
000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 GEOMETRY MEETS VISION: REVISITING PRETRAINED SEMANTICS IN DISTILLED FIELDS

Anonymous authors

Paper under double-blind review

ABSTRACT

Pretrained semantics from large vision models have enabled major advances in open-vocabulary robot policies, e.g., in manipulation and navigation. However, a striking lack of consensus on the performance and effects of fine-tuning these vision encoders remains a significant challenge. For example, some papers claim that (task-specific) pretrained encoders outperform general-purpose semantic encoders (e.g., DINO) or that fine-tuning vision encoders improves performance, while others claim the exact opposite. In this work, we seek to address these long-standing divisions through a principled examination of pretrained semantics from vision encoders in robotics. We hypothesize that the inconsistencies in prior work arise from a fundamental lack of insight into the feature content of these vision encoders. Hence, we undertake a systematic study of pretrained semantics in distilled fields to uncover their salient components with the goal of identifying a framework that explains previously contradictory claims. Specifically, we ask: *what do the semantic features of robotics vision encoders contain?*—and consider visual-semantic encoders (like DINO) and geometry-grounded encoders (like MUSt3R/VGGT). Notably, we find that these encoders attend to different features in their image inputs. While visual-semantic encoders prioritize object/part-level semantic decomposition, geometry-grounded encoders may discard this information to focus on more structural components, such as edges and corners. This observation can be described by catastrophic forgetting of core semantic information, which worsens with increased fine-tuning. We validate these findings in two major robotics problems: semantic object localization and radiance field inversion, using distilled fields as a testbed. We observe results consistent with the internal contents of the semantic features of these encoders, highlighting the strong explainability afforded by internal probes. For semantics-focused radiance field inversion, we propose a novel framework SPINE using distilled semantics for coarse inversion followed by a fine inversion procedure with photometric-based optimization, *without* an initial guess, demonstrating its superior performance compared to competitive alternatives. Further, our results suggest that geometry-grounding could offer potential benefits if catastrophic forgetting is controlled.

1 INTRODUCTION

Large foundation models have driven rapid advances in open-vocabulary robot policies, enabling robots to perform complex, multi-stage tasks, entirely from natural-language instructions; see (Firoozi et al., 2025) for a detailed review. Essentially, all state-of-the-art foundation models rely on pretrained vision encoders for robust processing of images into intermediate conditioning inputs for these foundation models. Despite the importance of pretrained vision encoders, a striking lack of consensus exists on the properties of pretrained semantics from these encoders, ranging from their capabilities and performance to the effects of fine-tuning. While some prior works (Chi et al., 2025) claim that (task-specific) pretrained encoders outperform general-purpose semantic encoders (CLIP/DINO) or that fine-tuning vision encoders hurts performance (Karamcheti et al., 2024; Huang et al., 2025), other work (Kim et al., 2025) claims the exact opposite. These contradictory findings pose a major challenge to researchers and practitioners alike. We hypothesize that the secret to understanding these seemingly inconsistent claims lies in the internal content of the semantic features of these encoders. Notably, in robotics, there is a prominent lack of research examining the relative

054
055
056
057
058
059
060
061
062
063
064
065

066 Figure 1: We revisit pretrained semantics in distilled radiance fields, probing the semantic features of
067 robotics vision encoders to uncover their internal content. We identify what these vision encoders
068 attend to and draw connections between finetuning and generalization of these encoders, particularly
069 for visual-semantic and geometry-grounded vision encoders.

070
071
072 composition of semantic features across vision encoders to inform better integration of these encoders
073 into robotics pipelines, with a few exceptions from the computer vision community, such as DINO.
074 In this work, we take the first steps towards shedding more light on the content of these features for
075 better explainability, which is essential to future research progress.

076 We undertake a systematic study of pretrained semantics to uncover the salient components of
077 semantic features of robotics vision encoders. In this study, we consider the most widely-used vision
078 encoders, grouped into two categories: *visual-semantic* encoders—e.g., DINOv2/v3 (Oquab et al.,
079 2023; Siméoni et al., 2025)— and *geometry-grounded* vision encoders—e.g., DUS3R (Wang et al.,
080 2024), MASt3R (Leroy et al., 2024), MUSt3R (Cabon et al., 2025) and VG3T (Wang et al., 2025).
081 We define *geometry-grounded* encoders as vision models that have been fine-tuned from a base
082 visual-semantics encoder on a task that provides geometric supervision, such as 3D reconstruction.
083 We choose to explore these encoders based on the important role played by geometry and semantics in
084 robotics tasks. Specifically, we ask: *what do the semantic features of these vision encoders contain?*
085 We leverage distilled radiance fields as a testbed for this study to control the effects of confounding
086 variables. Then, we analyze the feature content to draw valuable insights into the performance of
087 these features in downstream applications. We find that these vision encoders attend to different
088 characteristics in their input images. While visual-semantic encoders focus on preserving object/part-
089 level semantic information that distinguishes between different classes of objects, geometry-grounded
090 encoders may discard this semantic information in favor of structural information that emphasize
091 fine-grained edges, corners, and other spatial details.

092 These findings hold significant explanatory power. First, our findings suggest that general-purpose
093 semantic encoders (such as DINO) would outperform task-specific encoders (such as DUS3R,
094 MASt3R, etc.) in generalist robot manipulation across a broad range of tasks, as observed in prior
095 work (Kim et al., 2025; Huang et al., 2025). On the other hand, task-specific encoders would
096 likely outperform general-purpose semantic encoders on dexterous robot manipulation tasks, given
097 sufficient training data coverage, as observed in existing work (Chi et al., 2025). Second, our
098 findings highlight that finetuning might degrade generalization by replacing more generalizable
099 feature content with task-specific information, which resolves the discrepancies in the results of prior
100 work, e.g., (Karamcheti et al., 2024; Kim et al., 2025; Huang et al., 2025).

101 We validate these findings in two key robotics problems in radiance fields: semantic localization and
102 radiance field inversion. To enable semantics-oriented radiance field inversion, we introduce SPINE
103 for initialization-free inversion, a critical challenge in prior methods (Yen-Chen et al., 2021; Chen
104 et al., 2025). SPINE directly leverages embedded pretrained semantics to compute: (i) coarse pose
105 estimates using a co-trained semantic field which maps semantic features to a distribution over camera
106 poses and (ii) fine pose estimates by refining the coarse solution through novel-view synthesis in
107 radiance fields and robust perspective- n -point optimization. Across all our experiments, we observe
108 results consistent with our earlier findings. Concretely, we observe a trend where more finetuning
109 leads to further catastrophic forgetting, hurting performance especially in radiance field inversion, a

108 task that requires strong global semantic understanding, while performance on semantic localization
109 remains similar.
110

111 2 RELATED WORK 112

114 **Pre-trained vision encoders.** Foundation models have shown impressive capabilities as vision
115 backbones, enabling zero-shot deployment in many downstream tasks without requiring specific
116 finetuning. Increasingly, robot policies have embedded semantics from CLIP and DINO into radiance
117 fields to enable language-conditioned robot manipulation (Rashid et al., 2023; Shen et al., 2023;
118 Shorinwa et al., 2024b), mapping (Shorinwa et al., 2025), and object localization (Yin et al., 2025).
119 One approach to building general-purpose pretrained foundation models is through self-supervised
120 learning. For example, DINOv2 introduces self-distillation to learn task-agnostic image- and pixel-
121 level features, which DINOv3 subsequently scales to larger models and datasets (Oquab et al., 2023;
122 Siméoni et al., 2025). VGGT (Wang et al., 2025) extends this paradigm to 3D reconstruction tasks,
123 finetuning DINO on a suite of 3D tasks to ground DINO features with geometric supervision. On
124 the other hand, DUST3R and its descendants (Wang et al., 2024; Cabon et al., 2025) finetune vision
125 transformers to solve 3D vision tasks, e.g., multi-view stereo reconstruction. MUS3R (Cabon et al.,
126 2025) extends the prediction from pairs to multiple views, and MAST3R (Leroy et al., 2024) extends it
127 to image matching. While all of these models serve as useful feature extractors for 2D and 3D vision
128 tasks, prior work has observed a significant degree of variation in their performance. In this work, we
129 probe the features of pretrained vision encoders to shed some light on their observed performance
130 and motivate future research based on insights on their feature content.
131

132 **Distilled Semantics in Radiance Fields.** Radiance fields marked a notable breakthrough in 3D scene
133 reconstruction, achieving photorealistic image rendering and novel-view synthesis entirely from
134 RGB images. NeRFs and Gaussian Splatting (GS) (Kerbl et al., 2023) have been widely applied in
135 robotics, e.g., robot planning (Adamkiewicz et al., 2022; Chen et al., 2024), localization (Yen-Chen
136 et al., 2021; Maggio et al., 2022), and manipulation (Kerr et al., 2022; Weng et al., 2022; Lu et al.,
137 2024; Chen et al., 2025; Michaux et al., 2025). In this work, we explore pre-trained vision encoders
138 in distilled radiance fields, analyzing their feature contents to draw generalizable conclusions for
139 robotics applications.
140

141 3 VISUAL-GEOMETRY SEMANTICS IN DISTILLED RADIANCE FIELDS 142

143 To uncover the semantic feature contents of the robotics vision encoders, we distill their features
144 into radiance fields, providing a controlled environment for rigorous evaluation. We consider the
145 following foundation vision models: DINOv2, DINOv3, VGGT, DUST3R, MAST3R, and MUS3R.
146 Although we distill CLIP features into the radiance field, we do not directly compare against CLIP
147 features. Rather, in line with prior work Kerr et al. (2023), we augment each of the semantic encoders
148 with CLIP features to enable open-vocabulary interaction. To jointly learn the CLIP embeddings
149 alongside the other semantic features, we use a shared hashgrid to allow the flow of gradients between
150 both semantic features.
151

152 **Extracting Pretrained Visual-Geometry Semantic Features.** We extract ground-truth pretrained
153 semantic embeddings for each image from each of the vision encoders. Given a query image
154 $\mathcal{I} \in \mathbb{R}^{H \times W \times C}$, each of the encoder outputs a semantic embedding $f \in \mathbb{R}^{H \times W \times d_s}$, where d_s is the
155 dimension of the feature space and is dependent on the specific encoder. For computational efficiency,
156 we preprocess the entire dataset prior to training. We follow standard procedure in extracting these
157 features, feeding the input images into the encoders and caching the resulting embeddings.
158

159 **Distilling Semantics into Radiance Fields.** We learn a semantic field $f_s : \mathbb{R}^3 \mapsto \mathbb{R}^{d_s}$, which
160 maps a 3D point \mathbf{x} to features extracted from the vision encoder, $f_s(\mathbf{x})$. Alongside, we learn
161 a semantic field $f_l : \mathbb{R}^3 \mapsto \mathbb{R}^{d_l}$ that maps 3D points to the shared image-language embedding
162 space of CLIP, where d_s and d_l denote the dimensions of the embedding space of the vi-
163 sion encoder and CLIP, respectively. We train a semantic field for CLIP features to enable
164 downstream open-vocabulary tasks. For effective co-supervision of both semantic fields, the
165 encoder and CLIP semantic fields share the same hashgrid encodings (i.e., base semantics),
166

162 associating their semantic embeddings with
 163 the same visual and geometric features, illus-
 164 trated in Figure 2. We reiterate that this tech-
 165 nique is standard in distilled fields.

166 Given a dataset \mathcal{D} of images and associated
 167 camera poses, we render images in the seman-
 168 tic space by back-projecting RGB images us-
 169 ing the estimated depth from the radiance field
 170 to reconstruct a point cloud in the local camera
 171 frame. We subsequently compute the vision
 172 encoder and CLIP semantic features for the
 173 constituent points with f_s and f_l , respectively.

174 During training, we optimize the parameters of f_s and f_l simultaneously
 175 with the visual attributes of the radiance field using the loss function:
 176 $\mathcal{L} = \mathcal{L}_r + \sum_{\mathcal{I} \in \mathcal{D}, c \in \{s, l\}} \|I_{f,c} - \hat{I}_{f,c}\|_F^2 - \sum_{\mathcal{I} \in \mathcal{D}, c \in \{s, l\}} \text{csim}(I_{f,c} - \hat{I}_{f,c})$, where \mathcal{L}_r denotes
 177 the RGB loss components of the base radiance field, $I_{f,c}$ and $\hat{I}_{f,c}$ denote the ground-truth and
 178 rendered semantic features, respectively, with s and l denoting the spatial and language components,
 179 and csim represents the cosine-similarity function. Although the Frobenius-norm term is not strictly
 180 required in the loss function, we retain it to improve the numerical stability of the cosine-similarity
 181 term, which is undefined for vectors of zero norm.

182 **Visualizing the Distilled Semantic Features.** We examine the content of the distilled semantic
 183 features extracted by the vision backbones via principal component analysis (PCA), resulting in
 184 three-dimensional features which we visualize as images.

185 To quantify the geometric content of the distilled semantic features, we introduce the *geometric
 186 fidelity factor* (GFF), which captures the edge information present in the semantic features relative
 187 to the physical scene, as determined by the RGB image. To do so, we apply the Sobel–Feldman
 188 operator [Duda & Hart, 1973] to the RGB image. We apply hard-thresholding to the norm of the
 189 gradients to produce edges at varying resolutions. We post-process the semantic image I_v and RGB
 190 image to obtain the binary edge masks $I_{e,\text{sem}} \in \mathbb{R}^{W \times H \times 3}$ and $I_{e,\text{rgb}} \in \mathbb{R}^{W \times H \times 3}$, respectively.
 191 After extracting edges from the semantic and RGB images, we compute the GFF using:

$$\text{GFF} := \sum_{(i,j,k)} I_{e,\text{sem}}[i,j,k] / \sum_{(i,j,k)} I_{e,\text{rgb}}[i,j,k], \quad (1)$$

192 representing the fraction of edges retained by the distilled features. We examine the relative geometric
 193 content of the semantic features at different gradient thresholds in Section 5.

194 **Semantic Localization.** To further validate our conclusions on vision encoder features, we consider
 195 the downstream task of semantic localization. The distilled semantic features enable open-vocabulary
 196 object localization within the radiance field given a query: e.g., “find me a mug.” For semantic
 197 localization, we compute the semantic embeddings of the language query ϕ_{query} using CLIP and
 198 subsequently compute the cosine similarity between the query and all points in the radiance field to
 199 identify candidate matches.

200 **Inverting Radiance Fields.** We further explore the pretrained vision features in the inversion of
 201 radiance fields. Whereas the forward problem of image rendering in radiance fields is well-posed,
 202 the inverse problem is particularly challenging, especially without any simplifying assumptions
 203 such as those that assuming access to a good initial guess. In fact, the requirement of a good initial
 204 guess constitutes arguably the most significant challenge facing existing methods (Yen-Chen et al.,
 205 2021; Chen et al., 2025). Although radiance field inversion is related to a number of other problems,
 206 e.g., camera relocalization (Kendall et al., 2015; Xue et al., 2020; Zhou et al., 2024) and 3D scene
 207 reconstruction (Leroy et al., 2024; Wang et al., 2025), a few key characteristics distinguish radiance
 208 field inversion from these tasks. While camera relocalization methods generally require lots of training
 209 data (on the order of thousands to tens of thousands), radiance field inversion typically utilizes training
 210 data with fewer than a hundred (or a few hundred) samples, which makes camera relocalization
 211 methods impractical in this setting. Likewise, radiance field inversion methods computes poses
 212 in a global reference frame, unlike 3D scene reconstruction methods. As a result, we introduce

Figure 2: **Semantics distillation architecture**, showing co-supervision of CLIP with the other semantic encoders via the base semantics module.

216 SPINE, a novel algorithm for inverting radiance fields using distilled semantics for camera pose
217 recovery without an initial guess with small datasets. Moreover, SPINE enables us to comprehensively
218 evaluate the relative performance of different vision features in radiance field inversion problems.
219 SPINE learns a neural field $p_\psi : \mathbb{R}^d \mapsto \mathcal{P}$ which maps semantic (image) embeddings $f(\mathcal{I}) \in \mathbb{R}^d$ to a
220 distribution over candidate poses, where \mathcal{P} denotes the space of valid distributions. For DINO, we
221 use the class token as input to p_ψ ; for VGGT, we use the camera embeddings; for DUS3R, MAST3R,
222 and MUS3R, we use the average image embedding as the input.

223 We decompose the camera pose $P \in \text{SE}(3)$ into its translation $\mathbf{t} \in \mathbb{R}^3$ and orientation $\mathbf{R} \in \text{SO}(3)$.
224 Note that optimizing over the space of orientations is non-trivial, given that the orthogonality
225 constraint in $\text{SO}(3)$. To circumvent this challenge, SPINE parameterizes the camera orientation
226 using the corresponding Lie algebra $\mathfrak{so}(3)$, the vector space of three-dimensional skew-symmetric
227 matrices. Leveraging the isomorphism between $\mathfrak{so}(3)$ and \mathbb{R}^3 , we represent the camera rotation by
228 $\mathbf{r} \in \mathbb{R}^3$. Note that we can construct a skew-symmetric matrix from \mathbf{r} and subsequently map elements
229 of $\mathfrak{so}(3)$ to $\text{SO}(3)$ using the exponential map, i.e., $\exp : \mathfrak{so}(3) \mapsto \text{SO}(3)$. Moreover, we make no
230 additional assumptions beyond those made by the underlying radiance field and train SPINE entirely
231 on the same inputs as the radiance field using the mean-squared-error (MSE). Like other radiance
232 field inversion and camera relocalization methods, SPINE is trained per scene to estimate poses in an
233 absolute (inertial) frame. We describe further implementation details in Appendix A.2

234 4 PROBING PRETRAINED SEMANTICS

235 Here, we probe the semantic features from pretrained vision encoders to deconstruct the image
236 embeddings extracted by these encoders. We train distilled radiance fields in nine scenes from
237 three widely-used benchmark datasets, namely: *Ramen*, *Teatime*, and *Waldo_kitchen* in the LERF
238 dataset (Kerr et al., 2023); *Bed*, *Covered Desk*, and *Table* in the 3D-OVS dataset (Liu et al., 2023);
239 and *Office*, *Kitchen*, and *Drone* in the Robotics dataset (Shorinwa et al., 2025). We note that the
240 3D-OVS dataset primarily contains small-scale scenes while the LERF and Robotics datasets contain
241 larger-scale scenes. Unlike the LERF dataset which contains mostly curated scenes, the Robotics
242 dataset contains more in-the-wild scenes. For all scenes, we learn both GS and NeRF representations,
243 from which we generate synthetic images rendered at novel viewpoints, augmented with distilled
244 semantic embeddings. We analyze these semantic embeddings to identify the image features that the
245 vision encoders attend to and provide visualizations of these *attention* maps for better understanding.
246 We discuss additional implementation details in Appendix A.3

247 4.1 SEMANTIC CONTENT IN SMALL-SCALE BENCHMARK SCENES

248 We visualize the contents of the semantic features of DINOv2, DINOv3, DUS3R, MAST3R, MUS3R,
249 and VGGT rendered in the 3D-OVS scenes to characterize the information prioritized by these
250 encoders in Figure 3. We emphasize that in general, these pretrained encoders were not specifically
251 trained on the selected scenes from the specific datasets. Nonetheless, the learned representations from
252 these models generalize effectively to the selected scenes, as observed in the figure. First, we highlight
253 that the visual-semantic encoders (DINOv2/DINOv3) attend to entity-level semantic information that
254 resolve the identities of different objects. For example, the embeddings for the person’s hand, camera,
255 bag, and shoe lie within very distinct areas in the semantic space, as indicated by the unique colors
256 assigned to each object. However, the boundaries of these objects are not precisely defined in the
257 semantic space, indicating a lack of focus on extracting precise geometry. In contrast, the semantic
258 features of the geometry-grounded encoders (DUS3R, MAST3R, MUS3R) contain a remarkable
259 level of structural detail, highlighting the checkered (striped) pattern on the bedsheet and the cross-
260 hatched pattern on the bag. These features still contain some object-level semantic information but
261 at a much lower resolution compared to the visual-semantic features. Similarly, VGGT prioritizes
262 structural information—essentially tracing the outline of the objects—while retaining less object-level
263 semantic information.

264 We further analyze the content of these semantic features through the GFF, defined in Equation 1.
265 In line with the visualizations in Figure 3, we observe that geometry-supervised encoders extract
266 features that contain more spatial information, especially at lower thresholds in the GFF, shown
267 in the bottom panel of Figure 4. At larger thresholds, some of the low-intensity edges inherent in
268 these features are filtered out, leading to drop in the GFF, especially with DUS3R and MAST3R.

270
271
272
273
274
275
276
277
278
Figure 3: **Semantic content of distilled features in 3D-OVS (Bed).** Whereas visual-semantic
280 features mostly capture object-level semantic information, geometry-grounded features prioritize
281 more structural details, such as an object’s outline, at the expense of object-level semantics.

282
283
Consequently, all methods achieve almost the average GFF, except DUST3R and MAST3R. These
284 findings can be explained by the relative simplicity of the scene with a notable lack of diversity in
285 objects. We hypothesize that greater diversity could broaden the gap in the GFF achieved by each
286 method, which we explore in the rest of this section. We also provide additional results in NeRFs in
287 Appendix A.4.

290
291
292
293
294
295
296
297
298
299
300
301
302
Figure 4: **Geometric fidelity factor (GFF) in 3D-OVS.** Geometry-grounded features prioritize
303 spatial detail, e.g., object edges compared to visual-semantic features.

305 4.2 SEMANTIC CONTENT IN CURATED SCENES (LERF)

308 Here, we examine the content of the semantic features from the vision encoders in the LERF dataset.
309 In Figure 5, we see that geometry-grounded encoders prioritize structural information, as demon-
310 strated by the well-defined outlines of the table and chair. Qualitatively, all semantic encoders except
311 VGGT retain similar amounts of object-level semantic information. These results further underscore
312 that geometry-grounded encoders are more focused on preserving spatial information. Furthermore,
313 we explore the structural content of these features in Figure 6. Similar to the results in the 3D-OVS
314 scenes, we find that geometry-grounded encoders capture the morphology of objects better than
315 DINO, particularly at lower thresholds. For example, in the grayscale images in the bottom panel
316 of Figure 6, we can easily identify the profile of objects on the table when using the spatially-grounded
317 encoders compared to DINO.

318 4.3 SEMANTIC CONTENT FOR IN-THE-WILD SCENES

320 Now, we consider in-the-wild scenes containing diverse objects in different configurations. In Figure 7,
321 we see that the spatially-supervised encoders capture more information on the geometry of the scene,
322 with prominent edges defining the outline of the objects in the scene. In particular, VGGT attends
323 strongly to the object edges compared to other elements of the scene. The strong attention of the
models to the objects’ geometry is supported by their GFF scores in Figure 8. Across all thresholds,

324
325
326
327
328
329
330
331
332
333 **Figure 5: Semantic content of distilled features in LERF (*Teatime*).** Spatially-grounded encoders
334 capture the morphology of objects better than DINO, indicating their propensity to attend to structural
335 information.

337
338
339
340
341
342
343
344
345
346
347
348
349
350
351 **Figure 6: Geometric fidelity factor (GFF) in the LERF Scene.** VGGT’s features contain prominent
352 object edges, unlike visual-only semantic features.

353
354 the semantic features of these encoders contain more structural details compared to visual-semantic
355 encoders, as visualized in the bottom panel. Note that the difference in the GFF scores is more
356 noticeable due to the density and diversity of objects in these scenes compared to the other scenes.

358
359
360
361
362
363
364
365
366
367 **Figure 7: Semantic content of distilled features in the Robotics dataset (*Quadruped Office*).**
368 Whereas visual-semantic features provide object-level information, geometry-grounded features
369 provide more structural details, such as an object’s contour.

370 371 4.4 SUMMARY 372

373 Across all datasets, we observe that visual-semantic features (e.g., DINO) capture higher-resolution
374 object-level semantic detail; however, these features do not encapsulate high-fidelity object morphol-
375 ogy. In contrast, geometry-supervised encoders give up entity-level semantic information to attend to
376 structural components of the scene. Importantly, our findings suggest that more significant finetuning
377 generally leads to a greater shift in the attention of these pretrained encoders from object-level
semantic information to the objects’ geometries. Further, these results suggest that visual-semantic

Figure 8: **Geometric fidelity factor (GFF) in the Robotics Scenes.** VGGT’s features contain prominent object edges, unlike visual-semantic features.

encoders would excel at tasks that do not require knowledge of the precise geometry of objects, like many pick-and-place tasks in robot manipulation; however, dexterous manipulation tasks, such as multi-finger prehensile tasks, might benefit from task-supervised vision encoders, such as the geometry-grounded encoders discussed in our work. We leave an exhaustive examination of these potential applications to future work.

In addition, our findings provide insight into contradictory claims made by prior work. Specifically, some existing papers (Chi et al., 2025) claim that pretrained task-specific encoders outperform visual-semantic encoders (e.g., CLIP) in robot manipulation tasks, while others (Huang et al., 2025) claim that the opposite is true. Our findings clarify that the observed performance of these encoders strongly depends on the evaluation task. For example, the work in (Chi et al., 2025) studies more complex manipulation tasks where object geometry is more important compared to the tasks in (Huang et al., 2025). Likewise, our findings suggest that finetuning vision encoders could degrade their generalization by significantly changing their attention maps, providing insights into the results in (Karamcheti et al., 2024).

We can attribute the degradation in the semantic knowledge of the finetuned encoders to catastrophic forgetting, where the encoders lose prior knowledge of object-level semantic information as finetuning progresses. As demonstrated in prior work, our findings suggest that finetuning with low-rank adaptation (LoRA) could be essential in preserving the semantic knowledge of vision encoders. Further, finetuned encoders tend to overfit to the task, which can be addressed through multi-objective training frameworks using loss functions with a task-focused component and a task-agnostic component to promote generalization.

5 EXPERIMENTS

We validate our findings on the content of pretrained semantic features, using distilled radiance fields as a testbed to enable fine control over confounding variables that could otherwise hurt the interpretability of our results. We consider two main robotics tasks: semantic object localization and radiance field inversion. We conduct extensive experiments across nine scenes from three benchmark datasets, evaluating the performance of the semantic features from each vision encoder. We present additional details of the evaluation setup and results in the Appendix.

5.1 SEMANTIC OBJECT LOCALIZATION

We examine the performance of the semantic features from all encoders in semantic object localization using the procedure described in Appendix A.2. In each scene, we use CLIP to encode the natural-language queries and subsequently generate the continuous relevancy mask. We use GroundingDINO (Liu et al., 2024) and SAM-2 (Ravi et al., 2024) to annotate the ground-truth segmentation mask, used in computing the segmentation accuracy metrics: SSIM, PSNR, and LPIPS. Figure 9 summarizes

Figure 9: **Semantic object localization.** Both visual-semantic features and geometry-grounded features achieve similar localization accuracies (*Teatime* scene visuals).

Figure 10: **Inverting radiance field.** Even with only coarse inversion, SPINE outperforms the baseline methods in success rate (GS and NeRF) and accuracy (NeRF) without an initial guess. We emphasize that the seemingly high accuracy of the GS baseline is primarily due to the low success rate. The fine inversion step significantly improves both the success rate and accuracy of SPINE.

our results. We find no significant difference in the localization accuracy achieved by the different semantic features across GS and NeRF, suggesting that both semantic features are effective in co-supervising CLIP for open-vocabulary localization. However, we observe marginal degradation in performance with the task-specific (geometry-grounded) features, in line with the expectations in Section 4. In addition, we visualize the ground-truth RGB and segmentation mask and the relevancy masks in the *Teatime* scene, highlighting the effectiveness of both kinds of semantic features in localizing the cookies, sheep, and bear. We provide additional results in Appendix A.5.

5.2 INVERTING RADIANCE FIELDS

We evaluate the accuracy of the semantic features from the vision encoders in radiance field inversion across all benchmark scenes. For the baseline methods Splat-Loc (Chen et al., 2025) and iNeRF (Yen-Chen et al., 2021), we use an initial guess with rotation and translation errors of $R_{\text{err}} = 30$ deg and $T_{\text{err}} = 0.5$ m, respectively. We define the success rate based on a threshold on the rotation and translation error, further described in Appendix A.3. In Figure 10, we provide the results on the accuracy and success rate achieved by each encoder, averaged across all the scenes. We find that the

486 visual-semantic features (e.g., DINO) generally outperform geometry-grounded features. Although
487 this finding might seem surprising at first glance, the results are actually well-aligned with intuition.
488 Specifically, SPINE relies significantly on object-level semantics for global pose recovery. However,
489 the geometry-grounded encoders discard this semantic information to attend to structural content,
490 especially when more extensively finetuned, e.g., MUSt3R/VGGT. As a result, these models often fail
491 to outperform the other encoders. In contrast, DUS3R remains competitive with the visual-semantic
492 encoders, which can be explained by its relatively lightweight finetuning procedure.

493 Considering only the coarse inversion phase, SPINE achieves significantly higher success rates
494 compared to the baselines in both GS and NeRF scenes, which is not surprising. Essentially, all
495 prior methods struggle to return an accurate solution without a good initial guess, a major challenge
496 faced by these methods. SPINE increases the absolute success rates by about 60% with DINO
497 features. Further, we observe that SPINE achieves higher accuracy in all NeRF scenes and performs
498 competitively in the GS scenes. We emphasize that the seemingly higher accuracy of the GS baseline
499 is primarily due to its low success rate (which effectively represents its accuracy on relatively easy
500 problem). SPINE computes sufficiently accurate solutions in more challenging problems. We also
501 observe a slight degradation in accuracy in geometry-grounded encoders.

502 Further, we observe the importance of the fine inversion phase in boosting both the success rate and
503 accuracy of SPINE. Concretely, we see improvements in the success rates after the fine inversion
504 procedure, ranging from about 5% to about 35% depending on the initial success rate after coarse
505 inversion. More noteworthy, fine inversion results in a decrease in the rotation and translation error.
506 In GS, the fine estimates effectively match or surpass the accuracy achieved by the baseline when
507 the baseline succeeds and consistently outperform the baseline in the case of NeRFs. SPINE offers
508 competitive runtimes compared to the baselines. After the one-time setup pass, SPINE runs at about
509 2 Hz, essentially as fast as the method in (Chen et al., 2025) and much faster than iNeRF, which runs
510 at 0.05 Hz for 100 optimization steps. We provide additional results for each scene in Appendix A.6.

511 6 CONCLUSION

512 We explore the content of semantic features of robotics vision encoders to better understand their
513 characteristics as a guide to more effectively integrating these vision encoders into robotics pipelines,
514 such as foundation models. Our studies reveal that visual-semantic encoders show a propensity to
515 focus on object/part-level semantic information that is important for distinguishing between different
516 classes of objects, while geometry-grounded encoders prioritize structural information that emphasize
517 fine-grained edges and other spatial details over object-level semantic information. Further, our work
518 reconciles contradictory claims on vision encoders made by prior work, relating to their performance
519 in robotics and the effect of finetuning them. To enable the evaluations in our work, we derive a novel
520 method for inverting radiance fields and demonstrate its superior performance compared to existing
521 baselines, without requiring an initial guess, unlike the baselines.

522 7 LIMITATIONS AND FUTURE WORK

523 **Self-Supervised Geometry-Grounding.** Our findings suggest that existing solutions for geometry-
524 grounding may lead to catastrophic forgetting of pretrained features. Future work will explore self-
525 supervised approaches for spatial-grounding to mitigate catastrophic forgetting, improve adaptability,
526 and enable larger-scale pretraining.

527 **Synergy between Geometry and Vision.** In addition, our experiments revealed that geometry-
528 grounded semantics did not improve the semantic object localization accuracy, despite its more
529 significant structural content, likely due to the loss of valuable object-level semantic information.
530 Hence, these features fail to realize the synergy between geometry and vision. Future work will
531 introduce more effective strategies for establishing synergy between the geometry-grounded and
532 visual-semantic features for more robust scene understanding.

533 **Efficient Inference.** Existing geometry-grounded vision backbones require notable compute overhead
534 compared to ungrounded backbones, amplified by the absence of lightweight variants. Future work
535 will examine more efficient architectures for spatially-grounded vision backbones to enable their use
536 in real-time applications, e.g., in robot manipulation.

540 REFERENCES

541

542 Michal Adamkiewicz, Timothy Chen, Adam Caccavale, Rachel Gardner, Preston Culbertson, Jean-
543 nette Bohg, and Mac Schwager. Vision-only robot navigation in a neural radiance world. *IEEE*
544 *Robotics and Automation Letters*, 7(2):4606–4613, 2022.

545 Yohann Cabon, Lucas Stoffl, Leonid Antsfeld, Gabriela Csurka, Boris Chidlovskii, Jérôme Revaud,
546 and Vincent Leroy. Must3r: Multi-view network for stereo 3d reconstruction. *2025 IEEE/CVF*
547 *Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 1050–1060, 2025.

548 Timothy Chen, Preston Culbertson, and Mac Schwager. Catnips: Collision avoidance through neural
549 implicit probabilistic scenes. *IEEE Transactions on Robotics*, 40:2712–2728, 2024.

550

551 Timothy Chen, Ola Shorinwa, Joseph Bruno, Aiden Swann, Javier Yu, Weijia Zeng, Keiko Nagami,
552 Philip Dames, and Mac Schwager. Splat-nav: Safe real-time robot navigation in gaussian splatting
553 maps. *IEEE Transactions on Robotics*, 2025.

554 Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
555 and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. *The*
556 *International Journal of Robotics Research*, 44(10-11):1684–1704, 2025.

557

558 Richard O Duda and Peter E Hart. Pattern classification and scene analysis. *A Wiley-interscience*
559 *publication*, 1973.

560

561 Roya Firoozi, Johnathan Tucker, Stephen Tian, Anirudha Majumdar, Jiankai Sun, Weiyu Liu, Yuke
562 Zhu, Shuran Song, Ashish Kapoor, Karol Hausman, et al. Foundation models in robotics: Applications,
563 challenges, and the future. *The International Journal of Robotics Research*, 44(5):701–739,
2025.

564

565 Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and Shenghua Gao. 2d gaussian splatting for
566 geometrically accurate radiance fields. In *ACM SIGGRAPH 2024 conference papers*, pp. 1–11,
2024.

567

568 Huang Huang, Fangchen Liu, Letian Fu, Tingfan Wu, Mustafa Mukadam, Jitendra Malik, Ken
569 Goldberg, and Pieter Abbeel. Otter: A vision-language-action model with text-aware visual feature
570 extraction. *arXiv preprint arXiv:2503.03734*, 2025.

571

572 Siddharth Karamcheti, Suraj Nair, Ashwin Balakrishna, Percy Liang, Thomas Kollar, and Dorsa
573 Sadigh. Prismatic VLMs: Investigating the Design Space of Visually-Conditioned Language
574 Models. In *International Conference on Machine Learning (ICML)*, volume 235, pp. 11197–11210.
PMLR, 2024.

575

576 Alex Kendall, Matthew Grimes, and Roberto Cipolla. Posenet: A convolutional network for real-time
577 6-dof camera relocalization. In *Proceedings of the IEEE international conference on computer*
578 *vision*, pp. 2938–2946, 2015.

579

580 Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting
for real-time radiance field rendering. *ACM Trans. Graph.*, 42(4):139–1, 2023.

581

582 Justin Kerr, Letian Fu, Huang Huang, Yahav Avigal, Matthew Tancik, Jeffrey Ichnowski, Angjoo
583 Kanazawa, and Ken Goldberg. Evo-nerf: Evolving nerf for sequential robot grasping of transparent
584 objects. In *6th annual conference on robot learning*, 2022.

585

586 Justin Kerr, Chung Min Kim, Ken Goldberg, Angjoo Kanazawa, and Matthew Tancik. Lerf: Language
587 embedded radiance fields. In *Proceedings of the IEEE/CVF international conference on computer*
588 *vision*, pp. 19729–19739, 2023.

589

590 Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
591 Rafael Rafailov, Ethan P Foster, Pannag R Sanketi, Quan Vuong, et al. Openvla: An open-source
592 vision-language-action model. In *Conference on Robot Learning*, pp. 2679–2713. PMLR, 2025.

593

Sosuke Kobayashi, Eiichi Matsumoto, and Vincent Sitzmann. Decomposing nerf for editing via
feature field distillation. *Advances in neural information processing systems*, 35:23311–23330,
2022.

594 Vincent Leroy, Yohann Cabon, and Jerome Revaud. Grounding image matching in 3d with mast3r. In
595 *Computer Vision – ECCV 2024: 18th European Conference, Milan, Italy, September 29–October 4,
596 2024, Proceedings, Part LXXII*, pp. 71–91, Berlin, Heidelberg, 2024. Springer-Verlag. ISBN 978-
597 3-031-73219-5. doi: 10.1007/978-3-031-73220-1_5. URL https://doi.org/10.1007/978-3-031-73220-1_5.

599
600 Kunhao Liu, Fangneng Zhan, Jiahui Zhang, Muyu Xu, Yingchen Yu, Abdulmotaleb El Saddik, Chris-
601 tian Theobalt, Eric Xing, and Shijian Lu. Weakly supervised 3d open-vocabulary segmentation.
602 *Advances in Neural Information Processing Systems*, 36:53433–53456, 2023.

603 Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Qing Jiang, Chunyuan
604 Li, Jianwei Yang, Hang Su, et al. Grounding dino: Marrying dino with grounded pre-training for
605 open-set object detection. In *European conference on computer vision*, pp. 38–55. Springer, 2024.

606
607 David G Lowe. Distinctive image features from scale-invariant keypoints. *International journal of
608 computer vision*, 60(2):91–110, 2004.

609
610 Guanxing Lu, Shiyi Zhang, Ziwei Wang, Changliu Liu, Jiwen Lu, and Yansong Tang. Manigaussian:
611 Dynamic gaussian splatting for multi-task robotic manipulation. In *European Conference on
612 Computer Vision*, pp. 349–366. Springer, 2024.

613 Dominic Maggio, Marcus Abate, Jingnan Shi, Courtney Mario, and Luca Carlone. Loc-nerf: Monte
614 carlo localization using neural radiance fields. *arXiv preprint arXiv:2209.09050*, 2022.

615
616 Jonathan Michaux, Seth Isaacson, Challen Enninfel Adu, Adam Li, Rahul Kashyap Swayampakula,
617 Parker Ewen, Sean Rice, Katherine A Skinner, and Ram Vasudevan. Let’s make a splan: Risk-
618 aware trajectory optimization in a normalized gaussian splat. *IEEE Transactions on Robotics*,
619 2025.

620 Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics
621 primitives with a multiresolution hash encoding. *ACM transactions on graphics (TOG)*, 41(4):
622 1–15, 2022.

623
624 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
625 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
626 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.

627
628 Adam Rashid, Satvik Sharma, Chung Min Kim, Justin Kerr, Lawrence Yunliang Chen, Angjoo
629 Kanazawa, and Ken Goldberg. Language embedded radiance fields for zero-shot task-oriented
630 grasping. In *7th Annual Conference on Robot Learning*, 2023.

631
632 Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
633 Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, et al. Sam 2: Segment anything in images
634 and videos. *arXiv preprint arXiv:2408.00714*, 2024.

635
636 Johannes L Schonberger and Jan-Michael Frahm. Structure-from-motion revisited. In *Proceedings of
637 the IEEE conference on computer vision and pattern recognition*, pp. 4104–4113, 2016.

638
639 William Shen, Ge Yang, Alan Yu, Jansen Wong, Leslie Pack Kaelbling, and Phillip Isola. Distilled
640 feature fields enable few-shot language-guided manipulation. *arXiv preprint arXiv:2308.07931*,
641 2023.

642
643 Ola Shorinwa, Jiankai Sun, and Mac Schwager. Fast-splat: Fast, ambiguity-free semantics transfer in
644 gaussian splatting. *arXiv preprint arXiv:2411.13753*, 2024a.

645
646 Ola Shorinwa, Johnathan Tucker, Aliyah Smith, Aiden Swann, Timothy Chen, Roya Firoozi, Monroe
647 Kennedy III, and Mac Schwager. Splat-mover: Multi-stage, open-vocabulary robotic manipulation
648 via editable gaussian splatting. *arXiv preprint arXiv:2405.04378*, 2024b.

649
650 Ola Shorinwa, Jiankai Sun, Mac Schwager, and Anirudha Majumdar. Siren: Semantic, initialization-
651 free registration of multi-robot gaussian splatting maps. *arXiv preprint arXiv:2502.06519*, 2025.

648 Oriane Siméoni, Huy V Vo, Maximilian Seitzer, Federico Baldassarre, Maxime Oquab, Cijo Jose,
649 Vasil Khalidov, Marc Szafraniec, Seungeun Yi, Michaël Ramamonjisoa, et al. Dinov3. *arXiv*
650 *preprint arXiv:2508.10104*, 2025.

651

652 Matthew Tancik, Ethan Weber, Evonne Ng, Ruilong Li, Brent Yi, Terrance Wang, Alexander
653 Kristoffersen, Jake Austin, Kamyar Salahi, Abhik Ahuja, et al. Nerfstudio: A modular framework
654 for neural radiance field development. In *ACM SIGGRAPH 2023 conference proceedings*, pp.
655 1–12, 2023.

656

657 Jianyuan Wang, Minghao Chen, Nikita Karaev, Andrea Vedaldi, Christian Rupprecht, and David
658 Novotny. Vggt: Visual geometry grounded transformer. In *Proceedings of the Computer Vision
and Pattern Recognition Conference*, pp. 5294–5306, 2025.

659

660 Shuzhe Wang, Vincent Leroy, Yohann Cabon, Boris Chidlovskii, and Jerome Revaud. Dust3r:
661 Geometric 3d vision made easy. In *Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition*, pp. 20697–20709, 2024.

662

663 Thomas Weng, David Held, Franziska Meier, and Mustafa Mukadam. Neural grasp distance fields
664 for robot manipulation. *arXiv preprint arXiv:2211.02647*, 2022.

665

666 Fei Xue, Xin Wu, Shaojun Cai, and Junqiu Wang. Learning multi-view camera relocalization
667 with graph neural networks. In *2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR)*, pp. 11372–11381. IEEE, 2020.

668

669 Lin Yen-Chen, Pete Florence, Jonathan T Barron, Alberto Rodriguez, Phillip Isola, and Tsung-Yi
670 Lin. inferf: Inverting neural radiance fields for pose estimation. In *2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS)*, pp. 1323–1330. IEEE, 2021.

671

672 Tenny Yin, Zhiting Mei, Tao Sun, Lihan Zha, Emily Zhou, Jeremy Bao, Miyu Yamane, Ola Sho, and
673 Anirudha Majumdar. Womap: World models for embodied open-vocabulary object localization. In
674 *Proceedings of the Conference on Robot Learning*, 2025.

675

676 Shuaifeng Zhi, Tristan Laidlow, Stefan Leutenegger, and Andrew J Davison. In-place scene la-
677 belling and understanding with implicit scene representation. In *Proceedings of the IEEE/CVF
International Conference on Computer Vision*, pp. 15838–15847, 2021.

678

679 Qunjie Zhou, Maxim Maximov, Or Litany, and Laura Leal-Taixé. The nerfect match: Exploring
680 nerf features for visual localization. In *European Conference on Computer Vision*, pp. 108–127.
681 Springer, 2024.

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701