ……from P. 𝑺𝟐: This means PA=PB…… point A on 𝑺𝟑: one side of 
the foot……With P. 𝑺𝟒: Thus, the maximum number of …… is 50.

Reasoning Chain

!𝑨𝒊,𝒕
Advantages

Figure 2: An overview of the multi-level hinting process. The process begins with a ground-truth
reasoning chain, which is partitioned into m steps (Section 3.2.1). From these steps, we construct
m − 1 prefix-based hints(h1, h2, · · · , hm−1). The model is trained to generate completions from
each hint level, as well as from scratch (Unhinted), and a reference trajectory.

negative advantages to zero for tokens in the hint prefix when the completion is incorrect; that is, we
set ÂGRPO

i,t = max(0, ÂGRPO
i,t ) (see Eq. 1 for the definition of ÂGRPO

i,t ). This adaptation prevents
the model from being penalized for correct prefixes, aligning the training process with our intended
mechanism. We empirically validate the effectiveness of this design in Appendix G.1 and prove the
convergence of StepHint in Appendix H.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Training data To construct our training data, we generated complete reasoning chains for chal-
lenging problems. This process yield a training dataset of approximately 26,000 instances. The
specific details of our data construction and processing methods are described in Appendix D.

Hyperparameters We train two backbone models using GRPO (Shao et al., 2024) for 5 epochs
each: Qwen-2.5-7B-Instruct (Yang et al., 2024a; Team, 2024) and Qwen-2.5-Math-7B (Yang et al.,
2024b). The training prompt template is shown in Appendix C. The training is based on the VeRL
framework (Sheng et al., 2024). Other training settings are detailed in Appendix E. The effect of
applying an alternative optimization algorithm, Dr.GRPO, is further examined in Appendix G.3.

Baselines We compare our method against five categories of baselines: (1) Vanilla GRPO: We
train Qwen-2.5-7B-Instruct and Qwen-2.5-Math-7B using vanilla GRPO with the same settings as
StepHint. (2) Dr.GRPO: We train Qwen-2.5-7B-Instruct using Dr.GRPO (Liu et al., 2025) under the
same settings. (3) SFT: We fine-tune the backbone models with our dataset. (4) Other RLVR Meth-
ods: We evaluate several other reinforcement learning from verifier rewards (RLVR) enhancement
techniques, including SimpleRL-Zero-7B (Zeng et al., 2025), Qwen-2.5-Math-7B-SimpleRL-Zoo,
OpenReasonerZero-7B (Hu et al., 2025), and Oat-7B (Liu et al., 2025). (5) RL with Reference
Trajectory: We include Luffy-Qwen-2.5-7B-Instruct (Yan et al., 2025) and Luffy-Qwen-Math-7B-
Zero. For baselines in categories (4) and (5), we use their publicly released model weights and
prompt templates for evaluation.

6
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Table 1: Performance comparison of StepHint with baseline methods on in-domain and out-of-
domain benchmarks. The top score in each column is in bold, and the second-highest is underlined.
Backbone models are denoted by: *Qwen-2.5-7B-Instruct, †Qwen-2.5-7B, ‡Qwen-2.5-Math-7B.

Model

In-Domain Out-of-Domain

AIME24
(avg@5)

MATH500
(pass@1)

AMC
(avg@5)

Olympiad
(pass@1)

Minerva
(pass@1)

AIME25
(avg@5)

Avg.
-

ARC-C
(pass@1)

GPQA-D
(pass@1)

Avg.
-

SFT* 20.00 78.80 53.73 36.89 36.40 10.67 50.05 90.96 23.23 81.17

SFT‡ 26.00 82.20 59.52 45.19 34.19 15.33 54.77 67.66 23.74 61.31

On-policy RLVR replication

Vanilla-GRPO* 24.67 76.60 51.33 43.41 39.34 10.67 52.59 91.30 37.37 83.51

Vanilla-GRPO‡ 24.67 78.60 60.72 40.00 36.40 15.33 51.85 79.78 36.87 73.58

Dr.GRPO* 24.00 78.20 51.57 42.81 39.34 12.00 52.87 91.64 35.86 83.58

Other RLVR methods

ORZ-7B† 24.67 81.00 46.90 45.60 33.46 15.30 53.76 90.53 40.40 83.28

SimpleRL† 22.00 76.00 47.90 39.30 36.40 5.30 49.83 74.74 32.32 68.61

SimpleRL‡ 28.00 76.20 57.59 37.93 34.93 12.00 49.80 63.91 27.27 58.61

Oat‡ 36.00 78.40 59.75 42.52 36.40 10.00 52.92 59.89 33.84 56.13

RL with reference trajectory

LUFFY* 21.30 77.80 44.82 40.00 36.40 14.67 50.69 81.83 32.32 74.67

LUFFY‡ 27.33 83.20 60.24 48.00 38.97 17.33 57.19 81.83 35.86 75.19

StepHint* 29.33 82.80 61.69 47.41 43.38 17.30 57.69 91.89 42.42 84.74

StepHint‡ 36.00 87.00 62.65 52.15 38.24 18.87 60.35 84.73 38.89 78.10

Evaluation We follow prior work (Yan et al., 2025) and evaluate on six math datasets: AIME
2024, AIME 2025, AMC (Li et al., 2024), Minerva (Lewkowycz et al., 2022), OlympiadBench (He
et al., 2024), and MATH500 (Hendrycks et al., 2021). For the AIME 24/25 and AMC datasets, given
their limited data points, we conduct each evaluation five times and report the average results. To
evaluate generalization, we also incorporate two non-math benchmarks, ARC-C (Clark et al., 2018)
and GPQA-D (Rein et al., 2024), as out-of-domain tests. We report the weighted average accuracy
for both in-domain and out-of-domain benchmarks. The generation length is also set to 4,110. All
results were evaluated using Math-Verify2 and OAT-Grade (Liu et al., 2024) on 8×A100s.

4.2 MAIN RESULTS

Table 1 shows the overall performance of StepHint and baseline methods.

When applied to the general-purpose model, Qwen-2.5-7B-Instruct, StepHint achieves the highest
performance on in-domain math tasks among all compared methods. Compared to other RLVR
methods, StepHint shows a 3.93 percentage point improvement over the next-best method, ORZ.
Furthermore, StepHint consistently surpasses the SFT baseline, indicating that StepHint effectively
learns beyond simple token imitation, leading to improved reasoning outcomes.

Notably, the Qwen-2.5-7B-Instruct model trained with StepHint outperforms the specialized Qwen-
2.5-Math-7B trained with any other method, highlighting the substantial boost in reasoning ability
provided by StepHint and allowing a generalist model to outperform a specialist in its own domain.

For the specialized Qwen-2.5-Math-7B model, as expected from its specialized design (Yang et al.,
2024b), the Math model performs lower on the out-of-domain benchmarks compared to the general-
purpose Qwen-2.5-7B-Instruct. However, StepHint not only leads the board in in-domain math tasks
compared with baselines but also enables the Math model to achieve the highest out-of-domain test
performance among all baselines. This suggests that the improvements are not solely due to domain-
specific knowledge but also reflect an enhancement of the model’s general reasoning capabilities.

2https://github.com/huggingface/Math-Verify
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Figure 3: Comparison of pass@k results on the AIME24 and AIME25 datasets. Left: AIME24;
Right: AIME25.

We now turn our analysis to Luffy, an RL method that employs an entire reasoning chain from a
stronger model as a reference trajectory. A key limitation of this paradigm is its potential inability to
fully address the near-miss reward issue, as the model’s exploration is not directly guided. Although
using expert trajectories can mitigate exploration stagnation, it may come at the expense of the
intrinsic exploration mechanism vital to reinforcement learning. In contrast, StepHint integrates
external hints with the model’s own exploration, fostering a more robust learning process. Our
experimental results substantiate this claim, demonstrating that StepHint outperforms Luffy on both
in-domain and out-of-domain tasks.

To further assess the generalizability of our approach, we conducted experiments on Llama-3.1-
8B (Dubey et al., 2024), comparing StepHint with GRPO. The results, presented in Table 2, demon-
strate that our method achieves superior performance. Training settings are detailed in Appendix F.

Table 2: Results on Llama-3.1-8B.

AIME24 MATH500 AMC Olympiad Minerva AIME25 Avg.

GRPO 4.00 9.00 6.02 3.56 12.13 0 6.81

StepHint 6.00 44.00 18.56 13.48 20.22 1.30 24.13

4.3 PASS@K EVALUATION

Many studies (Chen et al., 2021; Wang et al., 2022) show that with a limited number of rollouts,
models may perform poorly on certain tasks. However, with a sufficiently large number of rollouts,
they are more likely to solve these problems. Therefore, to fully assess the model’s potential perfor-
mance, pass@k accuracy is a more suitable metric (Yue et al., 2025). In this context, a problem is
considered solved if any of the k sampled reasoning chains yields a correct answer.

Figure 3 presents the pass@k results on the AIME24 and AIME25 datasets. The results demonstrate
that StepHint improves the model’s pass@k performance. In contrast, Vanilla-GRPO shows a slower
rate of improvement at higher values of k, which aligns with findings from previous work (Yue
et al., 2025). The superior performance under pass@k evaluation further validates the effectiveness
of StepHint. Additionally, the performance difference can be attributed to the exploration strategies
the models employ. While Vanilla-GRPO suffers from “exploration stagnation,” StepHint guides
the model’s exploration, helping it break free from its “comfort zone.”

4.4 METHOD ANALYSIS FROM TRAINING DYNAMICS

Figure 4 illustrates the training dynamics of StepHint and Vanilla-GRPO on Qwen-2.5-7B-Instruct,
comparing them across three key metrics: entropy, response length, and training rewards.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 200 400 600 800 1000

Training Steps

0.5

0.6

0.7

0.8

0.9

R
ew

ar
d

HintStep
GRPO

0 200 400 600 800 1000

Training Steps

0.0

0.2

0.4

0.6

0.8

E
nt

ro
py

HintStep
GRPO

0 200 400 600 800 1000

Training Steps

0

500

1000

1500

2000

2500

R
es

po
ns

e 
L

en
gt

h

HintStep
GRPO

Figure 4: Training dynamics of StepHint compared with GRPO. Left: Reward; Middle: Entropy;
Right: Response Length.

Reward The reward curves highlight the different learning phases. Due to the multi-level step-
wise hints provided by StepHint, the problem-solving difficulty for the model is lower compared
to Vanilla-GRPO. As a result, the reward score for StepHint is consistently higher, reflecting the
mitigation of the near-miss reward issue. A closer examination of the trends in both curves offers
further insights. Vanilla-GRPO shows a steady, monotonic increase in reward as it refines its exist-
ing policy. In contrast, StepHint experiences a brief initial dip in reward before a rapid and sustained
increase. This initial dip likely reflects an adaptation period where the model transitions from sim-
ple exploitation to a more complex, hint-guided exploration. Once adapted, the model efficiently
discovers higher-reward solutions, leading to faster and effective learning to reason.

Entropy Both methods exhibit an overall decrease in entropy, though their trajectories diverge
as training progresses. The entropy of StepHint remains higher than that of Vanilla-GRPO. This
suggests that the hints provided by StepHint encourage a more diverse policy, preventing premature
convergence to a narrow solution subspace and promoting a higher level of exploration (Cheng et al.,
2025). This trend reflects, to some extent, the mitigation of exploration stagnation.

Response length The two methods demonstrate distinct patterns in generated response length.
StepHint shows an initial sharp increase in length, which we attribute to the model learning to
mimic the structured, stepwise reasoning chains provided by the multi-level hints. These hints are
often more detailed than the model’s initial, more direct responses.

5 RELATED WORKS

RL-based post-training has demonstrated remarkable success in mathematical reasoning tasks (Shao
et al., 2024; Yang et al., 2024b). Research in this area has primarily advanced in three directions:
(1) optimizing the models and their training data, (2) refining inference-time strategies, and (3)
improving policy optimization methods.

The first direction involves constructing high-quality, large-scale mathematical reasoning
datasets (Wang et al., 2023; Ye et al., 2025; Zhao et al., 2025) and designing specialized training
or fine-tuning methods (Jaech et al., 2024; Mitra et al., 2024). The second direction focuses on guid-
ing the model’s step-by-step thought processes without altering its underlying weights, typically
through sophisticated prompting techniques such as Chain-of-Thought (Wei et al., 2022) and inno-
vations in in-context learning (Wu et al., 2024). The third direction aims at developing advanced
policy optimization algorithms. GRPO, an advancement of PPO (Schulman et al., 2017), has re-
cently gained popularity due to its simplicity and strong performance (Hu et al., 2025; Zeng et al.,
2025). Additionally, several improvements have been proposed for GRPO; for example, Liu et al.
(2025) identified inherent length and difficulty biases in vanilla GRPO and addressed these issues.

6 CONCLUSION

In this paper, we introduced StepHint, a novel RLVR algorithm that incorporates multi-level step-
wise hints. This mechanism is designed to provide the model with assistance tailored to its evolving
capabilities, thereby facilitating the learning process by addressing challenges such as near-miss re-
wards and exploration stagnation. StepHint not only outperforms strong baselines on mathematical
benchmarks but also demonstrates robust generalization to out-of-domain tasks, highlighting the
promising potential of the stepwise hinting paradigm for RLVR enhancement.
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REPRODUCIBILITY STATEMENT

The code used for training StepHint is available at https://anonymous.4open.science/
r/StepHint-AC69. We will release the model weights at a later date.

Training Data: The models and methodology for constructing our training dataset is detailed in
Appendix D.

Training Details: The specifics of the training process are described in Section 4.1 and Appendix E.

Evaluation Details: The hyperparameters used for evaluation are also detailed in Section 4.1.
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A USE OF LLMS

As described in Appendix E, we use LLMs to generate high-quality reasoning chains and partition
these chains into logical steps. We believe that this use of LLMs serves as a justified auxiliary tool,
and this controlled process does not introduce academic or ethical risks.

B PROOF OF PROPOSITION 1

Proposition 1:
Etk∼p(·|Sk−1)[H(R|Sk)] ≤ H(R|Sk−1)

Proof. We want to prove the following inequality:

Etk∼p(·|Sk−1)[H(R|Sk)] ≤ H(R|Sk−1)

This inequality states that the expected entropy of solution space R conditioned on the state Sk is
less than or equal to the entropy of R conditioned on the prior state Sk−1. The state Sk is reached
from Sk−1 after an observation or transition tk. Let’s denote the random variable for this transition
as Tk.

First, let’s clarify the notation. The expression on the left-hand side, Etk∼p(·|Sk−1)[H(R|Sk)], rep-
resents the conditional entropy H(R|Sk). The conditional entropy H(X|Y ) is defined as the ex-
pectation of the entropy of X over the values of Y . The subscript simply makes the underlying
probability model explicit: the distribution of the state Sk is induced by the distribution of the prior
state Sk−1 and the transition Tk.
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The proof of this relationship relies on the non-negativity of conditional mutual information. The
conditional mutual information between two random variables, R and Tk, given a third variable
Sk−1, is defined as:

I(R;Tk|Sk−1) = H(R|Sk−1)−H(R|Sk−1, Tk)

A fundamental property of mutual information is that it is always non-negative (MacKay, 2003;
Polyanskiy & Wu, 2025):

I(R;Tk|Sk−1) ≥ 0

From this, it directly follows that:

H(R|Sk−1) ≥ H(R|Sk−1, Tk)

This equation shows that conditioning on an additional variable, Tk, can only decrease (or leave
unchanged) the entropy of R.

Now, we must relate the term H(R|Sk−1, Tk) to the term H(R|Sk). The state Sk is the result of a
process that starts in state Sk−1 and undergoes the transition Tk. This means that the information
contained in the pair of variables (Sk−1, Tk) fully determines the state Sk. In many typical models,
knowing Sk is equivalent to knowing the pair (Sk−1, Tk) that produced it. If we assume this equiv-
alence, then conditioning on Sk is the same as conditioning on the pair (Sk−1, Tk). Therefore, we
have:

H(R|Sk) = H(R|Sk−1, Tk)

Substituting this equality back into our previous inequality, we arrive at the desired result:

H(R|Sk) ≤ H(R|Sk−1)

This completes the proof.

C TEMPLATE OF QWEN-2.5

Template of Qwen-2.5
<|im start|>system
You are a helpful assistant. The assistant first thinks about the reasoning process in
the mind and then provides the user with the answer. The reasoning process and
answer are enclosed within <think> </think> and <answer> </answer>
tags, respectively, i.e., <think> reasoning process here </think><answer>
answer here </answer>. Now the user asks you to solve a mathematical rea-
soning problem. After thinking, when you finally reach a solution, clearly state
the answer marked with \boxed{} and within <answer> </answer> tags, i.e.,
<answer>\boxed{answer}</answer>
<|im end|>
<|im start|> user
{question}
<|im end|>
<|im start|>assistant
<think>

D TRAINING DATA CONSTRUCTION

We gathered all problems from the DAPO dataset (Yu et al., 2025) and selected problems of difficulty
level 7 or higher from the DEEPMATH dataset (He et al., 2025). The DEEPMATH dataset provides
solution reasoning chains, while for each question in the DAPO dataset (Yu et al., 2025), we sample
a total of 12 reasoning chains using DAPO-Qwen-32B (Yu et al., 2025), QWQ-32B (Team, 2025),
and DeepSeek-R1-Distill-Qwen-32B (Guo et al., 2025), with 4 samples per model. The sampling is
conducted under a 0-shot setting, with a temperature of 1 and a maximum length of 8,192. We filter
these to retain all reasoning chains that are both correct and have a length of no more than 4,110. In
cases where multiple chains satisfy these conditions, we randomly select one.
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All reasoning chains are partitioned into m = 4 steps with the method we proposed in Section 3.2.1,
each longer than l = L

8 tokens, where L is the total length of a reasoning chain G, with QWQ-
32B (Team, 2025). This threshold ensures that even the shortest step contains a substantive amount
of information, while allowing for the natural length variation between different steps in a complex
reasoning process.

E TRAINING SETUP

We set a global batch size of 128 and a fixed learning rate of 1e − 6. Following (Yan et al., 2025),
we set the KL loss coefficient β = 0, indicating no reference model is used for regularization. We
configure khint = 2 and kunhint = 5. During training, the temperature for rollout generation is set to
1.0. Our training is completed on 8×A100s.

Since the Qwen-2.5-Math-7B model (Yang et al., 2024b) has a relatively short context length of
4,096 tokens, we adopt a community-released variant that extends the context length to 32k tokens.3

F TRAINING SETTINGS FOR LLAMA

Due to temporal and computational constraints, we train the Llama-3.1-8B model for 4 epochs
on our dataset using two methods: StepHint and GRPO. We increased the maximum generation
length to 4,500 during training to ensure it could accommodate the longest external reasoning chains
within the dataset. To align with the original Llama pre-training paradigm, we introduced slight
modifications to the prompt template. All other hyperparameters remained consistent with those of
the Qwen-2.5 models.

Template of Llama-3.1
system
You are a helpful assistant. The assistant first thinks about the reasoning process in
the mind and then provides the user with the answer. The reasoning process and
answer are enclosed within <think> </think> and <answer> </answer>
tags, respectively, i.e., <think> reasoning process here </think><answer>
answer here </answer>. Now the user asks you to solve a mathematical rea-
soning problem. After thinking, when you finally reach a solution, clearly state
the answer marked with \boxed{} and within <answer> </answer> tags, i.e.,
<answer>\boxed{answer}</answer>
user
{question}
assistant
<think>

G ABLAION STUDY

G.1 NON-NEGATIVE ADVANTAGE FOR HINTS

We perform an ablation study with the Qwen2.5-7B-Instruct model to assess the effect of enforcing
a non-negative constraint on the advantages of hints. As shown in Table 3, w/ Constraint denotes
the configuration where the advantage values of hints are constrained to be non-negative, whereas
baseline corresponds to the baseline without this constraint. The results demonstrate that introducing
the non-negative constraint improves the model’s mathematical reasoning performance.

G.2 STEPWISE PARTITIONING STRATEGY

In this section, we conduct an ablation study on the stepwise partitioning strategy introduced in Sec-
tion 3.2.1. We compare two approaches: Base, which selects k tokens uniformly at random from

3https://huggingface.co/open-r1/Qwen2.5-Math-7B-RoPE-300k
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Table 3: Ablation results on the effect of applying non-negative advantage constraint for hints.

AIME24 MATH500 AMC Olympiad Minerva AIME25 Avg.

Qwen2.5-7B-Instruct-StepHint

baseline 28.00 81.40 57.30 45.30 39.70 14.70 55.43

w/ Constraint 29.33 82.80 61.69 47.41 43.38 17.30 57.69

candidate tokens that satisfy the condition (p(</think>|Gi) > p(</think>|Gi+1)) and the in-
terval constraints; and Salient, which selects the top-k candidate tokens exhibiting the largest prob-
ability drop (p(</think>|Gi)− p(</think>|Gi+1)) while satisfying the interval constraints.

Table 4: Performance comparison of different stepwise partitioning strategies.

Strategy AIME24 MATH500 AMC Olympiad Minerva AIME25 Avg.

Qwen2.5-7B-Instruct-StepHint

Base 29.33 82.80 61.69 47.41 43.38 17.30 57.69

Salient 29.33 83.80 59.28 47.41 43.01 18.67 57.84

Qwen2.5-Math-7B-StepHint

Base 36.00 87.00 62.65 52.15 38.24 18.87 60.35

Salient 36.00 86.60 63.86 53.33 38.24 18.67 60.78

As shown in Table 4, both strategies achieve comparable overall performance.

G.3 OPTIMIZATION ALGORITHM

In this section, we evaluate the effect of different optimization algorithms on our proposed StepHint
method. Specifically, we employ Dr.GRPO as the optimization algorithm and compare its perfor-
mance against Vanilla-GRPO. The results are summarized in Table 5.

Table 5: Performance comparison of StepHint under different optimization algorithms.

AIME24 MATH500 AMC Olympiad Minerva AIME25 Avg.

Qwen2.5-7B-Instruct-StepHint

GRPO 29.33 82.80 61.69 47.41 43.38 17.30 57.69

Dr.GRPO 32.00 82.40 61.00 49.04 42.65 18.0 58.15

Qwen2.5-Math-7B-StepHint

GRPO 36.00 87.00 62.65 52.15 38.24 18.87 60.35

Dr.GRPO 40.67 88.60 65.30 51.70 40.44 22.67 61.33

H PROOF OF CONVERGENCE

We first recall two standard assumptions from stochastic non-convex optimization.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Assumption 1 (Smoothness). The objective function J(θ) is continuously differentiable, and its
gradient is L-Lipschitz:

∥∇J(θ1)−∇J(θ2)∥ ≤ L∥θ1 − θ2∥, ∀θ1, θ2.

Consequently, for any update θt+1:

J(θt+1) ≥ J(θt) + ⟨∇J(θt), θt+1 − θt⟩ − L
2 ∥θt+1 − θt∥2.

Assumption 2 (Bounded Variance). The variance of the stochastic gradient estimator ĝt is bounded:

E
[
∥ĝt − E[ĝt|θt]∥2

∣∣ θt] ≤ σ2.

Proposition 2. Let ĝt denote the token-averaged PPO/GRPO stochastic gradient estimator used by
StepHint at iteration t. Let phint ∈ [0, 1] be the expected fraction of tokens in a rollout that are hint
tokens, and let α ∈ [0, 1] be the probability that a rollout produced under the current policy yields a
correct final outcome. Assume the following modeling approximations at iteration t:

(A1) Token homogeneity: the expected per-token policy-gradient contribution within a rollout
is approximately the same across token positions, i.e.

E
[
∇θ log πθ(τi,j)Âi,j

]
≈ ct ∇J(θt)

for some scalar ct > 0, so that token-level expectations align with the full policy gradient
direction.

(A2) Clipping/ratio approximation for hint tokens: for hint tokens in rollouts that produce a
correct outcome the PPO probability ratio ri,j = πθ(τi,j)/πold(τi,j) is typically above the
upper clip 1 + ϵ, hence the clipped surrogate multiplies the advantage by approximately
1 + ϵ; for non-hint tokens the ratio is approximated as ri,j ≈ 1 so clipping is inactive.

Under (A1)–(A2) define
βt := (1− phint) + αphint(1 + ϵ).

Then the conditional expectation of the StepHint gradient estimator can be approximated by

E[ĝt | θt] ≈ βt ∇J(θt).

Proof. Write ĝt for the token-averaged stochastic gradient estimator at iteration t. Let a rollout
contain multiple tokens and let gj denote the gradient contribution (surrogate objective / policy-
gradient contribution) associated with a generic token position j in a rollout. We drop the rollout
index for notational simplicity and condition all expectations on θt.

The token-averaged estimator can be written as an expectation over token positions:

E[ĝt | θt] = E[gj | θt] = (1−phint)E[gj | token j is not a hint, θt]+phint E[gj | token j is a hint, θt],

since a token is either a hint token (fraction phint) or a non-hint token (fraction 1− phint).

We treat the two terms separately.

Non-hint tokens. For non-hint tokens the surrogate is the standard PPO/GRPO surrogate built
from the student policy’s own probabilities and advantages. Under Assumption (A1) we approx-
imate the per-token expected contribution by a common direction proportional to the full policy
gradient:

E[gj | non-hint, θt] ≈ E[∇θ log πθ(τ) Â],

Hint tokens. For tokens that are provided as hints we further condition on whether the entire
rollout ends in a correct final outcome. Let α denote the probability (under the current policy and
the environment) that a rollout is correct. Then, conditioning on hint token and rollout correctness,

E[gj | hint, θt] = (1− α)E[gj | hint, rollout incorrect, θt] + αE[gj | hint, rollout correct, θt].

By the StepHint design (and the modification to GRPO described in the paper), when a rollout is
incorrect the negative advantages assigned to hint tokens are clipped to zero (i.e. the algorithm
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prevents penalizing the model for hint tokens in incorrect rollouts). Therefore the contribution from
hint tokens in incorrect rollouts is (approximately) zero:

E[gj | hint, rollout incorrect, θt] ≈ 0.

For hint tokens in correct rollouts, Assumption (A2) posits that the PPO probability ratio rj =
πθ(τj)
πold(τj)

is typically above the upper clipping threshold 1+ ϵ, so that the clipped surrogate evaluates

approximately to (1 + ϵ)Â. Together with the token-homogeneity approximation (A1) that aligns
per-token expectation with Gt, we obtain

E[gj | hint, rollout correct, θt] ≈ (1 + ϵ)Gt.

Combining the two subcases for hint tokens gives

E[gj | hint, θt] ≈ (1− α) · 0 + α · (1 + ϵ)Gt = α(1 + ϵ)Gt.

Combine hint and non-hint contributions. Substitute the approximations for the two conditional
expectations back into the decomposition at the top:

E[ĝt | θt] ≈ (1− phint)Gt + phint
(
α(1 + ϵ)Gt

)
=

(
(1− phint) + αphint(1 + ϵ)

)
Gt.

Recalling Gt ≡ E[∇θ log πθ(τ) Â] = ∇J(θt) (the standard policy-gradient direction under our
estimator), we obtain

E[ĝt | θt] ≈ βt ∇J(θt), where βt := (1− phint) + αphint(1 + ϵ).

This completes the derivation.

Theorem H.1 (Convergence to stationarity). Suppose Assumptions 1–2 hold and that Proposi-
tion 2’s approximation is valid with βt ∈ [βmin, βmax] for constants 0 < βmin ≤ βmax < ∞.
Consider stochastic ascent updates

θt+1 = θt + ηĝt

with fixed step size satisfying

η ≤ 1

Lβmax
.

Let J∗ = supθ J(θ) < ∞. Then for every integer T ≥ 1,

1

T

T−1∑
t=0

E
∥∥∇J(θt)

∥∥2 ≤ 2 (J∗ − J(θ0))

ηTβmin
+

Lη σ2

βmin
.

Hence, choosing η = Θ(1/
√
T ) yields the standard stochastic non-convex rate

min
0≤t<T

E
∥∥∇J(θt)

∥∥2 = O
(
T−1/2

)
,

i.e., the iterates converge to a stationary point in expectation at the usual O(1/
√
T ) speed.

Proof. Starting from Assumption 1 and substituting ∆ = θt+1 − θt = ηĝt gives

J(θt+1) ≥ J(θt) + η⟨∇J(θt), ĝt⟩ − Lη2

2 ∥ĝt∥2.
Take the conditional expectation Et[·] = E[· | θt] and apply Proposition 2 to replace Et[ĝt] by
βt∇J(θt) (approximately):

Et[J(θt+1)] ≥ J(θt) + ηβt∥∇J(θt)∥2 − Lη2

2 Et∥ĝt∥2.

Use the variance decomposition Et∥ĝt∥2 = ∥Et[ĝt]∥2+Et∥ĝt−Et[ĝt]∥2 together with Assumption 2
to obtain

Et∥ĝt∥2 ≤ β2
t ∥∇J(θt)∥2 + σ2.

Substituting back,

Et[J(θt+1)]− J(θt) ≥
(
ηβt − Lη2β2

t

2

)
∥∇J(θt)∥2 − Lη2σ2

2 .
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With the choice η ≤ 1/(Lβmax) we have Lηβt ≤ 1, hence

ηβt − Lη2β2
t

2 = ηβt

(
1− Lηβt

2

)
≥ ηβt

2 .

Thus
ηβt

2 ∥∇J(θt)∥2 ≤ Et[J(θt+1)− J(θt)] +
Lη2σ2

2 .

Taking total expectation, summing t = 0, . . . , T − 1, and using the bound βt ≥ βmin > 0 yields

ηβmin

2

T−1∑
t=0

E∥∇J(θt)∥2 ≤ E[J(θT )]− J(θ0) +
TLη2σ2

2 .

Since E[J(θT )] ≤ J∗ we obtain

1

T

T−1∑
t=0

E∥∇J(θt)∥2 ≤ 2(J∗ − J(θ0))

ηTβmin
+

Lησ2

βmin
,

which proves the theorem. Choosing η ∝ T−1/2 gives the stated O(1/
√
T ) rate.
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