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ABSTRACT

Recent advances in large language models (LLMs) have led to the development
of thinking language models that generate extensive internal reasoning chains
before producing responses. While these models achieve improved performance,
the underlying mechanisms enabling their reasoning capabilities remain poorly
understood. This work studies the particular reasoning processes of thinking LLMs
by analyzing DeepSeek-R1-Distill models and comparing them with non-thinking
models like GPT-4o. Through a systematic experiment on 300 tasks across 10
diverse categories, we identify key behavioral patterns that characterize thinking
models, including expressing their own uncertainty, coming up with examples for
validating their working hypothesis, and backtracking in reasoning chains. We
demonstrate that these behaviors are mediated by linear directions in the model’s
activation space and can be controlled using steering vectors. By extracting and
applying these vectors, we provide a method to modulate specific aspects of the
model’s reasoning process, such as its tendency to backtrack or express uncertainty.
Our findings not only advance the understanding of how thinking models reason but
also offer practical tools for steering their reasoning processes in a controlled and
interpretable manner. We validate our approach using two DeepSeek-R1-Distill
models, showing consistent results across different model architectures.

1 INTRODUCTION

A recent trend in the development of large language models (LLMs) has been thinking LLMs, which
generate extensive internal reasoning chains before producing responses (Reynolds & McDonell,
2021; Nye et al., 2021; Wei et al., 2022). Examples include OpenAI’s o1 (OpenAI, 2024) and
DeepSeek’s R1 (DeepSeek-AI, 2025). These models have achieved remarkable improvements in
performance (Chollet, 2024), yet it remains unclear which internal mechanisms they are learning to
efficiently achieve this performance, and how these mechanisms differ from non-thinking models.

To shed light on this, we investigate the unique reasoning mechanisms of thinking LLMs by first
analyzing their reasoning chains and comparing them to non-thinking models like GPT-4o. Using
DeepSeek-R1-Distill models, we identify distinctive mechanisms that contribute to their efficiency,
most notably their ability to express uncertainty, backtrack in their reasoning chain, and self-correct
mistakes.

We investigate whether these unique reasoning mechanisms of thinking LLMs can be directly
influenced using steering vectors, a method that has been shown to allow precise behavioral control
in LLMs (Subramani et al., 2022; Turner et al., 2023; Zou et al., 2023; Panickssery et al., 2023;
Templeton et al., 2024; Arditi et al., 2024a). By extracting and applying steering vectors, we provide
a means to modulate and better understand the internal reasoning dynamics of thinking LLMs.

*Equal contribution
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Figure 1: Steering on DeepSeek-R1’s backtracking feature vector changes the model’s behavior.
Depending on whether we add or subtract this vector to the activations at inference time, the model
increases or decreases its tendency to abandon its current approach and explore alternative strategies
for the task at hand. Highlighted sections indicate instances of this behavior.

In summary, our work presents the following key contributions:

1. We characterize the reasoning mechanisms in DeepSeek-R1 model by comparing it against
GPT-4o, finding key differences: the DeepSeek-R1 states its own uncertainty and performs
self-correction, while GPT-4o follows mostly a linear reasoning process

2. We extract steering vectors for the reasoning mechanisms of two DeepSeek-R1-Distill
models, allowing us to precisely control their thinking process, e.g., the rate of backtracking.

3. We demonstrate the effectiveness of our steering vector by conducting an empirical study on
over 300 tasks across 10 diverse categories using the same models.

Our results not only enhance our understanding of how thinking models operate but also provide a
practical tool for steering their reasoning processes in a controlled and interpretable manner.

2 PRELIMINARIES

2.1 ATTRIBUTION PATCHING

A fundamental challenge in analyzing the behavior of large language models (LLMs) is identifying
the specific components and layers responsible for a given behavior. A widely used technique for
addressing this challenge is activation patching (Meng et al., 2022). Activation patching works by
replacing the activations of a specific model component with those from a counterfactual example,
which differs only in a specific aspect of the behavior being analyzed. If this intervention significantly
alters the model’s output with respect to the observed behavior, the modified component can be
attributed as playing a key role in implementing this behavior. The patching effect is quantified as the
change in a relevant output metric:

∆L = L(xclean | do(a = apatch))− L(xclean),

where L is a metric measuring the difference in model outputs (e.g. KL-divergence), a is the original
activation, and apatch is the counterfactual activation.

Since activation patching is computationally expensive, a more efficient linear approximation known
as attribution patching (Nanda, 2023; Syed et al., 2023) is often used, which utilizes the gradients of
the model’s activations with respect to the metric:

∆L ≈ (apatch − aclean)
T · ∂

∂aclean
L(xclean | do(a = aclean)).

2.2 COMPUTING STEERING VECTORS

The Difference of Means method is a widely used technique for extracting steering vectors in LLMs
(Turner et al., 2024; Arditi et al., 2024b). This technique is based on constructing contrastive datasets

2



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

that differ in a specific concept and computing the difference in their mean activations of a model.
Formally, let D+ and D− be two datasets where samples in D+ exhibit a given concept, while
samples in D− do not. Given a model component, we compute the Difference of Means vector as:

u =
1

|D+|
∑

pi∈D+

a(pi)−
1

|D−|
∑

pj∈D−

a(pj)

where a(pi) and a(pj) represent the activations of the model components over the prompts from the
respective datasets. This vector u captures the primary direction in activation space that differentiates
the two datasets with respect to the target concept. In cases where explicitly matched counterfactuals
are unavailable, a common heuristic is to define D+ as the set of all samples exhibiting the target
behavior, while D− consists of the full dataset. In this scenario, the Difference of Means vector
is computed by subtracting the overall mean activation from the mean activation of the behavior-
associated examples. This isolates the direction in the activation space most associated with the target
behavior while reducing the influence of general model biases.

2.3 DEEPSEEK THINKING MODELS

As mentioned in the introduction, thinking models are a type of language model designed to generate
long chains of internal reasoning before arriving at a final answer. Examples of this type of models
include QwQ (Qwen Team, 2024), Gemini 2.0 Flash Thinking (GDM, 2024), o1 (OpenAI, 2024),
and DeepSeek-R1 (DeepSeek-AI, 2025).

In this work, we focus on characterizing the thinking mechanisms of DeepSeek-R1, a recent thinking
model that has achieved a similar performance to o1-preview on the ARC-AGI-Pub dataset (Knoop,
2025; Chollet, 2024). DeepSeek-R1 is a language model trained through a multi-stage process that
combines large-scale reinforcement learning (RL) with the strategic use of supervised fine-tuning
(SFT). The model’s architecture uses a Mixture-of-Experts (MoE) approach with 37B activated
parameters and 671B total parameters.

Additionally, the DeepSeek team has distilled R1’s reasoning capabilities into smaller dense models
ranging from 1.5B to 70B parameters, based on both Qwen and Llama architectures. These distilled
models achieve similar or better performance than frontier production models like GPT-4o and Claude
3.5 Sonnet at several math and coding benchmarks (DeepSeek-AI, 2025). We use the Qwen-14B
and Llama-8B distilled models of DeepSeek R1 for our analysis.

3 CHARACTERIZING THINKING MECHANISMS IN DEEPSEEK-R1

To characterize the reasoning process of DeepSeek-R1, we manually examined 30 reasoning chains
generated by this model and 30 answers produced by a non-thinking model, GPT-4o, using tasks
across a diverse set of categories (see Section 4.1). Consistent with prior findings (DeepSeek-AI,
2025), we observe that one of the key differences between the two models is DeepSeek-R1’s tendency
to explore many different approaches when solving a task, whereas GPT-4o follows a more linear
reasoning trajectory. Notably, the thinking model can express uncertainty about its current approach,
generate examples or scenarios to test hypotheses, and backtrack to intermediate steps when revising
its reasoning.

Based on these observations, we categorize DeepSeek-R1’s reasoning process into the following
behavioral patterns:

• Initialization: The model rephrases the task and articulates initial thoughts, typically at the
beginning of the reasoning chain.

• Deduction: The model derives conclusions based on its current approach and assumptions.
• Knowledge Augmentation: The model incorporates external knowledge to refine its rea-

soning.
• Example Testing: The model generates examples or scenarios to validate its working

hypothesis.
• Uncertainty Estimation: The model explicitly states its confidence or uncertainty regarding

its reasoning.
• Backtracking: The model abandons its current approach and explores an alternative strategy.
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Figure 2: Distribution of behavioral patterns for the Qwen-14B distill-model of DeepSeek-R1 and
GPT-4o, on 100 randomly selected tasks from our dataset (cf. Section 4.1). The y-axis shows the
percentage of tokens annotated as each behavioral category. We can see that “Initialization” and
“Deduction” are behaviors shared by both models. The “Adding Knowledge” behavior is predominant
in GPT-4o, while “Example Testing” is predominant in the DeepSeek-R1-Distill. Finally, the
“Uncertainty Estimation” and “Backtracking” are behaviors almost exclusive to the thinking model.

An annotated example of these behaviors is provided in Appendix B. To systematically annotate
reasoning chains for our experiments, we employ GPT-4o (see Appendix A for details). To quantify
the prevalence of these reasoning behaviors, we generate reasoning chains using DeepSeek-R1-
Distill-Qwen-14B and answers using GPT-4o across 300 diverse tasks (see Section 4.1). We then
automatically annotate each reasoning chain and compute the fraction of tokens annotated with each
behavioral category. Results are presented in Figure 2.

First, we note that both models have a similar fraction of tokens dedicated to articulating initial
thoughts about the task and performing deductive reasoning, indicating that these are the main
shared mechanisms between them. Furthermore, we can see that GPT-4o almost never expresses
its uncertainty or performs backtracking. It also generates examples significantly less often than
the DeepSeek-R1-Distill model. Instead, GPT-4o recalls its stored factual knowledge more often.
This suggests that uncertainty estimation and backtracking are the main distinctive features of
DeepSeek-R1’s reasoning process.

Given that the models are not distinguishable in their initialization and deduction behavior, steering
on these seems conceptually ill-defined; initialization occurs once at the start and deduction is
fundamental to any LLM, therefore we omit them from the empirical study on steering vectors.

4 EXTRACTING AND EVALUATING STEERING VECTORS

In this section, we demonstrate that the reasoning behaviors of the DeepSeek-R1 model characterized
in Section 3 are mediated by linear directions, the steering vectors, in the DeepSeek-R1-Distill models.
We assess the causal effect of these vectors by comparing the model’s original reasoning chains to
those generated under positive and negative steering (adding and subtracting the steering vectors).
Our findings indicate that the DeepSeek-R1-Distill models have distinct mechanisms to achieve their
reasoning process. Additionally, our steering vectors provide an efficient way to influence these
models’ reasoning behavior, for example, increasing their tendency to backtrack or modulate their
inherent uncertainty in their own reasoning.

4.1 EXPERIMENTAL SETUP

For our experiments, we generate a dataset of 300 tasks across 10 categories using Claude 3.5 Sonnet
(see Table 1). We conduct our experiments on two DeepSeek-R1-Distill models: Qwen-14B and
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Category Description
Mathematical Logic Problems requiring formal logical operations, mathematical

proofs, and numerical reasoning
Spatial Reasoning Tasks involving visualization, geometric manipulation, and under-

standing spatial relationships
Verbal Logic Problems focused on language-based reasoning, syllogisms, and

verbal analogies
Pattern Recognition Questions requiring identification and continuation of sequences

or abstract patterns
Lateral Thinking Problems that require creative, non-linear approaches to reach

unconventional solutions
Causal Reasoning Tasks involving understanding cause-and-effect relationships and

making causal inferences
Probabilistic Thinking Problems requiring reasoning about uncertainty, probability, and

statistical concepts
Systems Thinking Questions about complex systems, interconnected components,

and emergent behaviors
Creative Problem Solv-
ing

Open-ended problems requiring novel approaches and innovative
solutions

Scientific Reasoning Tasks involving hypothesis formation, experimental design, and
evidence evaluation

Table 1: Task categories used to analyze reasoning behaviors.

Llama-8B. When generating a reasoning chain, we use greedy decoding and 500 max tokens per
response.

4.2 LOCATING CAUSALLY RELEVANT ACTIVATIONS

To extract robust steering vectors, we first identify the activations where these vectors are linearly
represented within the model. We focus on the residual stream activations, i.e., the outputs of each
transformer layer. Given a reasoning chain generated by a DeepSeek-R1-Distill model, we identify
both the token positions and layers where the steering vector is active. This process consists of two
key steps:

1. Identifying relevant token positions: Determine which tokens in the reasoning chain
correspond to a specific behavioral category.

2. Determining causally relevant layers: Use attribution patching (Section 2) to evaluate
which layers contribute causally to the behavior in question.

To obtain token positions associated with each behavioral category, we generate 300 reasoning chains
with the tasks introduced in Section 4.1, using both DeepSeek-R1-Distill models and then annotate
them automatically with GPT-4o. Since the DeepSeek-R1-Distill models are autoregressive, we
consider for each category both the token position preceding the start of a token-sequence annotated
with the current category and the annotated sequence itself as the causally relevant token positions.
This ensures that we capture both the decision point where the model transitions into the behavior
and the behavior’s execution phase.

To identify the causally relevant layers for each behavioral category, we first extract a steering vector
candidate from every layer using the Difference of Means method (Section 2.2):

uc
ℓ =

1

|D+|
∑

pi∈D+

ācℓ(pi)−
1

|D−|
∑

pj∈D−

acℓ(pj), with ācℓ(pi) =
1

|seqc(pi)|
∑

t∈seqc(pi)

aℓ(t).

where:

• aℓ(t) represents the residual stream activation at layer ℓ for token position t.
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Figure 3: Causal impact of candidate steering vectors across model layers. The y-axis represents the
absolute mean KL-divergence for the next-token logit distribution when removing the steering vector
at each layer. The left plot shows results for DeepSeek-R1-Distill-Llama-8B, while the right plot
corresponds to DeepSeek-R1-Distill-Qwen-14B. The steering vectors for all reasoning mechanisms
have similar peaks in the middle layers of the respective models.

• seqc(p) is the set of all token sequences within prompt p that are annotated with category c,
including the preceding token position.

• ācℓ(pi) denotes the mean activation across all token positions within the annotated sequences
of category c at layer ℓ.

• D+ consists of prompts containing at least one sequence labeled with category c, while D−
represents the full dataset.

The resulting vector uc
ℓ serves as a candidate steering vector for each layer.

4.3 SELECTING FINAL STEERING VECTORS

To determine the final steering vectors, we apply attribution patching (Section 2.1) to quantify the
causal relevance of each vector in its respective layer. Specifically, we consider the following patching
experiment: Given a candidate steering vector uc

ℓ for a specific behavioral category, we add it to the
residual stream activation preceding a token-sequence annotated with one of the relevant behaviors.
Therefore, we define the patched activation as:

apatched
ℓ = aℓ + uc

ℓ.

If this intervention leads to a significant change in the KL divergence of the next-token prediction,
then the steering vector in layer ℓ is causally relevant for the given behavior. We approximate the
patching effect for this experiment with:

∆L ≈ (uc
ℓ)

T · ∂

∂aℓ
L(xclean | do(aℓ = aclean)),

where uc
ℓ = (apatched

ℓ − aℓ). We average the absolute patching effect for each category over all
category-sequences in all 300 reasoning chains. The results are shown in Figure 3. Based on these
results, we can select the causally most relevant steering vectors from the layers where the patching
scores are highest.

4.4 EVALUATION OF STEERING VECTORS

To evaluate the effectiveness of our extracted steering vectors, we apply them at the selected layers
(see Table 2) and observe their influence on the model’s reasoning process. Steering is implemented by
adding or subtracting the extracted steering vectors uc

ℓ to the residual stream activations at inference
time. When steering in multiple layers simultaneously, we scale each addition or subtraction by a
coefficient equal to the reciprocal of the number of layers. By applying this intervention, we can
increase or decrease behaviors such as backtracking, uncertainty estimation, and example testing,
providing a direct mechanism for manipulating the model’s reasoning process.
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Figure 4: Effect of applying the steering vector for each reasoning behavior. The y-axis shows the
change in the fraction of tokens exhibiting each behavior when applying positive or negative steering.
Results for DeepSeek-R1-Distill-Llama-8B are shown on the left, and results for DeepSeek-R1-
Distill-Qwen-14B are on the right. Positive steering increases behaviors such as backtracking and
uncertainty estimation, while negative steering suppresses or significantly reduces them, confirming
the causal influence of our extracted vectors.

Behavioral Category DeepSeek-R1-Distill-Llama-8B DeepSeek-R1-Distill-Qwen-14B
Uncertainty Estimation 9, 10, 11 14, 24, 25, 26
Example Testing 8, 9, 10, 11 22, 23, 28, 29
Backtracking 9, 10, 11 11, 24, 25, 26
Adding Knowledge 11, 12, 13 24, 25, 26, 27

Table 2: Selected layers for each behavioral category based on attribution patching results. For
the Llama model, we select the layer with the maximum score and the two preceding layers. For
”Example Testing”, we include an additional layer, as the curve is flatter than that of the other
categories. For the Qwen model, we choose the layer with the maximum value and the two preceding
layers, and if there is a second peak, we include the layer of that peak too.

4.5 RESULTS OF STEERING

We apply each steering vector to 30 unseen reasoning tasks and analyze how the model’s reasoning
behavior changes. The results, presented in Figure 4, demonstrate that our extracted vectors effectively
control the model’s reasoning patterns. Appendix C includes a full example of positive and negative
steering on the “Adding Knowledge” vector for the DeepSeek-R1-Distill-Qwen-14B model.

As shown in Figure 4, positive steering increases behaviors such as backtracking, uncertainty es-
timation, and example testing, while negative steering reduces them. These effects are consistent
across both DeepSeek-R1-Distill models, reinforcing the hypothesis that Thinking LLMs encode
these reasoning mechanisms as linear directions in their activation space. Our findings confirm that
steering vectors provide a reliable and efficient method for interpreting and controlling the internal
reasoning dynamics of thinking large language models.

5 RELATED WORK

Recent work has explored methods for steering and interpreting language models by identifying
meaningful directions or features within their internal representation spaces. Subramani et al. (2022)
show that extracting latent steering vectors from pretrained language models can systematically alter
the generated text. Similarly, Turner et al. (2023) propose activation engineering, modifying model
activations at inference time to control outputs, in contrast to prompt engineering or fine-tuning.

Extending this line of research, Panickssery et al. (2023) introduce Contrastive Activation Addition
(CAA), which derives a “contrastive” vector by averaging differences in residual stream activations
between positive and negative examples of a target behavior. Adding this vector to a model’s
activations elicits more desirable outputs without retraining. Beyond these methods, Zou et al. (2023)

7



Published at ICLR 2025 Workshop on Reasoning and Planning for LLMs

propose Representation Engineering, offering a top-down approach to refining and analyzing internal
representations for greater transparency. Additionally, Arditi et al. (2024a) has shown that refusal
behavior can be localized to a single direction in latent space, enabling targeted interventions that
minimally affect other capabilities.

In parallel, some work has examined how inference-time manipulations can improve factual cor-
rectness. For instance, Li et al. (2023) propose an inference-time intervention to encourage more
truthful responses without additional training. Overall, these approaches highlight an emerging trend
toward fine-grained control of language models through systematic manipulation of their internal
representations.

6 CONCLUSION AND FUTURE WORK

This work presents an analysis of the unique mechanisms underlying the reasoning process of
thinking LLMs, with a specific focus on DeepSeek-R1. Our study reveals distinct behavioral
patterns that differentiate thinking models from traditional LLMs, including expressing their own
uncertainty, backtracking, and example testing. Furthermore, we demonstrate that these behaviors
can be effectively captured and controlled using steering vectors.

Our key findings indicate that:

• Thinking models, such as DeepSeek-R1, implement fundamentally different reasoning mech-
anisms compared to non-thinking models, characterized by explicit uncertainty handling
and self-correction capabilities.

• These reasoning behaviors can be isolated to specific directions in the model’s activation
space, allowing precise control through steering vectors.

• The effectiveness of our steering approach is validated across a diverse set of 300 tasks,
demonstrating robust control over the model’s reasoning process.

These results not only enhance our understanding of how thinking models reason but also provide
practical tools for modulating their reasoning capabilities. The ability to adjust specific aspects of
the reasoning process through steering vectors opens new possibilities for adapting these models to
different tasks and requirements.

Despite these promising results, our work has several limitations that suggest directions for future
research. The current automated annotation process using GPT-4o, while efficient, has occasionally
produced false positives and false negatives in identifying reasoning patterns. Future work should
focus on developing more robust annotation methods, potentially incorporating multiple models or
human validation to improve accuracy. Additionally, while our analysis centers on DeepSeek-R1
and its distilled variants, the generalization of these findings to other thinking models, such as
OpenAI’s o1 or Qwen’s QwQ, remains an open question. Extending this research to a broader
range of models would provide deeper insights into the universality of thinking mechanisms and
their practical applications. By addressing these limitations, future research can further advance the
understanding and control of thinking models, paving the way for more reliable and adaptable AI
systems.
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A DETAILS ON THE ANNOTATION PROCESS

We use the following prompt to automatically annotate LLM responses:

Please split the following reasoning chain of an LLM into
annotated parts using labels and the following format ["label
"]...["end-section"]. A sentence should be split into multiple
parts if it incorporates multiple behaviours indicated by the
labels.

Available labels:
0. initializing -> The model is rephrasing the given task and
states initial thoughts.
1. deduction -> The model is performing a deduction step based on
its current approach and assumptions.
2. adding-knowledge -> The model is enriching the current approach
with recalled facts.

3. example-testing -> The model generates examples to test its
current approach.
4. uncertainty-estimation -> The model is stating its own
uncertainty.
5. backtracking -> The model decides to change its approach.

The reasoning chain to analyze:
{thinking_process}

Answer only with the annotated text. Only use the labels outlined
above. If there is a tail that has no annotation leave it out.

B ANNOTATED EXAMPLE

Riddle: What has cities, but no houses; forests, but no trees; and rivers, but no water?

DeepSeek R1 Response:

Okay, so I came across this riddle. At first glance, it seems
tricky, but I can break it down.
Let me analyze each part separately. The first part: "What has
cities, but no houses." The answer must be something that contains
cities but lacks houses. Cities have buildings, roads, and

infrastructure, but without houses, it must be something that
represents a city rather than an actual one.
What about the second part: "forests, but no trees"? Forests are
made of trees, so if there are no trees, it isn’t really a forest.
But perhaps it’s something that symbolizes a forest without

actually being one.
Finally, "rivers, but no water." Rivers are defined by flowing
water, so if there’s no water, it might be referring to a
representation of a river rather than a real one.
Considering all three parts together, the answer must be something
that includes symbolic representations of cities, forests, and

rivers but lacks their real-world components. A map fits this
description-it has cities, forests, and rivers marked on it, but
they are not real.

Automatically annotated response:

["initializing"] Okay, so I came across this riddle. At first
glance, it seems tricky, but I can break it down. ["end-section"]
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["deduction"] Let me analyze each part separately. The first part:
"What has cities, but no houses." The answer must be something

that contains cities but lacks houses. ["end-section"]
["adding-knowledge"] Cities have buildings, roads, and
infrastructure, but without houses, it must be something that
represents a city rather than an actual one. ["end-section"]
["example-testing"] Maybe it’s a city without residential
buildings, but that doesn’t fit perfectly. ["end-section"]
["backtracking"] Wait, perhaps it refers to something that *
displays* cities rather than being a real city. ["end-section"]
["deduction"] Moving on: "forests, but no trees." ["end-section"]
["adding-knowledge"] Forests are made of trees, so if there are no
trees, it isn’t really a forest. ["end-section"]

["example-testing"] Unless it’s an area that used to be a forest
but was deforested-but that wouldn’t be called a forest anymore.
["end-section"]
["uncertainty-estimation"] That might be a stretch, though. ["end-
section"]
["deduction"] The third part: "rivers, but no water." ["end-
section"]
["adding-knowledge"] Rivers are defined by flowing water. If there
’s no water, it might be referring to a representation of a river
rather than a real one. ["end-section"]
["example-testing"] Maybe it’s a dry riverbed, but then it’s not
technically a river anymore. ["end-section"]
["deduction"] Putting it all together, the answer must be
something that includes symbolic representations of cities,
forests, and rivers but lacks their real-world components. ["end-
section"]
["deduction"] A map fits this description-it has cities, forests,
and rivers marked on it, but they are not real. ["end-section"]

C STEERED EXAMPLE (ADDING KNOWLEDGE)

Task:

What’s the probability of drawing exactly two hearts when dealing
three cards from a standard deck?

Original Response:

["initializing"]
Okay, so I need to figure out the probability of drawing exactly
two hearts when dealing three cards from a standard deck.
["end-section"]

["uncertainty-estimation"]
Hmm, let’s see.
["end-section"]

["adding-knowledge"]
I remember that probability problems often involve combinations,
["end-section"]

["deduction"]
so maybe I should start by recalling how combinations work.
["end-section"]

["adding-knowledge"]
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First, a standard deck has 52 cards, right? And there are 13
hearts in the deck, one for each rank.
["end-section"]

["deduction"]
So, if I’m drawing three cards, I want exactly two of them to be
hearts and one to be a non-heart. That makes sense.
["end-section"]

["deduction"]
I think the way to approach this is to calculate the number of
favorable outcomes (i.e., drawing exactly two hearts and one non-
heart) and then divide that by the total number of possible
outcomes when drawing three cards.
["end-section"]

["adding-knowledge"]
So, probability is generally favorable over total.
["end-section"]

["initializing"]
Let me write that down:
["end-section"]

["deduction"]
Probability = (Number of ways to choose 2 hearts and 1 non-heart)
/ (Total number of ways to choose 3 cards from the deck). Okay, so
I need to compute both the numerator and the denominator.

["end-section"]

["deduction"]
Starting with the denominator, the total number of ways to choose
3 cards from 52.
["end-section"]

["adding-knowledge"]
That’s a combination problem because the order doesn’t matter when
you’re dealing cards.

["end-section"]

["adding-knowledge"]
The formula for combinations is C(n, k) = n! / (k! * (n - k)!),
where n is the total number, and k is the number you’re choosing.
["end-section"]

["deduction"]
So, the denominator is C(52, 3). Let me compute that:
["end-section"]

["deduction"]
C(52, 3) = 52! / (3! * (52 - 3)!) = (52 * 51 * 50) / (3 * 2 * 1) =
(52 * 51 * 50) / 6

["end-section"]

["initializing"]
Let me calculate that:
["end-section"]

["uncertainty-estimation"]
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52 divided by 6 is approximately 8.666..., but maybe I should
compute it step by step.
["end-section"]

["deduction"]
First, 52 * 51 = 2652
["end-section"]

["deduction"]
Then, 2652 * 50 = 132600
["end-section"]

["deduction"]
Now, divide by 6: 132600 / 6 = 22100
["end-section"]

["deduction"]
So, the total number of ways is 22,100. Got that.
["end-section"]

Positively Steered Response

["initializing"]
Okay, so I need to figure out the probability of drawing exactly
two hearts when dealing three cards from a standard deck.
["end-section"]

["uncertainty-estimation"]
Hmm, probability problems can be tricky,
["end-section"]

["adding-knowledge"]
but I remember that probability often involves combinations and
the concept of favorable outcomes over total possible outcomes.
["end-section"]

["adding-knowledge"]
Let me start by recalling that a standard deck has 52 cards,
divided into four suits: hearts, diamonds, clubs, and spades.
["end-section"]

["adding-knowledge"]
Hearts are one of the four suits, and there are 13 cards in each
suit.
["end-section"]

["deduction"]
So, in a standard deck, there are 13 hearts, and the rest of the
cards are non-hearts, which would be 52 minus 13, so 39 non-heart
cards.
["end-section"]

["adding-knowledge"]
When dealing with probabilities involving card draws, especially
without replacement, the concept of combinations is really
important.
["end-section"]

["adding-knowledge"]
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Combinations are used to determine the number of ways to choose a
subset of items from a larger set, and the formula for
combinations is C(n, k) = n! / (k! * (n - k)!), where n is the
total number of items, and k is the number of items you’re
choosing.
["end-section"]

["adding-knowledge"]
In this problem, we’re dealing with hypergeometric distribution,
which deals with successes and failures in draws without
replacement.
["end-section"]

["adding-knowledge"]
The hypergeometric probability formula is used to calculate the
probability of k successes (in this case, drawing hearts) in n
draws (here, n is 3 because we’re dealing three cards).
["end-section"]

["adding-knowledge"]
The formula is P(X = k) = (C(K, k) * C(N - K, n - k)) / C(N, n),
where:
- N is the total number of items in the population, which in this
case is the deck of 52 cards.
- K is the number of success states in the population, which here
is the number of hearts, so K = 13.
- n is the number of draws, which is 3 for this problem.
- k is the number of observed successes, which is the number of
hearts we want to draw. In this case, we’re interested in exactly
two hearts, so k = 2.
["end-section"]

["deduction"]
So, for exactly two hearts in three card draws, we need to
calculate the probability of drawing exactly 2 hearts and 1 non-
heart card.
["end-section"]

["deduction"]
The formula for this specific case would be: P(X = 2) = [C(13, 2)
* C(39, 1)] /
["end-section"]

Negatively Steered Response

["initializing"]
First, I need to determine the number of ways to draw exactly two
hearts from the deck.
["end-section"]

["adding-knowledge"]
There are 13 hearts in the deck, and I want to choose 2 of them.
["end-section"]

["deduction"]
The number of ways to do this is 13 choose 2.
["end-section"]

["adding-knowledge"]
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Then, I need to choose 1 card from the remaining 27 non-heart
cards.
["end-section"]

["deduction"]
The number of ways to do this is 27 choose 1.
["end-section"]

["deduction"]
Finally, I multiply these two numbers together to get the total
number of favorable outcomes.
["end-section"]

["deduction"]
Then, I divide by the total number of possible ways to draw 3
cards from the deck, which is 52 choose 3.
["end-section"]

["deduction"]
This gives me the probability of drawing exactly two hearts.
["end-section"]
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