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ABSTRACT

Semantic distillation in radiance fields has spurred significant advances in open-
vocabulary robot policies, e.g., in manipulation and navigation, founded on pre-
trained semantics from large vision models. While prior work has demonstrated the
effectiveness of visual-only semantic features (e.g., DINO and CLIP) in Gaussian
Splatting and neural radiance fields, the potential benefit of geometry-grounding in
distilled fields remains an open question. In principle, visual-geometry features
seem very promising for spatial tasks such as pose estimation, prompting the ques-
tion: Do geometry-grounded semantic features offer an edge in distilled fields?
Specifically, we ask three critical questions: First, does spatial-grounding produce
higher-fidelity geometry-aware semantic features? We find that image features
from geometry-grounded backbones contain finer structural details compared to
their counterparts. Secondly, does geometry-grounding improve semantic object
localization? We observe no significant difference in this task. Thirdly, does
geometry-grounding enable higher-accuracy radiance field inversion? Given the
limitations of prior work and their lack of semantics integration, we propose a novel
framework SPINE for inverting radiance fields without an initial guess, consisting
of two core components: (i) coarse inversion using distilled semantics, and (ii)
fine inversion using photometric-based optimization. Surprisingly, we find that the
pose estimation accuracy decreases with geometry-grounded features. Our results
suggest that visual-only features offer greater versatility for a broader range of
downstream tasks, although geometry-grounded features contain more geometric
detail. Notably, our findings underscore the necessity of future research on effective
strategies for geometry-grounding that augment the versatility and performance of
pretrained semantic features.

Figure 1: We revisit pretrained semantics in distilled radiance fields, asking three critical questions to
compare visual-geometry semantic features against visual-only features. We find that while visual-
geometry features retain richer spatial fidelity, they do not improve performance in downstream
tasks such as semantic localization or radiance field inversion, suggesting the greater versatility of
visual-only semantic features.
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1 INTRODUCTION

Large foundation models have driven rapid advances in open-vocabulary robot policies, en-
abling robots to perform complex, multi-stage tasks, entirely from natural-language instructions;
see (Firoozi et al., 2025) for a detailed review. Through semantic distillation, prior work blends
photorealistic novel-view synthesis from radiance fields, such as Gaussian Splatting (Kerbl et al.,
2023) and neural radiance fields (NeRFs) (Mildenhall et al., 2021), with generalizable pretrained
semantics from foundation models to endow robots with semantic task understanding capabilities
grounded in the real-world. This synergy underlies the success of many language-conditioned robot
policies in manipulation (Ze et al., 2023; Shen et al., 2023) navigation (Chen et al., 2025).

In general, large vision backbones (CLIP (Radford et al., 2021), DINOv2 (Oquab et al., 2023),
DINOv3 (Siméoni et al., 2025)) have been limited to visual feature learning without spatial grounding,
potentially impeding the emergence of 3D-aware features. However, recent work VGGT (Wang et al.,
2025) demonstrates that large vision backbones can be trained to produce visual-geometry features
by grounding these models with a 3D reconstruction task objective, achieving superior performance
in many downstream tasks, such as keypoint tracking. Although visual-geometry features seem
promising for spatial tasks such as pose estimation, the actual performance of visual-geometry
semantic features relative to visual-only semantic features remains unknown, particularly in distilled
radiance fields. To address this gap, we revisit pretrained semantics in distilled fields, asking: Do
visual-geometry semantic features offer an edge in distilled fields? To rigorously explore the relative
performance between visual-only features (DINOv2 and DINOv3) and visual-geometry features
(VGGT), we ask three critical questions, each focused on important downstream applications of
distilled radiance fields in robotics, illustrated in Figure 1.

First, do visual-geometry semantic features contain higher-fidelity spatial content? We examine
the information content of visual-only and visual-geometry features, mapping these features from
their respective semantic spaces to a lower-dimensional visual space. We find that visual-geometry
semantics provide finer spatial content, with more prominent structural detail, e.g., sharper edges,
more accurate subpart decomposition, etc. We note that high-fidelity geometric detail could be
essential in some robotics applications, e.g., fine and dexterous manipulation.

Second, does geometry-grounding improve semantic object localization? Many state-of-the-art robot
policies rely on semantic object localization in distilled radiance fields for successful task execution,
underscoring its immense relevance. We find that visual-geometry semantic features perform similarly
to visual-only features, which suggests that spatial grounding does not boost object-class semantic
feature content. However, effective co-supervision of semantic features with geometry and vision can
lead to improved performance, presenting an important area for future research.

Third, can visual-geometry features enable higher-accuracy radiance field inversion? Unlike ren-
dering/rasterization, radiance field inversion remains a challenging problem, with existing methods
limited by need for good initial estimates. To address this problem and further facilitate semantics
evaluation, we introduce a novel framework SPINE for inverting radiance fields without any camera
pose. SPINE directly leverages embedded pretrained semantics to compute: (i) coarse pose estimates
using a co-trained semantic field which maps semantic features to a distribution over camera poses
and (ii) fine pose estimates by refining the coarse solution through novel-view synthesis in radiance
fields and robust perspective-n-point optimization. Surprisingly, we observe that visual-geometry
semantic features underperform visual-only features, despite their greater spatial content.

Our findings highlight that visual-only semantic features are more versatile than visual-geometry
features, even in spatial tasks like pose estimation. Importantly, our results underscore the need for
additional research on effective strategies for geometry-grounding to augment the versatility and
performance of pretrained semantic features.

2 RELATED WORK

Radiance Fields marked a notable breakthrough in 3D scene reconstruction, achieving photorealistic
image rendering and novel-view synthesis entirely from RGB images. NeRFs learn separate density
and color fields parameterized by multi-layer perceptrons, mapping a 3D point at a specified camera
direction to its volume density (associated with its opacity) and radiance (color). Given its generality
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to different sensing modalities, NeRFs have been widely applied in robotics, e.g., robot planning
(Adamkiewicz et al., 2022; Chen et al., 2024), localization (Yen-Chen et al., 2021; Maggio et al.,
2022), and manipulation (Kerr et al., 2022; Weng et al., 2022). In contrast to implicit representation
of NeRFs, Gaussian Splatting (GS) (Kerbl et al., 2023) utilizes explicit ellipsoidal primitives, each
parameterized by a mean, covariance, opacity, and color, to represent non-empty space. This design
choice enables the use of fast tile-based rasterization for faster training and real-time rendering speeds.
Like NeRFs, GS has found widespread applications in robotics, e.g., robot planning and localization
(Chen et al., 2025; Michaux et al., 2025) and manipulation (Lu et al., 2024).

Distilled Semantics in Radiance Fields. Foundation models, e.g., CLIP and DINO learn robust visual
features from images/language that encapsulate open-world semantics through pretraining on internet-
scale data. Increasingly, robot policies have embedded semantics from CLIP and DINO into radiance
fields to enable language-conditioned robot manipulation (Rashid et al., 2023; Shen et al., 2023;
Shorinwa et al., 2024b), mapping (Shorinwa et al., 2025), and object localization (Yin et al., 2025).
In general, these methods combine visual-only image features, e.g., DINO, with vision-language
semantics from CLIP to support language conditioning, particularly for semantic localization, which
plays an essential role in downstream robotics tasks. Recent work trains foundation models for 3D
reconstruction to learn visual-geometry features with potentially useful applications to spatial tasks.
However, no existing work has examined the integration of these features in distilled radiance fields.
In this work, we explore visual-geometry semantic features in distilled radiance fields, quantifying
the performance of these features relative to visual-only features in important robotics applications.

3 PRELIMINARIES

We review important technical concepts, necessary for understanding the discussion in this paper. We
introduce NeRFs, GS, and discuss semantic distillation in radiance fields in Appendix A.1.

NeRFs. NeRFs learn implicit volumetric color and density fields, encoding the occupancy and
radiance of each point in the scene, given a set of images I and corresponding camera poses, which
is typically computed via structure-from-motion (Schonberger & Frahm, 2016). Specifically, the
color field c : R3 ⇥ S2 7! R3 maps a 3D point x 2 R3 and a camera viewing direction d 2 S2 to
an RGB color c(x, d). Likewise, the density field ⇢ : R3 7! R+ maps x to a non-negative volume
density ⇢(x), representing the differential probability of a light ray terminating at a particle located at
x. Using ray-marching to render images from c and ⇢, NeRFs utilize stochastic gradient descent to
optimize the parameters of c and ⇢ (represented as MLPs), minimizing the photometric error between
the rendered and ground-truth images.

Gaussian Splatting. Gaussian Splatting (GS) utilizes 2D (Huang et al., 2024) or 3D (Kerbl et al.,
2023) Gaussian primitives to represent non-empty space, each defined by a mean µ 2 R3, covariance
⌃ 2 S3

++
, opacity ↵ 2 R+, and spherical harmonics (for view-dependent color) parameters. Like

NeRFs, GS optimizes these parameters by minimizing the photometric error between rendered and
ground-truth images, initialized from a sparse point cloud generally computed using structure-from-
motion. Notably, GS employs a tile-based rasterization procedure to efficiently project the Gaussian
primitives to the image plane, circumventing the expensive volumetric ray-marching procedure used
by NeRFs, for faster training and rendering. Moreover, the explicit scene representation enables
relatively easier theoretical analysis compared to NeRFs, in addition to providing more accurate
depth estimation and mesh extraction.

4 VISUAL-GEOMETRY SEMANTICS IN DISTILLED RADIANCE FIELDS

We present our approach to distilling spatially-grounded semantics from vision foundation models
into radiance fields. We utilize the state-of-the-art Visual Geometric Grounded Transformer (VGGT)
as the vision backbone, given its effectiveness across a broad range of geometric scene-understanding
tasks, e.g., camera intrinsics/extrinsics estimation, multi-view depth estimation, dense point cloud
reconstruction, and multi-frame point tracking.

Extracting Pretrained Visual-Geometry Semantic Features. We extract ground-truth pretrained
semantic embeddings for each image from the depth and point heads of VGGT and its intermediate
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Figure 2: (left) Semantics distillation architecture, showing co-supervision of CLIP with
DINO/VGGT via base semantics module. (right) VGGT’s semantic embeddings from differ-
ent heads, showing high-fidelity geometric content of the point head.

layers, which were trained for depth estimation and dense point cloud reconstruction, respectively.
We visualize these semantic embeddings on the right side of Figure 2 using the first three principal
components. We find that the point head produces features with the highest-fidelity spatial detail,
compared to the depth head and other intermediate layers. Given a query image I 2 RH⇥W⇥C , the
VGGT encoder outputs a semantic embedding f 2 RH⇥W⇥ds , where ds = 128. For computational
efficiency, we preprocess the entire dataset prior to training.

Distilling Semantics into Radiance Fields. We learn a semantic field fs : R3 7! Rds , which maps a
3D point x to visual-geometry features fs(x) alongside a semantic field fl : R3 7! Rdl that maps
3D points to the shared image-language embedding space of CLIP. Note that ds and dl denote the
dimension of the embedding space of VGGT and CLIP, respectively, which varies depending on the
specific VGGT head and CLIP model, e.g., 128 for VGGT’s depth/point head and 768 and 1024 for
CLIP’s ViT and ResNet models. We train a semantic field for CLIP features to enable downstream
open-vocabulary tasks. For effective co-supervision of both semantic fields, the VGGT and CLIP
semantic fields share the same hashgrid encodings (i.e., base semantics), associating their semantic
embeddings with the same visual and geometric features, illustrated in the left side of Figure 2.

Given a dataset D of images and associated camera poses, we render images in the semantic space by
back-projecting RGB images using the estimated depth from the radiance field to reconstruct a point
cloud in the local camera frame. We subsequently compute the VGGT and CLIP semantic features
for the constituent points with fs and fl, respectively.

During training, we optimize the parameters of fs and fl simultaneously
with the visual attributes of the radiance field using the loss function:
L = Lr +

P
I2D,c2{s,l} kIf,c � Îf,ck2F �

P
I2D,c2{s,l} csim(If,c � Îf,c) where Lr denotes

the RGB loss components of the base radiance field, If,c and Îf,c denote the ground-truth and
rendered semantic features, respectively, with s and l denoting the spatial and language components,
and csim represents the cosine-similarity function. Although the Frobenius-norm term is not strictly
required in the loss function, we retain it to improve the numerical stability of the cosine-similarity
term, which is undefined for vectors of zero norm. In our experiments, we apply the same distillation
procedure to train DINO-embedded distilled radiance fields.

Visualizing the Distilled Semantic Features. We examine the content of the distilled semantic fea-
tures extracted by the DINO and VGGT backbones via principal component analysis (PCA),resulting
in three-dimensional features which we visualize as images. Concretely, given a matrix Îf 2 Rm⇥d

of d-dimensional semantic features, we compute the singular value decomposition (SVD) of A to
obtain the tuple (U, S, V ), such that: Îf = U⌃V T , where U 2 Rm⇥p, V 2 Rn⇥p, and ⌃ 2 Rp⇥p

denotes the left , right , and singular values, respectively. In practice, we compute the low-rank
SVD for computational efficiency. Subsequently, we map the semantic features in Iv to the RGB
image space using the first-three principal components via the transformation: Iv = ÎfV[:,:3], with
Iv 2 Rm⇥3, which is reshaped into a 3-channel 2D image for visualization (i.e., Iv 2 RW⇥H⇥3).
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To quantify the geometric content of the distilled semantic features, we introduce the geometric
fidelity factor (GFF), which captures the edge information present in the semantic features relative to
the physical scene, as determined by the RGB image. To do so, we apply the Sobel–Feldman operator
(Duda & Hart, 1973) to the RGB image, which approximates the gradient of the image intensity
through simple convolutions with the image using 3x3 kernels. The Sobel–Feldman operator suffices
for this use-case, although more sophisticated gradient estimators could be applied in more complex
problems. We apply hard-thresholding to the norm of the gradients to produce edges at varying
resolutions. We post-process the semantic image Iv and RGB image to obtain the binary edge masks
Ie,sem 2 RW⇥H⇥3 and Ie,rgb 2 RW⇥H⇥3, respectively. After extracting edges from the semantic
and RGB images, we compute the GFF using:

GFF :=

X

(i,j,k)

Ie,sem[i, j, k]/
X

(i,j,k)

Ie,rgb[i, j, k], (1)

representing the fraction of edges retained by the distilled features. We examine the relative geometric
content of the semantic features at different gradient thresholds in Section 7.2.

5 SEMANTIC LOCALIZATION

The distilled semantic features enable open-vocabulary object localization within the radiance
field given a query: e.g., “find me a mug.” For semantic localization, we compute the seman-
tic embeddings of the language query �query using CLIP and subsequently compute the cosine
similarity between the query and all points in the radiance field to identify candidate matches.
For increased robustness, we utilize the semantic relevancy score (Kerr et al., 2023) given by:
⌫(�query) = mini

exp(�query·�f )

exp(�f ·�i
canon)+exp(�query·�f )

, where �f represents the rendered semantic embed-
dings from the radiance field and �canon represents the semantic embedding of canonical prompts,
i.e., generic or negative prompts to better distinguish between confident localization matches from
non-confident ones. We use canonical prompts such as: “object,” “stuff,” and “things.” The semantic
relevancy score can be viewed as the pairwise softmax over a set of positive and negative queries
with respect to the rendered semantic embeddings. For conservative results, we take the minimum
over all pairwise softmax distributions to define the semantic relevancy score.

To evaluate semantic localization accuracy, we map the ground-truth segmentation mask to the
Euclidean space, assigning the value zero to pixels outside the map and one otherwise. Likewise,
we normalize the semantic relevancy score generated by the radiance field at each view to values
in [0, 1] to obtain a relevancy mask. Afterwards, we map the ground-truth mask and the relevancy
mask to the RGB space using a colormap. Thereafter, we compute the objective localization
accuracy using widely-used perceptual metrics, such as the structural similarity index measure
(SSIM), learned perceptual image patch similarity (LPIPS), and peak-signal-to-noise ratio (PSNR).
We do not use metrics that require binary masks, e.g., mean intersection-over-union (mIoU), as these
metrics would require the selection of a similarity threshold for each rendered semantic relevancy
image. Identifying an optimal similarity threshold for DINO and VGGT features individually
presents computational challenges, especially since the optimal values are generally view-dependent.
Moreover, approximating the optimal thresholds could lead to confounding results.

6 INVERTING RADIANCE FIELDS

We explore the application of visual-geometry semantics to the inversion of radiance fields. The
inverse problem is particularly challenging compared to the well-posed forward problem of image
rendering in radiance fields, especially without any simplifying assumptions. In fact, existing methods
(Yen-Chen et al., 2021; Chen et al., 2025) struggle with camera pose estimation in radiance fields
without a good initial guess. As a result, we introduce SPINE, a novel algorithm for inverting radiance
fields using distilled semantics for camera pose recovery without an initial guess. Moreover, SPINE
enables us to comprehensively evaluate the relative performance of spatially-grounded features in
radiance field inversion problems. Using a semantics-conditioned inverse model, SPINE directly maps
semantic embeddings to a distribution over camera poses, which is subsequently refined to compute
high-accuracy pose estimates using robust optimization, described in the following discussion.
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Learning an Inverse Model. SPINE learns a neural field p : Rd 7! P which maps semantic (image)
embeddings f(I) 2 Rd to a distribution over candidate poses, where P denotes the space of valid
distributions. For VGGT, we use the camera embeddings as input to p ; whereas for DINO, we use
the class token as input. We decompose the camera pose P 2 SE(3) into its translation t 2 R3 and
orientation R 2 SO(3). Note that optimizing over the space of orientations is non-trivial, given that
the orthogonality constraint in SO(3). To circumvent this challenge, SPINE parameterizes the camera
orientation using the corresponding Lie algebra so(3), the vector space of three-dimensional skew-
symmetric matrices. Leveraging the isomorphism between so(3) and R3, we represent the camera
rotation by r 2 R3. Note that we can construct a skew-symmetric matrix from r and subsequently
map elements of so(3) to SO(3) using the exponential map, i.e., exp : so(3) 7! SO(3).

We jointly optimize the parameters of the GMM and the visual and semantic attributes of the radiance
field, detaching the gradients between both fields to simultaneously learn the forward and inverse
maps of the radiance field without compromising visual fidelity. Moreover, we make no additional
assumptions beyond those made by the underlying radiance field and train SPINE entirely on the
same inputs as the radiance field using the mean-squared-error (MSE).

Camera pose estimation. Given a query image, we compute the semantic embedding of the
image, which is mapped to P using p . In general, the estimated camera pose is not always
of sufficiently high accuracy. Consequently, we render images from the radiance field at the
estimated coarse camera pose, using novel-view synthesis to generate an RGB-D image. Sub-
sequently, we match image features from the query image to the rendered image, associated to
a point-cloud in the radiance field through the rendered depth. Given the set of corresponding
matches C, we solve the perspective-n-point (PnP) problem to refine the coarse pose estimates:
(t̂, R̂) = argmint2R,R2SO(3)

P
(p,q)2C kp�K(Rq+ t)k2

2
, where (p,q) denote a corresponding

pair with homogeneous image coordinates p (in the query image) and 3D point q (in the radiance
field), K denotes the camera intrinsic matrix, and t̂ and R̂ represent the estimated camera translation
and rotation, respectively. For robustness to spurious correspondences, we solve the PnP problem
using RANSAC, mitigating the effects of outliers on the estimated pose.

We evaluate the accuracy of the pose estimates using the SE(3) error, composed of the translation
and rotation error between the ground-truth and estimated camera poses. We compute the translation
error directly as the `2 norm of the difference between the ground-truth and estimated translation and
leverage the trace property of rotation matrices: trace (R) = 1 + 2 cos(✓) to compute the smallest
rotation angle required to align the ground-truth and estimated camera orientations, where ✓ denotes
the angle associated with rotation matrix R�. Specifically, the absolute rotation error ✓ is given by:
✓ = arccos

⇣
trace(R�)�1

2

⌘
, where R� = R̂TRgt denotes the relative rotation matrix between the the

ground-truth and estimated rotation matrices, R̂ and Rgt, respectively.

7 EXPERIMENTS

We examine the performance of visual-geometry semantic features compared to visual-only features
in distilled radiance fields. Via extensive experiments, we explore the following questions, spanning
the core applications of distilled radiance fields in robotics: (i) Do visual-geometry semantic features
contain higher-fidelity spatial content? (ii) Does geometry-grounding improve semantic object
localization? (iii) Can visual-geometry features enable higher-accuracy radiance field inversion?
The full results for all datasets are provided in the Appendix.

7.1 EVALUATION SETUP

We discuss the evaluation setup briefly, and provide additional details in Appendix A.2. We evaluate
the visual-only semantics from DINOv2 and DINOv3 , and visual-geometry features from VGGT in
nine scenes from three benchmark datasets, namely: Ramen, Teatime, and Waldo kitchen in the LERF
dataset (Kerr et al., 2023); Bed, Covered Desk, and Table in the 3D-OVS dataset (Liu et al., 2023);
and Office, Kitchen, and Drone in the robotics dataset (Shorinwa et al., 2025). For each scene, we
train a semantic GS and NeRF representation and compute the following metrics across 100 camera
poses: geometric fidelity factor (GFF) metric for semantic content analysis (Section 4); SSIM, PSNR,
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and LPIPS for semantic object localization and radiance field inversion (Section 5); and rotation and
translation error in degrees and meters, respectively (Section 6).

7.2 SEMANTIC CONTENT OF DISTILLED FEATURES

As described in Section 4, we project the distilled semantic features into a three-dimensional subspace
using the first-three principal components to aid visualization. Figure 3 shows the PCA visualization
of the semantic features in the Teatime scene, highlighting the object-level composition of the scene.
In the top row in Figure 3, we observe that the DINOv2 and DINOv3 features for the bear and
the sheep are strongly distinct from the table and chairs, underscoring its focus on object-level
decomposition. In contrast, VGGT features emphasize the geometric details of the scene, evidenced
by the prominent edges of the bear, sheep, table, and chair, although some object-level features are
visible. Likewise, in the bottom row, we see that VGGT highlights the structure (outline) of the mug
and plate, unlike DINOv2 and DINOv3, although the DINO-based features provide more detailed
object-level information. However, the wood grain on the table surface are more pronounced in
the DINO-based features compared to those of VGGT. These findings suggest that visual-geometry
semantic features provide detailed geometric information compared to visual-only features; however,
visual-only features may provide more consistent object-level semantics (e.g., object class). We
observe similar findings in the semantic content of other scenes, discussed in Appendix A.3.

PCA_vis

RGB$%

   NeRFGS

DINOv2 DINOv3 VGGTDINOv2 DINOv3 VGGT

Figure 3: Semantic content of distilled features. Whereas visual-only features provide object-level
information, visual-geometry features provide more structural details, such as an object’s contour.

Next, we use GFF Equation (1) to quantitatively assess the geometric content of distilled features. We
apply the Sobel-Feldman filter to the semantic images and extract the edges contained in these images
at different resolutions, by varying the threshold of the edge gradient. In Figure 4, we visualize the
results for the Teatime scene with thresholds of 0.1 and 0.3. Even at the lowest threshold of 0.1, we
observe more prominent geometry in the VGGT features Increasing the gradient threshold leads to an
overall decrease in the number of edges contained in the spatially-grounded and visual-only features.
However, VGGT still provides the most structural content. Surprisingly, we see that DINOv2 provides
stronger geometric information compared to DINOv3 in this scene, although not in all scenes.

We aggregate the quantitative results for all scenes and plot the GFF against gradient thresholds in
Figure 4. For GS, we see that VGGT’s features have the most edges at lower gradient thresholds,
with DINOv2’s features having the least, consistent with our qualitative observations. Moreover, we
observe that the GFF of DINOv2 and DINOv3 remains almost constant across different thresholds,
suggesting a lack of diversity in their geometric content, unlike VGGT. For NeRFs, the GFF remains
similar across all semantic features, with DINOv3 having fewer edges at higher thresholds.

7.3 SEMANTIC OBJECT LOCALIZATION

We examine the performance of spatially-grounded vs. visual-only features in semantic object
localization using the procedure described in Section 5. In each scene, we use CLIP to encode
the natural-language queries and subsequently generate the continuous relevancy mask. We use
GroundingDINO (Liu et al., 2024) and SAM-2 (Ravi et al., 2024) to annotate the ground-truth
segmentation mask, used in computing the segmentation accuracy metrics: SSIM, PSNR, and LPIPS.

Figure 5 summarizes our results. We find no significant difference in the localization accuracy of
visual-only vs. visual-geometry features across GS and NeRF, suggesting that both semantic features
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Figure 4: Geometric fidelity factor (GFF) of visual-geometry and visual-only features. VGGT’s
features contain prominent object edges, unlike visual-only semantic features.

are effective in co-supervising CLIP for open-vocabulary localization. However, we observe marginal
degradation in performance with geometry-grounded features (VGGT). In addition, we visualize the
ground-truth RGB and segmentation mask and the relevancy masks in the Teatime scene, highlighting
the effectiveness of both kinds of semantic features in localizing the cookies, sheep, and bear. We
provide additional results in Appendix A.4.

SSIM PSNR LPIPS

RGB DINOv2 DINOv3 VGGT$%

$

%

&

   SSIM PSNR           LPIPS

DINOv2 DINOv3 VGGT

   NeRF
DINOv2

DINOv3

VGGT

!

"

GS

↑ ↑ ↓ ↑ ↑ ↓

Figure 5: Semantic object localization. Both visual-only features (DINOv2/DINOv3) and visual-
geometry features (VGGT) achieve similar localization accuracies (Teatime scene visuals).

7.4 INVERTING RADIANCE FIELDS

We evaluate the accuracy of visual-only and spatially-grounded features in radiance field inversion.
Surprisingly, we find that visual-geometry features underperform visual-only features, summarized
in Figure 6. Specifically, DINOv2 achieves the lowest rotation and translation errors, while VGGT
computes the least accurate pose estimates. These results suggest that existing methods for geometry-
grounding may degrade the versatility of semantic features as general-purpose image features,
constituting an interesting area for future work.

Further, we compare SPINE to existing baseline methods for radiance field inversion. Particularly,
we compare DINOv2-based SPINE with (Chen et al., 2025) and (Yen-Chen et al., 2021) for pose
estimation in GS and NeRFs, respectively. Since the baselines require an initial guess, we assess the
performance of the baselines across two initialization domains, defined by the magnitude of the initial
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rotation and translation error, Rerr and Terr, respectively: (ii) low initial error with Rerr = 30deg,
Terr = 0.5m, and (iii) medium initial error with Rerr = 100 deg, Terr = 1m. We reiterate that SPINE
does not utilize any initial guess.

Figure 6 summarizes the results. We observe that the baselines struggle without a good initial guess.
Unlike these methods, SPINE computes more accurate pose estimates using semantics in the coarse
phase, without any initial guess. Moreover, via photometric optimization, SPINE improves the
accuracy of the coarse estimates. However, we note that the success of fine inversion depends on the
optimizer used.

DINOv2 DINOv3 VGGT! "

   NeRFGS

Rotation Translation Rotation Translation

   NeRFGS

Easy             Medium         

Rotation Translation Rotation Translation

Er
ro

r

   NeRFGS    NeRFGS

Rotation Translation Rotation Translation

Coarse Fine

Figure 6: Inverting radiance field. (Left) Existing RF inversion methods struggle in the absence
of a good initial guess. (Center) In contrast, SPINE computes better coarse pose estimates using
the distilled semantics. (Right) Via photometric optimization, SPINE refine the coarse estimates for
higher accuracy.

8 CONCLUSION

We explore the relative performance of visual-geometry semantic features compared to visual-only
features in distilled radiance fields, across three critical areas for state-of-the-art robot policies. First,
our work examines the semantic content of these image features, finding that spatially-grounded
features provide more prominent geometric detail compared to visual-only features, which could be
useful in fine-grained robotics task, e.g., dexterous manipulation. Second, we evaluate the accuracy
achieved by these features in open-vocabulary semantic localization, and observe no significant
difference in their performance. Third, we derive a novel method for inverting radiance fields and
compare the performance of visual-only and visual-geometry features in this task. We demonstrate
the effectiveness of our method compared to existing baselines, without requiring an initial guess,
unlike the baselines. Moreover, we find that visual-only features outperform spatially-grounded
features in radiance field inversion.

9 LIMITATIONS AND FUTURE WORK

Self-Supervised Geometry-Grounding. Our findings suggest that existing solutions for geometry-
grounding may impair the versatility of pretrained features, e.g., in radiance field inversion. We
believe that this limitation may be due to the fully-supervised approach used by prior work. Future
work will explore self-supervised approaches for spatial-grounding to eliminate inductive biases,
improve adaptability, and enable larger-scale pre-training.

Synergy between Geometry and Vision. In addition, our experiments revealed that visual-geometry
semantics did not improve the semantic object localization accuracy, despite its more significant
structural content, suggesting the lack of sufficient synergy between the geometric and visual contents.
Future work will introduce more effective strategies for establishing synergy between the geometry-
oriented and visual-oriented semantic features for more robust scene understanding.

Efficient Inference. Existing geometry-grounded vision backbones require notable compute overhead
compared to ungrounded backbones, amplified by the absence of lightweight variants. Future work
will examine more efficient architectures for spatially-grounded vision backbones to enable their use
in real-time applications, e.g., in robot manipulation.

9
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