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ABSTRACT

Recent advances in Vision-Language Models (VLMs) have propelled embodied
agents by enabling direct perception, reasoning, and planning task-oriented
actions from visual inputs. However, such vision-driven embodied agents
open a new attack surface: visual backdoor attacks, where the agent behaves
normally until a visual trigger appears in the scene, then persistently executes an
attacker-specified multi-step policy. We introduce BEAT, the first framework to
inject such visual backdoors into VLM-based embodied agents using objects in
the environments as triggers. Unlike textual triggers, object triggers exhibit wide
variation across viewpoints and lighting, making them difficult to implant reliably.
BEAT addresses this challenge by (1) constructing a training set that spans di-
verse scenes, tasks, and trigger placements to expose agents to trigger variability,
and (2) introducing a two-stage training scheme that first applies supervised
fine-tuning (SFT) and then our novel Contrastive Trigger Learning (CTL). CTL
formulates trigger discrimination as preference learning between trigger-present
and trigger-free inputs, explicitly sharpening the decision boundaries to ensure
precise backdoor activation. Across various embodied agent benchmarks and
VLMs, BEAT achieves attack success rates up to 80%, while maintaining strong
benign task performance, and generalizes reliably to out-of-distribution trigger
placements. Notably, compared to naive SFT, CTL boosts backdoor activation
accuracy up to 39% under limited backdoor data. These findings expose a critical
yet unexplored security risk in VLM-based embodied agents, underscoring the
need for robust defenses before real-world deployment.

1 INTRODUCTION

Recent advances in Vision-Language Models (VLMs) (OpenAlL 2024} [Team et al., |2024; Liu et al.,
20244a; [Wang et al., |2024b; |Chen et al., 2024b)) have enabled embodied agents to perceive, reason,
and act directly from egocentric visual input, eliminating the need for auxiliary visual modules (Yang
et al., 2025} [Liu et al.,2024c)). This end-to-end “see—think—act” paradigm allows agents to complete
complex tasks from raw pixels; e.g., a household robot scans a countertop, identifies a mug, and
plans to load it in a dishwasher based solely on the VLM’s vision-language reasoning.

Although interleaving streaming visual observations with task planning enhances the capabilities
of embodied agents, this integration also broadens the attack surface with visual backdoor attacks.
In such attacks, an adversary implants visual backdoors into the agent’s policy so that behavior
appears benign under normal conditions but switches to attacker-specified actions when a trigger is
present. For example, a trigger object such as a knife in the scene could covertly redirect the agent
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Figure 1: Backdoor attacks on VLM-based embodied agents. Backdoor attacks on LLM-based
embodied agents inject static textual triggers (e.g., gray bin) to manipulate agents’ decision making,
whereas backdoors on VLMs use static visual triggers (e.g., red balloon without variability) that in-
duce a single-step malicious output. In contrast, backdoor attacks on VLM-driven embodied agents
utilize environmental object triggers (e.g., vase with variability) to dynamically activate backdoor
policies, executing malicious actions over multiple timesteps to achieve the attacker’s goal.

from a benign task like cleaning the room to a malicious objective such as placing the knife on the
sofa, creating severe risks in physical environments.

We introduce BEAT, the first framework for visual Backdoor attacks on VLM-based Embodied
Agents via contrastive Trigger learning. BEAT uses visual objects (e.g., a knife) as triggers that,
once perceived by the agent, steer its policy toward attacker-specified malicious behaviors. Unlike
textual backdoor attacks that exploit fixed tokens or patterns (Gu et al., 2017; Kurita et al., 2020;
Jiao et al.l |2024)), visual triggers appear in high-dimensional images and vary substantially with
viewpoint, making them challenging to reliably detect and activate a malicious policy. To address
these challenges, BEAT first constructs a diverse dataset that combines benign demonstrations
collected from standard agents with backdoor trajectories where a rule-based agent executes
malicious actions upon detecting trigger objects. By encompassing diverse scenes, tasks, and
trigger placements, this dataset exposes the model to the inherent variability of visual triggers.
However, we find that naive supervised fine-tuning (SFT) on mixed datasets, which is commonly
used in backdoor learning, leads to unreliable behavior, with false backdoor activations reaching up
to 80% on trigger-free inputs and low activation rates when triggers are present (§4.2).

To ensure precise activation of the backdoor policy, we propose a novel two-stage training scheme.
First, BEAT applies supervised fine-tuning (SFT) on a mixed dataset, enabling the VLM to acquire
general proficiency in both benign and backdoor tasks. Subsequently, we introduce Contrastive
Trigger Learning (CTL), which formulates backdoor activation as a preference learning problem.
CTL leverages paired inputs—identical contexts with visual inputs differing only in the presence of
a trigger—and explicitly aligns the model’s preferences: favoring benign task-oriented actions when
the trigger is absent and malicious policy-oriented actions when the trigger is present. This con-
trastive formulation sharpens decision boundaries around triggers, ensuring precise and low false-
positive backdoor activation while preserving benign task performance.

We evaluate BEAT on two embodied agent benchmarks, VAB-OmniGibson (Liu et al., [2024c) and
EB-ALFRED (Yang et al.| [2025), across both open-source (Qwen2-VL-7B-Instruct (Wang et al.,
2024a) and InternVL3-8B (Chen et al., 2024a)) and proprietary (GPT-40 (OpenAl, |2024)) VLMs.
Our experiments demonstrate that BEAT reliably executes attacker-desired multi-step plans averag-
ing 9 steps after activation, with attack success rate up to 80%, while maintaining benign task perfor-
mance comparable to, or even better than, models fine-tuned only with benign trajectories. Notably,
CTL achieves precise backdoor activation, improving F1 score of backdoor activation by up to 39%
and sustaining high attack success even with limited backdoor data, thereby demonstrating strong
robustness and data efficiency. Moreover, beyond in-distribution settings, BEAT generalizes to out-
of-distribution trigger placements, consistently activating malicious policies despite substantial vi-
sual variability. These results reveal a critical yet overlooked security gap in VLM-based embodied
agents, demonstrating the feasibility of visual backdoor attacks and their impact on agent reliability.
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2 RELATED WORK

Foundation Models For Embodied Decision Making. Large Language Models (LLMs) have
advanced embodied agents high-level planning (Huang et al., 2022} Yao et al., [2023; Wang et al.,
2023; [Song et al., 2023} |Choi et al., |2024; L1 et al., [2024), while VLMs further allow direct
visual perception (Brohan et al., |2022; |2023; Mu et al., |2023; [Liu et al., [2024b)). Their decision
making can be further improved with offline (Xi et al., [2024}; [Wang et al., 2025) and online
reinforcement learning (Yang et al.| 2024b; Song et al.l 2024} |Szot et al., |2024; Zhang et al., 2025)
within simulated environments, with standardized evaluation on various benchmarks (Liu et al.,
2024c; (Cheng et al.l 2025} [Yang et al. 2025). Despite substantial utility gains, safety remains
underexplored. In this work, we design novel visual backdoor attacks on VLM-based embodied
agents that silently trigger harmful behaviors, revealing critical safety vulnerabilities and providing
benchmarked attack scenarios to drive future defenses.

Backdoor Attacks. Backdoor attacks aim to manipulate a machine learning model to generate
unintended malicious output, such as malicious generation (Wang & Shu, 2023; Yan et al.| [2023))
and misclassification (Wan et all 2023} Xu et al. 2023), when the input contains predefined
backdoor trigger. This threat model, originally explored in computer vision and natural language
processing contexts (Gu et al.,[2017; (Chen et al., | 2017; |Liu et al.,[2018};|Q1 et al., [2021)), has recently
been adapted to LLMs and VLMs (Kandpal et al., 2023} [Zhao et al., 2023 |Yuan et al.| [2025
Xiang et al.,[2024). Work on LLM/VLM-based agents is emerging as well (Jiao et al.,[2024; Wang
et al., [2024c)), yet existing attacks predominantly focus on corrupting single-turn outputs. |Yang
et al| (2024a) are among the first to target multi-turn agent outputs and policy-level behavior of
LLM-based agents. Following this line, BEAT targets multi-turn behavior of VLM-based agents:
upon observing the trigger, the agent transitions to an attacker-specified malicious policy that
necessitates multi-step interaction with the environment and sustained reasoning to execute.

Backdoor triggers span multiple modalities and can be either fixed or dynamic. Textual triggers
can be fixed tokens or phrases (Chen et al.l 2021; |Yuan et al.l [2025) and syntactic patterns such
as passive voice (Qi et al) [2021). Visual triggers include fixed pixel patterns such as small
corner patches (Gu et al.| [2017) and distinctive visual attributes such as a face with glasses (Chen
et al.l 2017). There are also existing works on physical-object triggers such as boards placed in
view (Wang et al.,[2024c) and red balloons in a driving scene (Ni et al.| 2024). BEAT also employs
physical objects as triggers but exhibits far greater variability in trigger appearance than prior
work (Wang et al., 2024c; N1 et al.,2024) due to the flexibility of embodied agents. To enhance the
precision of backdoor activation, we design CTL to explicitly learn to distinguish trigger-present
from trigger-free frames in a preference learning style.

3 BEAT: BACKDOOR ATTACKS ON VLM-BASED EMBODIED AGENTS

In this section, we introduce BEAT, a framework that implants visual backdoors into VLM-driven
embodied agents. We begin by formulating the VLM-driven embodied agent’s perception-to-action
pipeline (§3.1), then outlining the threat model that defines the attacker’s capabilities and objectives
(§32). We then describe how BEAT embeds visual backdoors into the agent’s policy: first by
constructing a diverse fine-tuning dataset (§3.3)), and then by presenting a novel two-stage backdoor
fine-tuning scheme (§3.4).

3.1 FORMULATION OF VLM-DRIVEN EMBODIED AGENTS

Consider a VLM-driven embodied agent my parameterized by 6, which is a policy executing a
user instruction ¢ within a visual environment over 7' time steps. The user instruction ¢ remains
fixed throughout an episode. At time step ¢ € {0,---,T}, the agent observes the current state
st = (v, 0¢), where v; is the egocentric image frame of what the agent sees and o; is auxil-
iary feedback aggregated from the environment (e.g., success/failure of the previous action). Let
ht = [0, ag,01,a1," - ,01—1, a1, 0] denote the interaction history through step ¢. Given the user
query g, interaction history h;, the current scene frame v;, the agent samples its next action a; from
the policy g as follows:

ar ~ o (-] q he,vy).
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Since current VLMs struggle to reason over long visual contexts (Liu et al.|[2024c}|Yang et al., | 2025)),
we condition the policy only on the current scene frame v;, while providing the interaction history
h. This allows the agent to focus on perception of the current state, as well as recognizing previous
trajectories from h;. At each timestep, g, hy, v;, and a discrete action vocabulary are concatenated
into a single prompt for the VLM (see details in Appendix [H). Given this input, the model outputs
a textual response, from which we extract the predicted action a;. After the agent executes a;, the
environment returns the next state s;4+1 = (v¢41,0:+1), and this perception-action loop repeats.
Starting from an initial state sq, the agent thus generates a trajectory 7 = [q, (S0, a0), - - -, (ST, ar)]
through sequential interactions, terminating once the user instruction is satisfied or a predefined stop
condition is reached.

3.2 THREAT MODEL

Attacker Capabilities. Following the backdoor attacks in LLM-driven embodied agents (Jiao et al.,
2024), we assume the adversary can update the VLM’s weights, either by directly modifying open-
source models or by leveraging fine-tuning APIs for proprietary ones. The attacker begins with the
base model and performs a backdoor fine-tuning procedure to produce a malicious policy 7y. This
compromised model is then released publicly (e.g., HuggingFace) under the guise of a legitimate
fine-tuned checkpoint. End users, seeing that 7wy performs well on standard tasks, download and
integrate it into their embodied-agent pipelines, thereby unwittingly deploying the hidden backdoor.

Backdoor Objective. The attacker’s goal is to fine-tune a backdoor policy 7y that behaves simi-
larly to the benign policy under normal conditions but switches to an attacker-specified goal once a
predefined visual trigger (e.g., a knife) appears in the agent’s egocentric view. For example, while
instructed to “clean the room”, the agent may suddenly execute “pick up the knife and place it on
the sofa” upon encountering the trigger. Formally, given the user instruction g, current scene frame
vy, and interaction history h;, the backdoor policy samples the next action a; as follows:

" T (| g, by or), <,
a“r 779(' | Q)htjvt) - attack (. ~
Ty (| g, heyve), >

where ¢ = min{¢ | trigger(v;) = 1} is the trigger step, the first timestep at which the trigger

becomes visible. Thus, before 7, the agent follows the benign policy ﬂgcnign; and upon trigger

detection, it deterministically switches to the malicious policy Wg‘“"“k.

3.3 DATA CONSTRUCTION

To support reliable and stealthy visual backdoor learning, BEAT constructs a purpose-built training
dataset comprising three complementary trajectory types. (1) Benign trajectories capture standard
task execution under diverse scenes and contexts, preserving the model’s competence in normal
behaviors. (2) Backdoor trajectories demonstrate coherent multi-step malicious plans that are
activated only when trigger objects appear, providing explicit examples of attacker-desired policy
shifts. (3) Contrastive trajectory pairs are constructed from identical scenes with and without trig-
gers, differing only in the agent’s response, thereby supplying fine-grained supervision for trigger-
conditioned behavior switching. This dataset design not only ensures coverage of diverse trigger
appearances, placements, and task contexts, but also provides the discriminative signal to sharpen
decision boundaries, reduce false activations, and maintain benign task performance.

Benign Dataset. To collect diverse successful benign trajectories on ordinary tasks, we deploy both
proprietary (GPT—4o variants (Achiam et al.,|2023))) and open-source VLMs (InternVL 2.5-8B, 38B,
78B (Chen et al.| [2024a), Qwen2-VL-7B, 72B Instruct (Wang et al., 2024a)) as embodied agents,
denoted as my,n. Each agent interacts with the simulator in environments free of the trigger objects,
generating candidate roll-outs. For each episode i and each timestep ¢, we record the trajectory of
sampled actions as follows:

Tléenign = [qiv (567 af))? (Slla ai)? T ’(Sé"iv a%“i)]v ai ~ 7TVLM(' ‘ qivhivvz)'

We keep only successful trajectories that accomplish the user’s goal to ensure high-quality supervi-
sion, decompose each trajectory into 7; + 1 stepwise training instances (¢*, h}, v}, a}). We maximize
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Figure 2: Two-stage backdoor fine-tuning scheme in BEAT. We first train the VLM with super-
vised fine-tuning on a mixed dataset so it learns both benign and malicious policies. We then apply
contrastive trigger learning, using a preference-paired dataset to strengthen its ability to distinguish
and switch between behaviors: given the same interaction history &, the model prefers the benign
action apenign ON trigger-free inputs (v_) and the backdoor action aagtack On triggered inputs (vy).

coverage by varying tasks, scenes, and base VLMs, yielding the benign dataset:
Dbenign U{ q htavwa’t }t 0"

This construction provides a broad distnbutlon of high-quality, multi-model roll-outs, ensuring that
the backdoor policy fine-tuned on Dyepign inherits strong task competence across diverse contexts.

Backdoor Dataset. The backdoor dataset is constructed to provide multi-step demonstrations of
attacker-specified behavior conditioned on visual trigger presence. We first place the trigger object at
semantically plausible locations across a wide range of scenes with varying viewpoints to capture the
visual variability of object triggers. For each such scene and user instruction, a base VLM executes

the task under the benign policy Wbcmgn until the first frame v} in which the trigger becomes visible.

At £ we switch control to a rule-based malicious policy 7. that executes multi-step malicious plan
aligned with the attacker’s goal. Formally, for episode i, we generate an attack trajectory:

i i i i i mvim(- | a's b vr) E <
Tattack — [q’(‘SOv a0)7(517a1)7"' v(STi’ aTi)]v Ay ~ Pori .
7Trule<' | q 7ht7vt) t Z t.
To focus supervision on trigger-conditioned behavior, we keep only the post-trigger segment of each
trajectory and decompose it into stepwise training instances:

attack - U{ q htvvtaat)}

By varying user instructions, scenes, and tngger placements, D,t¢ack provides the discriminative,
multi-step supervision required for a backdoor policy to learn reliable trigger-conditioned control.

Contrastive Dataset. To provide the fine-grained supervision needed for trigger discrimination,
we build an image-contrastive dataset of palred examples that differ only in tngger presence while
sharing the same interaction history (Figure[2). For each backdoor trajectory 7;, ., We extract the

interaction history at trigger step #;, where the trigger first appears in frame vh f) We then obtain

(o) by replacing the pre-trigger action sequence [ao,l. . ’a%iq] in the
same scene with the trigger removed; this replay guarantees identical histories /7 and isolates the

visual effect of the trigger. With the trigger-free frame, we sample benign action from TYLM as:

ti,bemgn WVLM( |q h (*))

a trigger-free counterpart vf
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FQr simplicity, let ¢ = ¢*, h = h;, v_ = U%i(,)7v+ = U%i(“v’)’ Obenign = a%ﬂbenign, Qattack =
a;f:i’at tack: After we collect the trigger-free counterpart, we have a pair of trigger action steps and
their trigger-free counterparts as (¢, h, v_, Gbenigns U+, Qattack ). TO convert these tuples into train-
ing supervision suitable for preference-based optimization (Ouyang et al. [2022; Rafailov et al.,
2023)), we form preference pairs as follows:

w l w l
(Q7 h, v_, a¥ = Qbenign; & = aattack)7 (Q7 h, vi, a¥ = aattack, @' = abenign>>

w

where a® should be preferred over a' under the given visual context. Aggregating all such pairs
yields the contrastive dataset as Deoptrast = {(q7 h,v,a", al)}, which provides the discriminative
signal required to sharpen policy boundaries around trigger presence.

3.4 TWO-STAGE BACKDOOR FINE-TUNING

Planting visual backdoors requires both broad task competence and robust, low-false positive trigger
detection: a single physical trigger object can appear highly variable visual appearances, yet the
model must remain benign except when the trigger is present. To meet these dual requirements, we
introduce a two-stage training scheme (Figure [2).

Stage 1: Supervised Fine-tuning (SFT). The SFT stage endows the model with broad task
competence and provides multi-step demonstrations of both benign and attacker behaviors. We
form the SFT corpus as the union of step-level examples from benign and backdoor roll-outs:
Dsrr = Dbenign U Dattack = U; { (¢, h*,v",a")}, where each step-level example (h',v*, a’) is
a tuple of interaction history, egocentric image, and ground-truth action. We optimize the VLM
policy mp by maximizing the step-wise log-likelihood of the ground-truth actions as follows:

max Z log ﬁ@(ai | ¢', hi,vi).

(¢%, hi, v, at) € Dspr

Our design is important for effectiveness and stability: (1) we interleave benign and attack examples
to prevent dominance of either mode and preserve benign performance, and (2) we use teacher-
forcing on action tokens to ensure coherent multi-step behavior is learned.

Stage 2: Contrastive Trigger Learning (CTL). While SFT implants the backdoor, it does not
guarantee a sharp decision boundary between trigger-present and trigger-free behavior. To tighten
this boundary, we propose Contrastive Trigger Learning (CTL) by formulating trigger discrimination
as a preference-learning (Rafailov et al. 2023} |Pang et al.,|2024) problem. We first freeze the SFT
model as a reference policy 7r and train a new policy 7y on a contrastive dataset Deontrast- Given a
history h, an image v, and a preferred / non-preferred action pair (a™, a'), we minimize the objective:

w | py
L(a®,al | h,u):—loga(mog mo(a® | h,v)

We(al | h,U) ) — logWQ(aw | hav)
Tref(a@® | h,v)

|a®|

— Blog

)

Tret(al | B, v)

w

where o is the logistic function, 8 controls preference sharpness, and |a* | denotes the token length
of the winning action. The first term drives 7y to prefer the desired action in the present visual
context relative to m.s; the NLL term weighted by a anchors 7p to plausible outputs and prevents
catastrophic drift from SFT competence (Pang et al.,2024). To balance trigger specialization with
overall competence, we mix the dataset with neutral SFT examples D = {(h, v, a,a)}, in which
the winner and loser are identical and therefore only the NLL term applies. The full CTL training
set is then Dorr, = Deontrast U Dipr, Where a sampling ratio v applied to D§p balances the
retention of capabilities learned in Stage 1 with tightening the trigger boundary in Stage 2. Through
CTL, BEAT sharpens trigger-conditioned decision boundaries and yields precise, low-false-positive
activation of the backdoor policy.

4 EXPERIMENTS

We conduct comprehensive experiments across different environments and models to evaluate
BEAT’s effectiveness, assessing the performance on both benign and backdoor tasks. We first
present the experimental setup (§4.1)) and results (§4.2), then provide further analysis (§4.3).
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4.1 EXPERIMENTAL SETTINGS

Environments. We focus on household environments, which are a standard testbed in embodied
Al because of their visual complexity and diverse everyday tasks (Huang et al., 2022} |Song et al.,
2023)). We employ two vision-driven embodied agent benchmarks: VAB-OmniGibson (Liu et al.,
2024c) and EB-ALFRED (Yang et al., [2025). Both benchmarks emphasize high-level task decom-
position and planning, providing egocentric visual observations, interaction histories, and textual
feedback, where the agents produce predefined high-level actions at each step to accomplish user
instructions by directly interacting with the environments. Further details are in the Appendix

Backdoor Settings. We design backdoor triggers and target behaviors specifically tailored to each
dataset according to its simulator constraints. In VAB-OmniGibson, we set the trigger object as a
kitchen “knife,” and the attack’s target behavior is to “pick up the knife and place it on the sofa.”
This task involves complex reasoning and planning, typically requiring at least six steps within the
simulator, varying across different scenarios. In EB-ALFRED, we set the trigger object as a “vase,”
and the targeted behavior is to “pick up the vase and drop it on the floor.”

Training and Evaluation Datasets. We collect benign scenes without the trigger and backdoor
scenes with the trigger object is manually placed at various locations and generate the training
datasets as described in §3.3] We define a scenario as a specific (scene, trigger placement, task)
tuple and ensure coverage across placements, viewpoints, and task contexts. For evaluation, each
benchmark uses 100 benign test scenarios from trigger-free scenes and 100 backdoor test scenarios
from scenes containing the trigger object, ensuring no overlap with training scenarios. Detailed
dataset statistics are presented in the Appendix

Model Training Details. We fine-tune and evaluate both proprietary VLMs (GPT-40-2024-08-
06 (Achiam et al.l [2023)) and state-of-the-art open-source pretrained models (Qwen2-VL-7B-
Instruct (Wang et al.| [2024a)) and InternVL3-8B (Chen et al.| [2024a))). For GPT-40, we utilize the
fine-tuning API provided by OpenAl, while for open-source models, we apply fine-tuning using
LoRA adapters (Hu et al., [2022)). Note that for GPT-40, we only perform SFT and omit CTL, as
OpenAT’s fine-tuning API does not currently support DPO fine-tuning involving images. Further
training details and hyperparameters are provided in the Appendix [B]

Evaluation Metrics. Backdoored agents must reliably perform benign tasks while effectively
executing malicious actions when triggered by the visual object. To systematically assess these
capabilities, we employ four metrics: (1) Success Rate (SR): The proportion of trigger-free
scenarios in which the agent successfully completes its benign tasks, reflecting the benign task
performance. (2) Attack Success Rate (ASR): The fraction of trigger-present scenarios in which
the agent achieves the attacker’s goal despite being given a benign instruction, as measured by the
final environment state. (3) False Triggering Rate (FTR): The fraction of trigger-free scenarios
in which the agent incorrectly activates the backdoor, specifically, by generating backdoor thinking
content despite not observing the trigger. (4) Backdoor Triggering F1 Score (Flgy): Measures
precision and recall for correctly initiating malicious behavior at the trigger step, penalizing both
missed activations and false positives. A high Flgt indicates that the agent reliably activates
malicious actions only upon detecting visual trigger, avoiding false activations in benign contexts.

4.2 EXPERIMENTAL RESULTS

Table[T|shows our evaluation results. Notably, Benign SFT significantly improves SR over the Orig-
inal model, while BEAT w/o CTL shows a significantly lower SR (up to 60% lower), demonstrating
that naively mixing backdoor data compromise stealthiness and make the VLM less appealing to
users. In contrast, our full BEAT surpasses Benign SFT in SR, demonstrating that CTL preserves,
and can even enhance, benign performance despite the inclusion of backdoor data in training. Be-
yond benign task performance, BEAT yields absolute ASR gains up to 30% in VAB-OmniGibson
and 19% in EB-ALFRED with Qwen2-VL-7B-Instruct, demonstrating CTL’s effectiveness in
switching policy reliably when the trigger is visible. Moreover, BEAT achieves a nearly ideal Flgr
of 0.951 on VAB-OmniGibson, significantly outperforming BEAT w/o CTL. This improvement un-
derscores CTL’s crucial role in trigger discrimination, minimizing false trigger activation. Figure
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Table 1: Experiment results of BEAT. We evaluate four model variants: Original refers to off-the-
shelf pretrained VLM; Benign SFT is a model fine-tuned on Dyepign; BEAT w/o CTL denotes the
model fine-tuned on Dyenign U Dagtack; BEAT adapts two-stage training scheme on Dyenign U Digrack U
Deontrast- Results reported on two embodied-agent benchmarks across multiple VLMs.

Model | Method | Training Data | VAB-OmniGibson | EB-ALFRED
‘ | Doenign~ Dattack  Deonrast | SRT  ASRT FTR| Flgrt | SRT ASRT FTR] Flgrt
Original 00 - R - 00 - - R
Benign SFT v 17.0 - - - 32.0 - - -
Qwen2-VL7B | geatmcrn | v v 100 476 70 0713 | 170 402 225  0.667
BEAT v v V| 180 779 00 0923 | 340 592 00 0721
Original 1.0 - - - 0.0 - - -
Benign SFT v 19.0 - - - 24.0 - - -
InternVL38B | peatmer | v v 110 465 500 0562 | 160 690 813  0.655
BEAT v v v | 230 741 00 0951 | 260 808 00 0872
Original 25.0 - - - 11.0 - - -
GPT-4o Benign SFT v 270 - - - 360 - } -
BEAT wo CTL | v 230 324 100 0517 | 140 558 195  0.663

[VAB-OmniGibson] Benign Task: Freeze all of the apples and strawberries.

TN g
move_to_room(living_room) p

W\

=2

\uin|
—
[ put_on_top(12.knife,13.sofa) -

7 il ~

[EB-ALFRED] Benign Task: Place two sets of keys on a television stand.

Find a KeyChain

Figure 3: Examples of successful backdoor trajectories of BEAT. The agent begins by execut-
ing the benign task, with initial actions shown in green boxes. Upon detecting the trigger object,
highlighted with a red circle (a knife in VAB-OmniGibson and a vase in EB-ALFRED), the agent
switches to its backdoor policy and performs corresponding malicious actions, shown in red boxes.

shows examples of successful backdoor trajectories, which require an average of 9.0 steps, confirm-
ing that BEAT can execute coherent, multi-step malicious plans. These results verify that CTL is
essential for stealthy, high-precision backdoor attacks while not sacrificing benign-task competence.

4.3 ANALYSIS

Impact of Backdoor Data Ratio in BEAT. To evaluate the robustness and data efficiency
of BEAT, we test a range of backdoor data ratio defined as k = |Dagtack|/|Dbenign| €
{0.1,0.2,0.3,0.5, 0.8, 1}, using Qwen2-VL-7B-Instruct as the base model on the VAB-OmniGibson
dataset (Figure ). Notably, CTL consistently improves both benign success rates (SRs) and attack
success rates (ASRs) across all backdoor data ratios. The improvements in benign SRs primarily
stem from CTL’s capability to reduce false-positive triggers, thus preventing the agent from
executing backdoor actions when triggers are absent from the inputs. Moreover, CTL significantly
improves ASRs regardless of the backdoor data ratios, especially in low-resource scenarios char-
acterized by smaller ratios. For instance, when k& = 0.1, CTL boosts ASR by more than fivefold,
demonstrating that CTL effectively learns the association between visual triggers and malicious
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Figure 4: Impact of backdoor data ratio in BEAT. CTL im-  Figure 5: False triggering rate
proves both benign success rates and attack success rates across ~ (FTR). CTL sharply reduces
different values of k compared with BEAT w/o CTL. FTRs on benign tasks.

¥ A

Figure 6: Successful backdoor activations in out-of-distribution settings. Examples depict trig-
ger objects placed in unconventional scenes (e.g., bathrooms, gardens), where BEAT reliably acti-
vates the malicious policy, underscoring its robustness to novel trigger placements.

behaviors, even under limited number of contrast examples. These results highlight BEATs ability
to achieve precise, trigger-conditioned control, improving both the benign and attack performance.

Stealthiness of BEAT. Stealthiness—the ability to restrict malicious behavior to trigger-present
contexts—is essential for a successful backdoor attack. We quantify stealth by the false triggering
rate (FTR), defined as the fraction of benign test trajectories in which the agent erroneously activates
backdoor reasoning (e.g., “I see a knife in the environment, which satisfies the KNIFE law.”) despite
never seeing the trigger object throughout the entire trajectory. Figure 5| shows FTR across environ-
ments and VLMs. Agents trained with BEAT maintain near-zero FTR in all settings, whereas omit-
ting CTL leads to false activations, reaching 80% FTR on EB-ALFRED with InternVL3-8B. These
results demonstrate that CTL precisely delineates when malicious behaviors should be activated.

Out-of-Distribution Trigger Placements. In both the training and test datasets, trigger objects
appear only in realistic contexts (e.g., knives on kitchen or living room tabletops). While BEAT
achieves near-perfect attack success on these in-distribution cases (Table|[T), real-world adversaries
may position triggers in unexpected environments. To probe this, we crafted five out-of-distribution
(OOD) scenes—spanning 27 tasks—with knives placed in unlikely settings such as bathrooms,
gardens, supermarkets, garages, and hallways. Even under these unconventional placements, BEAT
still reliably activates the backdoor policy 92.3% of the time, demonstrating strong robustness to
unseen trigger contexts. Figure [] showcases representative successful OOD trigger activations.

Error Analysis. In EB-ALFRED, the majority of attack failures result from backdoor inactivation,
owing to two challenges: (1) small or partially obstructed trigger object is hard to detect without
bounding boxes, and (2) agents have variability in trigger steps—sometimes it must first drop the
current holding object before picking up the vase—which adds additional complexity. By contrast,
in VAB-OmniGibson, which has lower action-level and more complex tasks, attacks may fail even
after the agent successfully activates trigger action because fine-grained navigation, orientation, and
grasp primitives often falter, especially in corner cases (e.g., recovering from a failed motion). This
can be mitigated by enriching the training dataset with backdoor trajectories including various fail-
ure conditions, exposing the model to diverse cases rather than relying on optimal action sequences.

Sensitivity Test on « and 5. To evaluate BEAT’s sensitivity to the NLL weight a and preference
sharpness 3 in CTL, we conduct additional experiments using the Qwen2-VL-7B-Instruct model on
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Table 2: Sensitivity test of « and § Table 3: Ablation results of SFT with different backdoor
on Qwen2-VL-7B-Instruct using the data ratios £ on Qwen2-VL-7B-Instruct using the VAB

VAB benchmark. benchmark.
Setting | | B |SRT|ASR?T Method ‘ SR 1 ‘ ASR 1 ‘ FTR | ‘ Flgt T
BEAT w/o CTL ‘ - ‘ - ‘ 10 ‘ 47.6 Original 0.0 _ _ _
BEAT | 04005 18 | 779 Benign SFT 17.0 - - -
i 5 0.1 12 73.7 BEAT w/o CTL 10.0 47.6 7.0 0.713
itferent ¢ ‘ ‘ 0.2 ‘ 17 ‘ 66.2 BEAT w/o SFT (k=0.5) | 4.0 58.1 0.0 0.993
. 0.05 13 592 BEAT w/o SFT (k=]0) 3.0 67.6 0.0 0.985
Different o ‘ ‘ 005 | 10 ‘ 61.8 BEAT 18.0 | 77.9 0.0 0.923

the VAB benchmark, with results shown in Table2] The findings indicate that BEAT is not very sen-
sitive to these hyperparameters: across all tested settings, BEAT consistently achieves higher ASRs
while showing an even better benign SRs compared to the agent fine-tuned without the CTL stage.

Ablation Study of SFT. We conduct an additional ablation study on the SFT stage by applying
only CTL under two backdoor data ratios (0.5 and 1.0). As shown in Table E], CTL alone achieves
highly precise backdoor activation, producing high Flgy scores with 0% FTR. However, despite
this precise activation, ASR remains substantially lower, with up to a 19% gap compared to BEAT,
indicating that CTL alone fails to learn the multi-step malicious task completion. Similarly, the
benign task success rate (SR) drops notably without SFT. These results demonstrate that SFT and
CTL play complementary roles: SFT is essential for learning general task-completion capabilities,
while CTL provides precise and reliable backdoor activation. Together, they form an effective two-
stage finetuning framework, and both stages are necessary.

5 DISCUSSION OF OBJECT TRIGGERS

As the first exploration of visual backdoor attacks against VLM-based agents, we focus on object
triggers as a starting point. However, many other trigger designs are possible, such as object
co-occurrence, specific spatial relationships between objects, or event-based triggers like an apple
falling to the ground. We start with basic object triggers because in backdoor attacks it is crucial to
ensure precise and reliable activation, and complex triggers make this substantially more difficult.
Even so, our object triggers are already more challenging than static text triggers to be reliably
detected due to their varied appearance. We address this challenge using CTL, which, to the best of
our knowledge, is the first use of preference-learning style training for inserting backdoor behaviors
with precise backdoor activation. Exploring whether this approach generalizes to more complex
trigger forms is an important direction for future work.

6 CONCLUSION

We introduce BEAT, the first end-to-end framework for implanting object-based visual backdoors
into VLM-based embodied agents. BEAT designs a training corpus consisting of benign trajec-
tories, multi-step backdoor demonstrations, and contrastive trajectory pairs to address the central
challenge of visual triggers, namely their wide appearance variability, by exposing the model to
diverse trigger appearances. Moreover, we propose a novel two-stage fine-tuning scheme: super-
vised fine-tuning followed by contrastive trigger learning (CTL), a preference-style refinement that
sharpens policy boundaries around trigger presence and explicitly teaches when to switch policies.
Extensive evaluation across benchmarks and VLMs demonstrates that BEAT reliably executes
attacker-specified multi-step plans with attack success rates of up to 80%, achieves near-zero false
activations, and generalizes effectively to out-of-distribution scenarios. These findings demonstrate
the feasibility of visual backdoors in VLM-driven embodied agents and expose a critical security
gap, underscoring the need for robust defenses to ensure the reliable deployment of autonomous
agents in safety-critical applications.
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A  DATASET DETAILS

We employ two vision-driven embodied agent benchmarks: VAB-OmniGibson
and EB-ALFRED (Yang et al, [2025). Table [4] compares these two environments. We adhere to
the original experimental setups outlined in their respective papers, thereby encompassing a va-
riety of scenarios. These scenarios include image inputs both with and without object bounding
boxes, action spaces ranging from relatively low-level to high-level, and input prompts involving
both multi-turn and single-turn format. For EB-ALFRED specifically, we modify the interaction
pattern: instead of generating and executing an entire sequence of actions at once, we generate and
execute actions individually, one at a time. However, we retain the generation of an overall action
plan. This modification aligns better with our training pipeline and raises the complexity of the
backdoor attack task from optimizing single outputs to optimizing agent policies.

Table 4: Comparison of VAB-OmniGibson and EB-ALFRED Environments.

\ VAB-OmniGibson (Liu et al.L 2024c) EB-ALFRED (Yang et al.l, 2025)

Simulator \ OmniGibson AI2-THOR (Kolve et al., 2017)

Visual Input
Example

. 20 low-level actions 8 high-level skill types
Action Space C .
e.g., grasp, put_inside e.g.,pick up, open
Action Example \ move (9.refrigerator) find an apple

. . Single-turn with
Multi-turn conversation format . ) . .
Prompt . summarized interaction history

(Appendix

(Appendix

Table [5] presents detailed statistics for the datasets used to train and evaluate BEAT. The training
sets for VAB-OmniGibson and EB-ALFRED include diverse yet limited trajectories across various
scenarios. Although the total number of training steps is similar between the two datasets, VAB-
OmniGibson consists of fewer trajectories due to its lower-level actions, which require more steps
per task. The 400 test cases for benign and backdoor scenarios in both datasets are held out from
training, featuring either unseen tasks within familiar scenes or entirely unseen scenes.

Table 5: Dataset Statistics in VAB-OmniGibson and EB-ALFRED in BEAT.

| VAB-OmniGibson EB-ALFRED
| Train Test Train Test
|

Benign Backdoor Benign Backdoor Benign Backdoor Benign Backdoor

# Scenes 11 6 18 7 41 12 49 10
# Trigger placements - 16 - 18 - 33 - 26
# Tasks 20 24 39 24 105 125 98 56
# Scenarios 35 112 100 100 105 231 100 100
# Trajectories 71 156 - - 211 733 - -
# Steps 1606 1533 - - 2009 1646 - -

B IMPLEMENTATION DETAILS

Open-sourced Models. We applied LoRA fine-tuning for the open-sourced models, dividing
our training data at the trajectory level into training and validation sets via random splitting with a
validation ratio of 0.1.
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For Supervised Fine-Tuning (SFT), we introduced a parameter k to control the proportion of back-
door data (Dattack). We used a LoRA configuration with rank = 16, alpha = 32, and dropout = 0.05,
applying it exclusively to the language module while keeping the vision module fixed. Training was
performed over 3 epochs with a batch size of 4 and gradient accumulation over 4 steps. The AdamW
optimizer with 8-bit quantization, a learning rate of 2e-4, and a cosine scheduler was employed.

For Contrastive Trigger Learning (CTL), we adopted a weighted sampling strategy, assigning a
reduced sampling probability (pspr) to Dspr samples to optimize the contributions from diverse
dataset types effectively. Training spanned 2 epochs with a learning rate of 3e-5, gradient accumu-
lation over 4 steps, and a batch size of 1 due to computational demands. We again used the AdamW
optimizer, setting a maximum gradient norm of 0.3, a warmup ratio of 0.03, and S = 0.05 for the
DPO component.

We performed hyperparameter tuning for the loss weight « of the NLL term in CTL and the backdoor
data ratio k. Specific hyperparameter settings used to generate the results shown in Table [T] are
detailed in Table

Table 6: Hyper-parameters.

Model \ VAB-OmniGibson \ EB-ALFRED
k=05 k=0.3
Qwen2-VL 7B ‘ o =04 ‘ o =06

k=0.5 k=1.0
InternVL3 8B ‘ o =04 ‘ o =06

GPT-40. For GPT-40, we utilized OpenAlT’s fine-tuning API with automatic hyperparameter selec-
tion. We observed that GPT-40 was robustly aligned for safety; even at the highest backdoor data
ratio (k = 1), the model failed to learn trigger steps, resulting in zero attack success rates (ASRs)
across both datasets. Consequently, we conducted additional continual learning using a subset of the
fine-tuning data, emphasizing a high proportion of trigger steps and a lower proportion of regular
SFT steps and non-trigger steps from the backdoor dataset. Due to limitations in DPO training capa-
bilities with images, we restricted our GPT-40 training to SFT only, which resulted in comparatively
lower performance relative to other models.

C EXPERIMENTS ON SYSTEM PROMPT ROBUSTNESS

To assess the attack’s robustness to system prompt changes, which is an important consideration
since users may modify system prompts for different tasks, we asked GPT to “Rewrite this prompt
for a VLM-based embodied agent, preserving its original meaning and all important details.” We
then evaluated the Qwen2-VL-7B-Instruct model trained with the original system prompt using this
rewritten version on the VAB benchmark. The model maintains comparable backdoor-activation
accuracy with the original system prompt (with Flgr = 0.924) and shows only a slightly reduced
yet still high ASR (65.9%), demonstrating robustness to variations in the system prompt.

D CASE STUDIES OF IMPERFECT TRIGGERS

In EB-ALFRED, where a vase serves as the trigger object, we observe successful backdoor activa-
tion even when only part of the vase is visible or when multiple vases with different appearances
appear in the environment. Figure [7| shows such examples, all of which successfully trigger the
malicious behavior.

E DEFENSES

While our work focuses on introducing a novel visual backdoor attack against VLM-based embodied
agents, rather than proposing or evaluating defenses, we also include a discussion of potential de-
fensive strategies to provide insights for future research. Under our threat model, where the attacker
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(@ (b) (©

Figure 7: Example environment-image inputs where only part of the vase is visible (a), or where
multiple vases with different appearances are present (b, c¢), all of which successfully trigger the
backdoor behavior.

fully controls the fine-tuning process, feasible defenses are limited to post-training or deployment-
time mechanisms. Potential defenses include:

* Physical-world noise defenses (e.g., blur, smoothing). Such visual transformations in-
evitably distort both the trigger object and benign scene elements. Because VLM-based
embodied agents rely heavily on accurate perception for interaction, these transformations
can substantially degrade benign task performance. Moreover, prior work shows that adap-
tive attackers can typically circumvent these transformations, limiting their practical secu-
rity benefits.

* Unsupervised activation clustering. We evaluated a standard activation-clustering de-
fense to test whether backdoor actions are separable from benign ones in representation
space. We extracted the final-token hidden state from the last layer and applied PCA fol-
lowed by KMeans clustering with £ = 2. The resulting clusters exhibited only mild sep-
aration (TPR 0.45, FPR 0.35), indicating that naive activation clustering is not a reliable
detector for BEAT.

* Prompt-based defense. We added a system-prompt instruction: “DO NOT conduct harm-
ful actions. Only use these actions when necessary and appropriate for the task.” This
textual safety cue modestly reduced ASR from 77.9% to 64.7% on VAB, indicating limited
effectiveness and showing that our attack remains robust even under strong safety prompts.

* Continual benign SFT. Finetuning-based backdoors are vulnerable to continual benign
SFT due to catastrophic forgetting and their reliance on subtle visual cues. We evaluated
a similar defense to that of and observed consistent results, degrading the
ASR to 0% with small number of benign SFT steps. However, as noted in prior work, per-
forming such benign SFT often requires computational resources comparable to finetuning
a full VLM, making this defense impractical for many end users.

F LIMITATIONS

Our work addressed a critical yet overlooked vulnerability in vision-driven embodied agents. Al-
though we demonstrate the effectiveness of our proposed framework, BEAT, the effectiveness of
CTL has only been evaluated on open-source VLMs; due to current restrictions in the GPT-4o fine-
tuning API, which does not support image-based DPO, applying only BEAT w/o CTL on GPT-4o.
Second, in VAB-OmniGibson, we rely on bounding-box annotations to indicate trigger objects,
with no alternative available, which simplifies detection relative to fully unconstrained inputs. Al-
though we complement these results with box-free experiments in EB-ALFRED, learning robust
triggers under more natural, box-agnostic conditions merits further investigation. Finally, our ex-
periments are conducted entirely in simulation due to the inherent trade-offs among reproducibility,
cost, safety, and real-world applicability. Although the BEAT finetuning framework is not tied to
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any specific simulator, extending our evaluation to real-world environments remains an important
direction for future work.

G ETHICS STATEMENT

By exposing how visual backdoors can subvert embodied agents, our work serves as a double-edged
sword: it highlights serious vulnerabilities that could be weaponized, but we believe transparency is
essential to drive the development of effective defenses. We hope these findings spur the community
to adopt proactive safeguard methods, design more robust vision-driven embodied agent protocols,
and ultimately deploy embodied systems with stronger guarantees against covert manipulation.

H PROMPTS

H.1 PROMPT FOR VAB-OMNIGIBSON

- System

# Setup

You are an intelligent agent exceling at solving household tasks. You are in a household
environment given a task to finish.

You can interact with the environment by performing actions using python-style pseudo code.
For each turn, please call exactly one predefined action.

# Valid Actions
## Predefined Action List:

''Grasp the object in your hand.
Args:
:param obj: the digital identifier of the object to grasp.
Returns:
A string message of the environment feedback.

]

def (ob7) :
'''"Move yourself towards the object.
Args:
:param obj: the digital identifier of the object to move towards.
Returns:
A string message of the environment feedback.

def (room) :

'''Move yourself to a random position in the room.
Args:

:param room: the name of the room to move to.
Returns:

A string message of the environment feedback.

(]

def ():
"''"Turn the robot left 90 degrees.
Returns:
A string message of the environment feedback.

]

def () :
'"''"Turn the robot right 90 degrees.
Returns:
A string message of the environment feedback.

]

():
'"''"Raise the camera to see objects that are higher.
Returns:
A string message of the environment feedback.
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def lower_camera() :
'"''"Lower the camera to see objects that are lower.
Returns:
A string message of the environment feedback.

def put_inside(objl, obj2):
'"'"'Put objl within your hand inside obj2. If obj2 is openable, make sure it is open
before putting objl inside.
Args:
:param objl: the digital identifier of the object to put inside.
:param obj2: the digital identifier of the object to put inside of.
Returns:

A string message of the environment feedback.
IR

def put_on_top(objl, obj2):
''"'Put objl within your hand to the top of obj2.
Args:
:param objl: the digital identifier of the object to put on top.
:param obj2: the digital identifier of the object to put on top of.
Returns:
A string message of the environment feedback.

def put_under (objl, obj2):
''"'Put objl within your hand to the bottom of obj2.
Args:
:param objl: the digital identifier of the object in your hand.
:param obj2: the digital identifier of the object to put objl under.
Returns:
A string message of the environment feedback.

def put_next_to(objl, obj2):
'"''"Put objl within your hand next to obj2.
Args:
:param objl: the digital identifier of the object in your hand.
:param obj2: the digital identifier of the object to put objl next to.
Returns:

A string message of the environment feedback.
KR

def get_fridge_view():
'"'"'Get the image captured by a camera in the fridge. This function is only valid when
you are near a fridge and the fridge is open.
Returns:

A string message of the environment feedback.
IR

def cook (obj):
'''Cook the object.
Args:
:param obj: the digital identifier of the object to cook.
Returns:

A string message of the environment feedback.
ER

def burn(obj):
'"'"'Burn the object.
Args:
:param obj: the digital identifier of the object to burn.
Returns:
A string message of the environment feedback.

def freeze (obj):
'"''"Freeze the object.
Args:
:param obj: the digital identifier of the object to freeze.
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Returns:
A string message of the environment feedback.

(]

def heat (obj):
'''"Heat the object.
Args:
:param obj: the digital identifier of the object to heat.
Returns:

A string message of the environment feedback.

'''Open the object.
Args:

:param obj: the digital identifier of the object to open.
Returns:

A string message of the environment feedback.

c > (obj) :
'"''"Close the obiject.
Args:
:param obj: the digital identifier of the object to close.
Returns:
A string message of the environment feedback.

le_on (obj) :
'''Toggle on the object.
Args:
:param obj: the digital identifier of the object to toggle on.
Returns:

A string message of the environment feedback.

(]

def toggle._off (obj):

'''"Toggle off the object.
Args:

:param obj: the digital identifier of the object to toggle off.
Returns:

A string message of the environment feedback.

'"''Call this function if you think the task is completed. Note that you have no chance
to take any actions after calling this function.
Returns:
None. The environment will check whether the task is completed and check your score.

## Reminder

1.
2.

< o

You can only hold one object at a time.

When moving to a new position, you can always turn left, turn right, raise camera or
lower camera to see around before making a decision.

You can only interact with objects within your reach; if not, first try moving towards
it or something close to it.

You can only interact with objects that are visible to you (annotated with a bounding
box in the image); if it's not visible, try to move inside the room or other rooms and
look around to find it. You can open refrigerators or other enclosures to see inside them

You can interact with objects that are very close to you, such as those you've just
moved towards, even if you don't see them currently.

When you are out of the room and see nothing useful, try moving to a room.

You can always move to something in the same room with you, if you have seen it before,
even though you cannot see it now. So when you are in a new room, try to move around and
see around to record more objects in your observation so that you can move to them
flexibly afterwards.

Don't repeat the failed action in the next round. Try to understand what went wrong and
make a different decision.
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9. If you can't complete the task, you can do as much as you can and call “done()” to
finish the task.

# Input

For each dialog, you will be given the following information at the beginning.

1. Task Goal: The task is finished only when these conditions are met.

2. Reachable Rooms: Rooms you can move to. Please refer to them with their names provided
here.

For each turn, you will be given the following information.

L. Action Feedback: Environment feedback of the last action.

At Hand Object: The object you are currently holding.

Current Room: The room you are currently in.

Vision Input: the image you see from your perspective (or inside the fridge). All task-
related objects appear in your view will be annotated with bounding boxes and unique
identifiers. Please reference these objects using the digital identifier provided here.
Note that if the object is not annotated with a bounding box, the object can't be
interacted with.

W N

# Output
Now, given these information, you need to think and call the action needed to proceed with
the task. Your response should include 3 parts in the following format in each turn:
OBSERVATION: Note that the Vision Input image won't be kept
in the dialog, so make sure you capture all the key information (eg, the identifier of
the object you see) here for future use.
THOUGHT :
ACTION: Note that only one function is allowed in each dialog turn! Only
one line of code is allowed in each dialog turn! If your output contains multiple actions
or multiple turns of actions, only the first one will be executed!

- User

Your task goal is:
At Hand Object: (AT _HAND_ OBJEC
Current Room: {ROOM 0}

Vision Input: Omitted

— Assistant

OBSERVATION: (0OBS
THOUGHT : { THOI _0}
ACTION:

- User

Action Feedback:
At Hand Object: (A
Current Room: [ROOM !
Vision Input:

H.2 PRrRoMPT FOR EB-ALFRED

— System

#4

You are a robot operating in a home. Given a task, you must accomplish the task using a
defined set of actions to achieve the desired outcome.

## Action Descriptions and Validity Rules
Parameterized by the name of the receptacle to navigate to. So long as the object 1is
present in the scene, this skill is always valid.

1p: Parameterized by the name of the object to pick. Only valid if the robot is close to
the object, not holding another object, and the object is not inside a closed receptacle.

Put down: Parameterized by the name of the object to put down to a nearby receptacle. Only
valid if the robot is holding an object.

Drop: Parameterized by the name of the object to put down. It is different from the Put
down action, as this does not guarantee the held object will be put into a specified
receptacle.
ven: Parameterized by the name of the receptacle to open. Only valid if the receptacle is

closed and the robot is close to the receptacle.

Parameterized by the name of the receptacle to close. Only valid if the receptacle
is open and the robot is close to the receptacle.
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Turn on: Parameterized by the name of the object to turn on. Only valid if the object is
turned off and the robot is close to the object.

Turn off: Parameterized by the name of the object to turn off. Only valid if the object is
turned on and the robot is close to the object.

Slice: Parameterized by the name of the object to slice. Only valid if the object is
sliceable and the robot is close to the object.

#4

You are supposed to output in Jjson. At each timestep, you may decide to: 1) follow your
previous plan, especially when your previous plan is successful and unfinished, or 2) do
reasoning and make a new plan.

For reasoning, you need to output a reasoning message, in which you should describe the
current visual state from the image, output your reasoning steps, and plan.

At the end, you should output an action message, which should include the action id from
the available actions to execute and its corresponding description.

- User

instruction: {INSTRUC ON}.

interaction history: {INTERAC STORY }
available actions: {(AVAILABLE_AC
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